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Investigating Black-Box Function Recognition
Using Hardware Performance Counters

Carlton Shepherd, Benjamin Semal, and Konstantinos Markantonakis

Abstract—This paper presents new methods and results for recognising black-box program functions using hardware performance
counters (HPC), where an investigator can invoke and measure function calls. Important use cases include analysing compiled
libraries, e.g. static and dynamic link libraries, and trusted execution environment (TEE) applications. We develop a generic approach
to classify a comprehensive set of hardware events, e.g. branch mis-predictions and instruction retirements, to recognise standard
benchmarking and cryptographic library functions. This includes various signing, verification and hash functions, and ciphers in
numerous modes of operation. Three architectures are evaluated using off-the-shelf Intel/X86-64, ARM, and RISC-V CPUs. Next, we
show that several known CVE-numbered OpenSSL vulnerabilities can be detected using HPC differences between patched and
unpatched library versions. Further, we demonstrate that standardised cryptographic functions within ARM TrustZone TEE applications
can be recognised using non-secure world HPC measurements, applying to platforms that insecurely perturb the performance
monitoring unit (PMU) during TEE execution. High accuracy was achieved in all cases (86.22–99.83%) depending on the application,
architectural, and compilation assumptions. Lastly, we discuss mitigations, outstanding challenges, and directions for future research.

Index Terms—Side-channel analysis, hardware performance counters (HPCs), reverse engineering.
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1 INTRODUCTION

MODERN central processing units (CPUs) support a
range of hardware performance counters (HPCs) for

monitoring run-time memory accesses, pipeline events (e.g.
instruction retired), cache hits, clock cycles, and more. To-
day’s CPUs may support very few HPCs—under 10 on con-
strained microcontroller units—to over 100 events on Intel
and AMD server chips [1], [2]. Originally intended for opti-
misation and debugging purposes, HPC events have found
a myriad of security applications. For example, measure-
ment sources for cache attacks [3]; intrusion detection [4],
[5]; malware detection [6], [7], [8]; maintaining control-
flow integrity [9]; and reverse engineering proprietary CPU
features [10], [11]. While the security implications of high-
resolution HPCs have been acknowledged [12], [13], [14],
they remain widely available on commercial platforms.

In this paper, we explore a novel application where
measurements are analysed en masse from multiple counters
in order to identify executed program functions. A generic
supervised learning workflow is developed, where target
functions are classified using events collected before and
after their invocation. Analysing exposed functions in this
way can help ameliorate time-consuming binary patching
and reverse-engineering, e.g. to implement precise code
triggers, which is a major challenge in related work [15].

To this end, we present the results of a three-part in-
vestigation. Firstly, §3 presents a foundational study on the
feasibility of identifying functions from only HPC measure-
ments, using a standard benchmarking suite (MiBench [16])
and four popular cryptography libraries (WolfSSL, Intel’s
Tinycrypt, Monocypher, and LibTomCrypt). Our approach
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identifies functions with 48.29%–83.81% accuracy (unprivi-
leged execution) and 86.22%–97.33% (privileged), depend-
ing on the target architecture (X86-64/Intel, ARM Cortex-A,
and RISC-V). Moreover, we analyse correlations of HPCs
and use model inspection techniques to gauge their relative
importance. From this, we distill a reduced set of the most
effective counters for facilitating generalisation to other
platforms that do not support a wide range of HPCs.

After this, §4 explores an offensive use case for detect-
ing patches of known vulnerabilities. This has applications
as a reconnaissance method during security evaluations,
where we show how several OpenSSL (libcrypto) micro-
architectural vulnerabilities can be recognised with 0.889–
0.998 F1-score (89.58%–99.83% accuracy). Next, §5 inves-
tigates how a malicious spy process may use HPC mea-
surements to recognise cryptographic algorithms executed
by a trusted application (TA) within an ARM TrustZone-
based trusted execution environment (TEE). Using OP-
TEE—an open-source GlobalPlatform-compliant TEE—and
a comprehensive set of GlobalPlatform TEE Client API [17]
functions, the spy can recognise victim TA functions with
95.50% accuracy. Finally, §6 presents a security analysis,
mitigations, and problems for future research.

1.1 Threat Model

We consider an attacker, A, that aims to identify particular
algorithms under execution given only high-level function
calls and limited knowledge of its implementation. This is
often the case when analysing software with no debug sym-
bols, function/variable names, and optimisation and code
obfuscation techniques that inhibit readability. An example
is the analysis of pre-existing compiled shared libraries on a
target system. For instance, Windows dynamic link libraries
(DLLs) and Linux shared objects, where the source code is
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inaccessible but where a spy application may link to and call
functions of interest. A second example is TEE applications,
e.g. ARM TrustZone TAs, where only high-level functions
calls are exposed to untrusted world software [17]. A’s aim
is to recognise functions from only CPU HPC measurements
taken prior to and following their invocation. This requires
kernel-mode code execution to access a full range of HPCs;
however, we also explore cases where only user-mode coun-
ters are used. A is also assumed to possess oracle access for
collecting HPC measurements from idempotent functions,
without restrictions on the number of permitted invocations.
In our approach, we use a model trained on known HPC-
function mappings, i.e. on another system underA’s control,
which is used for identifying unpatched functions, insecure
cryptographic functions, and other tasks on the target.

1.2 Contributions

This paper presents the following contributions:
• The design and evaluation of a generic approach for

function recognition using HPC measurements. We de-
velop a test-bed of standard cryptographic and non-
cryptographic algorithms taken from widely used cryp-
tographic libraries and MiBench [16] using three off-
the-shelf RISC-V, ARM and X86-64 (Intel) platforms.
Different privilege levels and compiler optimisations on
overall performance are also examined. A feature im-
portance analysis is conducted for determining a strong
minimal set of HPCs towards facilitating generalisation.

• Methods and results of two use cases: 1 detect-
ing unpatched versions of OpenSSL for several CVE-
numbered vulnerabilities; and 2 recognising Glob-
alPlatform cryptographic functions executing in OP-
TEE, a GlobalPlatform-compliant ARM TrustZone TEE
implementation. This is a passive vector that is difficult
to mitigate in software against privileged adversaries.
For both, experimental results indicate that HPCs can
effectively recognise target program functions. Our ap-
proach aims to offer an alternative to orthogonal meth-
ods for reverse-engineering and vulnerability detection,
like those requiring physical access [18], [19] and static
analysis and symbolic execution [20], [21].

2 BACKGROUND

This section discusses related literature and background
information on CPU performance events.

2.1 Related Work

HPCs have been used in various security applications,
particularly as precise measurement sources for micro-
architectural side-channels, like speculative execution and
cache timing attacks [3], [22], [23]. A significant body of
work has also studied HPCs for malware detection in static
and online environments, including rootkit, cryptocurrency
miner, and ransomware detection [6], [7], [8]. A general
approach instruments target binaries to acquire measure-
ments from the CPU’s performance monitoring unit (PMU),
which are then used to build custom statistical and machine
learning models from known malware/safeware samples.

For intrusion detection, Eunomia [5] traps and analy-
ses sensitive syscalls during suspicious program execution.
A trusted monitor analyses the preceding HPC measure-
ments and permits/denies the call to prevent code injection,
return-to-libc, and return-oriented programming (ROP) at-
tacks. Xia et al. [9] tackle address control-flow integrity us-
ing Intel’s Branch Trace Store (BTS), an Intel PMU buffer for
storing control transfer events (e.g. jumps, calls, returns, and
exceptions). The work builds legal sets of target addresses
offline, after which branch traces of suspect applications
are compared at run-time. Payer [4] proposed HEXPADS,
which examines performance events of target processes for
detecting Rowhammer, cache attacks, and cross-VM address
space layout randomisation (ASLR) breakages.

Copos and Murthy [24] developed a fuzzer that uses
HPCs to build valid inputs for closed binaries, where bi-
naries are instrumented for measuring the instruction re-
tirement HPC before executing the program under different
inputs. Control flow changes are detected for valid inputs
using differences in instruction counters. Spisak [25] devel-
oped a kernel-mode rootkit family that uses PMU interrupts
to trap system events, such as syscalls. Interestingly, it is
shown that TrustZone TAs can perturb the PMU on some
consumer devices. Malone et al. [26] investigated static and
dynamic software integrity verification using install-time
vs. run-time HPC measurements. Measurements from six
HPCs are presented using four test programs; however,
performance results are not given using standard evaluation
metrics.

For reverse engineering, Maurice et al. [10] use per-slice
PMU access counter measurements to determine the cache
slice assigned to a last-level cache (LLC) complex address
for enabling cross-core LLC cache attacks. Helm et al. [11]
use HPCs for understanding Intel’s proprietary DRAM
mapping mechanism for translating physical addresses to
physical memory channels, banks, and ranks. Similarly, the
work uses differences in per-channel PMU transfer counters
while accessing different known physical addresses.

Physical attacks have been explored in work with similar
applications but under different attack models. Robyns et
al. [18] use a convolutional neural network (CNN) to detect
eight cryptographic operations using electromagnetic (EM)
emissions from a NodeMCU microcontroller, achieving 96%
accuracy. Wilt et al. [19] use a similar CNN-based approach
for OS and malware detection with∼84–99% accuracy using
EM radiation. Moreover, static analysis and symbolic exe-
cution have attracted significant attention for vulnerability
detection, achieving 84%–100% accuracy under laboratory
conditions, albeit with well-studied problems of model gen-
eralisability and state space explosion [20], [21].

2.2 Performance Monitoring Units (PMUs)

Performance counters are available on all major CPU ar-
chitectures within hardware PMUs, enabling the collection
of detailed events with negligible overhead. HPCs are con-
figured and accessed through special-purpose registers that
update during execution. While different CPU architectures
may count the same types of events, their availability and
accessibility can differ significantly. We briefly describe the
mechanics of PMUs on X86-64, ARM, and RISC-V.
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2.2.1 X86
The Intel PMU, introduced on Pentium CPUs, provides non-
configurable registers for tracking fixed events and several
programmable registers per logical core [1]. Intel Core CPUs
support four general-purpose programmable registers and
three fixed-function registers tracking elapsed core cycles,
reference cycles, and retired instructions. Programmable
registers are configured to simultaneously monitor one of
>100 performance events on the Intel Xeon and Core archi-
tectures, such as branch mis-predictions and hits at various
cache hierarchy levels. PMUs implement configuration and
counter registers as model-specific registers (MSRs), acces-
sible using the RDMSR and WRMSR instructions in ring 0
(kernel mode). The RDPMC instruction may also be used
for accessing PMU counters at lower privilege levels if the
CR4.PCE control register bit is set. By default, ring 3 (user
mode) access is granted to monotonic time-stamp counters
(TSC) in a 64-bit register using the RDTSC instruction. In
addition to precise event counting, event-based sampling is
supported for triggering a performance monitoring inter-
rupt after exceeding threshold value (e.g. after n events).
AMD CPUs have minimal functional differences to Intel
implementations for counting particular events, but do sup-
port more programmable events (six vs. four) [1], [2], [4].

2.2.2 ARM
The ARM PMU is a ubiquitous extension for ARM Cortex-
A, -M, and -R processors. It supports per-core monitoring of
similar but generally fewer high-level events to X86 CPUs.
The ARM Cortex-A53, for example, contains a smaller cache
hierarchy with a shared L2 cache at the highest level, pre-
cluding the ability to report L3 instruction or data cache
events [13]. Like X86, fixed-function cycle counters are com-
monplace, and 2–8 general-purpose counters can be pro-
grammed to monitor the events using the MRS and MSR in-
structions (AArch64). PMU registers can be configured to be
accessed at any privilege mode (exception level) using the
performance monitors control register (PMCR). Typically
only kernel mode (EL3) processes may access PMU registers
by default. ARM PMUs may also assert nPMUIRQ interrupt
signals, e.g. counter overflows, which can be routed to an
interrupt controller for prioritisation and masking.

2.2.3 RISC-V
The RISC-V Privileged [27] and Unprivileged [12] ISA
specifications define separate instructions for accessing
HPCs in different privilege modes. The Unprivileged ISA
specifies 32 64-bit instructions for per-core counters in
user- and supervisor-modes (U- and S-mode) and fixed-
function counters for cycle count (RDCYCLE), real-time
clock (RDTIME), and instruction retirements (RDINSTRET).
Control and status register (CSR) space is reserved for
29 vendor-specific 64-bit HPC registers (HPCCOUNTER3–
HPCCOUNTER31). The Privileged ISA specifies analogous
CSR registers (MCYCLE, MTIME, MINSTRET) accessible
only in machine-mode (M-mode), with 32 64-bit registers
(MHPMCOUNTER3–MHPMCOUNTER31) allocated for vendor-
specific HPCs. Note that RISC-V embedded systems are
expected to possess only M- or M- and U-modes [27], while
workstations and servers are expected to support S-mode
and the coming hypervisor (H)-mode extensions [12].
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Fig. 1: High-level approach.

3 FUNCTION RECOGNITION: A PRELIMINARY
STUDY ON X86, ARM, AND RISC-V
This section presents a foundational study on recognising a
large range of standard functions using HPC measurements.
We discuss the methodological approach and evaluated
functions, prior to implementation challenges and results.

3.1 Overview
We assume two processes shown in Fig. 1: a Spy con-
trolled by the adversary, and a Victim that exposes high-
level functions. In practical cases, the Victim will assume
the form of a compiled static or shared library with which
the Spy is statically or dynamically linked. Our approach
then follows two steps: 1 HPC measurement (feature)
vectors corresponding to each function are assigned labels
according to its identifier, which are used for building the
model hypothesis. Next, 2 uses newly measured values
and the model from 1 to infer the executed function. We
evaluate this using three platform architectures:
• X86-64. Dell Latitude 7410 with 8GB RAM and an

Intel i5-10310U: 1.70GHz 64-bit quad-core, eight hyper-
threads, and 256kB L1, 1MB L2, and 6MB L3 caches.
Ubuntu 20.04 LTS was used with Linux kernel v5.12.

• ARM. Raspberry Pi 3B+ with 1GB SDRAM and a
Broadcom BCM2837 system-on-chip (SoC): 1.4GHz 64-
bit quad-core ARM Cortex-A53 CPU, with 32kB L1,
32kB L2, and no L3 cache. Raspbian OS was used, based
on Debian 11/Bullseye, with Linux kernel v5.15.

• RISC-V. SiFive HiFive Rev. B with a FE310-G002 SoC:
320MHz 32-bit single-core CPU with RV32IMAC ISA
support, 6kB L1 instruction cache, and 16kB SRAM.
Supports privileged (M-) and unprivileged execution
(U-mode). SiFive’s Freedom E SDK was used as a hard-
ware abstraction layer for application development.

We used PAPI [28] on our X86-64 and ARM devices,
which provides portable HPC measurement acquisition
using the Linux perf subsystem. CPUs often expose ex-
tremely precise access to micro-architectural events, includ-
ing pipeline- and DRAM controller-specific events, and
proprietary features (e.g. Intel TSX), thereby preventing
cross-platform compatibility. To overcome this, PAPI im-
plements micro-architectural dependent code and exposes
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TABLE 1: HPC events used on a per-device basis.

DeviceMethod Description X86-64 ARM RISC-V

RDTSCP Cycle count since a reset. 3 7 7
L1 DCM L1 data cache misses. 3 3 7
L1 ICM L1 instruction cache misses. 3 3 3
L1 TCM L1 total cache misses. 3 7 7
L1 LDM L1 load misses. 3 7 7
L1 DCA L1 data cache accesses. 7 3 7
L1 STM L1 store misses. 3 7 7
L2 DCM L2 data cache misses. 3 3 7
L2 ICM L2 instruction cache misses. 3 7 7
L2 TCM L2 total cache misses. 3 7 7
L2 LDM L2 load misses. 3 7 7
L2 DCR L2 data cache reads. 3 7 7
L2 STM L2 store misses. 3 7 7
L2 DCA L2 data cache accesses. 3 3 7
L2 ICR L2 instruction cache reads. 3 7 7
L2 ICH L2 instruction cache hits. 3 7 7
L2 ICA L2 instruction cache accesses. 3 7 7
L2 TCA L2 total cache accesses. 3 7 7
L2 TCR L2 total cache reads. 3 7 7
L2 TCW L2 total cache writes. 3 7 7
L3 TCM L3 total cache misses. 3 7 7
L3 LDM L3 load misses. 3 7 7
L3 DCA L3 data cache accesses. 3 7 7
L3 DCR L3 data cache reads. 3 7 7
L3 DCW L3 data cache writes. 3 7 7
L3 ICA L3 instruction cache accesses. 3 7 7
L3 ICR L3 instruction cache reads. 3 7 7
L3 TCA L3 total cache accesses. 3 7 7
L3 TCR L3 total cache reads. 3 7 7
L3 TCW L3 total cache writes. 3 7 7
CA SNP Requests for a cache snoop. 3 7 7
CA SHR Requests for exclusive access to a shared cache line. 3 7 7
CA CLN Requests for exclusive access to a clean cache line. 3 7 7
CA ITV Requests for cache line intervention. 3 7 7
TLB DM Data TLB misses. 3 3 7
TLB IM Instruction TLB misses. 3 3 7
PRF DM Data pre-fetch cache misses. 3 7 7

MEM WCY Cycles stalled for memory writes. 3 7 7
STL ICY Cycles with no instruction issue. 3 7 7
FUL ICY Cycles with maximum instruction issue. 3 7 7
BR UCN Unconditional branch instructions. 3 7 7
BR CN Conditional branch instructions. 3 7 7

BR TKN Conditional branches taken. 3 7 7
BR NTK Conditional branch instructions not taken. 3 7 7
BR MSP Conditional branch mispredictions. 3 3 7
BR PRC Conditional branches correctly predicted. 3 7 7
TOT INS Instructions completed. 3 3 7
LD INS Load instructions. 3 3 7
SR INS Store instructions. 3 3 7
BR INS Branch instructions. 3 3 7

RES STL Cycles stalled on any resource. 3 7 7
TOT CYC Total cycles executed. 3 3 7
LST INS Load and store instructions executed 3 7 7
SP OPS Single-precision floating point operations. 3 7 7
DP OPS Double-precision floating point operations. 3 7 7
VEC SP Single precision SIMD instructions. 3 7 7
VEC DP Double precision SIMD instructions. 3 7 7

RDCYCLE U-mode reference cycle count. 7 7 3
RDINSTRET U-mode instructions retired. 7 7 3

RDTIME U-mode real-time counter 7 7 3
MCYCLE M-mode cycle counter 7 7 3

MINSTRET M-mode instructions retired. 7 7 3
MTIME M-mode real-time counter. 7 7 3

X86-64: Intel i5-10310U; ARM: ARM Cortex-A53; RISC-V: SiFive FE310.
Blue cells indicate user-mode counters; yellow denote privileged counters.

common high-level HPC events, which we used for porta-
bility. Table 1 shows the availability of these events on
Intel, ARM and RISC-V. PAPI was compiled and dynami-
cally linked with our benchmarking application that imple-
mented the functions under test (§3.2) on X86-64 and ARM.
For collecting unprivileged events, our application executed
in user-mode only. To access privileged HPCs, we set
kernel.perf_event_paranoid=-1 prior to execution to
allow the reporting of kernel-mode counters in user space
from Linux perf. For RISC-V, the aforementioned assembly
instructions were directly used for accessing HPC registers
(§2.2.3) in M- (privileged) and U-modes (unprivileged).

3.2 Target Procedures
We developed a test-bed comprising 64 functions listed in
Table 2, incorporating the MiBench benchmarking suite with
common embedded systems procedures [16], alongside
modern cryptographic algorithms. For the latter, we used
an extensive range of common functions available through

TABLE 2: Test-bed target functions.

Non-cryptographic Functions

1. Solve Cubics 8. Bsearch 15. Euler
2. Integer Sqrt 9. CRC32 16. Simpson
3. Angle Convert 10. BWT 17. Root Finding
4. Qsort 11. Matrix Mul. 18. XOR-Shift
5. Dijkstra 12. Bit Ops. 19. Base64 Encode
6. PBM Search 13. Gaussian Elim. 20. Base64 Decode
7. FFT 14. Fibonacci 21. Entropy

Cryptographic Functions

22-23. AES-ECB (E+D) 40-41. 3DES (E+D) 56. GMAC
24-25. AES-CBC (E+D) 42-43. GOST (E+D) 57. Poly1305
26-27. AES-CTR (E+D) 44-45. Ed25519 (S+V) 58. MD2
28-29. AES-GCM (E+D) 46-47. ECDSA (S+V) 59. MD4
30-31. ChaCha20 (E+D) 48. X25519 60. MD5
32-33. ChaCha20+Poly1305 (E+D) 49. ECDH 61. SHA-1
34-35. Speck (E+D) 50-53. RSA (E+D, S+V) 62. SHA-256
36-37. PRINCE (E+D) 54. DH 63. SHA-3
38-39. DES (E+D) 55. HMAC 64. BLAKE2

E+D: Encrypt and decrypt. S+V: Sign and verify.

WolfSSL in addition to reference implementations of GOST,
Speck, and PRINCE. Our benchmarking tool used random
input buffers in the range [8B, 32B, 256B, 512b, 1024kB,
2048kB, 4096kB] for encryption, signing, MAC, and hashing
algorithms. This was used to avoid potential HPC measure-
ment biases if only a fixed-size input was used for functions
that accepted an arbitrary byte buffer and its length. Ran-
dom keys were generated for all symmetric algorithms and
keyed MACs (e.g. AES in all modes, ChaCha20, Prince, DES
and HMAC). Similarly, random public-private key pairs and
secret and public values were generated for asymmetric and
key exchange algorithms respectively (e.g. ECDSA, X25519,
ECDH, and RSA). HPC measurements were not inclusive
of this process. Fresh initialisation vectors (IVs), counter
values and nonces were also generated where applicable
(e.g. ChaCha20 and AES-CTR). RSA operations were split
approximately equally using a random padding scheme and
key length. RSAES-OAEP or RSAES-PKCS#1v1.5 were used
for encryption/decryption, and RSASSA-PSS or RSASSA-
PKCS#1v1.5 for signing/verification under 1024-, 2048-,
3072-, and 4096-bit key lengths. Similarly, ECDSA and
ECDH used a random curve from P-256, P-384, and P-
521, while AES used 128-, 196, and 256-bit key lengths. For
ease of implementation, corresponding inverse operations
(e.g. verification for signing) were called with the same
parameters immediately following the original operation.

3.3 Methodology

For each available HPC event in Table 1, we collected
measurements from 10,000 invocations for each of the 64
test-bed functions. For instance, Qsort on RISC-V was in-
voked 70,000 times in total to collect the necessary mea-
surements (10,000 invocations × 7 available HPCs). These
N -dimensional feature vectors (N = 49, X86-64; N = 13,
ARM; N = 7, RISC-V) were mapped to the class label
of the procedure ([0, 64) ∈ N), i.e. ∼31.3M invocations in
total (X86-64), 8.3M (ARM), and 4.4M (RISC-V). We then
formed two data sets: A and B, representing HPCs available
in unprivileged and privileged modes respectively.

Each data set was split into training and test sets us-
ing a 80:20 ratio, before applying Z-score normalisation
to produce features with zero mean and unit variance.
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Given the relatively large and balanced many-class classi-
fication problem, conventional classification accuracy was
used as the evaluation metric. A preliminary experiment
initially explored a basic template approach using four sim-
ilarity metrics—Euclidean distance, Minkowski distance,
cross-correlation, and covariance—to classify test vectors
against the training set. However, the approach produced
unpromising results: <40% accuracy in the best cases using
branch predictions and total instructions. We thus resorted
to training nine supervised classifiers: naı̈ve Bayes (NB),
logistic regression (LR), linear discriminant analysis (LDA),
decision tree (DT), gradient boosting machines (GBM), ran-
dom forest (RF), support vector machine (SVM), and a
multi-layer perceptron (MLP). Hyper-parameter optimisa-
tion was conducted using an exhaustive grid search and
k-fold (k = 10) cross-validation (CV), with the best per-
forming CV classifier scoring the test set.

3.4 Implementation Challenges
Using HPCs requires careful thought to avoid measurement
bias and other pitfalls. Some phenomena have been inves-
tigated in related literature [29], [30], while others have
attracted little attention, like cache warming and compiler
optimisations. We discuss these challenges forthwith.

3.4.1 HPC Accuracy
Run-to-run variations in HPC measurements is a chal-
lenge on commercial CPUs for program analysis [29], [30].
Counter measurements are not perfectly replicated between
sequential program executions, with a 0.5%–2% deviation
observed in counter values using standard benchmarks [30].
This arises principally from:
• Event non-determinism. External events, particularly

hardware interrupts and page faults, can cause small
deviations in vulnerable HPC events, e.g. load and store
counters, which are unpredictable and difficult to repro-
duce. Another source of variation is the pipeline effects
arising, for instance, from out-of-order execution. This
can also perturb absolute counter values, although the
effects can be negligible if the monitoring of very short
instruction sequences is avoided [13].

• Overcount. CPU implementation differences and errata
can overcount events. For example, instructions retired
events can be overcounted by exceptions and pseudo-
instructions where micro-coded instructions differ to
the instructions that are actually executed. Specifi-
cally, X87/SSE exceptions, OS lazy floating point han-
dling, and fldcw, fldenv, frstor, maskmovq, emms,
cvtpd2pi, cvttpd2pi, sfence, mfence instructions
are known overcount sources [30].

The effects of non-determinism cannot be entirely elimi-
nated. Rather, we model interactions from many individual
measurements (millions of features) as a mitigation against
single, run-to-run variations. This assumes the ability to
measure large numbers of target functions idempotently,
i.e. their behaviour changes insignificantly between invo-
cations, and without restricting the number of permitted
calls (see §1.1). Importantly, we do not rely upon exact
measurements, but only that the deviations between differ-
ent function executions confer enough discriminitive power

for classification. Moreover, we use measurements from
multiple counters to maximise the discriminative benefits
of disparate event types, which also minimises potential
issues (e.g. overcounting bias) of using any single counter.
X86 CPUs can also measure the number of hardware
interrupts—a known source of non-determinism—which
was used as a feature (Table 1).

3.4.2 Function Implementation Variations
It is important to discern between multiple implementa-
tions of the same algorithm. Statistical models may fail to
generalise when presented with HPC events of alternative
libraries that, while similar algorithmically, contain code dif-
ferences that can affect HPC measurements (e.g. API calling
conventions). Considering this, we ported additional im-
plementations from Monocypher (for ChaCha20, Poly1305,
Ed25519, X25519, BLAKE2), Intel’s Tinycrypt (AES, ECDSA,
ECDH, HMAC, SHA-256), and LibTomCrypt (AES, MD2,
MD4, MD5, SHA-1, SHA-256, 3/DES, RSA, DH, GMAC,
HMAC) on our target platforms.1 For these functions, mea-
surements were taken by cycling through each implemen-
tation for each invocation, and mapping them to the same
label. For instance, MD5 measurements from LibTomCrypt
and WolfSSL implementations were assigned the same label.

3.4.3 Cache Warming
Preliminary experiments showed that cache-based events,
such as L1 and L2 misses, and their correlated values—
discussed further in §3.6.1—were markedly higher dur-
ing initial function executions. This subsided after several
executions per function in order to converge to stability
(<3% requiring an average of 9.7 executions, X86-64; 7.0,
ARM; 7.3, RISC-V). We hypothesise that cache warming was
partially responsible, which has not been in related literatur
on HPC-based security applications. Within the context of
this work, the reliance on large numbers of measurements
renders this effect negligible (<0.5%). However, the reader is
warned of potential bias in constrained environments where
only a limited number of measurements can be collected.

3.4.4 Measuring Multiple Performance Events
Today’s PMUs support a small number of programmable
counter registers, typically 4–8 depending on the architec-
ture [1], [2]. Consequently, measuring several events re-
quires: 1 Using a single counter register per execution; 2
Batching HPC measurements, with the batch size equalling
the number of supported counter registers; or 3 Using
software multiplexing provided by some tools, e.g. PAPI,
where counters are time-shared over many performance
events. We used 1 as a conservative method at the cost
of collection time. With 2 , collection time could be reduced
by a constant factor (of the max. supported counters), while
3 minimises collection time at the cost of accuracy [28].

3.4.5 Compiler Optimisations
Modern compilers improve performance and code size at
the expense of compilation time and debuggability; for

1. The choice of these libraries was to construct a common test-bed;
very few cryptographic libraries (e.g. OpenSSL and GnuTLS) currently
offer 32-bit RISC-V MCU support.
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TABLE 3: Classification accuracy (Intel i5-10310U; in %; data
set A = unprivileged HPCs, B = privileged).

Classifier

Data set NB LR kNN DT RF GBM LDA SVM MLP

O0 49.30 50.24 60.24 59.20 66.31 65.79 61.56 54.44 51.83

A Os 49.22 50.63 58.30 64.46 66.07 66.56 61.87 62.43 54.62
O3 48.48 49.30 59.08 60.27 59.81 49.71 35.57 45.46 47.28

Mixed 37.21 32.80 48.29 48.03 47.67 40.52 26.30 45.39 37.02

O0 98.95 96.47 89.25 99.53 99.70 99.02 94.31 99.04 86.55

B Os 93.03 89.27 87.71 95.89 95.99 97.49 88.29 92.35 90.06
O3 87.55 86.08 82.75 92.01 98.51 83.78 74.44 80.53 84.60

Mixed 84.78 73.95 85.14 95.40 97.33 91.01 80.86 83.78 85.95

TABLE 4: Classification accuracy (ARM Cortex-A53; privi-
leged counters).

Classifier

Data set NB LR kNN DT RF GBM LDA SVM MLP

O0 85.65 87.27 82.34 96.87 96.74 96.81 80.42 83.65 84.01
Os 77.91 77.45 82.70 90.31 88.59 91.32 86.28 84.13 84.30
O3 79.21 82.99 82.85 88.90 91.40 89.43 74.37 87.62 74.82

Mixed 73.97 70.08 80.35 88.96 88.99 90.68 74.00 80.37 69.09

TABLE 5: Classification accuracy (SiFive E31 SoC; data set
A = unprivileged HPCs, B = privileged).

Classifier

Data set NB LR kNN DT RF GBM LDA SVM MLP

O0 76.09 74.59 78.30 85.55 89.04 89.00 87.10 81.67 80.28

A Os 72.84 73.02 79.61 86.47 83.40 86.91 80.35 77.53 77.54
O3 72.88 74.94 83.99 85.10 87.42 86.80 76.75 74.32 75.02

Mixed 66.87 66.23 83.60 82.16 83.81 75.68 70.07 68.15 67.22

O0 82.83 83.46 82.02 90.87 93.34 91.99 86.57 81.05 83.30

B Os 80.19 78.67 79.44 87.23 90.04 90.03 75.11 72.84 75.56
O3 81.01 76.48 88.29 86.32 86.37 87.41 79.85 74.32 80.20

Mixed 76.74 74.02 69.81 84.59 86.22 86.21 70.03 71.40 70.90

example, using loop unrolling, if-conversions, tail-call op-
timisation, inline expansion, and register allocation. This is
an important consideration given the difficulty of knowing
a priori the exact compilation parameters of target software,
e.g. a dynamic library. Some compiler optimisations can
have a material effect on HPC measurements for the same
program: Choi et al. [31], for instance, showed that if-
conversions can reduce branch mis-predictions by 29% on
Intel CPUs, which would reflect in branch-related HPCs.

To address this, we compiled the test-bed and collected
measurements from test devices under different GCC op-
timisation options: disabling optimisation (O0, the default
setting); minimising code size (Os); and maximum optimi-
sation (O3) that sacrifices compile time and memory usage
for performance. The reader is referred to the GCC docu-
mentation for a comprehensive breakdown of the optimisa-
tions utilised with each flag [32]. To emulate environments
where compiler optimisations are unknown, a mixed data
set was formed by concatenating and randomly shuffling
measurement vectors collected under each flag.

3.5 Results

The data collection and training processes were orchestrated
by a Python script using Scikit-Learn [33] on a workstation
with an Intel i7-6700k CPU (quad-core at 4.0GHz) and 16GB
RM, taking approximately 14 hours (data collection) and 30
hours (training). Classification results for each platform and
GCC compilation setting are presented in Tables 3 (X86-64),

4 (ARM), and 5 (RISC-V). In general, functions could be
classified from HPC values with considerable effectiveness,
albeit with notable differences with respect to the architec-
ture and privilege mode. Worst-case performances occurred
where only unprivileged counters were used with the mixed
GCC data sets, i.e. 48.29% (X86-64; one HPC) and 83.81%
(RISC-V; three HPCs). Mixed compilation parameters gen-
erally correlated with a significant accuracy degradation of
2–16% depending on the architecture and privilege mode. In
contrast, the best cases corresponded to scenarios where all
HPCs were used for specific compilation settings: 97.33%–
99.70% (X86-64), 90.68%–96.81% (ARM), and 86.22–93.34%
(RISC-V). We can tentatively conclude that using more
HPCs confers greater discriminitive power during classi-
fication, the availability of which are maximised during
privileged execution. Further, tree-based models and ensem-
bles tended to perform best out of all evaluated classifiers
(18/20) with RF classifiers the best-performing (11/20).

Confusion matrices were produced for examining class-
level performance weaknesses using the mixed GCC data
sets and the best-performing classifiers (see Fig. 2 for X86-
64; Appendix A for ARM and RISC-V). Confusion is ob-
served in functions with structural similarities when fewer
counters are used (Fig. 2b). For instance, the encryption and
decryption functions for ChaCha20-Poly1305, DES, 3DES,
and AES in certain modes of operation (e.g. CTR and CBC),
and RSA encryption, decryption, signature and verification.
These errors resolved when more HPCs were available,
where greatly reduced classification accuracy was observed.

3.6 Feature Importance
An important consideration is the contribution of each HPC
feature to the classification process. If only a small set of
HPCs is needed to train high accuracy models, then certain
implementation difficulties can be avoided. Minimising the
number of hardware counters is desirable for two reasons:

1) Reproducibility: Using all of the counters on a given ar-
chitecture risks depending on redundant HPCs that are
unavailable on other architectures, particularly older
and constrained platforms. ARM and RISC-V micro-
controller and IoT SoCs, for instance, contain fewer
measurable events relative to workstation- and server-
grade X86-64 CPUs [1], [13], [27].

2) Performance: Removing redundant features, or those
with low predictive power, can offer training and clas-
sification performance benefits due to the curse of di-
mensionality. (Dimensionality reduction methods have
been applied in HPC malware classification literature,
e.g. principal component analysis [6], [7], but this does
not directly reduce the number of HPCs used at source).

We note that HPC-based research tends to rely on com-
plex, non-linear models, such as random forests and gradi-
ent boosting machines, to model high-dimensional data [6]
(also observed in §3.5). Unfortunately, these models have
decision processes that are inherently difficult to interpret
for determining the most effective features, prompting the
development of model explanation methods [34], [35].

3.6.1 HPC Correlation Analysis
As a first step, we examined the correlations between HPC
measurements on each platform. It is intuitive that certain
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Fig. 2: Normalised confusion matrices for X86-64 (X-axis: Predicted value, Y-axis: True value).

features may exhibit significant collinearities (a historically
successful method of identifying redundant features [36]).
For example, the total number of load/store instructions
(LST_INS) is directly related to the number of load instruc-
tions (LD_INS). Likewise, processes that frequently access
temporally and spatially dislocated data will cause cache
misses and, thus, more cache data writes. Fig. 4 presents
pairwise correlation matrices using the correlation coeffi-
cients of HPC tuples.

The results show strong correlations between many
HPC pairs. On X86-64, the cycle and time-stamp counters
(TOT_CYC and RDTSCP) are >0.95 correlated with the total
instruction (TOT_, LD_, SR_, BR_ and LST_INS) and branch
counters (BR_TKN, _NTK, and _PRC). A similar pattern was
found for ARM. This is intuitively unsurprising consider-
ing that larger, longer-running functions will likely con-
tain more run-time branches and memory accesses. Strong
correlations are also seen between cache misses in lower
cache hierarchy elements and accesses in higher ones; for
example, L2 data accesses and L1 data misses (L2_DCA and
L1_DCM, 0.96; X86-64). On ARM, L1 instruction cache misses
are strongly correlated (0.98) with L2 data accesses (L1_ICM
vs. L2_DCA). In the absence of a dedicated L2 instruction
cache [13], this indicates that the L2 data cache is used as
a de facto instruction cache, echoing existing work on using
HPCs to uncover latent SoC properties [10], [11].

It is also seen that cache misses in last-level caches
(LLC)—L3 for X86-64 and L2 for ARM (L3_TCM and
L2_DCM respectively)—have no correlations with other
HPCs. PAPI monitors CPU-level events, and the LLC rep-
resents the final unit before external memories are accessed.
Similar patterns exist for TLB data misses (TLB_DM) on ARM
and instruction misses (TLB_IM) on X86-64 and ARM; and
the use of vector and floating point operations on X86-

64 (SP_OPS, DP_OPS, VEC_SP, VEC_DP), which only have
correlations with each other. On RISC-V, strong correlations
(>0.97) were observed between M-mode counters of their
U-mode counterparts, e.g. RDINSTRET vs. MINSTRET. This
is interesting from a security perspective: unprivileged pro-
cesses can use HPCs with potentially the same power as
privileged processes. It also provides insight into why clas-
sification results for privileged HPCs were only marginally
different (∼4%) from unprivileged HPCs in §3.5.

3.6.2 Shapley Additive Explanations

While useful for understanding multicollinearity, correla-
tions do not show the extent to which particular HPCs
contribute to classification decisions, thus requiring model
inspection methods to understand their relative importance.
To this end, we employed SHAP (SHapley Additive ex-
Planations), a unified framework for interpreting complex
model predictions, which has been applied to Android mal-
ware classification [37] and intrusion detection [38]. SHAP
uses a co-operative game-theoretic approach for assigning
feature importances of a machine learning model prediction
function, f , using Shapley values [34]. SHAP explains f ’s
decisions as the sum of results, φi ∈ R, of feature subsets
being included in a conditional expectation, E[f(x)|xS ] (S
being a subset of model features and x the feature vector
of the instance to be explained). SHAP scores combine
conditional expectations with the Shapley value of a feature
value, φi—corresponding to its contribution to the payout
(prediction)—which are calculated using Eq. 1.

φi =
∑

S⊆N\{i}

|S|!(M − |S| − 1)!

M !
[fx(S ∪ {i})− fx(S)] (1)
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Fig. 3: Correlation matrices for each test-bed device.

Where M is the number of features and N is the set
of all input features. The average absolute Shapley values
per feature are computed across the entire data set and
rank-ordered to find the global feature importances. SHAP
values are more consistent with human intuition than al-
ternative approaches, like LIME [39] and DeepLIFT [35];
are model-agnostic; and are not liable to the properties of
HPC measurements. (Other techniques, e.g. mean decrease
in Gini impurity for tree models, can be misleading with
high cardinality or continuous features [40]—an inherent
property of HPCs).

We computed and rank-ordered the SHAP values for
each platform HPC using the best-performing classifiers
from §3.5 under the mixed GCC data sets (Fig. 4). Certain
HPCs had a significant impact on classification decisions
across all platforms. Branch counters formed the top two
ARM HPCs (BR_MSP, BR_INS) and six of the top 10 X86-
64 counters (BR_PRC, BR_CN, BR_NTK, BR_TKN, BR_INS,

0.00 0.05 0.10 0.15 0.20 0.25
Mean abs. SHAP value (Avg. impact on model output)

L3_LDM
L3_TCM

MEM_WCY
CA_SHR
PRF_DM
L2_LDM
CA_ITV
TLB_IM

TLB_DM
SP_OPS
L3_DCR
VEC_SP
L3_TCA
L3_ICA

L2_STM
L2_DCM
L2_ICH
L3_TCR
CA_CLN
L3_ICR
L2_ICM
CA_SNP
L3_DCW
L2_TCM
L3_TCW
VEC_DP
L3_DCA
DP_OPS
L2_TCW
L2_DCW
STL_ICY
L1_ICM
L2_ICA

L2_DCA
L1_TCM
L2_TCA
L2_ICR

RES_STL
RDTSCP
BR_MSP

TOT_CYC
LST_INS
L2_TCR
LD_INS

FUL_ICY
L1_LDM
BR_UCN
SR_INS
BR_INS
L2_DCR
BR_TKN
L1_STM
L1_DCM
BR_NTK
TOT_INS

BR_CN
BR_PRC

HP
C

(a) X86-64 HPCs.

0.0 0.1 0.2 0.3 0.4 0.5
Mean abs. SHAP value (Avg. impact on model output)

TLB_DM
TLB_IM

L2_DCM
L1_DCM

TOT_CYC
LD_INS

L1_DCA
L2_DCA
L1_ICM

TOT_INS
SR_INS
BR_INS

BR_MSP

HP
C

(b) ARM HPCs.

0.0 0.1 0.2 0.3 0.4 0.5
Mean abs. SHAP value (Avg. impact on model output)

MTIME

L1_ICM

RDTIME

MCYCLE

RDCYCLE

MINSTRET

RDINSTRET

HP
C

(c) RISC-V HPCs.

Fig. 4: Rank-ordered mean absolute SHAP values.

BR_UCN). The RISC-V platform could not measure branch
events. Instruction counters also ranked highly, representing
the top two RISC-V HPCs (RDINSTRET, MINSTRET), three
of the top five ARM HPCs (BR_INS, SR_INS, TOT_INS),
and three of the top 10 X86-64 HPCs (TOT_INS, BR_INS,
SR_INS). We observe that cache events ranked relatively
poorly, particularly TLB data and instruction misses (X86-64
and ARM), and LLC events (ARM L2 and X86-64 L3).

3.6.3 Feature Elimination
SHAP values gauge the relative contribution of features,
but do not directly determine an effective minimal set of
HPCs required for strong model performance. Therefore, we
investigated how model accuracy fluctuated by systemati-
cally including particular hardware counters. Here, the best
performing models from §3.5 were retrained using the top
N features from the SHAP analysis under the same classifier
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Fig. 5: Accuracy using the top N SHAP-valued HPCs.

hyper-parameters. Values of N were evaluated in the range
1–10 and compared with using all available HPCs.

The results are shown in Fig. 5 for each platform us-
ing HPCs accessible in unprivileged and privileged mode.
Evidently, using all HPCs bestows some accuracy benefits,
but only a subset were necessary for achieving close results.
Using all 49 X86-64 counters, for example, delivered a ∼5%
improvement over using the top 10 from Fig. 4a. The top
three HPCs achieved <9% of the final accuracy on X86-64
(BR_PRC, BR_CN, TOT_INS) while only two ARM counters
were needed to achieve this (BR_MSP, BR_INS). On RISC-V,
the accuracy benefits decreased to∼5% using three counters
(RDINSTRET, MISNTRET, RDCYCLE) versus all seven.

Our results generally indicate that a large range of
black-box functions can be classified effectively based on
their HPC values—up to 97.33%—across three major CPU
platforms. This varies significantly according to privilege
mode and counter availability on our chosen platforms. In
the coming sections, we explore applications of this generic
approach in the domains of vulnerability detection within
OpenSSL and function recognition within TEE applications.

4 IDENTIFYING KNOWN SECURITY VULNERABILI-
TIES IN OPENSSL
Cryptographic libraries are often deployed as static or
shared libraries in end-user applications. OpenSSL, for in-
stance, is deployed as libssl and libcrypto, with the
latter implementing dependent cryptographic algorithms
which may be used in isolation. By default, both libraries
are compiled and named using major and minor version
numbers, e.g. 1.0, 1.1, and 3.0. Incremental sub-versions are
also released after remedying known security vulnerabili-
ties, known as lettered releases.

In this use case, we examine the extent to which vulnera-
ble libcrypto lettered versions can be detected using HPC
measurements from invoking affected cryptographic func-
tions. Specifically, we examine the extent to which OpenSSL
vulnerabilities can be identified using HPC differences in
calls to patched and unpatched libcrypto functions. This
can be used as an exploratory technique for isolating useful
attack vectors in the dependencies of application binaries.
Broadly, the attacker is assumed to possess the ability to: 1

instrument the target binary to measure function calls to the
dependent library; or 2 compile and link his/her own mea-
surement harness to invoke functions in the dependency.

4.1 Methodology
Our developed approach follows three phases:

1) Preliminary vulnerability identification. We comprehen-
sively examined the OpenSSL vulnerability disclosure
announcements2 to identify vulnerabilities that cause
internal micro-architectural state changes, but whose
effects are not immediately observable (e.g. does not
induce a crash, infinite loop, or returns certain func-
tion values). Vulnerable/patched functions were lo-
cated using NIST’s National Vulnerability Database
(NVD), which aggregates technical write-ups, third-
party advisories, and, importantly, commit-level patch
details for CVEs. In total, we successfully identified six
vulnerabilities, which may be used for DSA, RSA, and
ECDSA private key recovery. The descriptions, CVE
numbers, and commit IDs are given in Appendix B.

2) Collecting labelled data samples. For each vulnerability,
we collected HPC measurements of 10,000 executions
using all available counters (privileged and unprivi-
leged). We measured offending libcrypto functions
of the same major and minor version, but from dif-
ferent lettered versions before and after the patch was
implemented. For example, for a function patched in
v1.1.0f, measurements were taken from the preced-
ing v1.1.0a-e (unpatched) and successive versions
v1.1.0f-n (patched). This required compiling and
linking our PAPI measurement harness against multi-
ple individual libcrypto lettered versions. In contrast
to §3, which considered functon recognition as a multi-
class problem, vulnerability detection is treat as a binary
problem, where measurement vectors were assigned la-
bels in the range [0, 1] ∈ N (0 = patched, 1 = unpatched).

3) Model selection and evaluation. Following the same
method as §3.3, multiple models were trained using
an 80:20 training-test set ratio, 10-fold cross-validation,
and exhaustive grid search for hyper-parameter opti-
misation. In addition to classification accuracy, preci-
sion, recall, and F1-score metrics were employed for
evaluating binary classification performance. This is
important when considering the unbalanced nature of
vulnerability detection in this context. Measurement
data sets of vulnerabilities remedied in early OpenSSL
lettered versions, e.g. 1.1.0b, will contain far fewer
‘unpatched’ labels than those in later versions, thus ne-
cessitating evaluation metrics that consider relevance.

4.2 Results and Analysis
We applied the methodology to known vulnerabilities
within libcrypto using the same target devices from §3.3

The classification results are presented in Tables 6 and 7
for X86-64 and ARM respectively for each vulnerability.
Our approach identified OpenSSL vulnerabilities with high
accuracy: 89.5% in all cases and 93%+ accuracy in all but one

2. https://www.openssl.org/news/vulnerabilities.html
3. OpenSSL does not support RISC-V at the time of publication.

https://www.openssl.org/news/vulnerabilities.html
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TABLE 6: OpenSSL CVE identification results (X86-64).

CVE ID Operation Pr. Re. F1 Acc.

CVE-2018-5407 ECC scalar mul. 0.915 0.977 0.945 94.67
CVE-2018-0734 DSA sign 0.997 0.998 0.998 99.83
CVE-2018-0735 ECDSA sign 0.974 0.950 0.962 97.50
CVE-2018-0737 RSA key gen. 0.892 0.900 0.896 90.25
CVE-2016-2178 DSA sign 0.985 0.978 0.981 98.75
CVE-2016-0702 RSA decryption 0.940 0.938 0.939 95.92

Pr.: Precision, Re.: Recall, F1: F1-score, Acc.: Accuracy (in %).

TABLE 7: OpenSSL CVE identification results (ARM).

CVE ID Operation Pr. Re. F1 Acc.

CVE-2018-5407 ECC scalar mul. 0.891 0.975 0.931 93.25
CVE-2018-0734 DSA sign 0.976 0.995 0.985 99.00
CVE-2018-0735 ECDSA sign 0.978 0.910 0.943 96.33
CVE-2018-0737 RSA key gen. 0.882 0.896 0.889 89.58
CVE-2016-2178 DSA sign 0.954 0.938 0.946 96.42
CVE-2016-0702 RSA decryption 0.939 0.873 0.904 93.83

case across both architectures. Likewise, precision (0.892–
0.997, X86-64; 0.882–0.978, ARM), recall (0.900–0.998, X86-
64; 0.873–0.995, ARM) and F1 scores (0.896–0.998, X86-64;
0.889–0.985, ARM) were consistently high, demonstrating
effectiveness when identifying feature vectors correspond-
ing to unpatched instances.

It is noteworthy that some differences exist between
each identified CVE, particularly CVE-2018-0737, which
has significantly lower accuracy (4–5%) than the next worst
performing CVE. On closer inspection, we noticed a broad
correlation between classification performance and relative
patch complexity. This is not surprising: security-related
patches with significant code additions and/or deletions
will cause deterministic effects in HPC measurements. As
an elementary example, additional conditional statements
will correlate with increased values of branch-related, cycle,
and instruction counters. The CVE-2018-0737 patch—the
worst performing vulnerability—changed only two lines
of code (LOC) between lettered OpenSSL versions for set-
ting constant-time operation flags for RSA primes (com-
mit 6939eab03a6e23d2bd2c3f5e34fe1d48e542e7874).5 Com-
pare this to CVE-2018-0734—detected with the high-
est accuracy—which made 19 LOC changes, includ-
ing the declaration of new variables, conditional state-
ments, internal function calls, and more (commit
8abfe72e8c1de1b95f50aa0d9134803b4d00070f6).

This raises a research question about the granularity with
which counters can reliably detect arbitrary code changes.
The known effects of non-determinism—see §3.4 and Das et
al. [29]—and pipeline execution on measurement noise [13]
provide an undetermined lower bound. Yet, this has not
been answered in related literature, which we pose as an
obvious gap for future research. Notwithstanding, our ap-
proach shows that HPC measurements of function calls can
detect known vulnerabilities using off-line analysis.

4. https://github.com/openssl/openssl/commit/
6939eab03a6e23d2bd2c3f5e34fe1d48e542e787

5. LOC is an illustrative proxy of program complexity; a single line
may induce complex control flows, with significant effects on HPCs.

6. https://github.com/openssl/openssl/commit/
8abfe72e8c1de1b95f50aa0d9134803b4d00070f

5 RECOGNISING CRYPTOGRAPHIC ALGORITHMS
IN A TRUSTED EXECUTION ENVIRONMENT (TEE)
The previous section showed how some security vul-
nerabilities can be detected within compiled OpenSSL
(libcrypto) libraries. The general approach is extendable
to recognising functions executing within trusted execution
environment (TEE) applications. TEE applications typically
expose high-level APIs for enabling untrusted applications
to interact with secure world services [13], [14], [17]. In
this section, we examine an application of our approach
to recognise standardised cryptographic functions within
ARM TrustZone TEE applications from a malicious, non-
secure world process.

5.1 ARM TrustZone and the ARM PMU
ARM TrustZone partitions platform execution into ‘secure’
(SW) and ‘non-secure’ (NS) worlds, with the aim of protect-
ing SW service services from kernel-level, non-secure world
software attacks. SW execution is isolated by setting the NS-
bit by the secure monitor at the highest ARM exception
(privilege) level (EL3), which is added to cache tags and
propagated through system-on-chip bus transactions, e.g.
for accessing sensitive peripheral controllers. Interactions
between the normal and secure worlds are conducting
using ARM secure monitor calls (SMC) for entering secure
monitor mode. NS world applications invoke TA functions
using a pre-defined interfaces specified by the TA developer,
as standardised by the GlobalPlatform Client API [17]. No-
tably, TEE TAs are usually provisioned in encrypted form,
which are subsequently loaded from flash memory during
the device’s secure boot sequence using a firmware-bound
key. This occurs before loading any untrusted world binaries,
rendering direct inspection of TA binaries tremendously
difficult, even from privileged NS world execution [14], [15].

Recall from §2.2.2 that the ARM PMU manages per-
formance events on ARM Cortex-A platforms. Ideally,
PMU interrupt events should be suppressed during secure
world execution to prevent sensitive micro-architectural
state changes being measurable from malicious non-secure
world processes. However, enabling SW PMU events is
commonly used in pre-release testing environments for TEE
debugging and optimisation (a non-invasive method under
the ARM debugging architecture [41]). Whether or not SW
PMU events are enabled can be determined by querying
the non-invasive and secure non-invasive flags (NIDEN and
SPNIDEN) of the ARM DBGAUTHSTATUS debug register. If
NIDEN or SPNIDEN are set, then PMU events are counted in
the non-secure and secure worlds respectively.

Importantly, Spisak [25] showed that SPNIDEN was still
enabled in some consumer devices following release, includ-
ing the Amazon Fire HD 7” tablet and Huawei Ascend P7.
This was followed by Ning and Zhang [41] who examined
11 mobile, IoT and ARM server platforms, showing that
only three devices had correctly unset SPNIDEN prior to
consumer release. Vulnerable devices included the Huawei
Mate 7, Raspberry Pi 3B+, Xiaomi Redmi 6, and the Scale-
way ARM C1 Server. The use of insecurely configured
ARM PMU events during secure world execution has been
exploited on consumer devices for building rootkits using
PMU interrupts [25], and cross-world covert channels on an

https://github.com/openssl/openssl/commit/6939eab03a6e23d2bd2c3f5e34fe1d48e542e787
https://github.com/openssl/openssl/commit/6939eab03a6e23d2bd2c3f5e34fe1d48e542e787
https://github.com/openssl/openssl/commit/8abfe72e8c1de1b95f50aa0d9134803b4d00070f
https://github.com/openssl/openssl/commit/8abfe72e8c1de1b95f50aa0d9134803b4d00070f
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Fig. 6: TEE side-channel set-up using a shared PMU.

undisclosed Samsung Tizen TV (ARM Cortex-A17, ARMv7)
and HiKey board (ARM Cortex-A53, ARMv8) [42].

5.2 Methodology
Using the knowledge that consumer devices may fail to
suppress SW PMU interrupts, we developed a test-bed for
investigating the extent to which cryptographic algorithms
within secure world TAs can be identified from non-secure
world processes. OP-TEE7 was leveraged to this end—
an open-source, GlobalPlatform-compliant TEE reference
implementation—on our Raspberry Pi 3B+. Two applica-
tions were developed, which are illustrated in Fig. 6:
• Spy (non-secure world). A privileged application that

uses the GlobalPlatform Client API to invoke TEE
functions in the Victim. The same PAPI test harness
used in §3 and §4 measured HPC values immedi-
ately before and after TA command was invoked,
i.e. TEEC_InvokeCommand() in GlobalPlatform Client
API nomenclature. The Spy may be unprivileged if the
PMU is configured to enable measurements from EL0.

• Victim (secure world TA). An emulation of a TEE-based
key management application that exposes four high-
level functions for 1 signing (TA_SIGN), 2 verifying
(TA_VERIFY), 3 encrypting (TA_ENCRYPT), and 4
decrypting (TA_DECRYPT) inputs provided by the Spy
on demand. These utilised fresh TEE-bound keys which
were generated at random on a per-session basis.8

The aim, similar to §3, is to identify the precise algorithm
used by the Victim from PMU measurements before and af-
ter its invocation by the Spy. The Spy is given only the afore-
mentioned high-level functions for signing, verification,
encryption, and decryption. Secure world cryptographic
functions are implemented in OP-TEE using LibTomCrypt
whose functions are wrapped by the GlobalPlatform Inter-
nal Core API [17]. The Victim was developed to call an ex-
tensive range of GlobalPlatform Internal Core API functions
implemented by the OP-TEE OS core. For calculating perfor-
mance results, the Victim TA also accepted a given Internal
Core API algorithm ID, which was used for labelling HPC

7. https://op-tee.org
8. Under the GlobalPlatform TEE architecture, a non-secure client

application invokes one or more commands, e.g. signing or decryption,
of a target TA within a single session.

TABLE 8: Victim TA algorithms and key sizes (bits).

Method GlobalPlatform Internal Core API ID Key Sizes

TA SIGN and TA VERIFY

DSA
TEE ALG DSA SHA1 512, 1024
TEE ALG DSA SHA224 2048
TEE ALG DSA SHA256 2048, 3072

ECDSA

TEE ALG ECDSA P192 192
TEE ALG ECDSA P224 224
TEE ALG ECDSA P256 256
TEE ALG ECDSA P384 384
TEE ALG ECDSA P521 512

RSA

TEE ALG RSASSA PKCS1 V1 5 MD5
TEE ALG RSASSA PKCS1 V1 5 SHA1
TEE ALG RSASSA PKCS1 V1 5 SHA224
TEE ALG RSASSA PKCS1 V1 5 SHA256
TEE ALG RSASSA PKCS1 V1 5 SHA384
TEE ALG RSASSA PKCS1 V1 5 SHA512 1024, 2048
TEE ALG RSASSA PKCS1 PSS MGF1 SHA1 3072, 4096
TEE ALG RSASSA PKCS1 PSS MGF1 SHA224
TEE ALG RSASSA PKCS1 PSS MGF1 SHA256
TEE ALG RSASSA PKCS1 PSS MGF1 SHA384
TEE ALG RSASSA PKCS1 PSS MGF1 SHA512

TA ENCRYPT and TA DECRYPT

AES

TEE ALG AES CBC NOPAD
TEE ALG AES CCM
TEE ALG AES CTR 128, 196
TEE ALG AES ECB NOPAD 256
TEE ALG AES GCM

DES TEE ALG DES ECB NOPAD 64TEE ALG DES CBC NOPAD

3DES TEE ALG DES3 ECB NOPAD 128, 192TEE ALG DES3 CBC NOPAD

RSA

TEE ALG RSAES PKCS1 V1 5
TEE ALG RSAES PKCS1 OAEP MGF1 SHA1
TEE ALG RSAES PKCS1 OAEP MGF1 SHA224 1024, 2048
TEE ALG RSAES PKCS1 OAEP MGF1 SHA256 3072, 4096
TEE ALG RSAES PKCS1 OAEP MGF1 SHA384
TEE ALG RSAES PKCS1 OAEP MGF1 SHA512

vectors. The full list of analysed cryptographic algorithms is
given in Table 8, covering all available modes of operation
and padding schemes where applicable.

Using our previously developed PAPI test harness, HPC
measurements of 1,000 invocations of each algorithm were
collected from the non-secure world using all available
HPCs on our platform. This was repeated for 100 ses-
sions, with the data collected afterwards for off-line analysis
(100,000 vectors per algorithm; 3.4M in total). The measure-
ment vectors were labelled with respect to each GlobalPlat-
form Internal Core algorithm identifier, i.e. with the label
[0, 34) ∈ N. Like §3, key sizes were not fixed; a random key
size was set during the algorithm’s run-time allocation prior
to its execution. It is important to note that OP-TEE TAs
are cross-compiled using a GCC-based toolchain, rendering
them vulnerable to the compilation biases (§3.4.5). To ad-
dress this, we evaluated the GCC optimisation flags from §3
in order to assess the effects of different optimisation levels
on classification performance.

5.3 Results
After retrieving the data files from the test platform, the
same procedure was followed as in the previous sections.
The data file was divided into training and test sets using an
80:20 ratio before applying exhaustive grid search with 10-
fold cross-validation to select the best performing classifier.

https://op-tee.org
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TABLE 9: Classification accuracy using Spy (non-secure
world) HPC feature vectors from Victim (TEE) execution.

Classifier

Dataset NB LR kNN DT RF GBM LDA SVM MLP

O0 83.99 90.12 88.07 94.48 96.13 90.76 92.02 88.54 87.90
Os 84.61 87.92 84.68 90.72 94.07 96.02 95.51 85.81 86.75
O3 83.18 92.49 93.19 89.58 93.33 97.45 79.66 94.35 87.71

Mixed 82.89 85.27 92.83 95.50 94.17 86.93 82.55 86.99 90.82

The final accuracy was calculated using the performance
of the best performing cross-validation classifier on the
aforementioned test set. Results of this analysis are given
in Table 9. The results generally reflect those in §3 and §4:
algorithm recognition can be achieved with high accuracy
using PMU values perturbed by a secure world TA that is
measured by a non-secure world application. In the best
case, 95.50% classification accuracy (DT) was achieved for
the mixed GCC data-set, increasing slightly to best cases of
96.13% (RF), 96.02% (GBM), and 97.45% (GBM) for the O0,
Os, and O3 data sets respectively.

6 EVALUATION

This section analyses mitigations, limitations, and chal-
lenges of the work presented in this paper.

6.1 Analysis and Mitigations
Exploiting PMUs as a side-channel medium has been ac-
knowledged by CPU architecture designers and specifica-
tion bodies. ARM concede that counters are a potential
side channel for leaking confidential information, and issue
secure development guidance for preventing TEEs from
perturbing HPC measurements during TA execution [13],
[14]. Likewise, the RISC-V Unprivileged specification states
that “Some execution environments might prohibit access to
counters to impede timing side-channel attacks” [12] (Chapter
10, p. 59). Despite this, PMUs are still widely accessible
with privileged access and are still perturbed by TEE TAs
on some consumer devices [25], [41], [42].

If attackers are assumed to possess only user-mode
execution, then certain system-level countermeasures can
be deployed. On X86-64, the CR4.TSD and CR4.PCE
control registers can be set and unset to prevent the
reading of time-stamp (RDTSC) and programmable PMU
counter values (RDPMC) respectively. On Linux devices, the
kernel.perf_event_paranoid flag can be set to a non-
zero value to prevent user-space processes from accessing
PMU values through the perf subsystem. Alternatively, as
a common but blunt countermeasure, perf can be disabled
at installation time for providing access to high-resolution
CPU events. It is worth stating that performance counters
have many legitimate uses, including application bench-
marking and debugging, which would be prevented by this
mitigation.

Side-channel resistance has been studied extensively in
the context of avoiding time- and data-dependent code.
Cache-based timing attacks, in particular, have prompted
the development of resistant cryptographic algorithms (e.g.
bit-sliced AES implementations). In recent years, attacks
that leverage side-effects of transient execution have com-
pounded these issues [22], [23]. From the results in this

work, we emphasise that focussing on time-, cache-based, or
branch prediction-based side-channel mitigations are insuf-
ficient for protecting against the presented methods. Ideally,
library and TEE TA developers must consider a larger
range of measurable performance events, such as instruction
retirements, TLB hits/misses, load/store counts, pre-fetch
misses, and memory writes. While certain individual events
have been exploited and mitigated, multiple events can be
leveraged to bypass countermeasures against any particular
micro-architectural side-channel approach.

For software-based mitigations, inspiration can be taken
from Li and Gaudiot [43] who posed the challenge of HPC-
based speculative execution attack detection in the presence
of ‘evasive’ adversaries. State-of-the-art accuracy of Spectre
detection models declined by 30%–40% after introducing in-
structions that mimicked benign programs. Thus, one coun-
termeasure is to introduce micro-architectural obfuscation
by randomly and significantly perturbing the PMU during
the execution of sensitive functions. The injection of well-
crafted injection was also suggested by Liu et al. [44] for
countering ARM cache-based side-channels and by Carrelli
et al. [45] against certain timing attacks. However, we such
stress that noise must apply to many HPC events, not just
cache- or timing-based counters. How this can be feasibly
and effectively achieved is posed as an open challenge.

Attention is also drawn to countermeasures when de-
ploying Intel Software Guard eXtensions (SGX) enclaves.
SGX applications can be built using the ‘anti side-channel
interference’ (ASCI) feature, which suppresses interrupts to
Intel PMUs upon entry to production enclaves [1], thus
preventing their use as a side-channel for inspecting enclave
contents. Unless developers explicitly and negligently opt-
out of ASCI, then production enclaves are strengthened sig-
nificantly to the attacks described in this paper. Likewise, we
reiterate best-practice guidelines to device manufacturers
to prevent PMU events being raised during secure world
execution by securely configuring the PMU control and
debug registers upon TEE entry.

6.2 Challenges, Limitations, and Practicability
Using HPCs to classify program functions faces some inter-
esting challenges that were considered outside the scope of
this work. Firstly, we investigated programs with few levels
of intermediate abstraction: using C programs on a bare-
metal microcontroller (RISC-V) or with a single host OS
(Debian-based Linux; ARM and X86-64). Instrumenting and
measuring programs using HPCs faces difficulties in virtu-
alised environments sharing a single set of CPU counters;
for instance, within virtual machines (VMs) and containers
with OS-level virtualisation (e.g. Docker). Programs written
in interpreted languages and those with just-in-time (JIT)
compilation, e.g. Java, also pose known challenges for side-
channel analysis [15]. Further research is required to cor-
rectly account for the additional noise from multiple users,
processors, garbage collectors, etc. on a single PMU.

Secondly, a significant number of possible implemen-
tations variations may be encountered in reality on an
arbitrary platform. The variations were extensive but not
exhaustive; for example, the use of hardware implemen-
tations; different RNG sources; expanded cryptographic li-
braries, e.g. Crypto++ and Bouncy Castle; and alternative
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TEE implementations were not evaluated. The scope of this
work was not to provide an comprehensive analysis of these
possibilities. Rather, we aimed to provide the first inves-
tigation into using HPCs for function recognition, while
providing a detailed understanding of HPC correlations,
relative classification contributions, and the applications to
vulnerability detection and TA analysis. We also wish to
briefly note that the recognition of arbitrary functions cannot
be practically achieved considering that it may not termi-
nate, reflecting the halting problem. For constrained cases,
like recognising encryption functions from a set of potential
library candidates, the data acquisition and classification
stages remained feasible in nature: <3 minutes per feature
vector in the worst cases of unoptimised RSA encryptions
and DH key exchanges on our RISC-V microcontroller.

Thirdly, in a practical scenario, the generic approaches
in §3 and §5 would require classifiers to be trained and
transferred to a device under test. TrustZone software bi-
naries, for instance, are typically encrypted and authenti-
cated during secure boot sequences on consumer devices.
Moreover, TrustZone OSs are notoriously closed-source and
closed-access, preventing users from installing custom TAs
after deployment for acquiring ground-truth labels. A future
research direction is to explore the efficacy of transfer learn-
ing by training a model initially in an accessible white-box
environment where samples can be reliably labelled before
transposing it to black-box cases. Although GlobalPlatform
TEE APIs specify a standard set of algorithms, one challenge
with this approach is that their implementations may differ
during the transfer between white-box and black-box, OEM
implementations. While we evidenced that different library
implementations may be classified under a single label in §3,
this remains untested in a transfer learning environment.

Lastly, we stress that our approach was evaluated on reg-
ular programs. Obfuscated binaries, particularly those that
maliciously perturb HPCs to thwart PMU-based methods,
can exhibit more complex behaviours that may pose gener-
alisation challenges, which we defer to future research.

7 CONCLUSION

This paper developed, implemented and evaluated a
generic approach to black-box program function recogni-
tion. Extending work from related HPC research, we ex-
plored a side-channel approach in which micro-architectural
events are analysed in bulk using a generic machine learn-
ing workflow. We then presented a three-part evaluation
of this approach: 1 A preliminary study that examined
classifying functions from widely used benchmarking suites
and cryptographic libraries; 2 detecting several known,
CVE-numbered vulnerabilities within OpenSSL; and 3
cryptographic function recognition within ARM TrustZone.
The approaches achieved 86.22%–99.83% accuracy depend-
ing on the target architecture and application. We showed
how functions are recognisable in a relatively large, multi-
class problem space. Furthermore, we demonstrated how
OpenSSL lettered versions containing security vulnerabili-
ties can be identified with high accuracy (0.889–0.998 F1-
score; 89.58%–99.83% accuracy). We then presented results
from a further use case for recognising functions in a ref-
erence open-source ARM TrustZone TEE implementation

with high accuracy (95.50%–97.45%) using a comprehensive
range of GlobalPlatform TEE API functions. The results
our work are broadly commensurate with alternative ap-
proaches, albeit with different adversarial models, including
physical EM analysis for detecting cryptographic opera-
tions, malware detection, and OS detection (84–99%) and
static analysis and symbolic execution (84%–100%). Rather
than supplanting these methods, we hope that our approach
offers new thinking for software analysis using HPCs.

We posit that focussing on well-known side-channel
vectors—cache accesses, timing differences, and branch
predictions—-are insufficient for engineering implementa-
tions which are resistant to the methods presented in this
paper. Focus must directed to a wider range of micro-
architectural events simultaneously—TLB misses, instruc-
tion retirements, clock cycles, pre-fetch events, and others—
rather than prescribed events popularised in related work.
We also re-emphasise best-practice guidelines for configur-
ing PMUs to avoid exposing TEE side-channels to untrusted
applications. Further work is needed to leverage more
sophisticated attack scenarios, e.g. interpreted languages
and transferring models between consumer devices, but we
present evidence that HPC-based function recognition is
effective on today’s major CPU architectures.
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and G.-J. Ahn, “Prime+Count: Novel cross-world covert channels
on ARM TrustZone,” in 34th Annual Computer Security Applications
Conference, 2018, pp. 441–452.

[43] C. Li and J.-L. Gaudiot, “Challenges in detecting an ‘evasive
spectre’,” IEEE Computer Architecture Letters, 2020.

[44] N. Liu, W. Zang, S. Chen, M. Yu, and R. Sandhu, “Adaptive
noise injection against side-channel attacks on ARM platform,”
EAI Endorsed Transactions on Security and Safety, vol. 6, no. 19, 2019.

[45] A. Carelli, A. Vallero, and S. Di Carlo, “Performance monitor
counters: interplay between safety and security in complex cyber-
physical systems,” IEEE Transactions on Device and Materials Relia-
bility, 2019.

Carlton Shepherd received his Ph.D. in Infor-
mation Security from the Information Security
Group at Royal Holloway, University of London,
U.K., and his B.S. in Computer Science from
Newcastle University, U.K. He is currently a Re-
search Fellow at the Information Security Group
at Royal Holloway, University of London, where
his research interests centre around the secu-
rity of trusted execution environments (TEEs),
security-enhanced CPU designs, and embed-
ded systems security.

Benjamin Semal received his M.Eng. in Electri-
cal Engineering from Ecole Polytechnique Uni-
versitaire of Montpellier, France and M.S. in
robotics from Cranfield University, U.K. He then
worked as a hardware security analyst at UL
Transaction Security. He later joined Royal Hol-
loway, University of London to pursue a Ph.D. in
Information Security. His research focusses on
side-channel attacks for information leakage in
multi-tenant environments. Benjamin now works
as a security engineer at SERMA Security &

Safety evaluating point-of-sale devices and cryptographic modules.

Konstantinos Markantonakis received his B.S.
in Computer Science from Lancaster University,
U.K.; and his M.S. and Ph.D. in Information
Security, and M.B.A. in International Manage-
ment from Royal Holloway, University of Lon-
don, London, U.K. He is currently the Director
of the Smart Card and IoT Security Centre. He
has co-authored over 190 papers in international
conferences and journals. His research interests
include smart card security, trusted execution
environments, and the Internet of Things.

https://trustedfirmware-a.readthedocs.io/en/latest/process/security-hardening.html
https://trustedfirmware-a.readthedocs.io/en/latest/process/security-hardening.html
https://trustedfirmware-a.readthedocs.io/en/latest/process/security-hardening.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


15

So
lv

e 
Cu

bi
cs

In
te

ge
r S

qr
t

An
gl

e 
Co

nv
er

t
Qs

or
t

Di
jk

st
ra

PB
M

 S
ea

rc
h

FF
T

Bs
ea

rc
h

CR
C3

2
BW

T
M

at
rix

 M
ul

.
Bi

t O
ps

.
Ga

us
sia

n 
El

im
.

Fib
on

ac
ci

Eu
le

r
Si

m
ps

on
Ro

ot
 Fi

nd
in

g
XO

R-
Sh

ift
Ba

se
64

 E
nc

od
e

Ba
se

64
 D

ec
od

e
En

tro
py

AE
S-

CB
C 

(E
)

AE
S-

CB
C 

(D
)

AE
S-

EC
B 

(E
)

AE
S-

EC
B 

(D
)

AE
S-

CT
R 

(E
)

AE
S-

CT
R 

(D
)

AE
S-

GC
M

 (E
)

AE
S-

GC
M

 (D
)

Ch
aC

ha
20

 (E
)

Ch
aC

ha
20

 (D
)

Ch
aC

ha
20

-P
ol

y1
30

5 
(E

)
Ch

aC
ha

20
-P

ol
y1

30
5 

(D
)

Sp
ec

k 
(E

)
Sp

ec
k 

(D
)

PR
IN

CE
 (E

)
PR

IN
CE

 (D
)

DE
S 

(E
)

DE
S 

(D
)

3D
ES

 (E
)

3D
ES

 (D
)

GO
ST

 (E
)

GO
ST

 (D
)

Ed
25

51
9 

(S
)

Ed
25

51
9 

(V
)

EC
DS

A 
(S

)
EC

DS
A 

(V
)

X2
55

19
EC

DH
RS

A 
(E

)
RS

A 
(D

)
RS

A 
(S

)
RS

A 
(V

)
DH

HM
AC

GM
AC

Po
ly

13
05

M
D2

M
D4

M
D5

SH
A-

1
SH

A-
25

6
SH

A-
3

BL
AK

E2

Predicted Value

Solve Cubics
Integer Sqrt

Angle Convert
Qsort

Dijkstra
PBM Search

FFT
Bsearch

CRC32
BWT

Matrix Mul.
Bit Ops.

Gaussian Elim.
Fibonacci

Euler
Simpson

Root Finding
XOR-Shift

Base64 Encode
Base64 Decode

Entropy
AES-CBC (E)
AES-CBC (D)
AES-ECB (E)
AES-ECB (D)
AES-CTR (E)
AES-CTR (D)
AES-GCM (E)
AES-GCM (D)

ChaCha20 (E)
ChaCha20 (D)

ChaCha20-Poly1305 (E)
ChaCha20-Poly1305 (D)

Speck (E)
Speck (D)

PRINCE (E)
PRINCE (D)

DES (E)
DES (D)

3DES (E)
3DES (D)
GOST (E)
GOST (D)

Ed25519 (S)
Ed25519 (V)

ECDSA (S)
ECDSA (V)

X25519
ECDH

RSA (E)
RSA (D)
RSA (S)
RSA (V)

DH
HMAC
GMAC

Poly1305
MD2
MD4
MD5

SHA-1
SHA-256

SHA-3
BLAKE2

Tr
ue

 V
al

ue

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7: Normalised ARM confusion matrix.

APPENDIX A
ARM AND RISC-V CONFUSION MATRICES

Confusion matrices relevant to §3.5 for ARM and RISC-V
function recognition are given in Figs. 7 and 8 respectively.

APPENDIX B
OPENSSL CVE DESCRIPTIONS

This appendix provides an overview of the six OpenSSL
CVEs explored in §4 as follows:

(V1): CVE-2018-5407: “ECC scalar multiplication, used in e.g.
ECDSA and ECDH, has been shown to be vulnerable to
a microarchitecture timing side channel attack. An attacker
with sufficient access to mount local timing attacks during
ECDSA signature generation could recover the private key.”
Fixed in OpenSSL v1.1.0i.

(V2): CVE-2018-0734: “DSA signature algorithm has been
shown to be vulnerable to a timing side channel attack. An
attacker could use variations in the signing algorithm to
recover the private key.”. Fixed in v1.1.1a.

(V3): CVE-2018-0735: “The OpenSSL ECDSA signature algo-
rithm has been shown to be vulnerable to a timing side chan-
nel attack. An attacker could use variations in the signing
algorithm to recover the private key.” Fixed in v1.1.0j.

(V4): CVE-2018-0737: “RSA key generation algorithm has been
shown to be vulnerable to a cache timing side channel attack.
An attacker with sufficient access to mount cache timing
attacks during the RSA key generation process could recover
the private key.” Fixed in v1.1.0i.

(V5): CVE-2016-2178: “Operations in the DSA signing algo-
rithm should run in constant time in order to avoid side
channel attacks. A flaw in the OpenSSL DSA implemen-
tation means that a non-constant time codepath is followed
for certain operations. This has been demonstrated through a
cache-timing attack to be sufficient for an attacker to recover
the private DSA key.” Fixed in v1.0.2i.
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(a) RISC-V (Privileged).

So
lv

e 
Cu

bi
cs

In
te

ge
r S

qr
t

An
gl

e 
Co

nv
er

t
Qs

or
t

Di
jk

st
ra

PB
M

 S
ea

rc
h

FF
T

Bs
ea

rc
h

CR
C3

2
BW

T
M

at
rix

 M
ul

.
Bi

t O
ps

.
Ga

us
sia

n 
El

im
.

Fib
on

ac
ci

Eu
le

r
Si

m
ps

on
Ro

ot
 Fi

nd
in

g
XO

R-
Sh

ift
Ba

se
64

 E
nc

od
e

Ba
se

64
 D

ec
od

e
En

tro
py

AE
S-

CB
C 

(E
)

AE
S-

CB
C 

(D
)

AE
S-

EC
B 

(E
)

AE
S-

EC
B 

(D
)

AE
S-

CT
R 

(E
)

AE
S-

CT
R 

(D
)

AE
S-

GC
M

 (E
)

AE
S-

GC
M

 (D
)

Ch
aC

ha
20

 (E
)

Ch
aC

ha
20

 (D
)

Ch
aC

ha
20

-P
ol

y1
30

5 
(E

)
Ch

aC
ha

20
-P

ol
y1

30
5 

(D
)

Sp
ec

k 
(E

)
Sp

ec
k 

(D
)

PR
IN

CE
 (E

)
PR

IN
CE

 (D
)

DE
S 

(E
)

DE
S 

(D
)

3D
ES

 (E
)

3D
ES

 (D
)

GO
ST

 (E
)

GO
ST

 (D
)

Ed
25

51
9 

(S
)

Ed
25

51
9 

(V
)

EC
DS

A 
(S

)
EC

DS
A 

(V
)

X2
55

19
EC

DH
RS

A 
(E

)
RS

A 
(D

)
RS

A 
(S

)
RS

A 
(V

)
DH

HM
AC

GM
AC

Po
ly

13
05

M
D2

M
D4

M
D5

SH
A-

1
SH

A-
25

6
SH

A-
3

BL
AK

E2

Predicted Value

Solve Cubics
Integer Sqrt

Angle Convert
Qsort

Dijkstra
PBM Search

FFT
Bsearch

CRC32
BWT

Matrix Mul.
Bit Ops.

Gaussian Elim.
Fibonacci

Euler
Simpson

Root Finding
XOR-Shift

Base64 Encode
Base64 Decode

Entropy
AES-CBC (E)
AES-CBC (D)
AES-ECB (E)
AES-ECB (D)
AES-CTR (E)
AES-CTR (D)
AES-GCM (E)
AES-GCM (D)

ChaCha20 (E)
ChaCha20 (D)

ChaCha20-Poly1305 (E)
ChaCha20-Poly1305 (D)

Speck (E)
Speck (D)

PRINCE (E)
PRINCE (D)

DES (E)
DES (D)

3DES (E)
3DES (D)
GOST (E)
GOST (D)

Ed25519 (S)
Ed25519 (V)

ECDSA (S)
ECDSA (V)

X25519
ECDH

RSA (E)
RSA (D)
RSA (S)
RSA (V)

DH
HMAC
GMAC

Poly1305
MD2
MD4
MD5

SHA-1
SHA-256

SHA-3
BLAKE2

Tr
ue

 V
al

ue

0.0

0.2

0.4

0.6

0.8

1.0

(b) RISC-V (Unprivileged).

Fig. 8: Normalised RISC-V confusion matrices.

(V6): CVE-2016-0702: “A side-channel attack was found which
makes use of cache-bank conflicts on the Intel Sandy-Bridge
microarchitecture which could lead to the recovery of RSA
keys. The ability to exploit this issue is limited as it relies on
an attacker who has control of code in a thread running on
the same hyper-threaded core as the victim thread which is
performing decryptions.” Fixed in v1.0.2g.
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APPENDIX C
MODEL HYPER-PARAMETER DETAILS

The model hyper-parameters used in the results in Tables 3–
7 and 9 were derived from the ranges presented in Table 10.

TABLE 10: Evaluated model hyper-parameters (Scikit-Learn
nomenclature [33]; default values used otherwise).

Method Hyper-parmeter ranges

NB Variance smoothing: [1e-1, 1e-3, 1e-5, 1e-7, 1e-9, 1e-11, 1e-13]

LR C (regularisation): [1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4]
Optimisation solver: [’newton-cg’, ’lbfgs’, ’liblinear’, ’sag’, ’saga’]

kNN N neighbours: [1, 3, 5, 10, 25, 50, 75, 100]

DT Split criterion: [’gini’, ’log loss’, ’entropy’]
Max. tree depth: [2, 5, 7, 10, 25, 50, 75, 100, None]

RF Split criterion: [’gini’, ’log loss’, ’entropy’]
Max. tree depth: [2, 5, 7, 10, 25, 50, 75, 100, None]
N estimators: [5, 10, 25, 50, 100, 250, 375, 500]

GBM Learning rate: [0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0]
N estimators: [5, 10, 25, 50, 100, 250, 375, 500]
Max. tree depth: [1, 3, 5, 7, 10, 25, 50, 75, 100]

LDA Optimisation solver: [’svd’, ’lsqr’, ’eigen’]

SVM Kernel: [’linear’, ’poly’, ’rbf’, ’sigmoid’]
C (regularisation): [1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4]
γ (kernel coefficient): [’auto’, ’scale’]

MLP Hidden layer dimensions: [(50,), (100,), (250,), (50,50), (100,100),]
(250,250), (50,50,50), (100,100,100), (250,250,250), (100,250,100)
(50,100,250,250), (50,50,50,50), (100,100,100,100),(250,250,250,250)]
Activation functions: [’identity’, ’logistic’, ’tanh’, ’relu’]
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