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Abstract—This paper presents a low-latency hardware accelerator for modular polynomial multiplication for lattice-based
post-quantum cryptography and homomorphic encryption applications. The proposed novel modular polynomial multiplier exploits the
fast finite impulse response (FIR) filter architecture to reduce the computational complexity of the schoolbook modular polynomial
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utilization. We comprehensively evaluate the performance of the proposed architectures under various polynomial settings as well as in
the Saber scheme for post-quantum cryptography as a case study. The experimental results show that our proposed modular
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1 INTRODUCTION

M ODULAR polynomial multiplication is commonly used in
lattice-based post-quantum cryptography (PQC) and homo-

morphic encryption applications. While homomorphic encryption
aims at allowing computations to be directly carried out in the
encrypted domain without decryption [1], lattice-based crypto-
graphic algorithms are also designed to be resistant against attacks
from both traditional and quantum computers and are thus well
suited for PQC. Three out of the four finalists for the NIST PQC
standardization in round-3 fell into the category of lattice-based
cryptography [2]. In prior works, the modular polynomial mul-
tiplication for the lattice-based cryptography scheme has mostly
been implemented by schoolbook polynomial multiplication [3],
number theoretic transform (NTT) [4] or the Karatsuba multi-
plication [5]. Different from the prior works, this paper proposes
novel high-speed architectures by exploiting the fast finite impulse
response (FIR) parallel filter architecture [6], [7], [8], [9], [10].
The paper also proposes a novel weight-stationary systolic array
for modular polynomial multiplication; these are used as building
blocks for the fast parallel architecture. The proposed architecture
is feed-forward and can be pipelined at arbitrary levels to achieve
the desired speed. To the best of our knowledge, this is the first
paper to utilize the fast parallel filter architecture to accelerate the
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modular polynomial multiplication for lattice-based schemes.
Exploiting the fast parallel filter approach to modular poly-

nomial multiplication is neither straightforward nor trivial. Since
the fast parallel filters contain several subfilters and merging
operations, the modular operations must be incorporated at the
subfilter level and merging level. No prior work has addressed
these design aspects. The subfilters should correspond to single-
input single-output architectures that should integrate the modular
operation and should operate in real-time with no hardware under-
utilization. These should also require simpler control circuits. Such
designs have not been presented before.

The contributions of this paper are four-fold. First, using
systolic mapping methodology [6], [11], [12], we derive a se-
quential weight-stationary systolic array for modular polynomial
operation. This structure is partly similar to the transpose-form
FIR digital filter [6] and is the main building block of the
proposed architecture. The low-latency systolic array achieves
full hardware utilization. Second, we propose a low-latency fast
modular polynomial multiplication architecture that integrates the
modular reduction at the merging level, achieves full hardware uti-
lization and minimizes latency. Third, using iterated fast parallel
filter design approach, we propose highly parallel architectures
where the level of parallelism is the product of short lengths.
The modular operation is also carried out at the merging step of
each iteration to reduce overall latency and achieve full hardware
utilization. Fourth, the advantages of the proposed architecture are
demonstrated using the Saber scheme as a PQC benchmark.

The rest of the paper is organized as follows: Section 2 reviews
the mathematical background and the prior works on modular
polynomial multiplication. Section 3 and Section 4 present the de-
tails of the proposed hardware architecture, including the modular
polynomial multiplier and fast M -parallel architecture. Section 5
describes the experimental results and comparisons with the state-
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of-the-art designs. Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK

In this section, we briefly review the essential notations,
mathematical background, and related works.

2.1 Lattice-based cryptography
Lattice-based cryptography relies on the NP-hard lattice prob-

lems that even quantum computers cannot solve efficiently. One
example of the lattice problems is the shortest vector problem
(SVP), whose security relies on the hardness of approximating
SVP in the Euclidean norm [1].

There are several representative schemes for both homomor-
phic encryption and PQC based on the lattice-based cryptography
primitive. For example, in lattice-based homomorphic encryption,
BFV scheme [13] and CKKS scheme [14] support a limited
number of homomorphic computations, which are also categorized
as somewhat homomorphic encryption (SHE) schemes. The fully
homomorphic encryption (FHE) schemes such as [1], [15] allow
an unlimited number of homomorphic computations by using
bootstrapping algorithm.

On the other hand, the NIST finalist lattice-based PQC
schemes can be classified as either NTRU-based (e.g.,
NTRU [16]), and learning with errors-based (LWE) (e.g., Crystals-
Kyber [17] and Saber [18]) in general.

In this paper, we evaluate and compare the performance of
our proposed architectures used in the Saber scheme [18] as a
case study. Saber is indistinguishability under chosen-ciphertext
attack secure Key Encapsulation Mechanism (KEM), which con-
sists of three algorithms: key generation (KeyGen), encapsulation
(Encaps), and decapsulation (Decaps) [18]. More specifically, the
primitive of the Saber scheme is based on the hardness of the
module-learning with rounding (M-LWR) problem and the use of
the Fujisaki-Okamoto transform [19].

Among all the steps in the Saber scheme, the most widely
used functions are the matrix-vector multiplication and the inner
product of two vectors. For the medium-security level of Saber
(post-quantum security level similar to AES-192), there are 9,
12, and 15 polynomial multiplications in the key generation,
encapsulation, and decapsulation, respectively. In this paper, we
only consider the medium-security level.

Modular polynomial multiplication is a fundamental and yet
the most computationally intensive operation of lattice-based
cryptography. For the lattice-based PQC, modular polynomial
multiplication dominates the computations across key-generation,
encryption, and decryption steps in the prior works [3], [20]. Sim-
ilarly, the most expensive operation for homomorphic encryption
schemes is also modular polynomial multiplication. Therefore,
improving the efficiency of modular polynomial multiplication is
critical to the practical deployment of lattice-based PQC schemes
and homomorphic encryption.

2.2 Schoolbook modular polynomial multiplication
For the product P (x) of two polynomials

A(x) = a[0] + a[1]x+ a[2]x2 + ...+ a[n− 1]xn−1, (1)

B(x) = b[0] + b[1]x+ b[2]x2 + ...+ b[n− 1]xn−1, (2)

overRq , all the coefficients of P (x) need to be less than q but non-
negative integers, while the degree of P (x) should be less than n,

where Rq = Zq/(xn + 1) is ring of the polynomial, and Zq is
the ring of integers modulo an integer q. The schoolbook modular
polynomial multiplication betweenA(x) andB(x) modulo (xn+
1, q) can be described as

A(x) ·B(x)

=
n−1∑
i=0

n−1∑
j=0

a[i]b[j]xi+j mod (xn + 1, q) (3)

=
n−1∑
i=0

( n−1∑
j=0

(−1)b(i+j)/nca[i]b[j] mod q
)
· x(i+j) mod n.

For the schoolbook modular polynomial multiplication, the
moduli are not required to be prime, which is different from the
NTT-based polynomial multiplication. Consequently, the polyno-
mial multiplication used in the M-LWR problem [21] and ring-
learning with errors (R-LWE) problem [22] can benefit from
these moduli. In these cases, since all the moduli can be se-
lected as power-of-two integers, the modular reduction for the
coefficients on the schoolbook polynomial multiplication can be
simply performed by keeping the least significant ε bits (ε is
the bit-length of the modulus q, i.e., ε = dlog2(q)e) instead
of using the expensive Barrett reduction [23] or Montgomery
modular multiplication [24]. Meanwhile, schemes based on the
M-LWR problem (such as the Saber scheme) obtain the error
term by rounding, while naturally aligning with the power-of-
two modulus. Besides, recent work shows that a power-of-two
modulus can simplify and improve the polynomial multiplication
for the R-LWE based homomorphic encryption schemes without
affecting the computational hardness [25]. The modulus in this
format has been applied in some popular schemes such as BFV
scheme [13]. Based on this advantage, shortening the word-length
of the operand and eliminating the modular reduction for the
coefficients can increase the resource available, which can then
enable the designer to increase the level of parallelism to achieve
a high-speed modular polynomial multiplier.

It may be noted that the use of the power-of-two moduli, as
needed in the Saber scheme, cannot leverage the acceleration from
the NTT-based polynomial multiplication without further expen-
sive transformation. However, NTT-based polynomial multiplica-
tion has been widely applied in many lattice-based cryptography
schemes when the moduli are not power-of-two [4], [26], [27],
[28], [29], [30], [31], [32].

2.3 Karatsuba polynomial multiplication

To improve the efficiency and reduce the complexity of school-
book polynomial multiplication, methods based on the divide-
and-conquer strategy to increase parallelism are of great interest.
One of the examples is the Karatsuba algorithm [33], which has
been utilized in some prior modular polynomial multiplier designs
for Saber scheme [20], [34]. The 2-level Karatsuba polynomial
multiplication first decomposes the input polynomials into higher-
degree and lower-degree parts as A(x) = A0(x) +A1(x) · xn/2
and B(x) = B0(x) +B1(x) · xn/2 and computes

C0(x) = A0(x) ·B0(x)

C1(x) = (A0(x) +A1(x)) · (B0(x) +B1(x))

C2(x) = A1(x) ·B1(x). (4)
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Then the above products are summed up, and polynomial
modular reduction is carried out to derive the product P (x) over
the ring as

P (x) = C0(x)+C3(x)·xn/2+C2(x)·xn mod (xn+1), (5)

where

C3(x) = (C1(x)− C0(x)− C2(x)). (6)

Note that the degrees of C3(x) · xn/2 and C2(x) · xn are 3
2n

and 2n, respectively. Hence polynomial subtractions are needed
to perform the modular reduction by xn+1. Based on this divide-
and-conquer strategy of the Karatsuba algorithm, the number of
coefficient multiplications is reduced from n2 to 3(n/2)2.

2.4 Prior hardware implementations
Several hardware accelerators for lattice-based cryptography

without using the NTT algorithm have been proposed recently [3],
[20], [34], [35], [36], [37], [38], [39]. As expected, optimizing
the polynomial multiplier is the main focus of these works, since
it is the bottleneck. The hardware/software co-design for the
modular polynomial multiplication accelerator in [35] shows a
significant acceleration compared with the software implemen-
tation. Subsequently, the work in [20] introduced the compact
hardware/software interfacing design, which applies a hybrid
method of Toom-Cook multiplication [40] (a generalized form
of Karatsuba algorithm) and a length-64 schoolbook polynomial
multiplier to optimize the modular polynomial multiplication. A
full hardware implementation is proposed in [3], which utilizes
a memory-based schoolbook polynomial multiplier. This design
achieves a higher speed where each length-256 polynomial mul-
tiplication only consumes 256 clock cycles. Later, an extended
work of [3] is presented in [41], which is based on a design
called centralized multiplier architecture. This optimized design
retains the same timing performance but requires fewer hard-
ware resources since each multiply-and-accumulate (MAC) is
replaced by one multiplexer (MUX) and one adder. Furthermore,
an 8-level recursive split hierarchical Karatsuba algorithm-based
implementation is introduced in [34], which reduces a length-
256 polynomial multiplication to only 81 clock cycles without
considering the pipelining startup time.

Besides, several architectures of modular polynomial multipli-
ers for the R-LWE schemes are introduced in [5], [38], [42]. The
works in [38], [42] investigate the low-area design for the school-
book modular polynomial multiplication, which only consumes
fewer LUTs and DSPs. Meanwhile, the design in [5] proposes
a modular polynomial multiplier using the Karatsuba algorithm
and reduces the complexity by merging the polynomial modular
reduction on the post-processing stage of the Karatsuba algorithm.

However, these designs cannot consider an architecture using
the fast filtering technique to reduce the latency. Also, the ar-
chitectures based on the Karatsuba algorithm generally consider
the polynomial modular reduction after the multiplication. These
designs do not reduce the number of additions. Therefore, it is
possible to further reduce the number of additions/subtractions at
the post-processing stage, thereby reducing the total number of ad-
dition/subtraction operations. Since our objective is to improve the
speed under a given hardware budget, we define the following two
metrics in evaluating the performance from the speed perspective:

• Response time: clock cycles between the first input and
the first output sample.

• Total latency: clock cycles between the first input and the
last output sample.

3 MODULAR POLYNOMIAL MULTIPLIER BASED ON
WEIGHT-STATIONARY SYSTOLIC ARRAY

Consider the design of a length-n modular polynomial multi-
plier described by Equation (3). In this section, we use n = 4 as
an example to illustrate our proposed novel modular polynomial
multiplier. The modular polynomial multiplication is described by:

P (x) = A(x) ·B(x) mod (x4 + 1, q) (7)

= p[0] + p[1]x+ p[2]x2 + p[3]x3,

where

A(x) = a[0] + a[1]x+ a[2]x2 + a[3]x3,

B(x) = b[0] + b[1]x+ b[2]x2 + b[3]x3.

The polynomial multiplication of A(x) and B(x) leads to

P ′(x) = p′[0] + p′[1]x+ p′[2]x2 + p′[3]x3

+ p′[4]x4 + p′[5]x5 + p′[6]x6. (8)

Since the polynomial multiplication has a degree higher than
three, the terms x4, x5, and x6 are replaced by −1, −x, and
−x2, respectively, to perform the modular reduction. Thus, the
coefficients of the modular polynomial multiplication are:

p[3] = a[3]b[0] + a[2]b[1] + a[1]b[2] + a[0]b[3],

p[2] = a[2]b[0] + a[1]b[1] + a[0]b[2]− a[3]b[3],
p[1] = a[1]b[0] + a[0]b[1]− a[3]b[2]− a[2]b[3],
p[0] = a[0]b[0]− a[3]b[1]− a[2]b[2]− a[1]b[3]. (9)

A dependence graph (DG) of the modular polynomial multi-
plication for the n = 4 example is shown in Fig. 1.

b[0] b[1] b[2] b[3]

b[0] b[1] b[2] b[3]

b[0] b[1] b[2] b[3]

b[0] b[1] b[2] b[3]

a[3] a[2] a[1] a[0]

0

0

0

0 p[3]

p[2]

p[1]

p[0]

_

_ _

_ _ _

: Modular Multiplier

: Modular Adder

Fig. 1. DG of the modular polynomial multiplication when n = 4.
The DG is mapped to a systolic array using the projection vector
shown in blue.

3.1 Architecture of modular polynomial multiplier us-
ing transpose-form FIR filter

Given the similarity between modular polynomial multiplica-
tion and FIR filter, it is useful to consider three common types



iv

D D

b[3]b[2]b[1]b[0]

D
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b[0]b[1]b[2]b[3]

D D D

a[i]

p[i]

(b) Transpose-form

b[3]b[2]b[1]b[0]

D

D D
a[i]

p[i]

(c) Hybrid-form

Fig. 2. Three different forms of FIR filter architecture when n = 4.

of FIR filter structures [6], i.e., direct-form, transpose-form, and
hybrid-form, respectively, as shown in Fig. 2.

FIR filter is one of the digital filters that is used to modify the
frequency properties of the input signal to achieve specific design
requirements [6]. It can also be mathematically expressed as a
discrete convolution of two signals, which can be defined as

p[n] =
n−1∑
j=0

b[j]a[n− j], (10)

where n is the number of taps, a[n] is the input signal, b[j] is
value of the impulse response at the j-th instant (j ∈ [0, n− 1]),
and p[n] is the output signal. Though using any of the FIR filter
structures in Fig. 2 can sufficiently instantiate Equation (10) and
show a negligible difference in the overall performance in most
of the digital signal processing applications, the FIR structure for
modular polynomial multiplication needs to be carefully selected.

The direct-form FIR filter shown in Fig. 2(a) leads to a long
critical path, which consists of one multiplier and n adders. It
can also be observed from Fig. 2(c) that the hybrid-form architec-
ture generates its first output immediately after loading the first
input, and requires additional registers to store the intermediate
results; however, the architecture is not feed-forward and has
slightly longer critical path than the transpose-form. Thus, the
best choice for implementing polynomial multiplication in lattice-
based schemes is the transpose-form as shown in Fig. 2(b) as it has
the least critical path and a feed-forward datapath. Fortunately, the
DG in Fig. 1 can be mapped to a weight-stationary systolic array
using the projection vector shown in blue in the figure. Alter-
natively, the systolic array can also be derived using the folding
algorithm [43]. Note that all multiplications with coefficient b[j]
are mapped to the same hardware multiplier.

Fig. 3(a) shows an example systolic architecture for modular
polynomial multiplication for length-4 where the components in
each tap (node) are illustrated in Fig. 3(b). The systolic array
contains additional switches and a shift register of size-n (see the
top of Fig. 3(a)) for continuous processing of input polynomials
and polynomial modular reduction. Note that using a conventional
transpose-form like structure to perform the polynomial multi-
plication would require padding zeros until the entire operation
finishes; otherwise, it will lead to conflicts and produce wrong
results. Furthermore, to perform polynomial modular reduction,
the shift register and switches can control the signals (coeffi-
cients of polynomial A(x)) properly based on the expression in
Equation (9). Specifically, the coefficients of polynomial A(x)
with the negative signs are extracted from the shift register in its
negative form. Then, the switches select either the negative form or
the original form coefficients from polynomial A(x) in different
clock cycles. As shown in Fig. 3, the proposed length-4 modular

b[0]

b[2]

b[3]

b[1]

4D
4l+{1,2,3} 4l+{2,3} 4l+{3}

4l+0 4l+{0,1} 4l+{0,1,2}

 a[0] a[1] a[2] a[3]

 p[0] p[1] p[2] p[3]

B(x) Mod
A(x) P(x) 

B(x) Mod
A(x) P(x) 

B(x) Mod
A(x) P(x) 

(Pipelining 

cut-set)

_

++
(First tap) (Last tap)

D

crtlsw[0] crtlsw[1] crtlsw[2]

(Switching 

instance)

(a) Top-level architecture with transpose-form like structure.

D
b[j]

prod

acc sum

a[i]

b[j]

+

(b) Details of each tap.

Fig. 3. A degree-4 weight-stationary systolic modular polynomial
multiplier.

polynomial multiplier consists of four modular multipliers, three
modular adders, three delay elements, three switches, and one
shift register. Specifically, the shift register consists of four delay
elements, and the switches are constructed using MUXs. The
design in Fig. 3 can be easily extended to length-n. A length-
n modular polynomial multiplier requires n modular multipliers,
(n−1) modular adders, (n−1) delay elements, (n−1) switches
at the lower data paths and one shift register (consisting of n
delay elements). For one modular polynomial multiplication, the
response time is n clock cycles, while the total latency is (2n−1)
clock cycles. For L polynomial multiplications, the response time
remains the same, while the total latency in clock cycles is given
by:

Tlat = n · (L+ 1)− 1. (11)

This architecture also has a full hardware utilization after the
first output is computed. Hardware utilization is the percentage
of the components inside this circuit that are performing useful
operations, and full hardware utilization means no component is
performing null operations.

The modular reduction can be performed by simply keeping
the least ε bits for a 2ε modulus. For the lattice-based cryptography
schemes, the degrees of the polynomial are relatively large, i.e., n
can be up to hundreds or thousands, which could cause a high fan-
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out issue on the output of the shift register and the input node. To
overcome this, buffers (registers) are inserted after the switches,
as shown as the green dashed line in Fig. 3(a). As a result, the
critical path is one modular multiplier and one modular adder.

3.2 Scheduling for the modular polynomial multiplier

The scheduling and control logic in the proposed architecture
are very simple and efficient. The coefficients of polynomial A(x)
are loaded sequentially from the most significant (highest degree)
coefficient to the least significant (lowest degree) coefficient while
the coefficients of polynomial B(x) are stored starting with the
least significant coefficient to the most significant coefficient from
left to right. Finally, the result coefficients are output in the same
order as A(x) (i.e., from the most significant coefficient to the
least significant coefficient).

The notation 4l + {0, 1, 2, 3} represents the switch instances
with a switch period of 4 clock cycles. Hence, l can be interpreted
as the l-th period (iteration). For example, the left node will be
connected when the switch instances are 4l+ {1, 2, 3}, while the
right node will be connected at the switch instance of 4l + 0.
Each switch is controlled by a one-bit signal from the (n − 1)-
bit controller ctrlsw: if this bit is equal to 1, the operand from
polynomial A(x) of the modular multiplier is loaded from the
input node; otherwise, it is loaded from the shift register. These
control signals ctrlsw can be simply generated by a counter
(ranging from 0 to (n− 2)), as:

ctrlsw =

{
{0, ..., 0, 0}, if counter = 0,
{ctrlsw[n− 3 : 0], 1}, otherwise. (12)

After resetting the counter, all (n − 1)-bit control signals ctrlsw
are zeros. Then, in every subsequent clock cycle, ctrlsw shifts left
by padding a “1” to the least significant bit (LSB).

4 FAST POLYNOMIAL MULTIPLIER USING FAST M-
PARALLEL FILTER ARCHITECTURE

In this section, we derive a highly parallel hardware architec-
ture for the polynomial multiplication based on the fast parallel
filter algorithm [6], [7], [8], [9]. The proposed design requires
less resource overhead than prior Karatsuba-based polynomial
multipliers in the post-processing stage. Parallel structures for
modular polynomial multiplication for small lengths are first
derived. These can then be iterated to obtain architectures for
larger levels of parallelism. For example, a fast 2-parallel (i.e.,
M = 2) modular polynomial multiplier can be iterated twice (or
thrice) to design a 4-parallel (or 8-parallel) multiplier.

4.1 Fast 2-parallel architecture

The fast 2-parallel modular polynomial multiplication, re-
ferred to as Fast.2.PolyMult, is described in Algorithm 1, which
mainly consists of three stages: pre-processing (Step 1), inter-
mediate polynomial multiplication (Step 2), and post-processing
(Steps 3 and 4).

We first decompose the polynomials A(x) and B(x) based on
the even and odd indices, as shown in Step 1, also called polyphase
decomposition [6]. We denote y = x2, and the polynomial A(x)
is expressed as:

A(x) = A0(x
2) +A1(x

2) · x = A0(y) +A1(y) · x, (13)

where the even indexed polynomial A0(y) and the odd indexed
polynomial A1(y) are expressed as:

A0(y) = a[0] + a[2]y + a[4]y2 + . . .

+ a[n− 2]yn/2−1 mod (yn/2 + 1), (14)

A1(y) = a[1] + a[3]y + a[5]y2 + . . .

+ a[n− 1]yn/2−1 mod (yn/2 + 1). (15)

A similar decomposition is applied to B(x) to obtain its even
indexed and odd indexed polynomials B0(y) and B1(y). The
product P (x) can be computed as:

P (x) = P0 (y) + P1 (y) · x
=(A0(y) +A1(y) · x) · (B0(y) +B1(y) · x)
=A0 (y)B0 (y) + [A0 (y)B1 (y) +A1 (y)B0 (y)] · x

+ [A1 (y)B1 (y)] · y (16)

The polyphase decomposition describes one polynomial multipli-

Algorithm 1 Fast.2.PolyMult(A(x), B(x))
Input: A(x) and B(x) ∈ Rq
Output: P (x) = (P0(x

2), P1(x
2))

//P (x) = A(x) ·B(x) mod (xn + 1, q)

1: A(x) = A0(x
2) +A1(x

2) · x
//Split A(x) as two parts based on odd and even indices
B(x) = B0(x

2) +B1(x
2) · x

//Split B(x) as two parts based on odd and even indices
2: U(y) = A0(y)B0(y) mod (yn/2 + 1, q), where y = x2

V (y) = A1(y)B1(y) mod (yn/2 + 1, q)
W (y) = (A0(y) +A1(y))(B0(y) +B1(y))

mod (yn/2 + 1, q)
// Intermediate modular polynomial multiplication

3: P0(y) = U(y) + V (y) · y mod (yn/2 + 1, q)
P1(y) =W (y)− (U(y) + V (y)) mod (yn/2 + 1, q)

4: P (x) = P0(x
2) + P1(x

2) · x, where y = x2

5: return P (x)

cation of length-n in terms of four polynomial multiplications of
length-n/2. While this step in itself does not reduce the compu-
tation complexity, it is an essential first step. In Step 2, the fast
filter algorithm describes the modular polynomial multiplication
in terms of three polynomial multiplications of half length; this
reduces the complexity by 25%. Denote the three intermediate
modular polynomial multiplication outputs as U(y), V (y), and
W (y). In the fast algorithm, P1(y) is computed as:

P1 (y) = A0 (y)B1 (y) +A1 (y)B0 (y)

= (A0 (y) +A1 (y)) (B0 (y) +B1 (y))

−A0 (y)B0 (y)−A1 (y)B1 (y) (17)

=W (y)− (U(y) + V (y)), (18)

where
U(y) = A0(y)B0(y), (19)

V (y) = A1(y)B1(y), (20)

W (y) = (A0(y) +A1(y))(B0(y) +B1(y)). (21)

Note that unlike P1(y), P0(y) = U(y) + V (y) · y mod
(yn/2 + 1) requires further modular polynomial reduction, which
is achieved in the post-processing step. Since V (y) needs to be
multiplied by y before adding the coefficients of U(y), the highest
degree of coefficient exceeds the range of the ring (yn/2+1), (i.e.,
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U(y)+V (y)·y = u[0]+p0[1]y+p0[2]y
2+...+v[n/2−1]yn/2).

As a result, the even polynomial P0(y) requires an additional
subtraction and is computed as:

P0(y) =(u[0]− v[n/2− 1]) + p0[1]y + p0[2]y
2

+ . . .+ p0[n/2− 1]yn/2−1. (22)

The data-flow of the proposed fast parallel architecture is
shown in Fig. 4.

P
o

s
t-

P
ro

c
e
s

s
in

g

A0 + A1xA0 + A1x

U

W

V

n coefficients
W

V

U-
-

= P1 

+ v[n/2-2:1] 

-v[n/2-1]

= P0 

U

(Combine P0 and P1 as P with no cost)

PPIn
te

rm
e

d
ia

te
 

P
o

ly
. 
M

u
lt

.

B0 + B1x

Fig. 4. Data-flow of the Fast.2.PolyMult algorithm.

Different from the traditional methods that execute the poly-
nomial modular reduction during or after post-processing (i.e.,
combining the intermediate polynomials back to a single polyno-
mial) [5], [20], we integrate polynomial modular reduction into the
three intermediate polynomial multiplications. This is achieved by
using the sequential systolic modular polynomial multiplication
described in the previous section. A 2-level Karatsuba polynomial
multiplication requires at least (n − 1) clock cycles to output
n coefficients sequentially for the three intermediate polynomials
and ( 72n−4) or (3n−3) modular additions/subtractions for post-
processing [5]. In contrast, by employing the sequential weight-
stationary systolic polynomial modular multiplier as shown in
Fig. 3, n2 coefficients of U(y), V (y), and W (y) are output in the
same (n− 1) clock cycles without requiring additional elements.
As these three intermediate polynomials are already in the ring
Rq , the post-processing stage has a lower cost, which only needs
3
2n modular additions/subtractions.

Fig. 5 depicts the proposed hardware architecture for Al-
gorithm 1 for a length-n modular polynomial multiplication. It
mainly consists of four adders/subtractors, three registers, and
three length-n2 modular polynomial multipliers that also include
three shift registers of size-n2 (as described in Fig. 3). Besides, the
bottom path can store v[n/2 − 1] (coefficient from V (y)) for n

2
clock cycles and feed its negative form (−v[n/2−1]) to the adder
at the upper path in each iteration l. This operation is controlled
by two switches. When the left switch’s instance is at (n/2)l+0,
the output coefficient of V (y) is loaded into a register, while the
right switch will release the stored data to the next operation at
(n/2)l + (n/2− 1).
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Fig. 5. Fast 2-parallel modular polynomial multiplier.

The coefficients of P1(y) can be simply obtained by using two
subtractors, while the coefficients for P0(y) are more complicated
to generate. The addition between U(y) and V (y) · y is explained
using the timing diagrams for n = 8 shown in Fig. 6. As the
coefficients of U(y) and V (y) are generated in the same pattern as
shown in Fig. 6(a), directly calculating P0(y) is infeasible without
multiplying y for V (y). However, delaying U(y) by one cycle can
enable the addition operation as shown in Fig. 6(b). Furthermore,
to perform the polynomial modular reduction as in Equation (22),
as described in Fig. 6(c), two switches and two delay elements
are required. For the subtraction of v[3] from u[0], the first switch
passes v[3] to the delay element and the second switch releases its
negative after four clock cycles (n2 clock cycles for general case),
as u[0] is output four clock cycles (n2 clock cycles for general
case) after v[3]. Note that no additional adder/subtractor is needed
and full hardware utilization is retained for all the components in
the circuit. Moreover, this optimization technique still allows con-
tinuous processing of modular polynomial multiplications without
requiring any null operations. To align the coefficients of P1(y)
with P0(y), one delay element is placed at the end of P1(y)’s
output.

u[3] u[2] u[1] u[0]U(y):
v[3] v[2] v[1] v[0]V(y):

u[3] u[2] u[1] u[0]U(y):
v[3] v[2] v[1] v[0]V(y)ꞏy:

u[3] u[2] u[1]U:
v[2] v[1] v[0]V:
p0[3] p0[2] p0[1]

(a) (b) (c)

u[0]
-v[3]
p0[0]

4 5 6 7clk: 4 5 6 7clk: 8 4 5 6 7clk: 8

Fig. 6. Timing diagram for P0[y] at post-processing stage when
n = 8.

While the fast modular polynomial multiplier structure is sim-
ilar to the fast parallel filter, there is one fundamental difference.
Unlike the fast parallel filter where all computations are causal, the
computation V (y) · y is inherently a non-causal operation. This is
transformed into a causal operation by introducing a latency of one
clock cycle; this can be achieved by placing delays at one feed-
forward cut-set in the post-processing step. The proposed novel
approach of computing V (y) · y does not increase the latency
beyond one clock cycle and preserves the feed-forward property
of the architecture and continuous data-flow property.

4.2 Fast 4-parallel architecture

A fast 4-parallel architecture can be derived by iterating the
fast 2-parallel architecture twice [6], [7], [8], [9]. The fast 4-
parallel schoolbook modular polynomial multiplication algorithm
(also denoted as Fast.4.PolyMult) is presented in Algorithm 2,
while Fig. 7 shows the corresponding architecture.
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Algorithm 2 Fast.4.PolyMult(A(x), B(x))
Input: A(x) and B(x) ∈ Rq
Output: P (x) = (P0(x

4), P1(x
4), P2(x

4), P3(x
4)),

//P (x) = A(x) ·B(x) mod (xn + 1, q)

1: A(x) = A0(x
2) +A1(x

2) · x2
//Split A(x) as two parts based on odd and even indices
B(x) = B0(x

2) +B1(x
2) · x2

//Split B(x) as two parts based on odd and even indices
2: (C0(y), C1(y)) = Fast.2.PolyMult(A0(x

2), B0(x
2)),

where y = x4

(C2(y), C3(y)) = Fast.2.PolyMult
(
(A0(x

2) +A1(x
2)),

(B0(x
2) +B1(x

2))
)

(C4(y), C5(y)) = Fast.2.PolyMult(A1(x
2), B1(x

2))
3: P0(y) = C0(y) + C5(y) · y mod (yn/4 + 1, q)
P1(y) = C2(y)− C1(y)− C4(y) mod (yn/4 + 1, q)
P2(y) = C1(y) + C4(y) mod (yn/4 + 1, q)
P3(y) = C3(y)− C0(y)− C5(y) mod (yn/4 + 1, q)

4: P (x) = P0(x
4) + P1(x

4) · x+ P2(x
4) · x2 + P3(x

4) · x3,
where y = x4

5: return P (x)

The Fast.4.PolyMult algorithm has four steps. In Step 1 of
Algorithm 2,A(x) is split into two parts based on the odd and even
indices. Then,A0(x

2),A1(x
2), and their sum (A0(x

2)+A1(x
2))

are further split based on Step 1 in Fast.2.PolyMult (Algorithm
1). A0(x

2) and A1(x
2) are decomposed as four polynomials

(A00(x
4), A01(x

4), A10(x
4), A11(x

4)) which are fed to upper
and lower fast 2-parallel modular polynomial multipliers (denoted
Fast.2.PolyMult. in Fig. 7), respectively. Meanwhile, as the fast 2-
parallel modular polynomial multiplier has two inputs in parallel,
(A0(x

2)+A1(x
2)) in Step 2 is simply implemented as two adders

in the middle fast 2-parallel modular polynomial multiplier, i.e.,
(A00(x

4)+A10(x
4)) and (A01(x

4)+A11(x
4)). Let y represent

x4; Hence the four polynomials decomposed from A0(x
2) and

A1(x
2) can be expressed as

A00(y) = a[0] + a[4]y + a[8]y2 + ...

+ a[n− 4]yn/4−1 mod (yn/4 + 1), (23)

A10(y) = a[1] + a[5]y + a[9]y2 + ...

+ a[n− 3]yn/4−1 mod (yn/4 + 1), (24)

A01(y) = a[2] + a[6]y + a[10]y2 + ...

+ a[n− 2]yn/4−1 mod (yn/4 + 1), (25)

A11(y) = a[3] + a[7]y + a[11]y2 + ...

+ a[n− 1]yn/4−1 mod (yn/4 + 1), (26)

where
A(x) = A00(x

4) +A10(x
4) · x+A01(x

4) · x2 +A11(x
4) · x3.

(27)
B(x) can be decomposed in a similar manner.

In the intermediate polynomial multiplication stage, three
length-n4 fast 2-parallel modular polynomial multipliers (Fig. 5)
generate six length-n4 polynomials, C0(y), C1(y), . . . , C5(y). As
shown in Fig. 7, 3

2n additions/subtractions are carried out by
six adders/subtractors, where each adder/subtractor performs n

4
additions/subtractions. Finally, polynomial modular reduction for
C5(y) and C0(y) are performed in a manner similar to the fast

2-parallel architecture (Fig. 5).

4.3 Fast 3-parallel architecture

We also present the design for a fast 3-parallel school-
book modular polynomial multiplication algorithm (denoted as
Fast.3.PolyMult), allowing M to be a multiple of 3, enabling
various levels of parallelism. Fast.3.PolyMult algorithm also con-
sists of three stages, which is illustrated in Algorithm 3. During
the polyphase decomposition (pre-processing stage), polynomial
A(x) is decomposed as

A(x) = A0(x
3) +A1(x

3) · x+A2(x
3) · x2. (28)

The modular multiplication result P (x) can be defined as:

P (x) = P0(y) + P1(y) · x+ P2(y) · x2, (29)

where y = x3, and these three sub-polynomials are presented
in Step 4 in Algorithm 3. The derivation of the fast 3-parallel
modular multiplier is similar to the fast parallel filter derivation;
the reader is referred to [6], [7], [9].

Algorithm 3 Fast.3.PolyMult(A(x), B(x))
Input: A(x) and B(x) ∈ Rq
Output: P (x) = (P0(x

3), P1(x
3), P2(x

3)),
//P (x) = A(x) ·B(x) mod (xn + 1, q)

1: A(x) = A0(x
3) +A1(x

3) · x+A2(x
3) · x2

B(x) = B0(x
3) +B1(x

3) · x+B2(x
3) · x2

2: C0(y) = A0(y)B0(y) mod (yn/3 + 1, q)
C1(y) = A1(y)B1(y) mod (yn/3 + 1, q)
C2(y) = A2(y)B2(y) mod (yn/3 + 1, q)
C3(y) =

(
A0(y) +A1(y)

)(
B0(y) +B1(y)

)
mod (yn/3 + 1, q)

C4(y) =
(
A1(y) +A2(y)

)(
B1(y) +B2(y)

)
mod (yn/3 + 1, q)

C5(y) =
(
A0(y) + A1(y) + A2(y)

)(
B0(y) + B1(y) +

B2(y)
)

mod (yn/3 + 1, q), where y = x3

3: D0(y) = C3(y)− C1(y) mod (yn/3 + 1, q)
D1(y) = C4(y)− C1(y) mod (yn/3 + 1, q)
D2(y) = C0(y)− C2(y) · y mod (yn/3 + 1, q)
D3(y) = C5(y) mod (yn/3 + 1, q)

4: P0(y) = D2(y) +D1(y) · y mod (yn/3 + 1, q)
P1(y) = D0(y)−D2(y) mod (yn/3 + 1, q)
P2(y) = D3(y)−D0(y)−D1(y) mod (yn/3 + 1, q)

5: P (x) = P0(x
3) + P1(x

3) · x+ P2(x
3) · x2, where y = x3

6: return P (x)
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The architecture for the Fast.3.PolyMult algorithm is shown
in Fig. 8, which consists of six length-n3 modular polynomial
multipliers, thirteen modular adders/subtractors with additional
delay elements. These six length-n3 modular multipliers compute
the intermediate polynomials C0(y) to C5(y) with an additional
pipelining stage at the end of the modular multipliers’ output.

In the post-processing stage, six intermediate polynomials are
used to generate four new intermediate polynomials D0(y) to
D3(y) before computing the outputs P0(y), P1(y), and P2(y)
using fewer additions/subtractions.

4.4 Fast M-parallel architecture

Using the iterated approach, we can use fast 2-parallel archi-
tecture and/or fast 3-parallel architecture to achieve higher levels
of parallelism. Therefore, we can implement various fast M -
parallel architectures, where the level of parallelism M can be
a power-of-two integer, power-of-three integer, or product of any
power-of-two and power-of-three.
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Fig. 9. High-level overview of generalized fast M -parallel modu-
lar polynomial multiplier.

The high-level overview of the generalized fast M -parallel
architecture is shown in Fig. 9. This architecture mainly has
M sub-modular polynomial multipliers of length- nM operating
in parallel to generate M sub-polynomials of P (x). In addi-
tion, the components for post-processing as well as the control
unit, are used to align the coefficients from all the output sub-
polynomials of P (x). This is similar to inserting a pipelining
cut-set to transform non-causal operations into causal operations,
at the expense of an increase in latency by one cycle. During
the computation, the data can be either accessed from the host’s
personal computer (PC) to get the input polynomials’ coefficients
directly or communicated to the FPGA’s RAM.

The timing performance can be theoretically derived as fol-
lows. The fast M -parallel design can reduce the response time to
approximately n/M clock cycles. In general, the total latency of
an M -parallel modular polynomial multiplier for L polynomial
multiplications can be expressed as:

Tlat = n(1 + L)/M + dlog2(M)e. (30)

5 EXPERIMENTAL RESULTS

The performance of the proposed modular polynomial multi-
plication is demonstrated for the Saber scheme using Verilog HDL
implementation. Several changes have been adopted specifically
for the Saber scheme. Due to the Saber scheme’s advantages,
the basic components do not consume a large amount of hard-
ware resources. In particular, the modular multiplier discussed in

Section 3 can be replaced by a few adders since the coefficients
of polynomial B(x) are in the range of [−4, 4] [18]. As the
moduli are power-of-two integers, the modular reduction can again
be performed by simply keeping the lower bits. Note that, the
coefficients in both polynomialsA(x) andB(x) are represented in
the sign-magnitude form, and the word-lengths of the magnitudes
of these two polynomials are 13-bit and 3-bit, respectively. The
modular adder calculates the 13-bit sum (sum) by adding the
product (prod) of the corresponding a[i] and b[j], and the output
from the register acc as shown in Fig. 3(b), which can also be
mathematically expressed as:

sum =

{
acc− prod, if asign

⊕
bsign = 1,

acc+ prod, otherwise,
(31)

where asign and bsign are the sign bits of the two operands
a[i] and b[j], respectively. Note that all the modular polynomial
multiplications correspond to degree n = 256.

The experiment is performed on the Xilinx Artix-7 AC701
FPGA since Artix-7 family FPGAs are recommended by NIST
for PQC hardware implementation. In addition, since several
prior works also used the high-performance Xilinx UltraScale+
FPGA, we also demonstrate the performance of our architec-
ture on this FPGA for more comparisons. The communication
and data transmission between FPGA and PC use the universal
asynchronous receiver transmitter (UART) module provided by
the AC701 device for functionality verification.

5.1 Evaluation of modular polynomial multiplier
We first examine the performance of our proposed modular

polynomial multipliers, including the FIR filter-based (Fig. 3), fast
2-parallel architecture, and fast 4-parallel architecture.

The experimental results and comparison with prior works [3],
[20], [34], [41] are summarized in Table 1. A further comparison
of the timing performance is presented in Table 2. The clock
frequencies are set as 250MHz and 133MHz for UltraScale+ and
Artix-7, respectively.

Table 2 summarizes the number of clock cycles and actual
latency for one modular polynomial multiplication (PolyMult.),
and all the modular polynomial multiplications in KeyGen, En-
caps, and Decaps steps of Saber scheme with the medium security
level. Note that the number of modular polynomial multiplications
in encryption (decryption) is the same as in Encaps (Decaps). It
can be seen from Table 1 that our design has a shorter critical path
than those of the designs in [20], [34] and the same as the work
in [3], [41].

For a fair comparison, we focus on the evaluation against the
architecture [3], and its extended work [41] since both works use
the same clock frequency and target high-speed design.

Note that the high-speed designs in [41] do not provide the
timing performance in the KeyGen, Encaps, and Decaps steps
for Saber scheme but only the result for one modular polynomial
multiplication; so we adopt the number of clock cycles from their
previous work [3] and present in Table 2. In particular, the frame-
work and the timing performance (including the number of clock
cycles and frequency) for one modular polynomial multiplication
of [41] are maintained to be the same as their previous work [3],
while their optimized centralized multiplier design for the MAC
unit in [41] significantly reduces LUTs. Besides, these two works
present the general design and parallel design. In Tables 1 and 2,
the general designs correspond to Roy (1 Mult.) as well as Basso
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TABLE 1. Comparison of area consumption and frequency for modular polynomial multiplier when n = 256

Design Device LUTs FFs DSPs BRAM Freq. [MHz]
Roy (1 Mult.) [3] Ultrascale+ 17406 5083 0 0 250
Roy (2 Mult.) [3] Ultrascale+ 31853 8844 0 0 250

Zhu [34] Ultrascale+ 13954 3943 85 6 100
Basso (HS-I 256) [41] Ultrascale+ 10844 5150 0 0 250
Basso (HS-I 512) [41] Ultrascale+ 22118 4920 0 0 250

FIR.PolyMult Ultrascale+ 16971 8755 0 0 250
Fast.2.PolyMult Ultrascale+ 25831 12850 0 0 250
Fast.4.PolyMult Ultrascale+ 35306 19143 64 0 250

Mera [20] Artix-7 7400 7331 38 2 125
FIR.PolyMult Artix-7 16902 8755 0 0 133

Fast.2.PolyMult Artix-7 25854 12850 0 0 133
Fast.4.PolyMult Artix-7 35396 19143 64 0 133

TABLE 2. Timing performance of modular polynomial multiplier when n = 256 in medium security level of Saber

Design Device 1 PolyMult.a KeyGena Encapsa Decapsa ATP-LUTb

Roy (1 Mult.) [3]c Ultrascale+ 256 (1.02) 2685 (10.74) 3592 (14.37) 4484 (17.94) 7.49 ×105
Roy (2 Mult.) [3]c Ultrascale+ 128 (0.51) 1552 (6.21) 2205 (8.82) 2911 (11.64) 8.50 ×105

Zhu [34] Ultrascale+ 81 (0.81) (Not Reported) 978 (9.78) 1227 (12.27) -
Basso (HS-I 256) [41]c Ultrascale+ 256(1.02) 2685 (10.74) 3592 (14.37) 4484 (17.94) 4.67 ×105
Basso (HS-I 512) [41]c Ultrascale+ 128 (0.51) 1552 (6.21) 2205 (8.82) 2911 (11.64) 5.89 ×105

FIR.PolyMult Ultrascale+ 511 (2.04) 2560 (10.24) 3328 (13.31) 4096 (16.38) 6.77 ×105
Fast.2.PolyMult Ultrascale+ 255 (1.02) 1281 (5.12) 1665 (6.66) 2049 (8.20) 5.16 ×105
Fast.4.PolyMult Ultrascale+ 127 (0.51) 642 (2.57) 834 (3.34) 1026 (4.10) 3.50 ×105

Mera [20] Artix-7 1299 (10.30) 11592 (92.74) 15456 (123.65) 19320 (154.56) 27.45 ×105
FIR.PolyMult Artix-7 511 (3.83) 2560 (19.25) 3328 (25.02) 4096 (30.80) 12.66 ×105

Fast.2.PolyMult Artix-7 255 (1.92) 1281 (9.63) 1665 (12.52) 2049 (15.41) 9.71 ×105
Fast.4.PolyMult Artix-7 127 (0.95) 642 (4.83) 834 (6.27) 1026 (7.71) 6.65 ×105

a: Total latency in the unit of clock cycle (actual latency in the unit of µs) of one modular polynomial multiplication, or all the
modular polynomial multiplications in Saber’s specific step
b: ATP-LUT (area-time product of LUTs) is calculated from the number of LUTs times the sum of actual latency (µs) of the total

number of modular polynomial multiplications in KeyGen, Encaps, and Decaps steps
c: Clock cycles for reading and writing operations are not counted

(HS-I 256), and parallel designs correspond to Roy (2 Mult.) as
well as Basso (HS-I 512).

Compared to the general design in [3], our proposed FIR
filter-based modular polynomial multiplier (i.e., FIR.PolyMult)
has slightly fewer LUTs and a smaller total latency in the
modular polynomial multiplications used in three steps of the
Saber scheme; however, a higher number of flip-flops (FFs) is
needed due to the additional shift registers. Note that the clock
cycles used in one modular polynomial multiplication in Roy (1
Mult.) are only 256 clock cycles due to the fact that their result
does not count the number of clock cycles used for reading and
writing operations [41], which is same as the response time in
our proposed FIR.PolyMult design. When compared to Roy (2
Mult.), our fast 2-parallel architecture achieves 18.91%, 25.08%,
and 39.88% reduction on the number of LUTs, latency, and area-
time product of LUTs (ATP-LUT), respectively.

Besides, their extended work [41] is also taken into compari-
son. Our FIR.PolyMult and fast 2-parallel architectures require a
larger number of LUTs compared to their general design (Basso
(HS-I 256)) and parallel design (Basso (HS-I 512)), but the latency
of our two proposed designs is smaller than theirs. In this case, the
performance of ATP-LUT is utilized for a fair comparison. The
Basso (HS-I 256) design has a 31.02% reduction compared to our

FIR.PolyMult architecture. However, the ATP-LUT product of our
fast 2-parallel architecture is reduced by 13.24% compared to the
Basso (HS-I 512). This result implies that our fast M -parallel
design has a superior performance compared to conventional
parallel processing techniques.

Even though our design requires more FFs in the data-path
and shift registers, we argue that it has a small influence on the
overall performance of UltraScale+ and Artix-7 FPGAs since both
devices have a much higher resource budget for FFs than LUTs.
For example, our proposed FIR.PolyMult design consumes 12%
of LUTs (16971/134600), but only 3% of FFs (8755/269200) in
AC701 FPGA. Even for the fast 4-parallel architecture, only 7%
FFs are utilized.

Furthermore, both modular polynomial multiplier in LWR-
pro [34] and the compact modular polynomial multiplier in [20],
[34] use the Toom-Cook/Karatsuba algorithm with 8-level and 4-
level, respectively. The compact polynomial multiplier in [20] has
a long critical path of five adders/subtractors and two multipliers
in the interpolation part, which requires two pipelining stages to
reduce the critical path for maintaining a high frequency. This
design targets the low-area performance, which only requires
limited numbers of LUTs, FFs, and only 38 DSP units, as
shown in Table 1. While this design has lower LUT usage than
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TABLE 3. Performance of modular polynomial multiplier using fast M -parallel architecture when n = 180 based on Artix-7 FPGA
family

Design LUTs FFs DSPs Freq. [MHz] 1 PolyMult.a 9 PolyMult.a ATP-LUTb Throughputc

Fast.2.PolyMult 17902 9096 0 133 181 (1.36) 901 (6.77) 1.21 ×105 2
Fast.3.PolyMult 21729 11996 60 133 122 (0.91) 602 (4.53) 0.98 ×105 3
Fast.4.PolyMult 25110 13633 45 133 92 (0.69) 452 (3.40) 0.85 ×105 4
a: Total latency in the unit of clock cycle (actual latency in the unit of µs)
b: ATP-LUT (area-time product of LUTs) is calculated from the number of LUTs times the sum of actual latency (µs) of nine

modular polynomial multiplications
c: Throughput in the unit of samples per clock cycle

our architecture, it suffers from a low speed since their length-
64 polynomial multipliers require 1168 clock cycles for each
computation, which causes the actual latency in such a compact
design to be around 19 times of the latency in our fast 4-parallel
architecture as presented in Table 2. If we consider the ATP-LUT
as the performance metric to compare our proposed fast 4-parallel
architecture and this prior low-area design, it shows that our design
achieves a 75.77% reduction.

Besides, the modular polynomial multiplier in [34] requires
the lowest number of clock cycles among all the prior works,
while having the lower clock frequency as illustrated in Table 2.
In comparison, our fast 4-parallel architecture requires 15.65%
fewer clock cycles and achieves a 66.26% reduction in the actual
latency for all the modular polynomial multiplications in the
Encaps and Decaps steps. Considering the area performance of
this work, their modular polynomial multiplier uses 60.48% fewer
LUTs but 24.71% more DSPs compared to the proposed fast 4-
parallel architecture. Thus, the ATP products of DSP and LUT
need to be considered separately. Since the clock cycles used for
KeyGen are not reported in [34], the ATP-LUT (ATP-DSP) for
the comparison with this work is defined as the number of LUTs
(DSPs) times the sum of actual latency (µs) of the total number of
modular polynomial multiplications in two steps only, Encaps and
Decaps. Specifically, the ATP-LUT and ATP-DSP in their modular
polynomial multiplier are 3.08 × 105 and 1874.20, respectively.
The ATP-LUT and ATP-DSP in the fast 4-parallel architecture
are 2.63 × 105 and 476.16, respectively. Under this comparison,
ATP-LUT and ATP-DSP are reduced by 14.61% and 75.07%,
respectively, in our design.

Thus, we can conclude that our design achieves a significant
reduction in the latency or the delay (critical path), which leads to
reductions in ATP compared to the two prior works that employ
the Karatsuba/Toom-Cook algorithm-based modular polynomial
multiplication.

Our proposed modular polynomial multipliers can be sufficient
to support different security levels of Saber without any change of
the area consumption and the frequency presented in Table 1, but
only requires a different number of clock cycles.

5.2 Parallel architectures

The works in [3] and [41] also present a parallel architecture,
which is a scaled version. The parallel design in [3] (Roy (2
Mult.)) uses two multipliers in one MAC unit, and the parallel
design in [41] (Basso (HS-I 512)) doubles their MAC units (each
MAC unit has one MUX and one adder). When compared to the
Roy (2 Mult.) design, our fast 2-parallel architecture achieves a
significant reduction in the area overhead and latency. In particular,
our fast 2-parallel architecture consumes only about 34% higher

area consumption than the FIR filter polynomial multiplier while
reducing latency by 50%, while their scaled version of the parallel
modular polynomial multiplier has 45% overhead compared with
the general design architecture (Roy (1 Mult.)). Along with paral-
lelization, the delay also increases, as the critical path will change
from one multiplication and one addition to one multiplication and
two additions. In this case, an additional pipeline is added in the
design of Roy (2 Mult.) [3] to maintain the same high frequency.
Under the same number of pipelining stages, our fast 2-parallel
architecture achieves a lower critical path and hence can be driven
by a clock with a higher frequency.

We also compare different fast M -parallel architectures for
n = 180 in Table 3. It can be noticed that when the level
of parallelism increases (M becomes larger), the actual latency
is reduced at the expense of higher area consumption. Besides,
the throughput of the designs is increased when M becomes
larger. The ATP-LUT product for the fast 2-parallel, 3-parallel,
and 4-parallel architectures are listed for computing nine modular
polynomial multiplications, which indicates that a higher level
of parallelism can provide a more efficient design if sufficient
resource budget is available.

5.3 Comparison with Saber PQC scheme implementa-
tions

For the implementation of the entire Saber scheme, the modu-
lar polynomial multiplication is implemented by the proposed fast
4-parallel architecture, while other simple functional blocks are
modified from the open-source codes provided in [18] and [3].

Table 4 presents the comparison of the FPGA performance
with recent hardware implementation [3] for the Saber PQC
scheme at a medium security level. The latency in our design
is 52% less than the latency in [3] with the cost of more LUTs
and DSPs consumed. In fact, the reduction is mainly from our
optimized low-latency modular polynomial multiplier. Besides,
instead of directly adopting the open-source SHA3 hash function
block as in [3], we also implement the hash function block
when implementing the entire scheme. For example, the total
latency of SHA3-256 (needs to process 32-byte, 64-byte, 992-
byte, and 1088-byte seeds) operating in the hash function block
is reduced from 585 clock cycles to 526 clock cycles in the
Saber Encaps. The rationale behind this latency reduction is as
follows. Most open-source packages add stages of pipelining to
achieve a high frequency (low critical path) design in order to
adapt to general applications [44]. However, the critical path
of the modular polynomial multiplier that requires addition or
multiplication from prior work is much higher than the Keccak
core provided in the open-source packages, thus implying that
some pipelines are redundant. Different from the prior work, we
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TABLE 4. Comparison with recent Saber scheme implementation in medium security level

Platform Time in (µs): KeyGen/Encaps/Decaps Freq. [MHz] Area: LUTs/FFs/DSPs/BRAM ATP-LUTa

Roy [3] UltraScale+ 21.8/26.5/32.1 250 23.6k/9.8k/0/2 1.9 ×106
Ours UltraScale+ 10.2/12.6/15.6 250 41.5k/22.3k/64/2 1.6 ×106
Ours Artix-7 19.2/23.6/29.2 133 41.5k/22.3k/64/2 3.0 ×106
a: ATP-LUT (area-time product of LUTs) is calculated from the number of LUTs times the sum of actual latency (µs) of

KeyGen, Encaps, and Decaps steps

implement our own hash function block as we aim to reduce
the total latency for computing the hash functions by eliminating
unnecessary pipelining stages.

For the area performance, although we have increased hard-
ware costs, both Artix-7 and UltraScale+ FPGAs still have suf-
ficient resources to accommodate our fast 4-parallel design. In
other words, our proposed fast 4-parallel architecture is under the
constraint of hardware complexity specified by NIST (Artix-7).

6 CONCLUSION

This paper has presented a novel modular polynomial multi-
plier and demonstrated its applications for lattice-based cryptogra-
phy. The proposed hardware design exploits the fast filtering tech-
nique to achieve low latency, high scalability, and full hardware
utilization. We proposed efficient parallel architectures with much
lower hardware overhead and latency than prior works. Our design
can be easily generalized across different levels of parallelism.
Comprehensive experimental results are presented. We show that
our design achieves superior performance than the state-of-the-art
modular polynomial multipliers based on schoolbook polynomial
multiplication or the Karatsuba algorithm. A case study of the
implementation of the Saber scheme shows that our proposed
design can accelerate the computation and reduce the actual
latency of the cryptosystem compared with the prior work.

7 DISCLOSURE

Part of this paper is covered in the patent application [45].
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