
IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, MARCH 2023 1

Acceleration of Control Intensive Applications on
Coarse-Grained Reconfigurable Arrays for

Embedded Systems
Benoı̂t W. Denkinger, Miguel Peón-Quirós, Mario Konijnenburg, David Atienza, Fellow, IEEE ,

Francky Catthoor, Fellow, IEEE

Abstract—Embedded systems confront two opposite goals: low-power operation and high performance. The current trend to reach
these goals is toward heterogeneous platforms, including multi-core architectures with heterogeneous cores and hardware
accelerators. The latter can be divided into custom accelerators (e.g., ASICs) and programmable domain-specific cores (e.g., DSIPs).
VWR2A [1] is a programmable architecture that integrates high computational density and low power memory structures. The flexibility
of VWR2A allows a large portion of applications to be covered, resulting in better performance and energy efficiency than ASICs and
general-purpose processors. However, while this has been well studied for data-intensive kernels, this is not the case for
control-intensive kernels —code with complex if-else and nested loop structures. Traditionally, control-intensive code is left to be
executed by the host processor. This situation unnecessarily restricts the potential impact of energy-efficient acceleration, especially at
the application level.
In this paper, we evaluate the performance and energy consumption of VWR2A for control-intensive code and compare it with an ARM
Cortex-M4 processor and a RISC-V Ibex processor. The performance and energy consumption are evaluated at the kernel and
application levels. Our results confirm that VWR2A is faster and more energy-efficient than the two considered general-purpose
processors also for control-intensive code.

Index Terms—programmable cores, CGRA, reconfigurable architecture, accelerators, low-power, embedded systems

✦

1 INTRODUCTION

B Y 2030, 24 billion IoT devices are expected to be used
worldwide [2]. From industry to healthcare, many do-

mains could benefit from their promise of better efficiency
and lower costs. However, existing platforms have not yet
achieved long-lasting battery operation and often require
a daily charge. Shifting the computational load from the
cloud towards the edge improves the energy efficiency of
embedded devices by reducing communication energy but
increases their performance requirements.

The recent trend in research is towards heterogeneous
platforms containing multi-core architectures with hetero-
geneous processors and hardware accelerators. These sys-
tems can adapt their performance and power consumption
based on their current operating state (e.g., their workload
and battery load), enabling high-performance and energy-
efficient execution. In this context, hardware accelerators
have become a standard in state-of-the-art platforms [3], [4],

This work was supported in part by the Swiss NSF ML-Edge Project under
Grant Agreement (GA) no. 200020 182009, in part by the ReSoRT Project
funded by Botnar Foundation under GA no. REG-19-019, in part by the ERC
Consolidator Grant COMPUSAPIEN under GA no. 725657, and in part by
a joint research grant for ESL-EPFL by imec.

• Benoı̂t W. Denkinger, Miguel Peón-Quirós, and David Atienza are with
the EPFL, Lausanne, Switzerland.

• Mario Konijnenburg is with imec, Netherlands.

• Francky Catthoor is with imec, and KU Leuven, Belgium.

[5], because of their better efficiency at executing repetitive
operations compared to a general-purpose processor (GPP).

The flexibility-performance trade-off of hardware accel-
erator design has led to two categories of accelerators:

a) domain-specific instruction-set processors (DSIPs) or
programmable cores (e.g., coarse-grained reconfig-
urable arrays (CGRAs) [4])

b) application-specific integrated circuits (ASICs) or cus-
tom accelerators (e.g., FFT [3], CNN [6])

Fixed-function accelerators are often the most efficient
way of implementing a particular functionality for a given
set of constraints. They are, in general, not programmable
and are thus focused on a single task or a small family of
related tasks. One example of a custom accelerator is the FFT
accelerator included in the MUSEIC platform [3], which can
execute FFTs of different sizes much more efficiently than
the platform ARM Cortex-M4 core. However, it is possible
to build programmable architectures tailored specifically for
algorithms from a given application domain (i.e., DSIP)
without becoming GPPs. VWR2A [1] is an example of such
an architecture. It is optimized for the biomedical domain
and can outperform custom accelerators when complete
applications are considered because programmable architec-
tures can execute a broader range of tasks. The authors of [1]
focused on evaluating the performance and energy trade-
offs for data-intensive kernels, like most of the literature,
but not for control-intensive ones. Being able to execute
control-intensive code efficiently would strengthen even

https://orcid.org/0000-0002-1959-2013
https://orcid.org/0000-0002-5760-090X
https://orcid.org/0000-0001-8016-0888
https://orcid.org/0000-0001-9536-4947
https://orcid.org/0000-0002-3599-8515

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, MARCH 2023 2

more the advantage of a DSIP design compared to custom
accelerators and GPPs because it broadens its applicability,
reducing the proportion of code executed on GPPs.

Control-intensive kernels contain a significant number
of operations related to control (e.g., loop, if-else structure)
compared to arithmetic operations performed on data. One
example of such code is analyzed in Figure 2, and more
examples are shown in Figure 3. Traditionally, GPPs execute
such tasks because no hardware accelerator is primarily
designed for them, limiting the performance improvement
of hardware accelerators at the application level [7].

Some techniques, such as zero-overhead loops [8] or
branch prediction [9], can improve the performance of
processors but they do not always translate into energy
savings [10] due to their significant impact on circuit area.
For control-intensive kernels, workload parallelization at
the data level is often not possible, and other mechanisms,
such as instruction level parallelism (ILP), are required to
improve the execution of such code. Very-long instruction
word (VLIW) processors can exploit code ILP and increase
instructions-per-cycle (IPC) with a higher energy efficiency
compared to superscalar general-purpose processors be-
cause part of the work is relayed to the compiler rather than
to runtime logic.

In [11], the authors combined a VLIW processor with a
CGRA to optimize performance on both data- and control-
intensive code. However, such a design is not the most
optimal in terms of area as it contains a VLIW processor and
a CGRA. Therefore, replacing these two DSIPs with a single
one would be more area- and cost-effective and save energy
because of the reduced wiring. In [1], VWR2A demonstrated
an improvement factor of 23× and 66× in performance
and energy, respectively, compared to the ultra low-power
Samsung reconfigurable processor (ULP-SRP) [11].1

This paper explores the performance and energy ef-
ficiency of accelerators based on domain-specific pro-
grammable cores for control-intensive code on energy-
constrained embedded systems. Even though they are not
optimized for such code, their flexibility allows them to
execute those kernels. Based on an existing architecture
that has proven its efficiency on data-intensive kernels [1],
we designed a new version optimized for control-intensive
code. We evaluate its performance and energy consump-
tion on control-intensive code compared to two general-
purpose baseline processors: an ARM Cortex-M4 [12] and
a RISC-V based lowRISC Ibex [13] (formerly known as the
Zero-riscy [14]). The Cortex-M4 is a middle-class processor
with simple branch prediction (branch forwarding) and
DSP-extensions, while the Ibex is optimized for control-
dominated code [14].

The main contributions of this paper are:

• An evaluation of control-intensive kernels and applica-
tions starting from a very recently introduced recon-
figurable accelerator architecture originally proposed
in the literature [1] for the execution of data-intensive
applications and its optimization for the execution of
control-intensive code.

1. A portion of the significant difference in energy can be explained
by noting that ULP-SRP has been simulated with a post-layout netlist,
while VWR2A was simulated with a post-synthesis netlist.

• An evaluation of its performance and energy consump-
tion in control-intensive kernels and applications. Par-
ticularly the execution of queues, which are common
structures used in many algorithms and usually not
executed by an accelerator.

• A comparison with two general-purpose processors,
one of which is optimized to execute control-intensive
code.

The rest of this paper is organized as follows. First, we
present the existing solutions and discuss their limitations
in Section 2. Then, we show the details of a programmable
architecture and its extensions in Section 3 and evaluate
its power consumption on control-intensive kernels in Sec-
tion 4. The experimental setup to evaluate the architecture
is described in Section 5, and the results are presented and
analyzed in Section 6. Finally, we draw the main conclusions
of our study in Section 7.

2 RELATED WORK

Hardware accelerators are primarily designed for data-
intensive code as it usually represents most of the execu-
tion time. However, once this code is accelerated, control-
intensive code or control flow (e.g., branches, conditions)
becomes predominant, limiting the impact of the acceler-
ator [7], especially at the application level. Reconfigurable
architectures are usually preferred as their flexibility can
offer good performance for multiple kernels. In particular,
CGRAs are often used in low-power platforms because of
their proven performance and energy efficiency [1], [4],
[15]. However, the traditional modulo scheduling (soft-
ware pipelining) [16] for kernel mapping fails to convert
nested loops and complex if-else structures to static code
for CGRAs. Some software pipelining solutions or mapping
techniques have been proposed to solve this problem [17],
[18], but this work focuses on solutions at the architecture
level.

At the system level, different solutions have been pro-
posed. For example, the MorphoSys [19] platform com-
bines a RISC processor and a CGRA. Despite the good
performance of the CGRA on data-intensive kernels, the
control code (inherent to any application) is left to the RISC
processor, limiting the performance gain at the application
level. The authors of [7] proposed the ADRES framework to
solve this problem. ADRES combines a VLIW and a CGRA
to efficiently execute control-intensive and data-intensive
code, respectively. While the authors of ADRES improved
the overall performance, they did not focus on energy
consumption.

In [1], the authors proposed a Very-Wide-Register
Reconfigurable-Array (VWR2A) architecture. VWR2A is a
CGRA-like architecture augmented with low-power mem-
ory structures, made of a scratchpad memory (SPM) and
very-wide registers (VWRs), and integrating VLIW con-
cepts, such as specialized slots (e.g., a load-and-store unit
(LSU)). Such architecture has shown better energy efficiency
on data-intensive code than ULP-SRP [11], an instantiation
of the ADRES framework. The authors of [15] proposed an
Integrated Programmable Array (IPA): a 4x4 reconfigurable
array of reconfigurable cells (RCs). Some RCs have an LSU

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, MARCH 2023 3

connected to a shared multi-bank tightly coupled data mem-
ory (TCDM) through a logarithmic interconnect. The RCs
are augmented with jump and conditional jump instructions
to execute nested loop structures. While IPA and VWR2A
demonstrated good energy efficiency for data-intensive ker-
nels with nested loops (e.g., FIR, FFT, convolution), their
efficiency on complex conditional structures (e.g., if-else)
has not been studied.

SNAFU [20], an ultra-low-power CGRA generation
framework, proposes an architecture with heterogeneous
processing elements that are specialized for specific tasks,
similar to the specialized slots of VWR2A. SNAFU intro-
duces the spatial vector-dataflow execution model to reduce
energy consumption. This model is conceived to map the
complete data flow graph (DFG) of an innermost kernel
to the complete accelerator array, configuring each RC to
perform one single operation. This model, conceptually
closer to that of a super-systolic array, contrasts with the
programming model of VWR2A, in which each RC has a
small instruction memory to implement a small program.

VWR2A and SNAFU present two additional significant
differences: first, SNAFU uses a traditional memory hierar-
chy with multiple master ports connected to the platform’s
bus and main memory. On the contrary, VWR2A has a wide
memory hierarchy that offers a high bandwidth and low
energy solution compared to SNAFU. SNAFU implements
scratchpad memories to limit costly accesses to the plat-
form’s main memory (in latency and energy), particularly
between reconfigurations of the array. The latter is due to
the second main difference: VWR2A has a specialized slot,
namely a loop controller unit (LCU), enabling the mapping
of multi-level nested loops. As this allows VWR2A to cover
longer fragments of code independently, the GPPs present
in the system can sleep for longer periods or perform other
unrelated tasks. In comparison, SNAFU is limited to the
innermost loop, relying on the GPP and possibly multiple
reconfigurations for the outer loops within one kernel. Fi-
nally, similar to the IPA, SNAFU has demonstrated chiefly
its efficiency on data-intensive kernels (e.g., FFTs, DWT) but
not for control-intensive code.

Other proposals offer architecture solutions, but they
target high performance rather than energy efficiency. For
example, Elastic CGRAs [21] introduce elasticity in the
processing elements (PEs)’ interconnection network to en-
able efficient use of PEs with operations that have varying
latency (e.g., memory access vs. ALU operation). However,
for low-power CGRAs, the environment is typically more
constrained, and the latency of each operation is known at
compilation time, allowing efficient scheduling.

For conditionals, partial and full predication techniques
have been proposed for CGRAs [22], [23] However, while
such techniques improve performance, they are usually
worse in energy [10], [14]. Moreover, these methods have
been applied in the context of modulo scheduling, therefore
limited to the condition(s) present in the innermost loop of
a kernel.

This paper focuses on optimizing and evaluating the
extensions introduced explicitly in the VWR2A architec-
ture [1] to improve the execution of control-intensive ker-
nels and applications and to evaluate its resulting higher
efficiency compared to central processing unit (CPU) for this

type of code.Therefore, we compare it against two baseline
GPPs. The first one is an ARM Cortex-M4 processor [12],
the original host processor of the system-on-chip (SoC)
where VWR2A was included. However, this middle-class
processor might not be the most energy-efficient for control-
dominated code. Therefore, for generality, we also compare
the architecture with a lowRISC Ibex processor [13] opti-
mized for control-intensive kernels [13], [14]. The Ibex im-
plements the RISC-V RVC32IM instruction set architecture
(ISA) with a two-stage pipeline.

Reconfigurable architectures often lack compiler support
as they require significant work to integrate the architecture
features properly. This area is under active research [15],
[24], [25], but we do not explore it yet in this paper and
instead rely on manual mapping of kernels on the architec-
ture.

3 DOMAIN-SPECIFIC INSTRUCTION SET PROCES-
SOR ARCHITECTURE DESCRIPTION

Figure 1a shows the VWR2A implementation and its inte-
gration inside a SoC as proposed by the authors of [1]. It
features a 4x2 reconfigurable array extended with special-
ized slots: LCU, load-and-store unit (LSU), and multiplexer
controller unit (MXCU). These slots and the 4 PEs are
called a column, and they share a program counter (PC).
They are all programmed in parallel at the beginning of a
kernel execution by loading a maximum of 64 instruction
words from the context memory to their internal instruction
memory. Each of the two columns can run independently or
in synchronization. The PEs are interconnected to their close
neighbors. Data exchange between the specialized slots and-
or the PEs is done through the single-port scalar register file
(SRF) present in each column.

The synchronizer (see Figure 1a) receives the accelera-
tion requests and the direct memory access (DMA) transfer
requests from the host processor. It manages the scheduling
of the kernel requests and notifies the host processor once
an acceleration is finished through one of the processor
interrupt lines. It also forwards the data transfer requests
to the DMA to move data between the SoC static random
access memory (SRAM) and the VWR2A SPM.

The data memory block in Figure 1a instantiates low-
power structures such as an SPM and VWRs [26], [27].
Conceptually, the SPM can be considered as an L2 or
background memory and the VWRs as L1 or foreground
memories. The SPM is shared between the columns and
has a 4096 bits width (128 words of 32 bits). Each column
has three VWRs with a dual interface: 4096 bits on the
SPM side and 128 bits on the PEs’ side (i.e., one 32-bit
word per PE). This enables the transfer of a wide line (i.e.,
4096 bits) between the SPM and the VWRs in one cycle,
whereas the PEs can consume data in 32-bit words. These
transfers are controlled by the LSU with an optimized ISA
for this task. The VWRs are divided into four slices to enable
concurrent access from the PEs of one column. The details of
the SPM, the VWRs, and the LSU are not discussed in this
paper as they are less relevant for control-intensive code.
However, their low-power features and single-cycle transfer
play an essential role in the overall performance and energy
efficiency of the architecture.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, MARCH 2023 4

RECONFIGURABLE
ARRAY

C
O

N
T

E
X

T
 M

E
M

O
R

Y

D
A

TA
 M

E
M

O
R

Y

S
P

M
 /

 V
W

R
s

/
S

R
F

s

LCU

LSU

MXCU

SPECIALIZED SLOTS

VWR2A

PE0

PE1

PE2

PE3

PE4

PE5

PE6

PE7

LCU

LSU

MXCU

S
Y

N
C

H
R

O
N

IZ
E

R
C

on
tr

ol
 r

eg
is

te
rs

D

M
A

BK0BK1BK2BK3BK4BK5

FPU

DSP

CPU
ARMv7-M

ARM
Cortex-M4

SRAM - 6x32 kB

ACCELERATORS

FFT
MATRIX

DMA
...

AMBA AHB MULTILAYER

SoC - CM4

(a)

BK0BK1BK2BK3BK4BK5

CPU
RVC32IM

RISC-V
IBEX

- Synchronizer
- Data memory
- Spcialized slots
- Reconfigurable array
- Context memory

VWR2A

SRAM - 6x32 kB

BUS INTERCONNECTION

IBEX PLATFORM

(b)

Fig. 1: (a) Original VWR2A architecture implementation and integration inside a SoC as presented in [1]. (b) Ibex platform
augmented with VWR2A used for comparison.

TABLE 1: PE instruction word format and size.

Field muxAsel muxBsel muxFsel aluOp rfWe rfSel
Bits 16:13 12:9 8:5 4:2 1 0

Instruction word width 17 bits

The specialized slots LCU and MXCU were included
in the VWR2A architecture specifically to tackle control-
intensive code. These slots enable separating the control
instructions from the main stream of instructions, which
exposes more parallelism to the platform in general and the
PEs in particular.

3.1 Processing Elements

Although the PEs are not shown in the specialized slots
block in Figure 1, they are specialized for data processing by
design. As all the extra computations not directly related to
data are not executed by the PEs anymore (e.g., loop counter
increment, jump), their design can be optimized. For exam-
ple, the PEs’ instructions do not have an immediate field
but hardcoded values for two multiplexer inputs: 0 and 1.
This reduces the instruction width to 17 bits. Table 1 shows
the format of this instruction: muxA/B/Fsel select the two
ALU’s input operands and the status flags, respectively;
aluOp, the executed operation (e.g., addition, shift); and
rfWe is the ALU output write enable bit to the register file
address given by rfSel. Moreover, as the PEs focus on data-
related computations, a small register file of two entries per
PE is enough. The datapath width is 32 bits to stay generic
and compatible with standard processors.

The performance of the PEs is not crucial for control-
intensive code. For example, the PEs implement a one-
cycle signed or fixed-point multiplier; however, control code
usually consists of simpler operations, such as addition and
subtraction. Two important operations for control-intensive
code are operand selection based on the sign and the zero

flags. These operations select one of the two arithmetic logic
unit (ALU) input operands as output based on the value
of the sign flag —movs.sf instruction— or the zero flag —
movs.zf instruction. Similar to the PEs’ interconnection for
data, the PEs can select their internal flags or those from
their neighboring PEs. In both cases, the flag value refers to
the previous cycle operation result.

3.2 Specialized slots for control-intensive code

The specialized slots are optimized for a subset of tasks and
can run in parallel to take advantage of the ILP inherent to
any code, particularly control code. Each slot is optimized
for its specific set of tasks with a custom ISA, datapath, and
register file. This allows performant and energy-efficient
execution of different types of kernels. While the slots are
designed for certain tasks, they can also execute unrelated
instructions. For example, the LSU usually takes care of
incrementing an address pointer. However, if the LSU is
already executing another instruction at a certain cycle, the
address pointer incrementation can be offloaded to another
slot, as long as the ISA of that slot supports it. Such a
scenario uses the SRF to share data between the slots and
improves performance by increasing ILP. Here we describe
each specialized slot important for the execution of control-
intensive code, its tasks, and the related optimizations.

3.2.1 Loop Controller Unit

Compared to a common CGRA using modulo scheduling
and hardware kernel execution control —with a prologue,
steady-state, and epilogue scheme [4]— the LCU is pro-
grammable. Its primary task is to handle loop control
(e.g., counter increments, branches) and conditions (e.g.,
if-else blocks). Therefore, it can execute jump, conditional
jump, signed addition/subtraction, logical bit operations
(and, or, xor), and left/right logical and arithmetic shift.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, MARCH 2023 5

The branch-if-greater-or-equal operation implements pre-
decrementation of the counter by one, enabling a single-
cycle counter update and branch. Compared to the orig-
inal VWR2A design [1], we updated the LCU with one
additional jump operation that can generate its destination
addresses at runtime. This instruction reduces the code size
of long if-then-else structures, which are required to access
a specific slice and data of a VWR, and efficiently maps
irregular memory access patterns. The jump and branch
instructions update the PC register shared by all the units in
a column (i.e., the four PEs and the specialized slots).

The LCU instructions have 20 bits, with a 6-bit imme-
diate field. The destination address is stored in the imme-
diate field for conditional jump instructions. This design
is sufficient for simple conditions that are data-dependent.
However, complex conditions may require multiple data-
dependent comparisons. To accommodate for such a sce-
nario, the LCU can execute a conditional jump based on the
PEs’ condition flags (i.e., equal and greater-or-equal flags).
The flags of the four PEs are OR-ed to produce a single
flag for both conditions that are connected to the LCU. This
allows efficient execution of data-dependent conditions and
possibly multiple comparisons in one cycle. Without this
simple feature, some kernels can still be executed but have
to use the shared SRF to transmit data between the PEs
—where the data are compared— and the LCU —where
the branch decision is taken. This results in penalty cycles
that would increase, for example, the execution time of
the Median and Delineation kernels (see Section 5) by 6%
and 28%, respectively. For the morphological filtering (MF)
kernels (see Section 5), it is even more critical as they could
not be mapped on VWR2A without this feature. In this case,
the additional instructions required to use the shared SRF
do not fit in the internal instruction memory of the LCU.

In theory, the LCU can implement any nested loop
depth; however, the instantiation used for our experiments
is limited by its internal data register file and instruction
memory size of 4 and 64 words, respectively. If bigger
loop depths are present in the target application domain,
then two columns can be used, or the SRF can be used;
alternatively, the template can be re-instantiated to a version
with more data registers in the LCU.

The LCU’s datapath width is fixed to 8 bits: 1 sign bit + 7
bits (-128:127). Most of the time, the size of a loop is limited
to a maximum of 128 iterations. This is due to the VWRs
size (i.e., 128 words) and the fact that each iteration usually
consumes at least one data element. Therefore, after 128
iterations, the loop is exited to load the next batch of data
using the LSU. The LCU’s datapath width can accommodate
bigger loop sizes by using negative values or implementing
nested-loop structures.

3.2.2 MultipleXer Controller Unit
The MXCU computes the addresses of the VWRs’ words
passed to the PEs. While many data accesses with very
regular patterns are usually seen for data-intensive code,
the inverse is often true for control-intensive code: few
data accesses with irregular patterns. In both scenarios, the
number of instructions of the innermost loop mapped on the
architecture is critical for high performance, and the MXCU
plays a crucial role.

The MXCU has an instruction width of 27 bits and an
eight entries register file. The instructions do not have an
immediate field, but the ALU’s input multiplexers have
entries hardcoded to 0, 1, and 2. These values are enough
to create most of the access patterns. The ALU can execute
addition/subtraction, logical bit operations (and, or, xor),
and left/right logical bit shift. The datapath width of 5 bits
is fixed by the address range of the VWRs: 25 = 32 (i.e., the
VWRs word width, 128, divided by four slices, one per PE).

4 ILLUSTRATIVE KERNEL MAPPING ANALYSIS

The specialized slots are the main reason for the architec-
ture performance and energy efficiency. They remove the
latency of control-related instructions from the PEs, increas-
ing the ILP of the architecture. Their design relies on the
fact that many kernels can be divided into four —usually
independent— tasks: execution control, data loading and
storing, data address update, and data computation. These
tasks are mapped on the LCU, the LSU, the MXCU, and the
PEs, respectively, maximizing the architecture ILP.

To illustrate the use of the architecture, we analyze the
mapping of an ascending sorting algorithm that is part of
the median kernel discussed in Section 5. This example
highlights the key features of the architecture and helps to
understand the performance results of Section 6. The de-
tailed analysis at the instruction level is done in Appendix A
for conciseness.

Figure 2 shows the C code of the ascending sorting
algorithm and its high-level mapping on the architecture.
The LCU manages the 2-level nested loop. The counting
direction is reversed to take advantage of the single-cycle
counter decrement and branch (see 3.2.1). Moreover, the
size of the loops is divided by two because the sorting is
parallelized over the PEs of one column. This allows using
all the four available PEs, therefore improving performance.
The MXCU generates the addresses for accessing the i-
element and the j-element of the data array. In this particular
example, the MXCU only needs to increase the address
by one for every inner loop iteration. The LSU loads the
input data array to the foreground memory (i.e., the VWRs).
Depending on the size of the array, the LSU might be called
more than once.

Figure 2 details how the code is adapted for the archi-
tecture. The PEs assigned to each line of code are given on
the right side of the block. For example, PEs 0 and 2 start
by loading the data[i] value (minVal) in one of their internal
registers, while PEs 1 and 3 store its index (minIdx). The
array is split in two: PEs 0 and 1 sort the lower part of the
array, and PEs 2 and 3 the upper part. The performance
improvement of the parallelization offsets the overhead
required at the end to recover the complete output. This
is not always the case and should be evaluated for every
kernel.

Table 2 compares the outer and inner loop size of the
ascending sorting algorithm for different architectures: a
Cortex-M4 processor (CM4), an Ibex processor, and VWR2A.
For the inner loop, the two cases for a true and a false
if-condition are evaluated. The outer and inner loops are
highlighted in the PEs block of Figure 2. While the outer
loop is two instructions longer for VWR2A than for the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, MARCH 2023 6

void sort(int16_t *data, int16_t size) {
 int16_t i, j, temp;
 for(i=0; i<size-1; i++) {

for(j=i+1; j<size; j++) {
 if(data[j] < data[i]) {
 temp = data[i];
 data[i] = data[j];
 data[j] = temp;
 }}}}

for(i=size/2; i>=0; i--)
 for(j=i-1; j>=0; j--)

LCU

load data in VWRs
LSU

minVal = data[i]
minIdx = i
if(data[j] < minVal) {
 minVal = data[j]
 minIdx = j;
}
data[minIdx] = data[i]
data[i] = minValdata[i]

data[j]

MXCU

PEs
PE0/2
PE1/3
PE0/2
PE0/2
PE1/3

PE0/2
PE0/2

OUTER
LOOP

OUTER
LOOP

INNER
LOOP

Fig. 2: Sorting algorithm C code (left) and its high-level mapping on VWR2A (right).

TABLE 2: Sorting algorithm outer- and inner-loop length (in
cycles) comparison between ARM Cortex-M4 (CM4), Ibex,
and VWR2A architectures.

CM4 Ibex VWR2A

outer loop #instructions 6 6 8
#iterations 31 31 15

inner loop
#instructions true 10 9 2
#instructions false 8 7 2
#iterations2 30 30 15

Cortex-M4 and the Ibex processors, the inner loop is much
faster. In terms of performance, the latter is usually the
most important. The performance improvement of VWR2A
comes from the instruction parallelization over the special-
ized slots (ILP) as depicted in Figure 2. Moreover, as long as
there are no data dependencies over the iterations, the PEs
can execute the condition independently using the mov.sf
instruction (see Section 3.1).

5 EXPERIMENTAL SETUP

5.1 Ultra-low power embedded platform

The VWR2A was initially integrated into an ultra-low
power SoC (Figure 1a) intended for biomedical applica-
tions [3] (referred to as the ARM Cortex-M4 SoC in this
paper). The main features of that SoC are an ARM Cortex-
M4 processor and 6 SRAM banks of 32KiB (192KiB in
total) that can be accessed in parallel and individually
power gated. The same setup is used in this paper. The plat-
form has multiple custom accelerators (e.g., FFT, Matrix);
however, such fixed-function accelerators do not have the
flexibility to execute control-intensive code.

In order to better demonstrate the efficiency of a pro-
grammable accelerator architecture, we also implemented a
platform featuring an Ibex core, 192KiB of SRAM divided
into six banks, and VWR2A (Figure 1b) for comparison with
the ARM Cortex-M4 SoC. The performance of the different
implementations can be directly compared as the platforms
are simulated at the cycle-accurate RTL level. However, the
Ibex platform is simplified (i.e., not an actual SoC), and the
energy numbers presented in Section 6 are lower-bound
values. Therefore, a direct comparison between the ARM
Cortex-M4 SoC and the Ibex platform is not completely
fair. The main difference between the Ibex platform and the

2. The number of iterations is reduced by 1 for every outer loop
iteration.

TABLE 3: Main features comparison between the ARM
Cortex-M4 and the RISC-V Ibex processors.

ARM Cortex-M4 RISC-V Ibex
ISA ARMv7-M RVC32IM

pipeline 3 stages 2 stages
32-bit integer multiplier 1 cycle 3-4 cycles

32-bit integer divider 2-12 cycles 37 cycles
branch prediction target forwarding pipeline stall

FPU hardware NA (software)
Extension(s) SIMD, 1 cycle MAC NA

ARM Cortex-M4 SoC is the consumption of the bus inter-
connection. While the Ibex platform has a custom 3-masters
and 7-slaves interconnection bus, the ARM Cortex-M4 SoC
has an 19-masters and 14-slaves AMBA AHB multilayer
interconnection bus.

Table 3 compares the main features of the Cortex-M4
and the Ibex processors. These are two representative cases
of state-of-the-art programmable processors that target low-
power devices, with the Ibex targeting specifically control-
intensive workloads. As long as the code is dominated by
control and the Ibex core can execute as fast as the Cortex-
M4 processor, it will be more energy efficient because of
its simpler architecture (even if the overhead in power
mentioned previously is removed).

5.2 Performance and energy evaluation methodology
The ARM Cortex-M4 SoC and the Ibex platform, both
including VWR2A, have been synthesized with the TSMC
40 nm LP CMOS technology at 80MHz (the original fre-
quency of the ARM SoC). We ran post-synthesis simulations
to get cycle-accurate execution time and measure the cells
switching activity used for power estimation with Synopsys
PrimePower tool [28].

5.3 Representative set of software benchmarks for the
biomedical target domain
In this Section, we discuss the link between the charac-
teristics of the control-intensive benchmarks analyzed in
Section 6 and the architectural features of VWR2A. The soft-
ware benchmarks are divided into standalone kernels and
applications. Standalone kernels are extracted from existing
biomedical applications to evaluate the architectures at the
kernel level. The impact at the application level is evaluated
on three biosignal applications. Only the processing steps
are considered, not the acquisition phase. The standalone

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, MARCH 2023 7

void rsp_delineation(int16_t *data) {
00: static int16_t first_win=1, lastValleyIndexRSP=0;
01: static int16_t lastSigDiff=1, lastVal=0;
02: static int16_t sig_diff[DATA_LENGTH];
03:
04: if (first_win==1) {
05: sig_diff[0]=0;
06: } else {
07: sig_diff[0]=data[0]-lastVal;
08: }
09:
10: if(sig_diff[0]==0) {
11: sig_diff[0]=lastSigDiff;
12: }
13:
14: for(int16_t i=1; i<DATA_LENGTH; i++) {
15: sig_diff[i] = data[i]-data[i-1];
16: }
17:
18: for(int16_t i=1; i<DATA_LENGTH; i++) {
19: if(sig_diff[i]>0) {
20: sig_diff[i] = 1;
21: } else if (sig_diff[i]<0) {
22: sig_diff[i] = -1;
23: } else {
24: sig_diff[i] = sig_diff[i-1];
25: }
26: }
27:
28: first_win=0; lastSigDiff=sig_diff[DATA_LENGTH-1];
29: last_val=data[DATA_LENGTH-1];
30:
...

}

(a)

void mf_lp_filter(int16_t *data) {
00: static int16_t B[FILT_WIN*FILT_WIN] = {
01: 0, 0, 1, 5, 1,
02: 1, 0, 0, 1, 5,
03: 5, 1, 0, 0, 1,
04: 1, 5, 1, 0, 0,
05: 0, 1, 5, 1, 0
06: };
07: static int16_t original[HF_FILT_250HZ_WIN];
08: static int16_t dilation[HF_FILT_250HZ_WIN];
09: static int16_t erosion[HF_FILT_250HZ_WIN];
... ...

17: for(int16_t i=0; i<DATA_LENGTH; i++) {
18: int16_t* Bi = B + FILT_WIN*i;
19: original[i] = data[i];
20: dilation[i] = original[0] + Bi[0];
21: erosion[i] = original[0] - Bi[0];
22: for (int16_t j=1; j<FILT_WIN; j++) {
23: if (original[j] + Bi[j] > dilation[i]) {
24: dilation[i] = original[j] + Bi[j];
25: }
26: if (original[j] - Bi[j] < erosion[i]) {
27: erosion[i] = original[j] - Bi[j];
28: }
29: }
... ...

40: }
}

(b)

void mf_dilation_queue(int16_t *data) {
00: static int16_t q_val[WIN_SIZE], q_pos[WIN_SIZE];
01: static int16_t front=0, back=0;
02:
03: for (int16_t i=0; i<DATA_LENGTH; i++) {
04: while (front != back && data[i] > q_val[back]) {
05: back = (back-1)&(WIN_SIZE-1);
06: }
07: back = (back+1)&(WIN_SIZE-1);
08: q_pos[back] = i;
09: q_val[back] = data[i];
10: if (WIN_SIZE <=
11: ((i - q_pos[(front+1)&(WIN_SIZE-1)])&(WIN_SIZE-1))) {
12: front = (front+1)&(WIN_SIZE-1);
13: }
14: input = q_val[(front+1)&(WIN_SIZE-1)];
15: }
}

(c)

Fig. 3: Examples of control-intensive code in C language. (a) Respiration delineation (partial code). (b) Morphological
filtering low-pass filter (partial code). (c) Morphological filtering dilation queue.

kernels are generic and can be included in applications of
various domains, not just the biomedical one. For the eval-
uation of the standalone kernels on VWR2A, the overhead
time to transfer the data to its internal SPM (before kernel
execution) and back to the SoC SRAM (after the execution) is
accounted for, as well as the reconfiguration time (i.e., load-
ing the corresponding kernel instructions from the context
memory to the PEs and the specialized slots).

Control-intensive kernels spend most of their time ex-
ecuting control-related instructions. Table 4 shows this by
comparing control- and data-intensive kernels. The propor-
tion of arithmetic and logic operations (ALU column in
Table 4) is not enough for distinguishing control-intensive
from data-intensive code. However, the analysis of the
assembly code produced for each kernel shows that most
of these operations are devoted to controlling tasks (e.g.,
counter incrementation, conditions) for the former and di-
rect computation on data to produce an output (e.g., input
data multiplication, addition) for the latter. Load and store
instructions hint at the type of code executed, and data-
intensive kernels usually have a significant proportion of
them. However, some control-intensive kernels, such as the
median, can also have a high proportion of them. In the
end, the best indicator is the number of branch instructions
executed (e.g., branch-if-equal, jump, branch-if-not-equal).
Table 4 shows a clear difference between control-intensive
and data-intensive kernels. For our analysis, we define
control-intensive code as having more than 25% of branch
instructions at execution time.

Three examples of control-intensive code in C language
are shown in Figure 3. The respiration signal delineation
(Figure 3a) and the morphological low-pass filter (Figure 3b)
examples only show part of the code for conciseness. The
FILT WIN and WIN SIZE variables of the morphological
low-pass filter and dilation queue examples (Figures 3b,

TABLE 4: Control-intensive and data-intensive kernels’ in-
structions profiling using the RVC32IM ISA.

Kernel INSTRUCTION
ALU Load/Store Branch

Control-intensive median 29% 30% 41%
delineation 54% 19% 27%

Data-intensive FFT radix-2 48% 42% 10%
FIR Filter 51% 31% 18%

and 3c) are the sizes of the structuring elements: 5 and
75 elements, respectively.

Similarly to the sorting algorithm code analyzed in
Section 4, these examples can be divided into four tasks:
execution control, data loading and storing, data address
update, and data computation. Each of these tasks corre-
sponds to one specialized slot of the VWR2A architecture,
which improves the ILP. Moreover, the PEs enable paral-
lelization at the data level when possible. For example, lines
14 to 15 of the respiration delineation code (Figure 3a), the
input signal derivative computation, take two clock cycles
as instructions can be parallelized over the slots. Moreover,
in this particular case, the derivative computation can be
parallelized by unrolling the loop over the 8 PEs as this
kernel uses both columns.

5.3.1 Standalone kernels
The first kernel, Median, takes an input array of up to 28
values, sorts them in ascending order, and obtains the mid-
dle value (i.e., the median). As discussed in Section 4, this
kernel is dominated by control instructions to reorder the
array. The second kernel is Delineation (Figure 3a), which is
a typical step of many biomedical applications that extracts
the fiducial points of a signal (e.g., ECG, EEG). These points
are later used to extract features. Delineation is a highly
irregular code. It includes complex nested if-else structures

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, MARCH 2023 8

TABLE 5: Comparison of the units (PEs and specialized
slots) local program memory static and dynamic usage for
the data-intensive kernels presented in [1] and the control-
intensive kernels presented in this paper.

Data-intensive LCU LSU MXCU PEs
avg instructions3 14 19 14 17
avg static active instructions4 39.7% 49.4% 37.9% 45.2%
avg dynamic active instructions 37.4% 6.1% 84.6% 88.9%

Control-intensive LCU LSU MXCU PEs
avg instructions 26 10 17 16
avg static active instructions 57.1% 24.3% 39.8% 41.1%
avg dynamic active instructions 60.6% 2.0% 67.9% 70.9%

that are not predictable because of their data dependency.
Therefore, the workload cannot be parallelized, and the
data are processed one by one. The Median and Delineation
kernels are extracted from a cognitive workload estimation
application [29], from the respiration (RSP) signal features
extraction and delineation steps, respectively.

Morphological filters (MF) are used in many signal pro-
cessing applications. In the biomedical domain, morpholog-
ical filtering is used for two purposes: biosignal baseline
removal and filtering (e.g., low-pass filter). Biosignals often
contain low-frequency harmonics known as the baseline.
Morphological filtering can be used to remove this baseline
by applying sequentially an erosion, a dilation (Figure 3c),
and again an erosion filter. The output is the baseline and
can be subtracted from the original input. The implementa-
tion uses three queues (one per morphological filter), which
require many control instructions. The data-dependent na-
ture of a queue does not allow efficient parallelization at the
data level. Therefore the input data are processed sample by
sample. The analyzed VWR2A architecture can manage the
three queues on its own, thanks to its flexibility. This data-
structure based functionality is quite unusual for hardware
accelerators but is used in many applications, which creates
huge opportunities for programmable architectures such as
VWR2A.

The second example code using MF is a low-pass filter
that uses closing and opening morphological operators to
produce a low-pass filter (Figure 3b). Due to the small
size of the structure element (i.e., the weights matrix), the
implementation does not use queues and can be parallelized
at the data level with a small computation penalty to recover
the correct output.

Table 5 shows the static usage of the units’ local program
memory and the dynamic profiling of their active process-
ing time for data- and control-intensive code. The origi-
nal VWR2A architecture presented in [1] focused on data-
intensive code. In contrast, this paper focuses on control-
intensive code, which stresses the processing elements (i.e.,
the PEs and specialized slots) differently. In particular, the
LCU has a significantly higher active time because control-
intensive kernels are characterized by a higher number of
branch operations (see Table 4). Although the MXCU plays
an important role for control-intensive code, it is not as
active as for data-intensive code because fewer data are
accessed.

TABLE 6: VWR2A components average power consumption
and breakdown of kernels that use two columns.

VWR2A Power (µW)
Component avg % σ

Context memory (5.4KiB) 64 2.7% ±1.3%
Synchronizer 45 1.9% ±14.2%
LCUs 46 2.0% ±34.0%
LSUs 84 3.6% ±21.7%
MXCUs 55 2.3% ±25.0%
PEs 407 17.4% ±28.2%

ALUs (182) (7.8%) (±34.8%)
instruction memories (123) (5.2%) (±30.7%)
PEs interconnection (69) (3.0%) (±34.7%)
register files (33) (1.4%) (±34.1%)

Data memory (35KiB) 1644 70.1% ±21.5%
SPM (32KiB) (636) (27.1%) (±8.8%)
VWRs (3KiB) (1000) (42.7%) (±31.5%)
SRFs (64B) (8) (0.3%) (±106.8%)

Total 2344 100% ±20.6%

5.3.2 Biosignal applications
The first application is a heartbeat classifier that acquires a
3-leads ECG signal and classifies the beats into normal and
abnormal to detect arrhythmia [30]. The beat classification
is performed on a single lead. If a heartbeat is classified
as abnormal, the two additional leads are also processed.
Therefore, the application processes either a 1-lead or a
3-leads ECG signal, referred to as 1-lead and 1+2-leads,
respectively, in Section 6. Depending on the health condition
of the monitored patient, the second scenario (1+2-leads)
is activated more or less often. This application uses the
MF baseline removal and the MF low-pass filter kernels to
condition the ECG signals before executing the rest of the
application (classifier, features extraction, ...). The results
are shown for the processing time of one window of 768
samples (3 seconds of ECG signal).

The second application processes the complete set of 12-
leads ECG signals as required for medical standards (e.g.,
devices in hospitals). This application applies the MF base-
line removal and low-pass filtering kernels before combin-
ing the leads and extracting the fiducial points. The results
are also shown for the processing time of one window of
768 samples.

The last application, which contains the Median and
the Delineation kernels, is a multi-signal cognitive work-
load estimation application [29]. For this paper, we focused
on analyzing the performance and energy consumption of
these two control-intensive kernels at the application level.
The performance of the related CGRA architecture on the
data-intensive kernels has already been presented by the
authors of [1]. The results correspond to the processing of a
window of 512 samples (102 seconds of respiration signal).

6 EXPERIMENTAL RESULTS

6.1 Architecture power analysis

We first evaluate the power breakdown of the architecture,
notably the power consumption of the specialized slots

3. Static average of instructions that are not a nop.
4. Average percentage of instructions that are not nops based on each

kernel length (not the total program memory size of 64 instructions).

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, MARCH 2023 9

optimized for control-intensive code in order to assess their
low-power nature and understand better the architecture’s
performance and energy efficiency. Table 6 shows the av-
erage and standard deviation of the power breakdown of
the VWR2A components when executing the standalone
kernels that use two columns of the architecture (i.e., Median
2x, Delineation, MF – Baseline removal 2-leads, and MF – Low-
pass filter 2-leads). The PEs and the data memory consume
87.5% of the total power on average, while the specialized
slots (i.e., LCUs, LSUs, and MXCUs) account only for 7.9%.
The energy overhead of the specialized slots is minimal,
therefore justifying their use as they drastically increase
the performance by improving ILP. Without them, the PEs
would have to handle also their instruction flow, increasing
the overall number of cycles to execute a kernel.

The PEs power consumption is divided between the
ALUs, the internal instruction memories —64 words of 18
bits per PE—, the reconfigurable array interconnection, and
the internal register files —2 words of 32 bits per PE. The
datapaths (i.e., ALUs, interconnection, and register files)
account for 69.8% of the PEs power consumption. This
shows that most of the PEs’ power is consumed for actual
data computation (i.e., the datapaths).

The context memory, which holds the configuration
words for the kernels, is implemented using standard-cell
flip-flops. These flip-flops are active only during the con-
figuration phase of the columns and clock-gated during the
execution of a kernel. The latter takes at least a few thousand
cycles, while the configuration phase takes a maximum of 64
cycles. Therefore, the context memory power consumption
is very small.

The data memory alone consumes 70.1% of the total
power on average. While the SPM uses memory macros,
the VWRs are implemented with standard cell libraries’
latches. This partially explains why the VWRs represent
42.7% of the total power consumption while the SPM
accounts only for 27.1%. A custom design where larger
cells and a pragma-guided regular floorplan is imposed, as
proposed in [26], [27], [31], would undoubtedly reduce their
power consumption further. The power consumption of the
SRFs is almost negligible because of their relative small size
compared to the SPM and VWRs.

The average power of each component as shown in
Table 6 presents a marked variability, which is due to the
specific instructions executed by each kernel on each slot.
For example, the duty-cycle of the LCU is 64% for the
Median 2x kernel, whereas it reaches 76% for the MF –
Baseline removal 2-leads kernel. This difference translates into
a higher relative average power for the LCU when executing
the latter. Nevertheless, the absolute average power of the
specialized slots is so small that the variation on the total
system power is very small.

The SRFs have the highest variability, ±106.8%, because
some kernels, like the Delineation, rely mostly on the SRF
of one column only. However, the power consumption of
the SRFs has almost no impact at the system level because
it represents only 0.3% of the total power on average. The
±20.6% variation at the architecture level is mainly depen-
dant on the variability of the VWRs power consumption.
Some kernels, like the Median 2x, do not access the VWRs so
much, while others heavily use them, like the MF – Baseline

removal 2-leads that stores not only the input data but the
queues as well.

6.2 Standalone kernels results
Table 7 shows the performance and energy consumption
for the four evaluated architectures on seven computational
kernels present in biomedical applications. VWR2A exhibits
similar performance on both the Cortex-M4 SoC and the
Ibex platform as their memory and bus architecture are
similar (only the processors differ).

6.2.1 Median
The mapping of the Median kernel uses only one column of
the reconfigurable array. Two cases are evaluated: 1 median
executed in one column (the other one is idle) and two
medians computed in parallel over two columns. The latter
is the best case for VWR2A as the execution time is almost
similar to computing one median, improving its energy
efficiency compared to the processors.

The good performance of the VWR2A architecture is
mainly due to the improvements in the sorting algorithm
discussed in Section 4. Table 2 shows that the outer and
inner loops of the sorting algorithm have two times fewer
iterations than the Cortex-M4 and the Ibex implementations,
entirely due to the architecture innovations of VWR2A (i.e.,
for the same algorithm). Moreover, the inner loop size is
only two instructions, while the Cortex-M4 and the Ibex
use at least 8 and 7 instructions, respectively. This should
give approximately a 16× performance improvement for
VWR2A. However, the overhead of acceleration request
from the host processor and the data transfer limit the over-
all performance. Moreover, the parallelization of the sorting
algorithm on VWR2A requires a recovery step (executed
on VWR2A) to get the correct output, reducing the perfor-
mance improvement to a factor 8.5× and 9.6× compared
to the Cortex-M4 and the Ibex, respectively, for the Median
2x case.

6.2.2 Delineation
This kernel uses the two columns of the accelerator. The first
step of the kernel consists of the input signal derivative com-
putation and extraction of local minimums and maximums.
This step is easily parallelizable at the algorithmic and
instruction level, which translates to a 19× performance
improvement compared to the Cortex-M4. The second step
consists of analyzing the local minimums and maximums
and selecting the valid ones. This is done through a three-
level nested if-else structure that selects the next valid point
based on data-dependent conditions, which limits paral-
lelization at the algorithmic level. However, this step can
take advantage of the ILP of the architecture and achieves
an 8× performance improvement compared to the Cortex-
M4. This translates to an overall 11.8× performance im-
provement at the kernel level compared to the Cortex-M4
(Table 7). For the Ibex platform, the results are very similar.

6.2.3 MF - Baseline removal
The morphological filter for baseline removal is the kernel
in which VWR2A obtains the lowest speed-up with respect
to the two CPUs. The reason is that the implementation

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, MARCH 2023 10

TABLE 7: Standalone kernels performance and energy comparison for the ARM Cortex-M4 SoC (CM4), the Ibex platform
(Ibex), the ARM Cortex-M4 SoC including VWR2A (CM4+VWR2A), and the Ibex including VWR2A (Ibex+VWR2A).

CM4 Ibex CM4 + Ibex + CM4 vs. Ibex vs. CM4 vs.
Cycles VWR2A VWR2A CM4+VWR2A Ibex+VWR2A Ibex

Median 1x 5015 6101 1098 1087 4.6× 5.6× 0.8×
Median 2x 10 007 12 169 1183 1264 8.5× 9.6× 0.8×
Delineation 32 113 31 820 2723 2713 11.8× 11.7× 1.0×
MF – Baseline removal 1-lead 98 228 103 288 30 664 30 448 3.2× 3.4× 1.0×
MF – Baseline removal 2-leads 205 768 208 611 31 577 31 212 6.5× 6.7× 1.0×
MF – Low-pass filter 1-lead 96 784 152 333 8642 8523 11.2× 17.9× 0.6×
MF – Low-pass filter 2-leads 191 515 304 649 10 121 9783 18.9× 31.1× 0.6×

Average speed-up 9.2× 12.3× 0.8×

Energy (µJ)

Median 1x 8.23× 10−2 7.72× 10−2 3.05× 10−2 2.61× 10−2 −62.9% −66.2% −6.2%
Median 2x 1.70× 10−1 1.51× 10−1 3.97× 10−2 3.74× 10−2 −76.7% −75.3% −11.2%
Delineation 5.74× 10−1 4.69× 10−1 1.30× 10−1 9.03× 10−2 −77.3% −80.7% −18.3%
MF – Baseline removal 1-lead 1.72× 100 1.52× 100 8.79× 10−1 6.85× 10−1 −48.9% −54.9% −11.6%
MF – Baseline removal 2-leads 3.70× 100 3.08× 100 1.35× 100 9.79× 10−1 −63.5% −68.2% −18.9%
MF – Low-pass filter 1-lead 1.70× 100 1.63× 100 3.10× 10−1 2.24× 10−1 −81.8% −86.3% −4.1%
MF – Low-pass filter 2-leads 3.36× 100 3.27× 100 5.28× 10−1 3.57× 10−1 −84.3% −89.1% −2.7%

Average energy saving −70.8% −74.4% −10.4%

of the queues is only parallelized at the instruction level
as the algorithm cannot be parallelized at the data level
without significant overhead. The mapping is limited to one
column so two executions can run in parallel, improving
performance. The two scenarios, 1-lead and 2-leads, are
reported in Table 7, using one, respectively two, columns. As
this kernel is the worst in terms of speed-up it also gives the
lowest energy savings for VWR2A compared to the ARM
Cortex-M4 SoC and the Ibex platform: 48.9% and 54.9%,
respectively, for the 1-lead case, and 63.5% and 68.2%,
respectively, for the 2-leads case.

6.2.4 MF - Low-pass filter
This kernel also uses a single column, and the results for
the cases of 1-lead, using one column, and 2-leads, using
two columns, are reported (Table 7). This kernel is the best
in terms of performance and energy savings for VWR2A
because it contains more computation on data than the other
kernels, although it is still dominated by control instruc-
tions. Moreover, because of the small size of the morpholog-
ical structuring elements, an implementation using queues
is not the most efficient. Therefore, a straightforward imple-
mentation, that can be parallelized with a small overhead
on VWR2A, is used. This translates into energy savings up
to 84.3% and 89.1% for the 2-leads case compared to the
ARM Cortex-M4 SoC and the Ibex platform, respectively.

6.3 Standalone kernels analysis
VWR2A is the fastest implementation for all the kernels.
This corroborates that an adequately designed reconfig-
urable architecture can also accelerate control-intensive ker-
nels, in this case when optimized for the biomedical domain.
In terms of energy, although VWR2A has higher power than
the two considered processors, its speed-up translates to
significant savings in energy consumption.

As we study only the kernels themselves here, we can
analyze the performance and energy consumption of the
VWR2A architecture in isolation and compare it directly

with the execution on the two CPUs. Compared to the
Cortex-M4 processor (not the SoC, only the CPU), VWR2A
alone uses 5.8× more power but is 9.2× faster on average,
hence more energy efficient. Moreover, VWR2A uses its
internal memory structure to access the data (i.e., SPM
and VWRs), which is more energy-efficient than the SoC
AMBA AHB interconnection. This leads to a 70.8% energy
saving on average at the SoC level, which is combined with
the higher performance leading to an energy-delay product
(EDP) improvement of 43.8×.

Compared to the Ibex core (only the CPU), VWR2A
alone requires 8.7× more power but is 12.3× faster, leading
to an average energy saving of 74.4% at the platform
level (Ibex+VWR2A vs. Ibex). This translates to an EDP
improvement of 56.6× for the Ibex+VWR2A platform com-
pared to the Ibex platform. Interestingly, although the Ibex
processor is optimized for control-intensive code and has
better energy efficiency than the ARM Cortex-M4 SoC, it is
on average 1.2× slower, translating to an EDP decrease of
1.1× for our biosignal processing target domain.

6.4 Biosignal applications results
The performance and energy consumption of the three
evaluated designs are shown in Table 8. The code executed
on VWR2A was limited to the control-intensive kernels
presented in Table 7 to evaluate the impact of control code
acceleration at the application level. However, it has been
substantiated in [1] that VWR2A can also execute most
of the data-intensive kernels of the evaluated applications.
Therefore, the numbers reported in Table 8 are the minimum
energy savings that can be achieved using VWR2A.

6.4.1 Heartbeat classifier
Two scenarios have been considered: 1-lead and 1+2-leads.
The second one is the optimal case for VWR2A as it can exe-
cute the two leads in parallel. For the first case (1-lead), only
half of the VWR2A architecture is used (i.e., one column),
reducing its energy efficiency. The execution is dominated

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, MARCH 2023 11

TABLE 8: Biosignal applications performance and energy comparison for the ARM Cortex-M4 SoC (CM4), the Ibex platform
(Ibex), the ARM Cortex-M4 SoC including VWR2A (CM4+VWR2A), and the Ibex including VWR2A (Ibex+VWR2A).
VWR2A is limited to execute only control-dominated kernels.

CM4 Ibex CM4 + Ibex + CM4 vs. Ibex vs. CM4 vs.
Cycles VWR2A VWR2A CM4+VWR2A Ibex+VWR2A Ibex

Heartbeat classifier 1-lead (ECG) 463 025 672 639 208 525 289 881 2.2× 2.3× 0.7×
Heartbeat classifier 1+2-leads (ECG) 1 278 191 1 773 784 465 366 579 513 2.7× 3.1× 0.7×
Medical standard 12-leads (ECG) 4 261 659 10 132 440 894 567 1 003 344 4.8× 10.1× 0.4×
Cognitive workload est. 1-lead (RSP) 153 115 645 677 123 122 616 570 1.2× 1.0× 0.2×

Average speed-up 2.7× 4.1× 0.5×

Energy (µJ)

Heartbeat classifier 1-lead (ECG) 4.4 7.4 3.9 3.7 −11.6% −50.5% +70.1%
Heartbeat classifier 1+2-leads (ECG) 10.9 20.4 8.6 8.6 −20.7% −58.0% +87.9%
Medical standard 12-leads (ECG) 40.3 78.4 25.1 22.2 −37.7% −71.6% +94.6%
Cognitive workload est. 1-lead (RSP) 2.3 8.4 1.9 8.1 −17.7% −3.7% +262.1%

Average energy saving −21.9% −46.0% +128.7%

by the morphological filtering —baseline removal and low-
pass filter— of the leads, which takes more than 65% and
75% of the total processing time, for the 1-lead and 2-leads
cases, respectively (for both the ARM Cortex-M4 SoC and
the Ibex platform). At the application level, gains are limited
compared to those at the kernel level (see Table 7). The
reason is that the lead window size is bigger than the one
used for the standalone kernels and the scratchpad memory
of VWR2A is not large enough to hold all the data simul-
taneously, requiring some backup to the platform SRAM.
This increases the bus interconnection energy consumption
and limits the gain of VWR2A compared to both processors.
Moreover, the acceleration is limited to the control-intensive
kernels of the application while the processors execute the
remaining part, limiting the overall savings of VWR2A.

6.4.2 Medical standard 12-leads

Like the previous application, executing the morphological
filter for 12 leads requires some adaptation as the VWR2A
internal memory is not large enough to store all the values
(input data and kernel parameters) at once. Therefore, ad-
ditional data transfers are needed to back up these values
in the ARM Cortex-M4 SoC and the Ibex platform SRAM.
This induces a penalty in performance and energy but using
VWR2A is still more energy-efficient. This application is
even the best regarding energy savings: VWR2A consumes
37.7% and 71.6% less energy than the ARM Cortex-M4 SoC
and the Ibex platform, respectively. This is due to the even
number of leads, which maximizes the VWR2A utilization
and, therefore, its energy efficiency.

6.4.3 Cognitive workload estimation

This application is the worst in terms of overall perfor-
mance and energy savings, particularly compared to the
Ibex platform, because it is dominated by data-intensive
kernels (as discussed previously) and given the focus of
this paper, here we limited our study to accelerate only
the control-intensive kernels (Median and Delineation ker-
nels). These kernels account for less than 5% of the total
processing time on the Ibex platform, limiting the impact
of VWR2A. For the ARM Cortex-M4 SoC, these kernels
represent 21% of the processing time, which translates to

higher savings for VWR2A. For such application, having a
reconfigurable accelerator is the best as it can accelerate both
data-intensive and control-intensive kernels. For example,
in [1], the authors reported energy savings of 66.3% com-
pared to the ARM Cortex-M4 SoC at the application level
with all the possible kernels accelerated on the VWR2A.
Nevertheless, VWR2A still exhibits 17.7% and 3.7% lower
energy consumption than the ARM Cortex-M4 SoC and the
Ibex platform, respectively.

6.5 Biomedical applications analysis

Compared to the results of the standalone kernels, the
savings at the application level are more limited. When
complete applications are considered, there are inevitable
data-intensive steps that significantly worsen the perfor-
mance and energy efficiency, particularly for the Ibex core,
which is optimized for low-power execution of control code.
This is particularly true for the Cognitive workload estimation
application that is dominated by data-intensive kernels,
such as an FFT and a FIR filter. At the kernel level, the
Ibex core is slower but more energy efficient than the ARM
Cortex-M4, but at the application level, it is both slower and
less energy efficient with an EDP 3.7× lower.

Similar to the case of standalone kernels, VWR2A is the
best implementation in terms of performance and energy.
VWR2A is 2.7× and 4.1× faster than the ARM Cortex-
M4 SoC and the Ibex platform, respectively, on average.
In terms of energy, VWR2A consumes 21.9% and 46.0%
less energy on average than the ARM Cortex-M4 SoC and
the Ibex platform, respectively. The performance and energy
combined give VWR2A an improvement in EDP of 3.8×
and 12.2× compared to the ARM Cortex-M4 SoC and the
Ibex platform, respectively.

These results show the importance of evaluating ar-
chitectures at the application level and the advantages of
the flexibility of a reconfigurable accelerator, allowing both
data-intensive [1] and control-intensive code to be executed
more efficiently, in terms of performance and energy, than
GPPs.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, MARCH 2023 12

7 CONCLUSION

This paper has evaluated the performance and saving in
energy consumption of a recent programmable core acceler-
ator proposed by the authors of [1] for embedded systems
with two general-purpose baseline processors for control-
intensive kernels and applications. This programmable core,
called VWR2A [1], is a CGRA-like architecture augmented
with specialized slots. These slots leverage the ILP inher-
ent to any kernel and remove the latency of the control
instructions execution of the PEs in the reconfigurable ar-
ray. This situation significantly improves the architecture
performance on control-dominated kernels. Moreover, the
specialized slots can be optimized for a specific set of tasks,
which minimizes their power consumption.

The results of this work have shown that the pro-
grammable core is consistently faster and more energy-
efficient than two representative processors of state-of-the-
art programmable processors targeting low-power devices
—an ARM Cortex-M4 processor and a RISC-V lowRISC
Ibex processor— for kernels and applications. Thus, we
have proven that the flexibility offered by programmable
accelerators enables efficient execution of not only data-
intensive kernels, but also of control-intensive ones. A key
direction to increase energy efficiency in future heteroge-
neous embedded systems is to increase the code coverage
of these programmable accelerators.

ACKNOWLEDGMENTS

The authors of this paper would like to acknowledge the
work of Emilio Domı́nguez Sánchez on improving the al-
gorithmic implementation of the Morphological Filtering
kernels for the general-purpose processors, which also im-
proved the mapping on VWR2A.

REFERENCES

[1] B. W. Denkinger, M. Peón-Quirós, M. Konijnenburg, D. Atienza,
and F. Catthoor, “VWR2A: A Very-Wide-Register Reconfigurable-
Array Architecture for low-power embedded devices,” in Proceed-
ings of the 59th ACM/IEEE Design Automation Conference, 2022, pp.
895–900.

[2] Transforma Insights. Accessed on: Apr. 4, 2022.
[Online]. Available: https://transformainsights.com/news/
iot-market-24-billion-usd15-trillion-revenue-2030

[3] S. Song, M. Konijnenburg, R. van Wegberg, J. Xu, H. Ha, W. Sijbers,
S. Stanzione, D. Biswas, A. Breeschoten, P. Vis, C. van Liempd,
C. van Hoof, and N. van Helleputte, “A 769 µW battery-powered
single-chip SoC with BLE for multi-modal vital sign monitoring
health patches,” IEEE Transactions on Biomedical Circuits and Sys-
tems, vol. 13, no. 6, pp. 1506–1517, 2019.

[4] L. Duch, S. Basu, R. Braojos, G. Ansaloni, L. Pozzi, and D. Atienza,
“Heal-wear: An ultra-low power heterogeneous system for bio-
signal analysis,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 64, no. 9, pp. 2448–2461, 2017.

[5] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and
L. Benini, “GAP-8: A RISC-V SoC for AI at the Edge of the IoT,”
in 2018 IEEE 29th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), 2018, pp. 1–4.

[6] F. Conti, P. D. Schiavone, and L. Benini, “XNOR Neural Engine:
A Hardware Accelerator IP for 21.6-fJ/op Binary Neural Network
Inference,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 37, no. 11, pp. 2940–2951, 2018.

[7] B. Mei, A. Lambrechts, J.-Y. Mignolet, D. Verkest, and R. Lauw-
ereins, “Architecture exploration for a reconfigurable architecture
template,” IEEE Design Test of Computers, vol. 22, no. 2, pp. 90–101,
2005.

[8] G.-R. Uh, Y. Wang, D. Whalley, S. Jinturkar, C. Burns, and
V. Cao, “Techniques for effectively exploiting a zero overhead loop
buffer,” in Compiler Construction, D. A. Watt, Ed. Springer Berlin
Heidelberg, 2000, pp. 157–172.

[9] J. Lee and A. Smith, “Branch prediction strategies and branch
target buffer design,” Computer, vol. 17, no. 01, pp. 6–22, Jan 1984.

[10] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz,
“Energy-performance tradeoffs in processor architecture and cir-
cuit design: A marginal cost analysis,” in Proceedings of the 37th
Annual International Symposium on Computer Architecture, ser. ISCA
’10. ACM, 2010, p. 26–36.

[11] C. Kim, M. Chung, Y. Cho, M. Konijnenburg, S. Ryu, and J. Kim,
“ULP-SRP: Ultra Low-Power Samsung Reconfigurable Processor
for Biomedical Applications,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 7, no. 22, pp. 1–15, 2014.

[12] ARM Cortex-M4 – Reference manual. Accessed on: Apr.
4, 2022. [Online]. Available: https://www.arm.com/products/
silicon-ip-cpu/cortex-m/cortex-m4

[13] lowRISC – Ibex. Accessed on: Apr. 4, 2022. [Online]. Available:
https://lowrisc.org/our-work/

[14] P. Davide Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini,
E. Flamand, and L. Benini, “Slow and steady wins the race?
A comparison of ultra-low-power RISC-V cores for Internet-of-
Things applications,” in 27th International Symposium on Power and
Timing Modeling, Optimization and Simulation (PATMOS), 2017, pp.
1–8.

[15] S. Das, K. J. M. Martin, D. Rossi, P. Coussy, and L. Benini, “An
energy-efficient integrated programmable array accelerator and
compilation flow for near-sensor ultralow power processing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 38, no. 6, pp. 1095–1108, 2019.

[16] B. R. Rau, “Iterative modulo scheduling: An algorithm for soft-
ware pipelining loops,” in Proceedings of the 27th Annual Interna-
tional Symposium on Microarchitecture, ser. MICRO 27. ACM, 1994,
p. 63–74.

[17] M. Karunaratne, C. Tan, A. Kulkarni, T. Mitra, and L.-S. Peh,
“Dnestmap: Mapping deeply-nested loops on ultra-low power
CGRAs,” in Design Automation Conference (DAC). ACM, 2018.
[Online]. Available: https://doi.org/10.1145/3195970.3196027

[18] S. Yin, P. Zhou, L. Liu, and S. Wei, “Acceleration of nested
conditionals on CGRAs via trigger scheme,” in 2015 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE,
2015, pp. 597–604.

[19] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and
E. Chaves Filho, “MorphoSys: An integrated reconfigurable sys-
tem for data-parallel and computation-intensive applications,”
IEEE Transactions on Computers, vol. 49, no. 5, pp. 465–481, 2000.

[20] G. Gobieski, A. O. Atli, K. Mai, B. Lucia, and N. Beckmann,
“Snafu: An ultra-low-power, energy-minimal CGRA-generation
framework and architecture,” in ACM/IEEE International Sympo-
sium on Computer Architecture (ISCA). IEEE, 2021, pp. 1027–1040.

[21] Y. Huang, P. Ienne, O. Temam, Y. Chen, and C. Wu, “Elastic
CGRAs,” in Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, 2013, pp. 171–180.

[22] K. Han, J. Ahn, and K. Choi, “Power-efficient predication tech-
niques for acceleration of control flow execution on CGRA,” ACM
Transactions on Architecture and Code Optimization, vol. 10, no. 2,
May 2013.

[23] K. Han, J. K. Paek, and K. Choi, “Acceleration of control flow on
CGRA using advanced predicated execution,” in 2010 International
Conference on Field-Programmable Technology, 2010, pp. 429–432.

[24] T. K. Bandara, D. Wijerathne, T. Mitra, and L.-S. Peh, “REVAMP:
A systematic framework for heterogeneous CGRA realization,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2022, pp. 918—
-932.

[25] C. Tirelli, L. Ferretti, and L. Pozzi, “SAT-MapIt: A SAT-based
Modulo Scheduling Mapper for Coarse Grain Reconfigurable Ar-
chitectures,” in To appear in Design, Automation and Test in Europe
Conference Exhibition (DATE), 2023.

[26] P. Raghavan, A. Lambrechts, M. Jayapala, F. Catthoor, D. Verkest,
and H. Corporaal, “Very wide register: An asymmetric register
file organization for low power embedded processors,” in Design,
Automation and Test in Europe Conference Exhibition (DATE), 2007,
pp. 1–6.

[27] F. Catthoor et al., Ultra-Low Energy Domain-Specific Instruction-Set

https://transformainsights.com/news/iot-market-24-billion-usd15-trillion-revenue-2030
https://transformainsights.com/news/iot-market-24-billion-usd15-trillion-revenue-2030
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m4
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m4
https://lowrisc.org/our-work/
https://doi.org/10.1145/3195970.3196027

IEEE TRANSACTIONS ON COMPUTERS, VOL. 0, NO. 0, MARCH 2023 13

Processors, 1st ed. Springer Netherlands, 2010, ch. An asymmet-
rical register file: the VWR, pp. 199–222.

[28] Synopsys - PrimePower Q-2019.12. Accessed on: Apr.
4, 2022. [Online]. Available: https://www.synopsys.com/
implementation-and-signoff/signoff/primepower.html

[29] F. Dell’Agnola, U. Pale, R. Marino, A. Arza, and D. Atienza,
“Mbiotracker: Multimodal self-aware bio-monitoring wearable
system for online workload detection,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 15, no. 5, pp. 994–1007, 2021.

[30] R. Braojos, G. Ansaloni, and D. Atienza, “A methodology for em-
bedded classification of heartbeats using random projections,” in
Design, Automation and Test in Europe Conference Exhibition (DATE),
2013, pp. 899–904.

[31] A. Teman, D. Rossi, P. Meinerzhagen, L. Benini, and A. Burg,
“Controlled placement of standard cell memory arrays for high
density and low power in 28nm fd-soi,” in The 20th Asia and South
Pacific Design Automation Conference, 2015, pp. 81–86.

Benoı̂t W. Denkinger received his M.Sc. in
robotics and autonomous systems from the Insti-
tute of Electrical and Micro Engineering, EPFL.
He is currently pursuing a Ph.D. degree with the
Embedded Systems Laboratory (ESL) at EPFL,
Switzerland. His research interests include low-
power architectures for biomedical applications
and artificial intelligence (AI)-enabled Internet-
of-Things (IoT) devices.

Miguel Peón-Quirós received a Ph.D. on Com-
puter Architecture from UCM, Spain, in 2015.
He collaborated as a Marie Curie scholar with
imec (Leuven, Belgium) and as postdoctoral re-
searcher with IMDEA Networks (Madrid, Spain)
and the Embedded Systems Laboratory (ESL) at
EPFL (Lausanne, Switzerland). He has partici-
pated in several H2020 and industrial projects
and is currently part of EcoCloud, EPFL. His
research focuses on energy-efficient computing.

Mario Konijnenburg (M’08) received an M.S.
degree in electrical engineering from Delft Uni-
versity of Technology in The Netherlands in
1993. A Ph.D. degree was received from Delft
University of Technology in 1999 on Automatic
Test Pattern Generation for Sequential Circuits.
He joined Philips Research / NXP Semiconduc-
tors and worked on methodologies to improve
testability of designs. Currently, he is chip archi-
tect and R&D manager of the IC-design group at
imec in Eindhoven, The Netherlands, targeting

chip research for bio-medical applications covering SoC design, sen-
sors, stimulators, power, and (RF) communication.

David Atienza (M’05-SM’13-F’16) is a Professor
of electrical and computer engineering, Heads
the Embedded Systems Laboratory (ESL), and
is the Scientific Director of the EcoCloud Cen-
ter for Sustainable Computing at the École
Polytechnique Fédérale de Lausanne (EPFL),
Switzerland. He received his Ph.D. in computer
science and engineering from UCM, Spain, and
imec, Belgium, in 2005. His research inter-
ests include system-level design methodologies
for high-performance multi-processor system-

on-chip (MPSoC) and low-power Internet-of-Things (IoT) systems, in-
cluding new 2-D/3-D thermal-aware design for MPSoCs and many-core
servers, and edge AI architectures for wearable systems and smart
consumer devices. He is a co-author of more than 400 papers in peer-
reviewed international journals and conferences, one book, and 14
patents in these fields. Dr. Atienza is an IEEE Fellow and an ACM Fellow.

Francky Catthoor received a Ph.D. in EE from
the Katholieke Univ. Leuven, Belgium in 1987.
Between 1987 and 2000, he has headed several
research domains in the area of synthesis tech-
niques and architectural methodologies. Since
2000 he is strongly involved in other activities
at imec including co-exploration of applications,
computer architecture, deep submicron technol-
ogy aspects, biomedical systems and IoT sen-
sor nodes, and photo-voltaic modules combined
with renewable energy systems, all at imec Leu-

ven, Belgium. Currently, he is an imec senior fellow. He is also part-time
full professor at the EE department of the KULeuven.

https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html

	Introduction
	Related work
	Domain-specific instruction set processor architecture description
	Processing Elements
	Specialized slots for control-intensive code
	Loop Controller Unit
	MultipleXer Controller Unit

	Illustrative kernel mapping analysis
	Experimental setup
	Ultra-low power embedded platform
	Performance and energy evaluation methodology
	Representative set of software benchmarks for the biomedical target domain
	Standalone kernels
	Biosignal applications

	Experimental results
	Architecture power analysis
	Standalone kernels results
	Median
	Delineation
	MF - Baseline removal
	MF - Low-pass filter

	Standalone kernels analysis
	Biosignal applications results
	Heartbeat classifier
	Medical standard 12-leads
	Cognitive workload estimation

	Biomedical applications analysis

	Conclusion
	References
	Biographies
	Benoît W. Denkinger
	Miguel Peón-Quirós
	Mario Konijnenburg
	David Atienza
	Francky Catthoor

