
1

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

DOI: 10.1109/TC.2023.3272284

ar
X

iv
:2

30
5.

05
18

7v
1 

 [
cs

.N
E

] 
 9

 M
ay

 2
02

3



2

DeepFire2: A Convolutional Spiking Neural
Network Accelerator on FPGAs

Myat Thu Linn Aung, Daniel Gerlinghoff, Chuping Qu, Liwei Yang, Tian Huang,
Rick Siow Mong Goh, Tao Luo, Weng-Fai Wong

Abstract—Brain-inspired spiking neural networks (SNNs) replace the multiply-accumulate operations of traditional neural networks by
integrate-and-fire neurons, with the goal of achieving greater energy efficiency. Specialized hardware implementations of those
neurons clearly have advantages over general-purpose devices in terms of power and performance, but exhibit poor scalability when it
comes to accelerating large neural networks. DeepFire2 introduces a hardware architecture which can map large network layers
efficiently across multiple super logic regions in a multi-die FPGA. That gives more control over resource allocation and parallelism,
benefiting both throughput and energy consumption. Avoiding the use of lookup tables to implement the AND operations of an SNN,
prevents the layer size to be limited by logic resources. A deep pipeline does not only lead to an increased clock speed of up to
600 MHz. We double the throughput and power efficiency compared to our previous version of DeepFire, which equates to an almost
10-fold improvement over other previous implementations. Importantly, we are able to deploy a large ImageNet model, while
maintaining a throughput of over 1500 frames per second.

Index Terms—Field-Programmable Gate Array (FPGA), Spiking Neural Network, Hardware Acceleration, Layer Mapping

F

1 INTRODUCTION

W ITH an estimated 100 billion neurons [1] and only
20 watts of power consumption [2], the efficiency of

a human brain is to this day unmatched by even the best
AI accelerators. Spiking neural networks (SNNs) replicate
the neural dynamics of biological brains more closely than
conventional artificial neural networks (ANNs), therefore
promising better efficiency [3], [4], [5]. Information trans-
fer between neurons in an SNN is achieved through spike
trains, which are binary events with values of either one or
zero. Each spiking neuron has a membrane potential. Every
incoming spike will cause the membrane potential to be
charged up by a certain amount according to the weight
stored in the synapse. Once the membrane potential exceeds
a predefined threshold, an output spike is fired to its succes-
sors. This describes the behavior of an integrate-and-fire (IF)
neuron [6]. Because input activations are binary, this type
of neurons does not require multipliers. Instead, an AND
operation is used to decide whether or not the membrane
potential is modified. Other neuron models [7], [8] might be
more biologically accurate, but are computationally complex
and hence not suitable for high-performance applications.

The IF neuron model can generally be implemented on
general computing infrastructure, such as CPUs and GPUs.
Because of their generality and the presence of floating-
point arithmetic units, they usually achieve a high accuracy.
At the same time, however, they contain hardware logic
that is not directly needed for the computation and is
hence detrimental to power and area efficiency. Application-

• M.T.L. Aung, D. Gerlinghoff, C. Qu, L. Yang, T. Huang, R.S.M. Goh, and
T. Luo are with the Institute of High Performance Computing, Agency for
Science Technology and Research (A*STAR), Singapore.

• W.F. Wong is with the Department of Computer Science, National
University of Singapore.

• Correspondence to T. Luo (leto.luo@gmail.com)

specific integrated circuits (ASICs) can achieve high effi-
ciency by only implementing the necessary neuron dynam-
ics on hardware [9]. Accordingly, it is important to consider
the trade-off that exists between accuracy and performance,
in light of the specific requirements of the application.
Examples of ASICs are TrueNorth [10], SpiNNaker [11], and
Loihi 1/2 [12], [13]. Through user programming, a variety of
neural models and learning rules can be deployed. But that
also means that flexibility is limited to the capabilities of
the existing hardware cores. With neuromorphic computing
developing at a rapid pace, existing ASICs might not be able
to keep up with new requirements. Field-programmable
gate arrays (FPGAs), on the other hand, are reconfigured
for every task and are greatly adapted to changes in network
architecture, neuron model, etc.

Advances in packaging technology has led to FPGA
devices which integrate multiple equivalent dies along a
vertical stack. In Xilinx terminology, a die is referred to
as super logic region (SLR). Vertical routing between SLRs
is achieved via silicon interposers, which are special tiles
with dedicated flip-flops. Signal crossings between SLRs
are sparse when compared with the abundance of routing
resources as part of the FPGA fabric within an SLR. In
order to avoid congestion, is it imperative for scalable high-
performance accelerators to consider individual SLRs for
resource allocation, instead of viewing the FPGA device as
a whole.

Mapping layers in an SNN to the SLRs in the device
greatly influences the performance. Processing bottlenecks
mainly arise in two places: (1) within an SLR if memory and
compute resources are not carefully balanced, (2) between
SLR if too many data need to be transferred over the scarce
vertical interconnects. With DeepFire2 (DF2), we propose
a hardware architecture which allows fine-grained control
over how layers are allocated to SLRs. On one hand, split-



3

ting large layers across multiple SLRs, while considering
data transfers, allows us to overcome resource limitation im-
posed by a single SLR. On the other hand, leaving complete
SLRs unused for small networks allows them to be powered
down, reducing the power consumption significantly.

As a result, DeepFire2 demonstrates great scalability
across a wide range of network sizes. We achieved very high
throughput, computing thousands of frames per second
(FPS) even for large datasets, by almost optimally using
FPGA resources and implementing a parallel datapath. We
are also the first who use a neuromorphic hardware plat-
form to accelerate an SNN classifying ImageNet data. This
work builds upon the first version of DeepFire [14] and adds
novel techniques that considerably improve speed and scal-
ability. The contributions of this paper can be summarized
as follows.

• A combination of layer-wise and the novel split-kernel
mapping is proposed to distribute layers across mul-
tiple SLRs while keeping the resource usage bal-
anced.

• A novel implementation of the logical AND operation
of spiking neurons, which makes use of FPGA reg-
isters, to reduce the utilization of lookup tables for
large networks.

• We achieved the highest clock frequency and
throughput among all FPGA-based SNN implemen-
tations, thanks to the deep pipelining possible in
DF2.

Spiking neural networks have been applied to large
datasets in the past, but very long spike trains in the order
of thousands were required [15], [16]. However, to harness
the full potential of SNNs, short spike trains are preferred.
This not only decreases the total number of operations
needed to generate the classification result. It also reduces
the network’s latency [17]. Therefore, we chose the minimal
spike train length of one, while maintaining a competitive
accuracy on many datasets.

The paper is organized as follows. In Section 2, we
discuss various existing SNN implementations in ASIC and
FPGA. Section 3 introduces our DF2 hardware architecture.
Deployment of various SNN networks on DF2 and results
are presented in Section 4, followed by the conclusion in
Section 5.

2 RELATED WORK

Traditional Von Neumann architectures lack the memory
bandwidth and computing power necessary to achieve good
energy efficiency and high throughput for neuromorphic
workloads. Innovative chip architectures have been de-
signed to overcome those bottlenecks [18], [19]. The SpiN-
Naker chip was created with multiple ARM cores for a
parallel computation with shared on-chip synaptic memory
storage to minimize the latency [11]. TrueNorth [10] and
Loihi [12] remove the memory bottleneck entirely by dedi-
cating an on-chip memory block for each computing neuron
core, and the cores are connected through a Network-on-
Chip (NoC). When thousands of cores are packed in a single
chip, a data packet has to pass multiple nodes unnecessarily

to reach the destination core. A hierarchical NoC was intro-
duced in the Innatera chip to reduce the number of packet
hops and its mixed-signal computing approach is promising
to achieve low power [20]. There have also been attempts
to use purely analog computations in neuromorphic hard-
ware [21], [22], [23]. Weight values are thereby written into
resistive memory cells (RRAM) and input spikes switch the
voltage over the resistors on and off. With this technology,
whole vector-matrix multiplications can be implemented.
But beside the noisy RRAM devices affecting the accuracy,
the conversion between analog and digital values makes up
a large fraction of the power consumption [24].

Developing hardware is, however, only one part to-
wards accelerating a spiking neural network. Compilers
are needed, which map the neurons in the network to the
resources in the chips. For Loihi, Intel developed the LCom-
piler, which optimizes the mapping between source and
destination compartments for energy efficiency by using a
greedy algorithm [25]. IBM proposed a new programming
paradigm called Corelets, along with a programming lan-
guage and library, for their neuromorphic chip TrueNorth.
Corelets are neurosynaptic functions, which can be decom-
posed and mapped efficiently to the chip’s neuron cores [26].
General mapping algorithms, like MAMAP [27], partition
SNNs in a way that minimizes the spike communication
between cores. This positively influences throughput and
energy consumption. Song et al. [28] included buffer size
in the trade-off. With an iterative clustering approach, they
managed to improve those metrics compared to state-of-the-
art. As can be seen, the fixed architecture of ASICs imposes
various constraints on the network architecture and require
mapping algorithms that increase the complexity deploying
an SNN on neuromorphic hardware.

FPGAs, on the other hand, do not have a predetermined
number of cores and, thus, overcome many architectural
limitations. But a fixed number of overall compute re-
sources, like lookup tables (LUTs), DSP slices and registers,
requires area efficient hardware designs. Cluster computing
is adopted in the Bluehive system for neuron simulation
while overcoming the limited resources in each FPGA [29].
Thanks to the off-chip memory, it can process up to 64k neu-
rons per FPGA, similarly to Minitaur [30]. When Thomas
and Luk [31] simulated the Izhikevich neuron model, 1000
neurons could be fitted into the on-chip memory of a single
Virtex-5 FPGA. The neuron count increased to 1.44k when
it was simulated with the more advanced Virtex-6 [32].
In fact, the number of neurons can be a few orders of
magnitude higher with appropriate quantization and when
deploying it on modern FPGAs from AMD-Xilinx, which
are now packed with 10× more memory capacity [33].
The aforementioned FPGA implementations are multilayer
perceptrons (MLP) with fully-connected layers only. Their
accuracy can, hence, be very limited when it comes to more
complex image classification, such as Cifar-10. In recent
years, FPGA designs for the acceleration of convolutional
SNN have been published. Fang et al. [34] interpreted the
spiking neurons as infinite impulse response filters. To pro-
cess the data, a neural encoding scheme is suggested which
converts continuous inputs into temporal spike trains. These
can be efficiently implemented on the DSP slices in the
FPGA. A performance analysis and optimization proce-



4

W T

CTRL

MAC

1

MAC
MAC

MAC
MAC

8
CTRL

NCNCNC
NCNCNC

NCNCNCC

W TW TW TW T

C
C

R
x

Tx

NCNCNC
NCNCNC

NCNCNCC

W TW TW TW T

C
C

SLR`Hand Shake

8
8

Im
ag

e 
C

ol
um

n 
Fr

om
 D

D
R

FIFO

FIFO

FIFO
FIFO

0
1

0
1

0
1

(a)

1:8
1:8

1:8
1:8

1:8 4:84:84:8

4:8
4:8

4:8

(b) (c) (d) (e)

B
rid

ge

FIFO

(f)

W<7:0> T<7:0>

K0_C<7:0>

K1_C<7:0>

W<15:8> T<15:8>

K0_C<15:8>

K1_C<15:8>

W<7:0> T<7:0>

K0_C<7:0>

K1_C<7:0>

W<3:0> T<3:0>

K0_C<3:0>
K1_C<3:0>

W<1:0> T<1:0>

K0_C<1:0>
K1_C<1:0>
K2_C<1:0>
K3_C<1:0>

K2_C<7:0> K2_C<15:8>K2_C<7:0>
K2_C<3:0>
K3_C<3:0>

k0_si
k1_si
k2_si
k3_si

k0_si
k1_si

k2_si
k3_si

k0_si

k1_si

k2_si

k0_si

k1_si

k2_si

(d.1) (d.2) (d.3) (d.4)

Fig. 1. Architecture of DeepFire2’s RTL. (a) two-stage image buffer for transduction layer, (b) transduction layer, (c) two-stage feature buffer (FBF)
for convolution layer, (d) convolution layer with two-way kernel split, (d.1 - d.4) scaling of kernel arrays from 2 neuron cores per kernel to 16 cores
per kernel, (e) MUX with round-robin scheduling to merge features from split-kernels, and (f) two-stage FBF for fully-connected layer.

dure automatically allocated resources to layers with higher
latency. Ju et al. [35] reduced memory accesses of two-
dimensional convolution and pooling layers by streaming
data through shift registers. A two-dimensional array of
convolution units then generates multiple output values in
parallel. Additionally, time steps are executed in parallel
through pipelining. Gerlinghoff et al. [36] built flexibility
into their processing modules to enable reuse for feature
maps of different sizes. High resource efficiency and low
latency was thereby achieved through multiple levels of
parallelism and use of an emerging spike encoding scheme.
But reusing resources between layers and lack of DSPs
limited their throughput. Lastly, Panchapakesan et al. [37]
proposed SyncNN, a synchronous design. To achieve very
high throughput, input spikes over all time steps are ag-
gregated and output spikes are generated in a single step,
eliminating all but one forward pass per sample.

Nowadays, the model conversion from convolutional
neural network to spike-based CNN had been studied ex-
tensively to achieve a reasonable accuracy [38], [39], [40].
Most of those CNN to SNN conversion works, however, do
not consider the target hardware. Our goal with DF2 is to
compose a network architecture, which is most suited to the
underlying SNN hardware. This enables optimal resource
usage and pipeline balancing. Minimizing the spike train
length leads to a reduction in latency and hardware com-
plexity. The training of the network model is part of the
compilation flow for DF2.

3 DEEPFIRE HARDWARE ARCHITECTURE

The DeepFire2 pipeline offers fine control over how spiking
neural network layers are allocated to hardware resources
in a multi-die FPGA device. This control is necessary to
avoid performance bottlenecks which arise from resource
scarceness and imbalance, which were the limiting factor
of the layer-wise mapping of the first DeepFire (DF1) [14].
Layer-wise mapping allocated network layers as a whole
to super logic regions to avoid using large portions of the
inter-SLR routing resources. No weights or partial sums
have to be transferred, only the binary output spikes of

the layers. But confining layers to only one SLR causes
scalability issues.

Modern networks contain highly parameterized layers
which cannot always be accommodated by the memory
resources of a single SLR. Therefore, DeepFire2 introduces
split-kernel mapping. which distributes kernels while keep-
ing the signal crossings between SLRs to a minimum. By
adjusting the splitting ratios, the designer can balance the
resources of every SLR for optimal utilization. Split-kernel
mapping comes at the cost of less than ten cycles of latency.

Figure 1 details the processing pipeline of the DF2
architecture. It generally alternates between neuron cores
and feature buffers which will be described in Sections 3.2
and 3.3, respectively. Alongside the neuron cores, there are
controllers and memory units for weights and thresholds.
The initial transduction layer converts integer inputs into
spike trains.

3.1 Split-Kernel Mapping
Figure 1 (d) shows the components used to compose a
convolution layer. To precisely adjust the resource utiliza-
tion and parallelism of the layer, its hardware modules are
characterized in two dimensions:

1) Number κ of kernel units K per layer which com-
pute the convolution of a 3×3 window in the feature
map. This is determined by the feature map size.

2) Number ω of parallel weight and threshold units
W & T which store weights and thresholds. This
depends on the throughput requirements and avail-
able hardware resources.

The arrangement of neuron cores C can be visualized
as a two-dimensional array of size κ × ω. Each unit W
& T is associated with κ neuron cores C. Using Figure 1
as an example, the feature map stored in (c) has 5 rows,
implying κ = 3 kernel units for (d). For real-world models,
however, initial layers can have as much as 224 kernel units
for ImageNet. In order to retain a high clock frequency and,
hence, high throughput, re-timing registers are introduced
to partition large neuron core arrays. In DF2, groups of 8



5

0 1 2 3 4 5 6 7
16 17 18 19 20 21 22 23
32 33 34 35 36 37 38 39
48 49 50 51 52 53 54 55

8 9 10 11 12 13 14 15
24 25 26 27 28 29 30 31
40 41 42 43 44 45 46 47
56 57 58 59 60 61 62 63

W
0

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
10

W
11

W
12

W
13

W
14

W
15

0 1 2 3 8 9 10 11
4 5 6 7 12 13 14 15
16 17 18 19 24 25 26 27
20 21 22 23 28 29 30 31
32 33 34 35 40 41 42 42
36 37 38 39 44 45 46 47
48 49 50 51 56 57 58 59
52 53 54 55 60 61 62 63

W
0

W
1

W
2

W
3

W
4

W
5

W
6

W
7

0 1 8 9
2 3 10 11
4 5 12 13
6 7 14 15
16 17 24 25

52 53 60 61
54 55 62 63

W
0

W
1

W
2

W
3

SLR0 SLR1

In
pu

t B
ea

t

SLR0 SLR1

In
pu

t B
ea

t

(a)

(b) (c)

SLR0 SLR1

(d)

W
0

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
10

W
11

W
12

W
13

W
14

W
15

W
16

W
17

W
18

W
19

W
20

W
21

W
22

W
23

SLR0 SLR1 SLR2

SLR0 SLR1

Fig. 2. Split-kernel mapping for 64 neurons across multiple SLRs and the
numbers represent the neuron IDs. (a) 16 weight units and 16 neuron
cores for 2 SLRs, (b) 8 weight units and 8 neuron cores for two-way split,
(c) 4 weight units and 4 neuron cores for two-way split, (d) 24 weight
units and neuron cores for either two-way or three-way splits. The input
beats mark eight input spikes, which are delivered simultaneously over
the si bus.

neuron cores are formed. The grouping for selected values
of ω ranging from 2 to 16 is shown in Figure 1 (d.1 to d.4).
(d.1), where each kernel has 2 cores, 4 kernels (K<3:0>)
are grouped. W<1:0> and T<1:0> signals are re-timed and
passed to K<7:4>. On the other hand, 2 kernels are grouped
when each kernel has 4 cores (d.2). When each kernel has
more than 8 neuron cores, multiple groupings are formed
within the kernel itself as shown in (d.3 and d.4). A group
size of 8 allows good timing closure on our test platform,
but the optimal number may vary for different platforms.
Therefore, the DF2 IP can adapt by changing the grouping
parameter.

Split-kernel mapping allows the adjustment of the de-
gree of parallelism to trade-off throughput and hardware
resources. A larger ω instantiates more parallel neuron cores,
increasing the utilization of DSPs and LUTs. In addition, ω
influences the shape of memory blocks as demonstrated in
Figure 2 (a), (b) and (c). Splitting a layer across multiple
SLRs along the ω dimension becomes necessary if one
SLR does not have enough memory to accommodate all
parameters. This applies especially to the last layers in a
neural network. Given the number of kernel weights (64 in
this example), the user can choose different memory depths
by cascading memory block primitives. The kernel map in
Figure 2 (a) uses shallower memory depth of 4 neurons
with 16 weight units W0 to W15 to store the 64 kernel
values, leading to 16 parallel cores. On the other end of the
spectrum, it can also be reconfigured to 4 weight units with

8

so

8
8
8
8
8
8

pipe_en

DSP

w
[6
3:
0]

so
_e
n

t

D
CE
Q

R

1

≈

AND Opt. Addition Accumulate & Fire

si[7:0]

Fig. 3. Architecture of a single DeepFire2 neuron core, which is able to
process eight binary input spikes si in parallel and generates spikes at
neuron output so. It consists of registers as AND gates, an adder tree
and an accumulation & fire stage.

deeper memory and 4 cores to reduce the throughput and
conserve computing resources (c). An input beat is the data
transfer of input spikes, whose size is fixed to 8 according
to the neuron core design (Section 3.2). How the eight
spikes are mapped to the neuron cores is highlighted in
the figure. Three-way splitting of the kernel across three
SLRs is possible as shown in Figure 2 (d), where one third
of the weight units and cores are assigned to every SLR.
Alternatively, the user can also choose an asymmetric two-
way split, where two thirds of the kernel values are assigned
to SLR0 and the remaining ones go to SLR1.

When splitting layers across multiple SLRs, the primary
SLR accommodates not only the allocated C, W & T, but
also the controller and the feature buffer. Secondary SLRs
transceive only spiking features through RX and TX bridges.
Since all the kernel operations are contained within each
SLR, the strain on inter-SLR routing resources is relieved.
The bridges are designed with multiple clock roots as sug-
gested by [41] for high-speed data crossing. The output fea-
tures from the cores are merged at the MUXs in Figure 1 (e),
which are scheduled in round-robin style and route data
to the feature buffer of the next layer. The the following
sections, the pipeline components are explained in detail.

3.2 Neuron Core Design

Our DF2 neuron core design shown in Figure 3 is the RTL
version of the integrate-and-fire (IF) neuron. It processes
eight input spikes si[7:0] and their weights w[63:0] in paral-
lel, where weights are quantized to 8 bits. The operation in-
cludes an AND, addition, and accumulate & fire stage. When
accelerating large networks, a substantial number of neuron
cores are instantiated in the FPGA. This renders the previous
DF1 neuron core design [14] unusable as it consumes too
many lookup table resources, limiting the scalability of the
accelerator. Our improved neuron core design reduces the
use of LUTs by routing weights w directly to the register
input D. The AND operation is carried out by connecting
inverted input spikes si to the synchronous reset R of the
registers. If an input spike is not present the reset is asserted,



6

which overrides input D and sets the data output Q to low
in the next clock cycle.

Saving a few LUTs on a hardware module can have a
great impact when it is instantiated many times to deploy
large-scale models. Registers are also more abundant in
Xilinx UltraScale+ devices, since each configurable logic
block (CLB) contains eight 6-input LUTs, but 16 flip-flops.
Moreover, using a 6-input LUT for an AND operation with
only two inputs wastes resources. Lastly, these AND registers
also act as the re-timing registers. They allow DF2 to be
run at a higher clock speed, since they relax the placement
distance between the result of the AND operation and the
DSP slice of the adder tree.

The adder tree consists of three stages, where the first
stage is embedded in DSP blocks in SIMD configuration and
the remaining two-stages are implemented in CLBs utilizing
LUTs and carry-chains. The adder tree result is then accu-
mulated and compared against the threshold parameter t,
which was trained together with the weights. The neuron
core fires an output spike, i.e. so = 1, if the membrane
potential exceeds t, and remains silent otherwise. The entire
operation of the core is pipelined with an accompanying
enable signal pipe en, which streams through the core to-
gether with the data. That translates into a signal so en at
the output, which indicates a valid spike value.

3.3 Feature Buffer
As we adopt the data-flow architecture from FINN [42], the
feature buffer (FBF) is important to hold and transfer spike
features seamlessly from one layer to another. In DF2, two-
stage buffering of the feature maps is proposed as shown in
Figure 1 (a), (c) and (f).

An intermediate buffer (c) uses the first stage for feature
column storage. It will gather all the output spikes for a
particular column from the previous layer and pass them to
the FIFO (first in, first out) buffer in the second stage. Each
FIFO holds three feature columns for 3×3 convolution. In
the specific case of (c), the feature map has five rows. Hence,
three FIFOs are instantiated for the three overlapping kernel
windows in vertical direction (depicted are two FIFOs). The
spiking features are sent to the neuron core bus si. At the end
of each convolution, the FIFOs will discard one column and,
thus, shift the convolution windows in horizontal direction
along the rows. Figure 1 (a) and (f) show special cases of the
FBF, as they precede the transduction and fully-connected
layers, respectively.

3.4 Transduction Layer
The transduction layer is the first layer in the DF2 network
where the raw image data are transformed into spiking
signals (Figure 1 (b)). It closely follows the neuron core
design described above. But since both weights w and
activations are 8-bit operands, a multiplier is used instead
of the AND operation. DSP slices are used to implement the
multiplier. This is followed by the adder tree, accumulator
and comparator. The decision of whether an output spike
is fired or not, depends again on the membrane potential
after accumulation and the trained threshold t. The binary
spikes are queued in a buffer (1:8) to convert the data width
from 1-bit spike values to 8-bit column features. The column
features are forwarded to the next FBF.

3.5 Controller

There is a controller at every SNN layer. It coordinates the
kernel operation of the layer as well as performs handshake
with the layer before and after. The controller at layer n will
only start the kernel operation upon meeting both of the
following conditions.

1) The second stage of the FBF in layer n is loaded with
the features required for the current convolutional
window.

2) The first stage of the FBF in layer n + 1 is empty
that output column features can be stored when the
kernel operation starts.

This condition ensures that there is no data overflow
in the FBFs. When the first state of FBF(n+1) is full, it
will naturally create a backpressure all the way back to
the transduction layer until it is cleared. The backpressure
scenario can be avoided by manipulating the number of the
weight units ω in each layer (more details in Section 4.1).

4 IMPLEMENTATION

In this section, we discuss the DF2 implementation for
various SNN architectures including the compilation, the
network scalability and the DF2 sub-system. We evaluate
the performance on a wide range of datasets and compare it
to previous SNN implementations.

4.1 Network Architecture

To characterize the DeepFire2 architecture for neural net-
work of different sizes, we implemented models for a va-
riety of datasets, as shown in Table 1. They closely follow
VGG-9 and VGG-11 architectures with a customized neuron
count for each layer. The neuron count is chosen to effi-
ciently utilize the fixed-size BRAM and URAM blocks in the
device. For example, mapping a kernel with 112 neurons to
4kB large memory results in instantiation of 8 BRAM blocks,
each containing the weights of 14 neurons. This leads to
88.8% utilization for each 4kB-BRAM. 128 neurons, as per
original VGG configuration, results in 16 BRAMs instanti-
ation with 8 neurons per BRAM block (50.8% utilization).
A number between 8 and 16 is not possible because of the
byte write operation to the FBF. In summary, the number of
weight units W for weight parameters in each kernel must
satisfy the following condition.

W =

{
2i if 0 ≤ i ≤ 2

23(i− 2) if i > 2
(1)

where i is the integer greater or equal to zero. The maxi-
mum pooling layer in the conventional VGG architecture is
replaced by a 2×2 convolution with a stride of 2 and valid
padding. Hence, DF2 pooling layers carry trainable weights.
Table 1 also presents the cascading parameters for BRAM
and URAM for each layer.

The neural network architecture dictates the allocation
of memory blocks. The default BRAM and URAM modules
in the FPGA can be cascaded to form larger memory. As
layers become wider, more parameters are used and, hence,
deeper memory is required to store these parameters. Each



7

TABLE 1
Implemented Network Structures

MNIST Cifar-10 Cifar-100 Tiny- ImageNet
ImageNet

pConv3-1-16 / b1 pConv3-1-64 / b1 pConv3-1-64 / b1 pConv3-1-64 / b1 pConv3-1-64 / b2
Conv2-2-16 / b1 pConv3-1-64 / b1 pConv3-1-112 / b2 Conv2-2-64 / b1 Conv2-2-64 / b2

Conv2-2-72 / b1 Conv2-2-144 / b2

pConv3-1-32 / b1 pConv3-1-192 / b2 pConv3-1-192 / b4 pConv3-1-112 / b2 pConv3-1-112 / b4
Conv2-2-32 / b1 pConv3-1-128 / b2 pConv3-1-216 / b4 Conv2-2-144 / b2 Conv2-2-144 / b4

Conv2-2-128 / b2 Conv2-2-288 / b4

pConv3-1-64 / b2 pConv3-1-224 / b4 pConv3-1-480 / u1 pConv3-1-192 / b4 pConv3-1-200 / b8
Conv3-2-64 / b2 pConv3-1-256 / b4 pConv3-1-504 / u1 pConv3-1-216 / b4 pConv3-1-288 / b8

pConv3-1-224 / b4 pConv3-1-560 / u1 Conv2-2-288 / b4 Conv2-2-224 / b8
Conv2-2-288 / b4 Conv2-2-560 / u1

Fc-128 / u2 Fc-560 / u2 Fc-1064 / u2 pConv3-1-480 / b8 pConv3-1-512 / b16
Fc-10 / b1 Fc-10 / b2 Fc-100 / u4 pConv3-1-448 / b8 pConv3-1-448 / b16

Conv3-1-448 / u1 Conv2-2-576 / b16

pConv3-1-512 / u1 pConv3-1-600 / u2
pConv3-1-560 / u1 pConv3-1-576 / u2
Conv3-1-528 / u1 Conv2-2-448 / b16

Fc-1200 / u4 Fc-1056 / u8
Fc-200 / u4 Fc-1000 / b8

Conv3 = convolution with valid padding, i.e. no padding; pConv = convolution with same padding; pConv3-1-64
= 3×3 same padding convolution with stride 1 and 64 output neurons; Fc-1200 = fully-connected layer with 1200
neurons; b2 = weight unit is 2× BRAM cascade; u2 = weight unit is 2× URAM cascade.

URAM block has a capacity 8× as large as a BRAM block.
Moreover, URAM has a deep internal pipeline for data
readout and thus, it is capable of cascading multiple URAM
blocks without sacrificing its maximum clock frequency
Fmax [43]. Whereas for BRAM, its Fmax performance drops
when blocks are cascaded. Therefore, the usage of URAM is
preferred for wider layers later in the model. For our larger
models, however, up to 16 BRAM blocks had to be cascaded
due to a lack of URAM resources, which lead to a slight
drop in frequency Fmax.

The memory depth influences parameters like the num-
ber of weight units ω. Making memory blocks shallower, but
wider, increases parallelism and resources. The initial lay-
ers, where high-resolution feature maps get processed, are
instantiated with shallow memory depth and many neuron
cores. The deeper layers with lower feature resolution are
allocated deeper memory and a lower number of cores. In
an optimal setting, the data flow from the first layer to the
last layer will be seamless without any backpressure in the
pipeline. Through this setting, the DF2 IP can be adapted
to various FPGA platforms and it is able to maximize the
utilization of compute resources for maximum performance
and low power consumption.

4.2 Scalability

The first version of DeepFire [14] demonstrated its scalabil-
ity by layer-wise SLR mapping. This allows it to scale for a
deeper network. The limitation of this strategy is that layers
can no longer be mapped into a single SLR, if they have too
many parameters. As an example, the deeper layers Fc-1200
and Fc-1056 from Table 1 require more memory resources

SLR#2

SLR#1

SLR#0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Layers

SLR#2

SLR#1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Layers
(a)

(b)

One Kernel Split-Kernel

Fig. 4. The dataflow chart of VGG-11 mapping on multiple SLRs. (a)
Tiny-ImageNet, and (b) ImageNet.

than a single SLR can offer and it would not be possible
to map these layers using the original DF1. DF2 introduces
the split-kernel mapping for those heavily parameterized
layers. Therefore, DF2 can support not only deeper but also
wider networks.

The implemented VGG-11 mappings of Tiny-ImageNet
and ImageNet are shown in Figure 4 with respect to their
dataflow. A few initial layers with less weight parameters
adopt layer-wise mapping and the following heavily param-
eterized layers adapt split-kernel mapping. DF2 provides
the flexibility to carry out optimizations on a higher level
of abstraction, which is not within the scope of this paper.
While we mapped layers manually by estimating their



8

(a) (b.1) (c) (d)

#0

#1
#2

BRAM

URA
M

DS
P

#0

#1

#2

BRAM

URA

M

DS
P

#0

#1

#2

BRAM

URA

M

DS
P

#0

#1

#2

BRAM

URA

M

DS
P

#0
#1

#2

BRAM

URA

M

DS
P

(b.2)

Fig. 5. Memory and DSP utilization of DF2 in various SNN architectures. Each pie chart is equally split into three, each representing one SLR
and its resource utilization in percentage. (a) Cifar-10 on SLR#1, (b.1) Cifar-100 on SLR#1/2 with both layer-wise and split-kernel mapping, (b.2)
Cifar-199 on SLR#1/2 with layer-wise mapping only (c) Tiny-ImageNet on SLR#1/2, and (d) ImageNet on SLR#0/1/2.

(a) (b) (c) (d) (e)

DDR

AXI

NN

PCIe

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 6. The FPGA post implementation mapping of SNN on VU9P 3×
SLRs. (a) MNIST, (b) Cifar-10, (c) Cifar-100, (d) Tiny-ImageNet, and (e)
ImageNet.

required numbers of SLRs, other more optimal mapping
strategies could certainly be applied. The ultimate goal of
this mapping is

• to enable efficient distribution of FPGA resources
across multiple SLRs and avoid bottlenecks caused
by lack of memory or compute resources,

• to maximize the use of available resources in line
with overall performance goals.

The results of the Vivado post-implementation on five
different SNN architectures are shown in the Figure 6. Each
unique color represents a layer in the network. As the
network grows from Figure 6 (a) to (e), DF2 scales from
one SLR to three SLRs. In theory, it can scale to an unlimited
number of SLRs but in practice, due to the limited scale of
production, only up to four SLRs per package are available
commercially [33].

Figure 5 shows the distribution of DF2 resources with
different SNN architectures. When an SLR is assigned with
the compute intensive initial layers of the network, it will
consume a lot of DSP resources but yet, a lot of on-chip
memory will be left unused. On the other hand, the deeper
layers will deprive the SLR of all the on-chip memory
resources and leave many of the DSP resources untouched.
Regardless of the number of assigned SLRs, the flexible DF2
mapping is capable of distributing the resource utilization
for both memory and DSP evenly across multiple SLRs.

That prevents a single type of resource from capping the
performance. An additional advantage is a good power
distribution throughout the large silicon substrates. Hence,
the system is less prone to local drops in supply voltage,
making it more robust. Since all the assigned SLRs share the
resources almost equally, any localized routing congestion is
also minimized. Figure 5 (a) shows the resource utilization
of Cifar-10 and due to its small memory footprint, its im-
plementation is confined to SLR1. Cifar-100 is implemented
in SLR1 and SLR2 and (b.1) shows the equal distribution
of resources among the two SLRs when both layer-wise
and split-kernel mappings are applied. The resources are
unbalanced in two SLRs of (b.2) despite putting the best
effort in layer-wise only mapping. In that case, the URAM
resources in SLR1 are exhausted, limiting further perfor-
mance improvements. DF2 is also able to map the larger
Tiny-ImageNet and ImageNet network in two and three
SLRs efficiently, achieving almost 80% utilization in both
memory and compute resources ((c) and (d)).

4.3 System-Level Implementation
The DF2 subsystem consists of PCIe DMA, DDR memory,
AXI DMA, AXI interconnect, and a clock generator. PCIe
DMA is mainly used for the host PC to send images and
network parameters (weights and thresholds) to the FPGA
DDR, and then reads back the classification results from the
same DDR. AXI DMA is responsible for sending images
from DDR to DF2 and writing classification results from DF2
to DDR. AXI interconnects provide routing for all the AXI-
related IPs and enable clock domain crossings. The clock
generator uses the reference clock from PCIe to generate
a higher frequency clock for DF2 IPs. The post-placement
result of the subsystem is highlighted in Figure 6 (a).

4.4 Compilation Flow
The DF2 compilation flow (Figure 7) starts with the user
defined config.json file. It contains SNN network infor-
mation for TensorFlow training such as kernel size, channel
and stride information for each layer, etc. The SNN training
is performed just like CNN training using standard back-
propagation with batch normalization at every layer. This
version of DeepFire supports padding which positively
affects the classification accuracy. We start training with
a leaky ReLU activation to avoid overfitting. Later in the
training, we switch to tanh activation. We also make use of



9

Config 
(.json)

TensorFlow 
Training

Graph 
Parameters 
Extraction

RTL SNN & 
Constraints Definition Synthesis/bitstream

Incl. constraints, 
memDepth, padding, 
kernelSize, kernelSplit, 
strideSize, channelSize 

Incl. 
weights and 
threshold 

Fig. 7. Compilation flow for DF2 framework.

0.00006 [30]

kF
PS

/W 0.011 [29]
0.036 [30]

0.32 [9] 0.472 [29]
0.68 [31]

1.74 [39]

5.64 [11]

12.95 [7]
10.26

0.06 [11]
0.11

0.22 [32]

1.4 [29]

3.19 [29]
4.88 [39]

70 [30]

15.59 [30]

CPU

ASIC
FPGA
FPGA (DF2)

GPU

(a) (b)

$/
FP

S

8.15 [31]

Fig. 8. (a) MNIST image classification kFPS/watt across different hard-
ware implementation. kFPS/Watt is adjusted based on the assumption
that every halving of process node leads to 40% improvement. (b)
cost-effectiveness ($/FPS) of the MNIST implementation across various
platforms.

data augmentation. The outputs of the activation function
are binarized and a straight-through estimator is applied
for back-propagation. Finetuning the model with spike acti-
vations helps to maintain a high accuracy while using fewer
neurons.

FPGA-specific mapping information, such as kernel split
and memory depth for each layer, are used to extract the
weights and threshold parameters from the TensorFlow
graph in accordance with the data sequence the FPGA is
expecting to receive. During the extraction, 8-bit quantiza-
tion is performed. The threshold value of each neuron is
computed by folding the activation with the batch normal-
ization parameters and quantizing them with the respec-
tive scale factor from the weight quantization. The same
config.json is also used to generate the RTL wrapper
and FPGA-specific constraints for the SLR bridges and the
floor planning. We created a tcl script in the Vivado tool to
build the DF2 subsystem from the DeepFire IPs. Once the
subsystem is built, it will automatically trigger the synthesis
and finally, produce an FPGA bitstream.

4.5 Performance Comparison
A detailed performance comparison between DeepFire2 and
previous SNN hardware implementations is provided in
Table 2. The table rows are grouped by dataset. While there
have been plenty implementations for smaller datasets, like
MNIST and Cifar-10, only DF2 is able to handle Tiny-
ImageNet and ImageNet. In MNIST image classification,

DF2 produces 10.26 kFPS/W which is only 20% shy of
TrueNorth’s ASIC efficiency (see also Figure 8 (a)). At the
same time, DF2 is at least one order of magnitude more
energy efficient than other FPGA implementations [14], [34],
[35], [36], [44], and three and five orders of magnitude
superior to GPU and CPU, respectively [34], [35]. The max-
imum throughput of DF2 is 79 kFPS which almost doubles
the original DF1 design [14]. This is due to the improved
pipelining at the neuron core level and the higher DF2 clock
rate. DF2 throughput for MNIST can be much higher if we
reduce the depth of the weight units in the network and
deploy more neuron cores. DF2 Fmax is 600 MHz which is at
least 3× higher than non-DF FPGA implementations. ASICs
such as TrueNorth can achieve a relatively high throughput
at 1 kFPS. However, it falls short of our FPGA throughput.
GPUs acceleration is much superior to CPU throughput in
general, but their energy efficiency is limited by the dataflow
being bound to external DDR memory.

In addition to the frames-per-second, we report the per-
formance of the listed neuromorphic architectures in GOPS
(giga-operations per second) as a method of normalizing
the throughput metric, thus making it independent of the
processing required by a specific SNN model. Our GOPS
measurements are calculated as the product of the ANN-
equivalent number of operations per inference and the
number of inferences per second. Similarly, we evaluate the
power efficiency in GOPS per Watt.

Cost-effectiveness is an important consideration when
it comes to large-scale deployments, for example in data
centers. It is determined by normalizing the cost of the board
to the throughput in FPS. How effectively the resources of
a given device are used, i.e. the choice of compute architec-
ture and various optimization strategies, greatly influences
cost-effectiveness. In that regard, CPU is the least cost-
effective solution and FPGA-based DF1 [14] and DF2 are
the most cost-effective implementations across all hardware
platforms. Figure 8 (b) also shows examples of FPGA im-
plementations being far worse than the GPU counterpart.
The cost-effectiveness of TrueNorth and Loihi cannot be
measured because they are not commercially available.

When it comes to Cifar-10 classification, DF2 is still the
most energy efficient SNN on an FPGA. Since we trade
off the compute resources for better compute efficiency,
our throughput is slightly less than [14]. Better throughput
and energy efficiency is expected in DF2 than that of [36]
since we store all the weight and activation values on-
chip. Furthermore, DF2 spike trains are shorter, while not
sacrificing or even improving the classification accuracy.
TrueNorth is 23% better than DF2 in terms of FPS/W despite
having to bridge four chips to map the large SNN. For the
Cifar-100 dataset, TrueNorth has to bridge eight chips to
accommodate a larger SNN and it is almost on par with
DF2’s energy efficiency, which bridges only two SLRs.

DF2 demonstrates the mapping capability of a larger
SNN for Tiny-ImageNet. DF2 achieves 46.7% accuracy while
its mapping is limited to two SLRs. Despite using over 90%
of on-chip memory and DSPs across two SLRs, DF2 can
still clock at 450 MHz delivering 10.3 kFPS. DF2 also shows
its scalability across multiple SLRs without compromising
its Fmax for an ImageNet SNN, where it utilizes all three
SLRs depleting almost all the on-chip DSPs and the memory



10

TABLE 2
DeepFire (DF2) Hardware Performance Benchmark with Prior Works

Performance Resources
Dataset Ref. Param. Platform MHz Acc% kFPS GOPS kFPS/W GOPS/W #SLR kLUT BRAM URAM DSP

MNIST

[36] 413k VU13P 200 99.3 2.45 2.07 0.68 0.58

1

41 - 0 0
[34] 413k ZCU102 125 99.2 2.12 6.72 0.47 1.49 156 282 0 1794
[44] 1.1M VC707 - 98.1 0.9 0.36 1.29 0.52 - - 0 0
[35] 252k ZCU102 150 99.14 0.16 2.45 0.04 0.61 125 264.5 0 0
[37] 230k ZCU102 200 99.3 13.1 41.55 - - 48 - - 251

DF1 [14] 252k ZCU102 500 99.14 40.1 1.07e3 5.64 1.51e2 55 138.5 0 271
DF2 140k VCU118 600 99.2 79 5.43e2 10.26 70.54 8.8 30 4 132

[34] - RTX5000 1620 99.2 0.864 2.74 0.014 4.44e-2 - - - - -
[35] - i7-6700K 4000 98.9 0.004 6.12e-2 7e-5 1.07e-3 - - - - -
[45] - TrueNorth - 99.4 1.00 1.97 12.95 25.46 - - - - -
[34] - Loihi - 94.7 0.097 0.31 0.4 1.27 - - - - -

Cifar-10

[36] - VU13P 150 80.6 0.043 5.40 0.01 1.26 1 48 - 0 0
[37] 12M ZCU102 200 90.8 0.062 28.34 - - 1 - - - -

DF1 [14] 12M VCU118 425 81.8 28.3 1.21e4 0.99 4.23e2 3 386 969 385 2963
DF2 4.6M VCU118 550 87.1 23 1.04e4 1.15 5.18e2 1 125 511 80 2025

[10] - TrueNorth - 89.3 1.25 2.58e3 0.76 1.58e3 - - - - -

Cifar-100

[36] - VU13P 150 65.0 0.006 91.33 0.001 18.27 1 88 - 0 0
DF2 17.8M VCU118 500 65.9 11.6 1.55e4 0.389 5.21e2 2 183 289 452 2881

[10] - TrueNorth - 65.5 1.53 3.16e3 0.92 1.89e3 - - - - -

Tiny-Imagenet DF2 23.6M VCU118 450 46.7 10.3 1.40e4 0.270 3.67e2 2 251 1041 616 4002

ImageNet DF2 36.8M VCU118 450 40.1 1.56 2.11e4 0.033 4.47e2 3 371 1757 960 5400

resources (Figure 5 (d)). Even when operating at the limits
of the VU9P FPGA, it can maintain a high performance. But
approaching those limits does not allow the storage of all of
the VGG-11 parameters, and the ImageNet accuracy on DF2
is limited to 40%. This shows the general trade-off between
accuracy and performance when neuromorphic hardware
is compared to software implementations. But avoiding
DDR accesses for weight transfer has significant advantages
in terms of power consumption. The DF2 ImageNet per-
formance is 21 TOPS (tera-operations per second) which
about 78% of the total DSP performance and it delivers
approximately 86 images per TOPS.

Overall, DF2 is one of the most energy efficient and most
scalable SNN implementations on FPGA, and it can provide
the highest throughput among peers.

5 CONCLUSION

DeepFire2 shows significant improvements over our first
version of DeepFire [14]. The addition of split-kernel map-
ping improved the balancing of computations between SLRs
and helped deepen the pipeline. We maximize the DSP
usage to achieve a high FPS/TOPS ratio. A high clock
frequency of over 450 MHz is enabled by uniformly utilizing
all hardware resources in the device (DSP, LUTs, memory).
This is also enabled by avoiding excessive LUT-usage for
AND operations and using available registers instead. Con-
straining smaller networks to only utilize one or two SLRs
also improves power efficiency. Moreover, DF2 is the first
neuromorphic IP in literature that can deploy a full-scale
ImageNet implementation on an actual FPGA.

ACKNOWLEDGMENTS

This work was supported by the Singapore Government’s
Research, Innovation and Enterprise 2020 Plan (Advanced
Manufacturing and Engineering domain) under Grant
A1687b0033.

REFERENCES

[1] D. H. Hubel, “The brain,” Scientific American, vol. 241, no. 3, pp.
45–53, 1979.

[2] D. Drubach, The brain explained. Pearson, 2000.
[3] P. Blouw et al., “Benchmarking keyword spotting efficiency on

neuromorphic hardware,” in Proceedings of the 7th annual neuro-
inspired computational elements workshop, 2019, pp. 1–8.

[4] Z. Wang et al., “Efficient spiking neural networks with radix en-
coding,” IEEE Transactions on Neural Networks and Learning Systems,
2022.

[5] D. Gerlinghoff et al., “A resource-efficient spiking neural network
accelerator supporting emerging neural encoding,” in 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2022, pp. 92–95.

[6] C. Koch et al., Methods in neuronal modeling: from ions to networks.
MIT press, 1998.

[7] A. L. Hodgkin et al., “A quantitative description of membrane
current and its application to conduction and excitation in nerve,”
The Journal of physiology, vol. 117, no. 4, p. 500, 1952.

[8] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Trans-
actions on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[9] V. P. Nambiar et al., “0.5 v 4.8 pj/sop 0.93uw leakage/core neu-
romorphic processor with asynchronous noc and reconfigurable
lif neuron,” in 2020 IEEE Asian Solid-State Circuits Conference (A-
SSCC). IEEE, 2020, pp. 1–4.

[10] S. K. Esser et al., “Convolutional networks for fast, energy-efficient
neuromorphic computing,” Proceedings of the National Academy of
Sciences, vol. 113, no. 41, pp. 11 441–11 446, 2016.



11

[11] E. Painkras et al., “Spinnaker: A 1-w 18-core system-on-chip for
massively-parallel neural network simulation,” IEEE Journal of
Solid-State Circuits, vol. 48, no. 8, pp. 1943–1953, 2013.

[12] M. Davies et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” Ieee Micro, vol. 38, no. 1, pp. 82–99, 2018.

[13] “Taking neuromorphic computing to the next level with loihi 2,”
Intel Corporation, Tech. Rep. Technology Brief, Sep. 2021. [On-
line]. Available: https://download.intel.com/newsroom/2021/
new-technologies/neuromorphic-computing-loihi-2-brief.pdf

[14] M. T. L. Aung et al., “DeepFire: Acceleration of convolutional spik-
ing neural network on modern field programmable gate arrays,”
in 2021 31st International Conference on Field-Programmable Logic and
Applications (FPL). IEEE, 2021, pp. 28–32.

[15] A. Sengupta et al., “Going deeper in spiking neural networks: Vgg
and residual architectures,” Frontiers in neuroscience, vol. 13, p. 95,
2019.

[16] B. Han et al., “Rmp-snn: Residual membrane potential neuron
for enabling deeper high-accuracy and low-latency spiking neural
network,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 13 558–13 567.

[17] Y. Li et al., “A free lunch from ann: Towards efficient, accurate
spiking neural networks calibration,” in International Conference on
Machine Learning. PMLR, 2021, pp. 6316–6325.

[18] T. Luo et al., “Nc-net: Efficient neuromorphic computing using ag-
gregated subnets on a crossbar-based architecture with nonvolatile
memory,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 9, pp. 2957–2969, 2021.

[19] L. Yang et al., “Coreset: Hierarchical neuromorphic computing
supporting large-scale neural networks with improved resource
efficiency,” Neurocomputing, vol. 474, pp. 128–140, 2022.

[20] Innatera: Ultra low power intelligence for the sensor edge.
[Online]. Available: https://www.innatera.com/

[21] A. Valentian et al., “Fully integrated spiking neural network with
analog neurons and rram synapses,” in 2019 IEEE International
Electron Devices Meeting (IEDM). IEEE, 2019, pp. 14–3.

[22] T. Luo et al., “An fpga-based hardware emulator for neuromorphic
chip with rram,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 2, pp. 438–450, 2018.

[23] Y. Shi et al., “Fast fpga-based emulation for reram-enabled deep
neural network accelerator,” in 2021 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 2021, pp. 1–5.

[24] A. Shafiee et al., “Isaac: A convolutional neural network acceler-
ator with in-situ analog arithmetic in crossbars,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 3, pp. 14–26, 2016.

[25] C.-K. Lin et al., “Mapping spiking neural networks onto a many-
core neuromorphic architecture,” ACM SIGPLAN Notices, vol. 53,
no. 4, pp. 78–89, 2018.

[26] A. Amir et al., “Cognitive computing programming paradigm:
a corelet language for composing networks of neurosynaptic
cores,” in The 2013 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2013, pp. 1–10.

[27] L. Zhang et al., “Mamap: Congestion relieved memetic algo-
rithm based mapping method for mapping large-scale snns
onto noc-based neuromorphic hardware,” in 2020 IEEE 22nd
International Conference on High Performance Computing and Com-
munications; IEEE 18th International Conference on Smart City;
IEEE 6th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, 2020, pp. 640–647.

[28] S. Song et al., “A design flow for mapping spiking neural net-
works to many-core neuromorphic hardware,” in 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE,
2021, pp. 1–9.

[29] S. W. Moore et al., “Bluehive-a field-programable custom com-
puting machine for extreme-scale real-time neural network sim-
ulation,” in 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines. IEEE, 2012, pp. 133–
140.

[30] D. Neil et al., “Minitaur, an event-driven fpga-based spiking net-
work accelerator,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 12, pp. 2621–2628, 2014.

[31] D. Thomas et al., “Fpga accelerated simulation of biologically
plausible spiking neural networks,” in 2009 17th IEEE symposium
on field programmable custom computing machines. IEEE, 2009, pp.
45–52.

[32] D. Pani et al., “An fpga platform for real-time simulation of spiking
neuronal networks,” Frontiers in neuroscience, vol. 11, p. 90, 2017.

[33] Ultrascale architecture and product data sheet: Overview.
[Online]. Available: https://docs.xilinx.com/v/u/en-US/
ds890-ultrascale-overview

[34] H. Fang et al., “Encoding, model, and architecture: Systematic opti-
mization for spiking neural network in fpgas,” in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE,
2020, pp. 1–9.

[35] X. Ju et al., “An fpga implementation of deep spiking neural net-
works for low-power and fast classification,” Neural computation,
vol. 32, no. 1, pp. 182–204, 2020.

[36] D. Gerlinghoff et al., “E3NE: An end-to-end framework for acceler-
ating spiking neural networks with emerging neural encoding on
fpgas,” IEEE Transactions on Parallel and Distributed Systems, 2021.

[37] S. Panchapakesan et al., “Syncnn: Evaluating and accelerating
spiking neural networks on fpgas,” in 2021 31st International Con-
ference on Field-Programmable Logic and Applications (FPL). IEEE,
2021, pp. 286–293.

[38] Y. Cao et al., “Spiking deep convolutional neural networks for
energy-efficient object recognition,” International Journal of Com-
puter Vision, vol. 113, no. 1, pp. 54–66, 2015.

[39] B. Rueckauer et al., “Conversion of continuous-valued deep net-
works to efficient event-driven networks for image classification,”
Frontiers in neuroscience, vol. 11, p. 682, 2017.

[40] S. B. Shrestha et al., “Slayer: Spike layer error reassignment in
time,” Advances in neural information processing systems, vol. 31,
2018.

[41] C. Lavin et al., “Rapidwright: Enabling custom crafted implemen-
tations for fpgas,” in 2018 IEEE 26th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2018, pp. 133–140.

[42] Y. Umuroglu et al., “Finn: A framework for fast, scalable binarized
neural network inference,” in Proceedings of the 2017 ACM/SIGDA
international symposium on field-programmable gate arrays, 2017, pp.
65–74.

[43] aschule. (2021) Achieving optimal timing performance
by automatic pipelining of a uram matrix
in vivado synthesis. [Online]. Available: https:
//forums.xilinx.com/t5/Design-and-Debug-Techniques-Blog/
Achieving-optimal-timing-performance-by-automatic-pipelining-of/
ba-p/971760

[44] J. Zhang et al., “An asynchronous reconfigurable snn accelerator
with event-driven time step update,” in 2019 IEEE Asian Solid-
State Circuits Conference (A-SSCC). IEEE, 2019, pp. 213–216.

[45] S. K. Esser et al., “Backpropagation for energy-efficient neuromor-
phic computing,” Advances in neural information processing systems,
vol. 28, 2015.

Myat Thu Linn Aung received the B.Eng. and
Ph.D. degrees in electrical and electronic engi-
neering from Nanyang Technological University
(NTU), Singapore, in 2010 and 2016, respec-
tively. From 2010 to 2011, he was with VIRTUS,
IC Design Centre of Excellence, NTU, where
he was involved in the development of motion-
detection image sensors. He joined Xilinx Asia
Pacific as a product quality engineer in 2016. In
2020, he was with the Institute of High Perfor-
mance Computing in Singapore. His current re-

search involves FPGA-based acceleration for neuromorphic computing.

Daniel Gerlinghoff was awarded a master’s
degree in integrated circuit design at Nanyang
Technological University, Singapore. As part of
his dissertation, he implemented a neural net-
work inference accelerator on FPGA, which was
tightly constrained by power and logic resources.
After his graduation in 2020, he continues re-
search on FPGA-based machine learning and
its applications as a research engineer at Insti-
tute of High Performance Computing, Agency for
Science Technology and Research in Singapore.

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://www.innatera.com/
https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview
https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview
https://forums.xilinx.com/t5/Design-and-Debug-Techniques-Blog/Achieving-optimal-timing-performance-by-automatic-pipelining-of/ba-p/971760
https://forums.xilinx.com/t5/Design-and-Debug-Techniques-Blog/Achieving-optimal-timing-performance-by-automatic-pipelining-of/ba-p/971760
https://forums.xilinx.com/t5/Design-and-Debug-Techniques-Blog/Achieving-optimal-timing-performance-by-automatic-pipelining-of/ba-p/971760
https://forums.xilinx.com/t5/Design-and-Debug-Techniques-Blog/Achieving-optimal-timing-performance-by-automatic-pipelining-of/ba-p/971760


12

Chuping Qu received the B.Eng. degree (Hons.)
in electrical engineering from the National Uni-
versity of Singapore, Singapore, in 2017. He
did his university internship with Xilinx Asia Pa-
cific Pte. Ltd. for the characterization of memory
devices in FPGA. He is currently a Research
Engineer with the Institute of High Performance
Computing, Agency for Science, Technology and
Research, Singapore. His current research inter-
ests include neuromorphic computing, hardware
implementation on field-programmable gate ar-

ray and artificial intelligence.

Liwei Yang is currently a research scientist at In-
stitute of High Performance Computing (IHPC),
Agency for Science, Technology and Research
(A*STAR), Singapore. His research interests
include high-performance computing, reconfig-
urable computing, neuromorphic computing, op-
timization in EDA toolchain and compilation for
efficient AI and deep learning applications. He
received his Ph.D. degree in computer science
from Nanyang Technological University (NTU),
and both M.S. and B.S. degrees from University

of Electronic Science and Technology of China (UESTC).

Tian Huang received his BSc and Ph.D. degree
from the Shanghai Jiao Tong University, Shang-
hai, China in 2008 and 2016. He is currently
a research scientist with Institute of High Per-
formance Computing, Agency for Science Tech-
nology and Research, Singapore. His research
interest lies in high-performance computing and
machine learning algorithms.

Rick Siow Mong Goh received the Ph.D. degree
in electrical and computer engineering from the
National University of Singapore, Singapore.

He is the Director of the Computing & Intelli-
gence (CI) Department, Institute of High Perfor-
mance Computing, Agency for Science, Technol-
ogy and Research, Singapore, where he leads a
team of over 80 scientists in performing world-
leading scientific research, developing technol-
ogy to commercialization, and engaging and col-
laborating with industry. His current research in-

terests include artificial intelligence, high-performance computing, block
chain, and federated learning.

Tao Luo received his Bachelor degree in 2010
from Harbin Institute of Technology, China (HIT),
Master degree in 2013 from University of Elec-
tronic Science and Technology of China, China
(UESTC), and Ph.D. in 2018 from School of
Computer Science and Engineering of Nanyang
Technological University, Singapore (NTU).

He is currently a research scientist in Institute
of High Performance Computing (IHPC), Agency
for Science, Technology and Research, Singa-
pore (A*STAR). His current research interests

include Efficient AI, AI application, Neuromorphic Computing, High Per-
formance Computing (HPC), and Reconfigurable Computing system.

Weng-Fai Wong received the BSc degree from
the National University of Singapore, in 1988,
and the DrEngSc degree from University of
Tsukuba, Japan, in 1993. He is currently an
associate professor at the Department of Com-
puter Science, National University of Singapore.
His research interests include computer archi-
tecture, compilers, and high-performance com-
puting. He is a senior member of the IEEE.


	1 Introduction
	2 Related Work
	3 DeepFire Hardware Architecture
	3.1 Split-Kernel Mapping
	3.2 Neuron Core Design
	3.3 Feature Buffer
	3.4 Transduction Layer
	3.5 Controller

	4 Implementation
	4.1 Network Architecture
	4.2 Scalability
	4.3 System-Level Implementation
	4.4 Compilation Flow
	4.5 Performance Comparison

	5 Conclusion
	References
	Biographies
	Myat Thu Linn Aung
	Daniel Gerlinghoff
	Chuping Qu
	Liwei Yang
	Tian Huang
	Rick Siow Mong Goh
	Tao Luo
	Weng-Fai Wong


