
1

Bit-balance: Model-Hardware Co-design for
Accelerating NNs by Exploiting Bit-level Sparsity

Wenhao Sun, Zhiwei Zou, Deng Liu, Wendi Sun, Song Chen, Member, IEEE, and Yi Kang

Abstract—Bit-serial architectures can handle Neural Networks (NNs) with different weight precisions, achieving higher
resource efficiency compared with bit-parallel architectures. Besides, the weights contain abundant zero bits owing to the
fault tolerance of NNs, indicating that bit sparsity of NNs can be further exploited for performance improvement. However, the
irregular proportion of zero bits in each weight causes imbalanced workloads in the Processing Element (PE) array, which
degrades performance or induces overhead for sparse processing. Thus, this paper proposed a bit-sparsity quantization
method to maintain the bit sparsity ratio of each weight to no more than a certain value for balancing workloads, with little
accuracy loss. Then, we co-designed a sparse bit-serial architecture, called Bit-balance, to improve overall performance,
supporting weight-bit sparsity and adaptive bitwidth computation. The whole design was implemented with 65nm technology
at 1 GHz and performs at 326-, 30-, 56-, and 218-frame/s for AlexNet, VGG-16, ResNet-50, and GoogleNet respectively.
Compared with sparse bit-serial accelerator, Bitlet, Bit-balance achieves 1.8×~2.7× energy efficiency (frame/J) and
2.1×~3.7× resource efficiency (frame/mm2).

Index Terms—hardware accelerator, bit sparsity, quantization, neural network.

F

1 INTRODUCTION

Nowadays, NNs have been widely applied in numerous
domains, such as image recognition [1], [2], [3], [4], [5]
speech recognition [6], object detection [5], and computer
vision [7]. Structurally, it mainly consists of convolutional
(CONV) layers and fully connected (FC) layers; the former
conduct convolution, and the latter conduct matrix-vector
multiplication (GEMV), both of which include massive
multiplication-accumulation (MAC) operations. As higher
precision and complication demands arise, the workloads
of network computing continue to increase. Therefore,
researchers have been striving for neural network hardware
accelerators to catch up with software development.

Although NNs bring intensive computations, there exist
monotonous operations; thus, many hardware architects
attempt to reduce runtime by improving computation
parallelism. The accelerators can be classified as four
categories, bit-parallel, sparse bit-parallel, bit-serial, sparse
bit-serial. DaNN [8], Eyeriss [9], TPU [10], Tianjic [11], and
etc are typical bit-parallel accelerators, which primarily
actualizes acceleration through improving parallelism
with massive fixed-point computing units. Additionally,
since the input feature maps (IFMs) and weights contain
abundant zero elements owing to the fault tolerance of
NNs, which can be exploited to accelerate NNs by skipping
zero-elements computing. Therefore, lots of sparse bit-
parallel accelerators emerge, such as EIE [12], Cambricon-X
[13], Cnvlutin [14], SCNN [15], etc, further improving
performance and energy efficiency further. However, these
works primarily are designed for fixed-point computing,

• Wenhao Sun, Zhiwei Zou, Deng Liu, Wendi Sun, Song Chen, and Yi
Kang are affiliated with the School of Microelectronics, University of
Science and Technology of China, Hefei, Anhui, 30332 China.
E-mail: wh1997@mail.ustc.edu.cn; songch@ustc.edu.cn

without consideration of varying weight/IFM-precision for
different NNs, causing inefficient resource utilization and
energy efficiency.

To adapt to varying precisions of different NNs,
researchers attempt to design accelerators based on
bit-serial computing. Stripe [16] presented a hardware
accelerator that relied on bit-serial computing units and
quantizes IFMs to the required precision, p, in each layer,
which can provide 16/p× speedup compared with 16-bit
fixed-point baseline. Loom [17] reduced the number of both
weights and IFMs bits for bit-serial acceleration. Bit-Fusion
[18] proposed a bit-flexible accelerator to match the bitwidth
of each individual multiply-add operand, maximizing the
resource efficiency for operations of different bitwidths.
UNPN [19] designed a Lookup table(LUT)-based bit-serial
PE, achieving 23% 54% energy consumption reduction
compared with conventional fix-point MAC units. These
accelerators leverage bit-serial computing to improve
performance and energy efficiency. However, they didn’t
exploit bit sparsity, indicating there are still room for
performance improvement.

Owing to the bit sparsity of NNs, Some researchers
designed sparse bit-serial accelerators to further improve
performance. Pragmatic [20] skips the computing at the
common zero-bit position of involved IFM elements. But
the zero-bits distribution of each IFM bit sequence is
irregular, resulting in only a small propotion of truncated
zero-bits. Laconic [21] tears MAC operation into IFMs and
weights bit-serial computing and accelerates by exploiting
both IFMs and weights sparsity. However, the distribution
of zero bit in IFMs and weights can be irregular, which
causes imbalanced workload in the PE array and degrades
performance. Bit-Tactical [22] applied a weight skipping
module and an IFM-bit selection module to optimize
the layout of irregular sparse weights through front-end

ar
X

iv
:2

30
2.

00
20

1v
1

 [
cs

.A
R

]
 1

 F
eb

 2
02

3

2

scheduling, thus further avoiding the calculation of zero
weight elements and IFM bits. However, the independent
supply of IFMs between PEs makes its data cache resources
far greater than the area of computing resources, resulting
in low resource utilization. Bitlet [23] proposes the bit
interleaving philosophy to maximally exploit bit-level
sparsity, which enforces acceleration by decreasing the
number of weights involved in computing. However, the
logic corresponding to bit interleaving occupies over 40%
area of the entire PE module. Besides, the computing
units of high precision can be idle during low precision
operation, causing inefficient resource efficiency. Though
these architectures exploit bit-sparsity for acceleration, they
still suffer from imbalanced workload or huge overhead for
implementation of sparse bit-serial processing.

This paper aims to balance sparse bit-serial workloads
in the PE array while lowering the overhead of sparsity
processing. A model-hardware co-design of the sparse bit-
serial accelerator for NNs is proposed to improve system
performance and energy efficiency. Our main contributions
are as follows:

1). We proposed a systolic-array-based accelerator,
called Bit-balance, supporting sparse bit-serial processing
of weights and adaptive bitwidth computing, achieving
high performance without extra preprocessing module
by processing the sparse weights of the encoding format
directly.

2). We co-designed a bit-sparsity quantization method
to keep the sparsity ratio of each weight at a certain value
with little accuracy loss, which can balance PE loads across
the PE array and significantly improve performance.

Compared with bit-serial accelerator, Stripe [16], Bit-
balance exploit weight bit sparsity for acceleration and
achieved 4×~7.1× speedup and 3×~5.6× energy efficiency.
Besides, Compared with sparse bit-serial accelerator,
Laconic [21], we balanced the workload in the PE array
and achieved 2.2×~4.3× speedup and 2.7×~5.4× energy
efficiency. Further, compared with Bitlet [23], we lowered
the overhead of sparse processing significantly, achieving
1.8×~2.7× energy efficiency and 2.1×~3.8× resource
efficiency.

2 PRELIMINARY

Since NNs can be applied to various domains, the pre-
cisions of weights are diverse. Besides, weights of NNs
contain many abundant zero bits due to the strong fault
tolerance. Thus, there is great potential for architectures to
gain more benefits based on bit-serial computing. Although
bitwidth quantization can decrease the bit-serial computing
cycles directly, only limited bitwidth can be cut for main-
taining accuracy. Exploiting the bit sparsity of weights can
further accelerate bit-serial computing, but the PE array
suffers from imbalanced workloads. Those PE processing
weights with a small number of non-zero bits (NNZB) must
wait for those with large NNZB, which will degrade the
performance and PE utilization. Therefore, the key challenge
is to balance the sparse bit-serial computing workloads
across the PE array.

2.1 Computing Process of NN

The computing process of NNs is shown in Fig.1. A
CONV layer receives Ci input channels (ICs) of IFMs with
a size of Hi ×Wi. Each OFM of Co output channels (OCs),
with a size of Ho×Wo, is generated by sliding a Hk×Wk ker-
nel window on one IFM and then accumulating across the
temporary results of Ci ICs. Finally, Co OFMs are calculated
by convolving Co groups of kernels with shared IFMs. For
FC layers, the size of IFMs and OFMs are both 1×1. Set IFMs
as matrix I[Ci,Hi,Wi], weights as W [Co,Ci,Hk,Wk] and
OFMs as O[Co,Ho,Wo], and the process can be described
as Equ.1.

O[o, x, y] =
Ci∑
i=0

Hk∑
a=0

Hk∑
b=0

I[i, x+ a, y + b]×W [o, i, a, b]

(0 ≤ o < Co, 0 ≤ x < Ho, 0 ≤ y < Wo)

(1)

..
..
..

𝑯𝒊

𝑾𝒊

𝑪𝒊
𝑯𝒌

𝑾𝒌
𝑪𝒊

𝑪𝑶

𝑪𝑶

𝑾𝑶

𝑯𝑶

IFM Weights OFM

Fig. 1: Convolution process.

Referring to Equ.1, the basic operations of NN processing
are MACs. Assuming the bitwidth of weights is N , the MAC
of an IFM, I0, and a weight, W0, can be decomposed to shift
and add operations, as shown in Equ.2, which is flexible for
varying bitwidth.

I0 ×W0 =
N∑
i=0

I0 ×W0[i]× 2i (2)

2.2 Challenges of Sparse bit-serial computing

To accelerate bit-serial processing, quantizing the weight
to lower bitwidth is the most straightforward method. If the
weight is quantized from N -bit to Npb-bit, we can achieve
N/Npb× speedup. An example of bit-serial computing with
quantized weight is shown in Fig.2, achieving 1.3× perfor-
mance improvement. However, assuming the value of N -bit
weight is 2N , it can be decreased to 2Npb when the bitwidth
is tailored to Npb. To maintain the accuracy, the reduction of
bitwidth can be limited, which constrains the performance
improvement.

To further improve performance, the bit sparsity of
weights can be exploited for acceleration by skipping zero-
bits computing. Assuming the NNZB in each weight is Nnzb

with the largest value being Nnzb_max, weights are com-
pressed and loaded in PE array, with Nnzb_max computing
cycles. An example of bit-serial computing by exploiting
sparsity is shown in Fig.3(a), achieving 1.6× performance.
However, since the sparsity ratio of weights is randomly
distributed, the workloads across the PE array is imbal-
anced. The PEs with small NNZB must wait for those
with large NNZB to finish. Thus, PE1 will be idle for 2

3

cycles, indicating inefficient PE utilization. Moreover, once
the Nnzb_max is equal to original weight bitwidth, there can
be no performance improvement.

PE0

𝑵 = 𝟖,𝑻𝒄𝒎𝒑 = 𝟖𝑻

Load

Binary Weights PE Array

0 1 1 0 1 1 0 1

0 0 1 0 0 1 0 1
Load PE1

(a)

𝑾𝟎

𝑾𝟏

PE0

𝑵𝒑𝒃 = 𝟔,𝑻𝒄𝒎𝒑 = 𝟔𝑻

Load

Binary Weights PE Array

0 1 1 0 1 1

0 0 1 0 0 1
Load

PE1

(b)

𝑾𝟎
′

𝑾𝟏
′

Fig. 2: Bit-serial computing with original weights and
quantized weights in the PE array. (a)Original weights.
(b)Quantized weights.

PE06 5 3 2 0

2 05

Position of NZ Bits

𝑵𝒏𝒛𝒃_𝒎𝒂𝒙 = 𝟓,𝑻𝒄𝒎𝒑 = 𝟓𝑻

Encode Load

Binary Weights PE Array

0 1 1 0 1 1 0 1

0 0 1 0 0 1 0 1
Encode Load PE1

PE06 5 3 2

1 05 2

Position of NZ Bits

𝑵𝒏𝒛𝒃_𝒎𝒂𝒙 = 𝟒,𝑻𝒄𝒎𝒑 = 𝟒𝑻

Encode Load

PE Array

0 1 1 0 1 1 0 0

0 0 1 0 0 1 1 1
Encode Load

PE1

(a)

(b)

Binary Weights

𝑾𝟎

𝑾𝟏

𝑾𝟎

𝑾𝟏

𝑵𝒏𝒛𝒃 = 𝟓

𝑵𝒏𝒛𝒃 = 𝟑

𝑵𝒏𝒛𝒃 = 𝟒

𝑵𝒏𝒛𝒃 = 𝟒

Fig. 3: Sparse bit-serial computing with imbalanced and
balanced workloads of non-zero (NZ) weight bits in the PE
array. (a)Imbalanced workloads. (b)Balanced workloads.

Although there are some previous works of bit-serial
computing acceleration, such as Stripe [16], Laconic [21] and
Bitlet [23], they all suffer from performance degradation or
inefficient resource efficiency owing to imbalanced work-
loads. Thus, in this work, we aim to balance the workloads
of sparse weight bits in the PE array.

3 METHODOLOGY

To deal with the imbalanced workloads in the PE array,
we quantize the weights based on bit sparsity and maintain
the NNZB in each weight to no more than a certain value,
achieving significant improvement of PE utilization and
performance. To fit with bit-serial computing, we store the
weights in encoding format, which can be used directly for
shift-add operation.

3.1 Bit-Sparsity Quantization
Since NNs have the nature of strong fault tolerance, the

weights allow redundant bits. However, quantizing weights
to lower bitwidths directly will significantly decrease the

numeric range of weight value and exploiting the ran-
domly distributed bit sparsity of weights will suffer from
imbalance workloads. Thus, to maintain the numeric range
of weight value and balance computing loads across the
PE array, we proposed a bit-sparsity quantization method,
which set several weight bits as zero and maintain the
maximum NNZB, Nnzb_max, in each weight to no more than
a certain value. Assuming the bitwidth of original weight is
N , its numeric range can be calculated as

∑Nnzb_max

i=0

(N
i

)
.

Compared with quantizing the weights to Npb-bit directly,
the numeric range of weight value in our method is more
abundant, as shown in Tab.1. The case of Nnzb_max = 3 in
bit-sparsity quantization can be competitive with Npb = 9
in bitwidth quantization.

Compared with exploiting the randomly distributed bit
sparsity of weights, the performance based on our quantiza-
tion method is higher owing to the more balanced workload
of sparse weight bits across the PE array. An example of
the computing flows toward bit-sparsity quantization is
shown in Fig.2(b). The NNZB in W0 and W1 are both four,
eliminating the idle PEs. Therefore, we obtained the total
computing time of 4Tw with 1.25× speedup compared with
the imbalanced workload case.

The specific flow of bit-sparsity quantization is shown
in Fig.4. First, we set an initial maximum NNZB of
weights, Nnzb_max. Then, for weights with NNZB larger
than Nnzb_max, we set the less significant none-zero bits as
zero and maintain the total NNZB to Nnzb_max. Next, the
previously quantized weights were retrained and testified if
the accuracy dropped out of boundary. If not, we continued
to decrease Nnzb_max and train the weights; otherwise, we
saved the final quantized weights and recorded Nnzb_max.
Fig.5 shows a quantization example of two 8-bit weights,
W0 and W1. We set the NNZB in each weight to less than
4. Although the distribution of zero bits is irregular, the
workloads of each weight are balanced, thereby achieving
8/4 = 2× speedup.

Start

Set the maximum NNZB

Prune the low NZ bits
in each weight End

Y

N Accuracy of loss out
of tolerance

Save quantized weights
and XXXXX

𝑵𝒏𝒛𝒃_𝒎𝒂𝒙

Y

Retrain and infer

NNZB of each
weight larger than

 -1

𝑵𝒏𝒛𝒃_𝒎𝒂𝒙

𝑵𝒏𝒛𝒃_𝒎𝒂𝒙

N

𝑵𝒏𝒛𝒃_𝒎𝒂𝒙

Fig. 4: The flow of bit-sparsity quantization.

0 0 1 0 1 0 0 1

1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0

Bit-sparsity

Quantization

Original Weights Quantized Weights

𝑾𝟎

𝑾𝟏 𝑾𝟏
′

𝑾𝟎
′

Fig. 5: Example of bit-sparsity quantization.

4

TABLE 1: Numeric Range Comparison of Weight Values

Bitwidth
Quantization

Npb 13 12 11 10 9 8 7 6 5 4 3
2Npb 8192 4096 2048 1024 512 256 128 64 32 16 8

Bit-sparisty
Quantization

(Nnzb_max,N) (13,16) (12,16) (11,16) (10,16) (9,16) (8,16) (7,16) (6,16) (5,16) (4,16) (3,16)∑Nnzb_max
i=0

(N
i

)
65339 64839 63019 58651 50643 39203 26333 14893 6885 2517 697

3.2 Sparse Bit-serial Processing
To reduce the overhead of sparsity processing, the weights

are encoded with length, sign, bit position, and bitmap,
as shown in Fig.6. The length, Nnzb_max, represents the
maximum NNZB of all weights, which only needs to be
stored once for all weights in the current layer. The sign,
Ws, indicates the positivity or negativity of one weight. The
bit position, Wp, determines how many bits IFM should
shift. The bitmap, Wb, indicates whether the bit position is
valid or not since the NNZB of some weights is smaller than
Nnzb_max.

Position

Bit_length

1'b0

2

4

3

5

6

4'b1111

Sign

Bitmap

0 1 1 0 1 1 0 0

Original Weight

Encoded Format

Fig. 6: Encoding format of weights.

10 20-14 10

𝑰𝟎 𝑾𝟎 𝑰𝟏 𝑾𝟏

× ×+

60

𝐏𝐬𝐮𝐦

10 -1

𝑾𝒔𝟎 𝑾𝒃𝟎

𝑾𝒑𝟎

20

3 +

𝑰𝟎

1

20 1

𝑾𝒔𝟏 𝑾𝒃𝟏 𝑰𝟏

𝑾𝒑𝟏

× ×

<< <<

𝐏𝐬𝐮𝐦

1'b1

1
2
3

3'b111

𝑾𝟎

1'b0

1
3
0

3'b011

𝑾𝟏

3

1

1

1

1

0

2 1 1 3 0

𝑾𝒑

𝑾𝒔

𝑾𝒃

𝑵𝒏𝒛𝒃_𝒎𝒂𝒙

𝑻𝟎

𝑻𝟏

𝑻𝟐

𝑻𝟎 𝑻𝟏 𝑻𝟐 𝑻𝟎 𝑻𝟏 𝑻𝟐

140

60 𝑻𝟐

𝑻𝟏

𝑻𝟎

(a) (b)

(c)

Fig. 7: An example of sparse bit-serial computing.
(a)Original bit-parallel computing. (b)Encoded Weights.
(c)Process of sparse bit-serial computing.

Fig.7 shows an example of sparse bit-serial comput-
ing. Fig.7(a) shows the original MAC operation, Psum =
I0 ∗ W0 + I1 ∗ W1. Fig.7(b) shows the encoding format of
two weights, with the maximum NNZB, Nnzb_max = 3.
The computing flow is shown in Fig.7(c). At T0, we fetch

Wp0 = 1, Wp1 = 1, and then I0 and I1 both shift left 1-
bit, calculating Psum = 20. Similarly, at T1, the Psum is
calculated as 140. Since the last bitmap of Wb1 is zero, the
operation of Wp1 is invalid and the final result is 60. The
entire process takes 3 cycles, which is 2.67× faster than 8
cycles of the original process.

4 BIT-BALANCE ARCHITECTURE

To achieve high speedup and energy efficiency at low
hardware cost, we chose the systolic array [24] as the
mainstay for high bandwidth saving and simplified inter-
PE connection. To further reduce the overhead of sparse pro-
cessing, the weights were encoded at software level, without
introducing the corresponding preprocessing module. The
control of sparse bit-serial computing is mastered by top
controller based on the maximum NNZB. Thus, the PEs in
our architecture only requires the shift-add units. The design
of the overall architecture aims to balance the workloads of
sparse weight bits at a low hardware cost, collaborating with
bit-sparsity quantization.

…
…

…
…

IFM&Weight Psum

Ctrl Signal DRAM Data

T
o

p
 C

o
n

tro
lle

r

Output

Buffer

DMA

I&W

Buffer
PE PE PE PE

I&W

Buffer

I&W

Buffer

Post-pro

Module

Post-pro

Module

Post-pro

Module

Post-pro

Module

Output

Buffer

Output

Buffer

Output

Buffer

PE PE PE PE

PE PE PE PE

…
…

I&W

Buffer
PE PE PE PE

…… ……

DRAM

……

Fig. 8: Top-level architecture.

4.1 Overview
As shown in Fig.8, the top-level architecture mainly con-

sists of input-weight buffers (I&W buffer), a systolic-based
PE array, post-processing modules (Post-pro module), out-
put buffers, a top controller, and a DMA interface. Initially,
the weights in encoding format and control parameters were
generated at software level. These data and input images
were directly loaded into DRAMs. Next, the IFMs and
weights were fetched by I&W buffers and then transferred
to the PE array. After massive bit-serial operations by PEs,
post-pro modules take in the outputs to perform ReLU and
pooling for final OFMs, which were buffered in the output
buffers temporarily. Finally, the OFMs of the current layer

5

were stored to DRAMs for the next layer computing. We
executed layer-wise, and the OFMs of the last layer were
classified to output the final results. The top controller
mastered the entire computing flow and the on/off-chip
data were transported through the DMA interface.

4.2 Systolic-based PE Array
The systolic-based PE array, in charge of bit-serial com-

puting, is composed of NPE × NPE PEs, among which
PEs of the same row share IFMs of one IC, and PEs of
the same column process OFMs of one OC. Each PE con-
tains a complement processing unit, a shift unit, and an
accumulation unit, as shown in Fig.9. First, the sign of
weight, Ws, chose the complement or the original value
of the IFM. Then, the temporary result was shifted left
based on the weight-bit position, Wp. Finally, the shifted
result was accumulated with adjacent PE. To reduce power
consumption, the complement processing unit and shift unit
are gated when the weight bitmap, Wb, is zero. Moreover,
to adapt to different bitwidths of IFMs and weights, we
merged the 8-bit operation with 16-bit operation for higher
resource utilization. The 16-bit IFMs with the corresponding
32-bit temporary results can be divided as two pairs of 8-
bit IFMs and 16-bit temporary results, achieving 2× peak
throughput in 8-bit operation compared with the 16-bit.

8b-add 8b-add

8b-shift 16b-shift

Mux

not

𝒅[𝟏𝟓:𝟎]

𝒅′ [𝟏𝟓:𝟖] 𝒅′ [𝟕:𝟎]

𝒅′ ′ [𝟏𝟓:𝟎]

𝟏′𝒃𝟏 𝒃𝒊𝒕_𝒔𝒆𝒍

𝟏′𝒃𝟏

𝒅[𝟏𝟓:𝟎]

Split

Concat

16b-add 16b-add

𝒅[𝟏𝟓:𝟎]

𝒅′ [𝟑𝟏:𝟎]

𝟏′𝒃𝟎 𝒃𝒊𝒕_𝒔𝒆𝒍

Split

Concat

𝒅[𝟑𝟏:𝟎]
𝒅[𝟑𝟏:𝟏𝟔]

𝒑
[𝟏
𝟓
:𝟎
]

𝒑
[𝟑
𝟏
:𝟏
𝟔
]

Split
𝒅[𝟏𝟓:𝟖]

SplitConcat

𝒅
𝟏
𝟔

′
[𝟑
𝟏
:𝟎
]

𝒅𝟖
′ [𝟏𝟓:𝟎]

𝒅𝟖
′ [𝟑𝟏:𝟎]

𝒅𝟏𝟔
′ [𝟏𝟓:𝟎]

𝒅′ ′ [𝟑𝟏:𝟎]

Mux

Mux

Complement
Processing

Unit

Shift Unit

Accumulate
 Unit

𝑾𝒃

𝑾𝒔

𝒃𝒊𝒕_𝒔𝒆𝒍

𝒃𝒊𝒕_𝒔𝒆𝒍

𝑷𝒔𝒖𝒎𝒊𝒏

𝑷𝒔𝒖𝒎𝒐𝒖𝒕

𝒅𝒂𝒕𝒂𝒊𝒏

𝟎

𝒃𝒊𝒕_𝒔𝒆𝒍

𝑾𝒑

𝑊𝒑

𝒃𝒊𝒕_𝒔𝒆𝒍

M
u

x

M
u

x

Fig. 9: PE unit.

4.3 On-chip Buffer
To reduce energy consumption of the on/off-chip data

movement, we need to buffer IFMs, weights, and OFMs
for data reusing. Thus, the on-chip buffers mainly consist
of I&W buffers and output buffers. To avoid performance
bottleneck of data loading, we utilized each group of two
memories as Ping-Pong buffers, one for DRAM access and
the other for PE transporting, which is similar with other
systolic-array based accelerators [25]. To support adaptive
bitwidth computing, the bitwidths of I&W buffers and
output buffers are both 16-bit, which can store one 16-
bit IFM/OFM or two 8-bit IFMs/OFMs per address. For
weights in encoding format, we store 16 weight signs, 16
weight bitmaps, 4 weight positions of 16-bit precision, or 5
weight positions of 8-bit precision per address.

5 DATAFLOW OF SPARSE BIT-SERIAL PROCESS-
ING

To reduce the energy consumption of DRAM access, we
applied a dataflow to enhance data reusing with limited on-
chip buffer resources. Since Bit-balance is a systolic-array-
based accelerator, we merge the sparse bit-serial comput-
ing with systolic dataflow [25]. Furthermore, a mapping
algorithm was designed to map various networks on our
architecture, based on provided network parameters.

5.1 Data Partition

For limited on-chip buffer resources and PE array size,
we need to partition IFMs and weights into independent
sub-tiles in terms of edge size and input/output channel,
referring to the tiling method [25]. Considering the resources
of Psum storage, the size of IFM sub-tiles is set no larger
than WIS × HIS , and the sizes of IFM tiles on the width
and height dimension are TWI and THI , respectively. For
limited PE array size, we only process NPE input and
output channels concurrently, with tiling numbers of TIC

and TOC . The specific tiling parameters are shown in Tab.2.
After data partition, each tile of IFMs and weights can be
processed with sparse bit-serial computing independently.

TABLE 2: Parameters of Data Partition

Parameter Explanation Formula
NPE PE array size -
NIC # of input channel -
NOC # of output channel -
WK Width of a kernel -
HK Height of a kernel -
WI Width of a IFM -
HI Height of a IFM -
WIS Width of a IFM tile -
HIS Height of a IFM tile -
TIC Tiling # of input channel NIC/NPE

TOC Tiling # of input channel NOC/NPE

TWI Tiling # of IFM width WI/WIS

THI Tiling # of IFM height HI/HIS

5.2 Mapping Algorithm

Considering dataflow and partition of IFM and weight, to
map various networks on Bit-balancing, we designed a net-
work mapping algorithm. The computing flow description
is shown in Tab.3. The 1st and 4th rows decide the dataflow
according to Adaptive Dataflow Configuration [25]. For
"reuse IFM first (RIF)", we finish the OFM computing of all
OCs for one output tile before switching to the next output
tile; otherwise, for "reuse weight first (RWF)", we finish
computing of all output tiles for one OC before switching to
the next OC. The 2nd and 3rd rows describe the partition of
IFM, with a row number of Tofm_row and column number
of Tofm_col. The 5th row drives the accumulation of input
channels to obtain the final Psums. The 6th and 7th rows
represent the element number of one tile of IFM and one
kernel. The 8th row indicates the maximum NNZB of the
weights, where Nnzb_max is loaded as a parameter because
the weights from training are fixed. The 9th row indicates
that the PE is performing the sparse bit-serial computing
with IFM and the weight bit position.

6

TABLE 3: Computing Flow

Input: parameters of architecture configuration; IFMs; weights;
Output: OFMs

Noting: When RIF, TOC_RWF = 1, TOC_RIF = Toc; otherwise,
TOC_RWF = Toc, TOC_RIF = 1
1 for(a = 0; a < TOC_RWF ; a = a+ 1)
2 for(b = 0; b < TWI ; b = b+ 1)
3 for(c = 0; c < THI ; c = c+ 1)
4 for(d = 0; f < TOC_RIF ; d = d+ 1)
5 for(e = 0; e < TIC ; e = e+ 1)
6 for(f = 0; f < WK ×HK ; f = f + 1)
7 for(g = 0; g < WK ×HK ; g = g + 1)
8 for(h = 0;h < Nnzb_max;h = h+ 1)
9 Psum+ = INZ × 2Wp

6 EXPERIMENTS

6.1 Implementation

Bit-balance Implementation: To measure the area, power,
and critical path delay, we implemented Bit-balance
in Verilog and conducted a functional simulation on
Cadence Xcelium 2019.2. Then, the Verilog code was
synthesized with Synopsys Design Compiler (DC). The
on-chip SRAM buffers are generated by Memory Compiler.
The on-chip power is calculated by Synopsys Prime Suite
2020.09 with the Switching Activity Interface Format(SAIF)
file generated from testbench. The reports of resource
utilization and power breakdown are shown in Tab.4.

The size of the PE array is 32 × 32, achieving a peak
throughput of 1024GOP/s and 2048GOP/s for 16b
and 8b shift-add operations respectively. The IFMs and
weights are both encoded in 16 bits or 8bit, and their
Psum are correspondingly truncated to 32 bits and 16 bits
respectively. Since the PEs are implemented with shift-add
units, the area of computing core (CC), containing PE array,
post processing module, and controller, is only 2.91mm2.
To balance the data reuse efficiency and resource overhead,
we set the IFM tiling unit as 8 × 8. Each I&W buffer
contains two 1K × 16b and two 256× 16b single-port static
random-access memories (SRAMs); each output buffer
and post processing module contain two 64 × 16b single-
port Register Files (RFs) and one 64 × 16b dual-port RF,
respectively. Thus, the total on-chip memories are 176KB.
The power consumption mainly comes from the computing
core, taking up 85% power of full chip.

TABLE 4: Resource and Power Proportion

Module Area
(mm2)

16b-Power
(mW)

8b-Power
(mW)

I&W Buffer 1.81(36.3%) 90(11%) 86(10%)
PE array 2.34(46.9%) 582(71%) 609(71%)

Post-pro Buffer 0.49(9.8%) 82(10%) 95(11%)
Output buffer 0.27(5.4%) 41(5%) 42(5%)

Controller 0.08(1.6%) 25(3%) 25(3%)
Computing core 2.91(58.3%) 689(84%) 729(85%)

Total 4.99 820 857

To verify the superiority of Bit-balance, we set some base-
line accelerators as shown in Tab.5. The brief descriptions of
each accelerator are presented as below:

1) Eyeriss [9] is a typical bit-parallel accelerator based
on the 16-bit fixed-point MAC, without considering the

sparsity of IFMs or weights. By comparison, Bit-balance
achieves better performance through exploiting weight bit
sparsity and higher energy efficiency by replacing MAC
units with shift-add units.

2) Cambricon-X [13] accelerates NNs by skipping zero-
weight elements computing. However, the whole architec-
ture is designed for accelerating NNs of 16-bit precision,
resulting in inefficient resource utilization in lower-bit oper-
ation. By comparison, Bit-Balance achieves higher resource
efficiency through bit-serial computing.

3) Stripe [16] allows per-layer selection of precision in-
stead of fixed-point values, which improves performance
proportionally with the bitwidth of IFMs based on bit-serial
computing. But it only truncates the bitwidth while ignoring
the bit sparsity of IFMs. By comparison, Bit-Balance achieves
higher performance by skipping the zero bits of weights.

4) Laconic [21] tears MAC operation into IFMs and
weights bit-serial computing and achieves great speedup
by exploiting both IFM and weight sparsity. However, the
distribution of zero bits in IFMs and weights can be irregu-
lar, which causes imbalanced workload in the PE array and
degrades performance. By comparison, Bit-Balance achieves
higher performance through bit-sparsity quantization.

5) Bitlets [23] proposes a bit interleaving philosophy to
maximally exploit bit-level sparsity, which enforces the ac-
celeration by decreasing the number of weights involved
in computing. However, the logic corresponding to the bit-
interleaving occupies 40% area of the entire PE module.
Besides, the computing units for the high-bit can be idle
during low-bit operation, causing inefficient resource effi-
ciency. By comparison, we achieved higher energy efficiency
and resource efficiency with model-hardware co-design and
adaptive bitwidth computing.

As for benchmarks, we conducted inference on AlexNet
[1], VGG-16 [2], ResNet-50 [4], GoogleNet [3], Yolo-v3 [5]
and compared our design with each baseline. The first four
NNs are testified on ImageNet [1] and Yolo-v3 is testified on
CoCo [26].

6.2 Performance

To show the advantages of sparse processing methods
in Bit-balance, we compared our design against Eyeriss
[9], Cambricon-X [13], Stripe [16], Laconic [21], and Bitlets
[23] on normalized performance, achieving 1.6×~8.6×,
1.1×~2.4×, 4×~7.1×, 2.2×~4.3×, and 1.1×~1.9× speedup,
respectively, as shown in Fig.10. In AlexNet, VGG-16,
ResNet-50, GoogleNet, and Yolo-v3, we set the maximum
NNZB, Nnzb_max, as 3~4 in 16-bit precision and 4~5 in 8-
bit precision, respectively, as shown in Tab.6. The columns
of Top 1 and Top 5 accuracy show the inference accuracy of
each NN and its corresponding accuracy loss in the brackets,
which is referred to the training structures of Pytorch [27].
The performance is calculated by the ratio of frequency
and total cycles of inference computing, achieving 4×~8×
speedup compared with the basic bit-serial computing of
16-bit precision. Though the accuracy of 16-bit precision is
higher than the 8-bit and its maximum NNZB is also smaller,
the peak throughput of the 8-bit is twofold, resulting in
higher performance naturally. The normalized performance,
Rp, is calculated by the ratio of our performance and other

7

TABLE 5: Overall Comparison of Each Accelerator

Accelerator Technology
(nm) # of PEs Area

(mm2)
Frequency

(MHz)
Peak Throughput

(GOP/s)
Power
(mW) Classification

Eyeriss [9]
JSSCC-2017 65nm 168 12.25@full chip 200 33.6@16b MAC 278@AlexNet

234@VGG-16 Bit Parallel

Cambricon-X [13]
MICRO-2016 65nm 16 6.38@full chip 1000 256@16b MAC 278 Sparse

Bit Parallel
Stripe [16]
CAL-2017 65nm 4096 122.1@full chip 980 64225@16b shift-add - Bit Serial

Laconic [21]
ISCA-2019 65nm 512 4.1@CC 1000 8192@1b shift-add - Sparse

Bit Serial
Bitlet [23]

MICRO-2021 65nm 32 5.80@CC 1000 768@24b shift-add 1390@16b
1199@ 8b

Sparse
Bit Serial

Bit-balance 65nm 1024 4.99@full chip
2.91@CC 1000 1024@16b shift-add

2048@8b shift-add
820@16b
857@ 8b

Sparse
Bit Serial

TABLE 6: IFM and Weight Sparsity Ratios and Accuracy Loss of Each NN

NN Types
16-bit Precision 8bit-precision

Nnzb_max
Performance

(frame/s)
Top-1

Accuracy(%)
Top-5

Accuracy(%) Nnzb_max
Performance

(frame/s)
Top-1

Accuracy(%)
Top-5

Accuracy(%)
AlexNet 3 270.5 55.6(-0.9) 78.8(-0.3) 5 326.2 55.6(-0.9) 78.8(-0.3)
VGG-16 3 20.4 70.8(-0.8) 89.9(-0.5) 4 30.1 71.2(-0.4) 90.1(-0.3)

GoogleNet 4 136.2 69.1(-0.7) 89.3(-0.3) 5 218.4 69.1(-0.7) 89.3(-0.3)
ResNet-50 3 46.8 75.2(-0.9) 92.4(-0.5) 5 56.3 74.9(-1.2) 92.4(-0.5)

Yolo-v3 3 10.9 61.9(-0.7) - 4 16.4 60.3(-2.3) -

accelerators. Since Cambricon-X, Stripe, and Laconic didn’t
provide their performance in the paper, the normalized
performance is calculated based on the comparison with
Bitlet and Eyeriss in our benchmarks.

Compared with bit-parallel architectures, we leveraged
bit-serial computing instead of 16-bit MAC unit. For Eyeriss,
since it has been taped out, we assume the frequency of
Eyeriss can reach to 1GHz for a fair comparison (Eyeriss-
S in Fig.10). Though we consumed multiple cycles for one
MAC operation in a PE, our PE array size is larger than
Eyeriss. Besides, the execution time of one MAC can be
shrunk to Nnzb_max cycles by skipping zero bits. In the best
case, we managed to achieve 30.1/(3.5) = 8.6× speedup
with 8-bit precision at VGG-16. For Cambricon-X, it exploits
the weight element sparsity to accelerate computing. How-
ever, the sparsity of weights engaged in each PE can be
imbalanced, causing performance degradation. Considering
both sparsity exploiting and PE array size, we can achieve
1.1×~2.4× performance improvement.

Compared with bit-serial architectures, we accelerate the
NNs cooperated with bit-sparsity quantization. We only
quantized the NNZB instead of the bitwidth in Strip. There-
fore, our quantization method can accommodate wider nu-
meric range of weight values and the NNZB in Bit-balance
is smaller than the bitwidth in Stripe. Thus, we obtained
4×~7.1× speedup. Comparing with Laconic, we balanced
the workloads across PE array by constraining the NNZB
to a certain value. Though Laconic exploits sparsity of both
IFMs and weights, its computing time is determined by the
longest non-zero bit sequence, causing performance degra-
dation once there exists a very long bit sequence involved
in computing. Thus, we obtained 2.2×~4.3× performance
improvement through load-balancing. For Bitlet, its perfor-
mance improved by the bit-interleaving is similar with our
method at the 16-bit precision. But we applied the adaptive
datawidth computing for higher performance in low-bit
operation, while in Bitlet, some computing units remain

idle. In the best case, we obtained 56.3/29 = 1.9× speedup
in 8-bit precision at ResNet-50.

0

2

4

6

8

10

AlexNet VGG-16 ResNet-50 GoogleNet Yolo-v3

N
o

rm
a
liz

e
d

P

e
rf

o
rm

a
n

c
e

Eyeriss-S Stripe Laconic Cambricon-X

Bitlet Bit-balance@16b Bit-balance@8b

Fig. 10: Performance comparison with Eyeriss, Cambricon-
X, Stripe, Laconic, and Bitlets.

6.3 Energy Efficiency and Resource Efficiency

Since the processing methods of each accelerator are
different, it’s essential to explore whether the benefits
outperform the incurred overhead. We compared the
energy efficiency and resource efficiency of Bit-balance with
Eyeriss [9], Cambricon-X [13], Stripe [16], Laconic [21], and
Bitlet [23], achieving 2.7×~11.3×, 1.3×~2.8×, 3×~5.6×,
2.7×~5.4×, and 1.8×~2.7× energy efficiency improvement,
respectively, as shown in Fig.11, and achieving 3.9×~21×,
1.6×~3.9×, 1.7×~3×, 3.2×~6.3×, and 2.1×~3.8× resource
efficiency improvement, respectively, as shown in Fig.12.
The energy efficiency is calculated as Rnp/Rp, where Rnp

and Rp represent the ratio of Bit-balance and other baselines
in normalized performance and power, respectively. For
resource efficiency, the ratio of power, Rp, is replaced
with the ratio of area, Ra, in the expression of energy
efficiency. Since the PE array size of Stripe has been scaled
for computing normalized performance, the expression,
Rnp/Ra should multiply the ratio of peak performance,
Rpp, representing the throughput per area.

Compared with fixed-point architectures, the MAC units

8

consume more area and power than add-shift units in
Bit-balance. For Eyeriss, the PE consists of a MAC unit
and some memories, where the MAC unit only accounts
for 9% of total area and power, indicating that Eyeriss
consumes much more resources and energy for one MAC
operation than that in Bit-balance. Noting that we scale
the frequency of Eyeriss to 1GHz, the power should be
scaled up by 5× while the area remains unchanged. In
the best case, we achieve 8.6/(857/(236 × 5)) = 13.4×
energy efficiency and 8.6/(4.99/12.25) = 21× resource
efficiency improvement in 8-bit precision at VGG-16. For
Cambricon-X, it introduces the indexing module for sparse
weights processing, accounting for 31% of the total area and
34% of the total power. However, the processing of sparse
weights in Bit-balance are similar with dense bit-serial
computing, inducing little overhead. Thus, we achieve
1.3×~2.8× energy efficiency and 1.6×~3.9× resource
efficiency improvement.

0

3

6

9

12

15

AlexNet VGG-16 ResNe-t50 GoogleNet Yolo-v3

N
o

rm
a
liz

e
d

E
n
e
rg

y
 E

ff
ic

ie
n
c
y

Eyeriss-S Stripe Laconic Cambricon-X

Bitlet Bit-balance@16b Bit-balance@8b

Fig. 11: Energy efficiency comparison with Eyeriss,
Cambricon-X, Stripe, Laconic, and Bitlets.

0

3

6

9

12

15

18

21

AlexNet VGG-16 ResNet-50 GoogleNet Yolo-v3

N
o

rm
a

liz
e

d
R

e
s
o

u
rc

e
 E

ff
ic

ie
n

c
y

Eyeriss Stripe Laconic Cambricon-X

Bitlet Bit-balance@16b Bit-balance@8b

Fig. 12: Resource efficiency comparison with Eyeriss,
Cambricon-X, Stripe, Laconic, and Bitlets.

Compared with bit-serial architectures, the overhead
of sparse computing in Bit-balance is smaller. For Stripe,
it merged 16 shift-add units to one module, simplifying
the intermediate steps, while the shift-add operations
are performed individually in each PE of Bit-balance for
sparse processing. Besides, since the PE array size scales by
square while the memory scales linearly, the larger PE array
size is, the less proportion memory accounts for. Thus, it
consumes (64225/1024)/(122.5/4.99) = 2.5× less resource
than Bit-balance for one add-shift operation. Combining the
overhead with performance, we achieve 3×~5.6× energy
efficiency and 1.7×~3× resource efficiency improvement.
For Laconic, its PE unit decomposed the MAC into 16
pairs of IFM-bit and weight-bit operations. Though it can
exploit the sparsity of both IFM and weight bit, many

logic units are incurred for processing the intermediate
results, resulting in 4.1/2.91 = 1.4× computing core area
overhead compared with Bit-balance. Therefore, we achieve
2.7×~5.4× energy efficiency and 3.2×~6.3× resource
efficiency improvement. For Bitlet, its computing process
consists of three steps: preprocessing, dynamic exponent
matching and bit distillation. Each step is implemented
in the corresponding modules, introducing 45% area and
69% power overhead. However, the preprocessing of
weights in Bit-balance is executed offline, inducing no
logic overhead. And the process of skipping zero bits is
mastered by the top controller module, without inducing
sparse processing logic into PEs. Thus, in the best case,
we achieve 1.9/(857/1199) = 2.7× energy efficiency and
1.9/(2.91/5.80) = 3.8× resource efficiency improvement in
8-bit precision at ResNet-50.

0

2

4

6

8

10

0

10

20

30

40

50

60

70

80

16 6 5 4 3 2

P
o

te
n

ti
a

l
S

p
e

e
d

u
p

T
o

p
-1

 A
c
c
u

ra
c
y

AlexNet VGG-16 ResNet-50

GoogleNet Yolo-v3 All NNs

Fig. 13: Potential Speedup and accuracy loss with different
Nnzb_max in 16-bit precision.

0

2

4

6

8

10

12

20

30

40

50

60

70

80

8 7 6 5 4 3

P
o

te
n
ti
a

l
S

p
e
e

d
u

p

T
o

p
-1

 A
c
c
u

ra
n

c
y

AlexNet VGG-16 ResNet-50

GoogleNet Yolo-v3 All NNs

Fig. 14: Potential speedup and accuracy loss with different
Nnzb_max in 8-bit precision.

6.4 Sensitivity to Sparsity
With higher sparsity of weight bits comes higher per-

formance, under the sacrifice of accuracy. To explore the
influence of weight-bit sparsity on performance and accu-
racy, we trained several groups of weights with different
maximum NNZBs, as shown in Fig.13 and Fig.14. The top-
1 accuracy of float 32-bit precision in AlexNet, VGG-16,
ResNet-50, GoogleNet, and Yolo-v3 are 56.5%, 71.6%, 76.1%,
69.8%, and 62.6%, respectively referring to Pytorch [27]. For
16-bit precision, the accuracy loss of each NN without bit-
sparsity quantization is only 0~0.2%. Then, we quantized
the maximum NNZB to 2~6, achieving 2.67×~8× speedup.
In the stage of Nnzb_max = 6~4, the accuracy of all NNs
remains stable, with only 0.1%~1.0% loss. At the point of

9

Nnzb_max = 3, the accuracy of GoogleNet drops about 3.7%.
When Nnzb_max = 2, the accuracy of all NNs precipitously
drops. Thus, we chose Nnzb_max = 3 or 4 for 16-bit precision
in our work.

The phenomenon in 8-bit precision is similar with the 16-
bit precision. The 8-bit precision accuracy loss of each NN
without bit-sparsity quantization is 0.2%~2.1%. In the stage
of Nnzb_max = 7~5, the accuracy holds steady. At the point
of Nnzb_max = 4, the accuracy of AlexNet, ResNet-50, and
GoogleNet drops about 1.9%~2.8%. When Nnzb_max = 3,
the accuracy of all NNs precipitously degrades. Thus, we
chose Nnzb_max = 4 or 5 for 8-bit precision computing.

Though the performance improvement of 8-bit precision
is higher than the 16-bit in Bit-balance owing to the adaptive
bitwidth computing, there still exits some NNs of specific
domains that are more suitable for 16-bit precision to main-
tain accuracy. For example, the accuracy of Yolo-v3 with
16-bit precision is 2% higher than that of 8-bit precision
on average, which is a significant accuracy improvement
for NNs. Thus, adaptive bitwidth is essential for sparse bit-
serial computing in NN acceleration.

6.5 Comparison with Basic Bit-serial Architecture

Since Bit-balance processes the weights with encoding
format, it induces storage overhead and increases power
consumption of DRAM access compared with original
weights. To illustrate the benefit of sparse processing in
Bit-balance, we compared the energy efficiency of the
whole system with basic bit-serial architecture (Bit-balance
without sparse processing). The power of DRAM access
is estimated with CACTI [28] by the total DRAM access
counts and runtime. Based on the dataflow in Section.V,
though we consume 1×~1.4× power for 1×~2.4× DRAM
access as shown in Fig.15 and Fig.16, the energy efficiency
of Bit-balance is still 1.14×~5.3× higher than basic
bit-serial architecture owing to 1.6×~5.3× performance
improvement as shown in Fig.17.

0

0.5

1

1.5

AlexNet VGG-16 ResNet-50 GoogleNet Yolo-v3

N
or

m
al

iz
ed

D
R

AM
 A

cc
es

s

(a)

Bit balance@16b Basic@16b

0
0.5

1
1.5

2
2.5

AlexNet VGG-16 ResNet-50 GoogleNet Yolo-v3

N
or

m
al

iz
ed

D
R

AM
 A

cc
es

s

(b)

Bit balance@8b Basic@8b

Fig. 15: DRAM access comparison with basic bit-serial ar-
chitecture. (a)16-bit precision. (b)8-bit precision.

For 16-bit precision, the storage per weight of encoding
format with Nnzb_max = 3 is 16-bit, which allocates 1 bit
for sign, 3 bits for bitmap, and 3 × 4 bits for weight-bit

position. In the case of Nnzb_max = 4, the storage per weight
is 1 + 4+ 4× 4 = 21-bit. Since the encoding format induces
1×~1.3× weight storage overhead compared with origi-
nal 16-bit weight, the DRAM access increases 1×~1.23×.
Thus, Bit-balance consumes 1×~1.07× power. Owing to
4×~5.3× performance, the energy efficiency of Bit-balance
is 3.73×~5.3× higher than basic bit-serial architecture.

For 8-bit precision, the storage per weight with
Nnzb_max = 4 and Nnzb_max = 5 are 17-bit and 21-bit
respectively, inducing 2.1×~2.6× weight storage overhead
compared with origianl 8-bit weight. Thus, Bit-balance con-
sumes 1.12×~1.41× power for 1.4×~2.4× DRAM access.
Owing to 1.6×~2× performance, the energy efficiency of
Bit-balance is 1.14×~1.79× higher than basic bit-serial ar-
chitecture.

0

0.5

1

1.5

AlexNet VGG-16 ResNet-50 GoogleNet Yolo-v3

N
or

m
al

iz
ed

Po
w

er

(a)

Bit balance@16b Basic@16b

0

0.5

1

1.5

AlexNet VGG-16 ResNet-50 GoogleNet Yolo-v3

N
or

m
al

iz
ed

Po
w

er

(b)

Bit balance@8b Basic@8b

Fig. 16: Power comparison with basic bit-serial architecture.
(a)16-bit precision. (b)8-bit precision.

0
1
2
3
4
5
6

AlexNet VGG-16 ResNet-50 GoogleNet Yolo-v3

N
or

m
al

iz
ed

En
er

gy
 E

ffi
ci

en
cy

(a)

Bit balance@16b Basic@16b

0

0.5

1

1.5

2

AlexNet VGG-16 ResNet-50 GoogleNet Yolo-v3

N
or

m
al

iz
ed

En
er

gy
 E

ffi
ci

en
cy

(b)

Bit balance@8b Basic@8b

Fig. 17: Energy efficiency comparison with basic bit-serial
architecture. (a)16-bit precision. (b)8-bit precision.

7 CONCLUSION

This paper proposed a sparse bit-serial accelerator, called
Bit-balance, for sparse weight bit processing, achieving
significant performance improvement with low hardware
cost. Meanwhile, we co-designed a bit-sparsity quantization
method to maintain the maximum NNZB of weights to no
more than a certain value with little accuracy loss, which can

10

effectively balance the workloads of sparse weight bits in the
PE array. Furthermore, to support adaptive bitwidth com-
puting, we merged the 8-bit precision with 16-bit precision
operation for higher resource efficiency. Compared with the
previous sparse accelerators, Bit-balance can achieve better
performance and energy efficiency with smaller area.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” Commun.
ACM, vol. 60, no. 6, p. 84–90, may 2017. [Online]. Available:
https://doi.org/10.1145/3065386

[2] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2015.

[3] C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1–9.

[4] K. He, X. Zhang, S. Ren et al., “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2016, pp. 770–778.

[5] J. Redmon, S. Divvala, R. Girshick et al., “You only look once:
Unified, real-time object detection,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[6] T. N. Sainath, O. Vinyals, A. Senior et al., “Convolutional, long
short-term memory, fully connected deep neural networks,” in
2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2015, pp. 4580–4584.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev et al., “Caffe:
Convolutional architecture for fast feature embedding,” in
Proceedings of the 22nd ACM International Conference on
Multimedia, ser. MM ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 675–678. [Online]. Available:
https://doi.org/10.1145/2647868.2654889

[8] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “Dadiannao: A machine-learning
supercomputer,” in 2014 47th Annual IEEE/ACM International Sym-
posium on Microarchitecture, 2014, pp. 609–622.

[9] Y.-H. Chen, T. Krishna, J. S. Emer et al., “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp.
127–138, 2017.

[10] N. P. Jouppi, C. Young, N. Patil et al., “In-datacenter performance
analysis of a tensor processing unit,” in 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA),
2017, pp. 1–12.

[11] L. Deng, G. Wang, G. Li et al., “Tianjic: A unified and scalable chip
bridging spike-based and continuous neural computation,” IEEE
Journal of Solid-State Circuits, vol. 55, no. 8, pp. 2228–2246, 2020.

[12] S. Han, X. Liu, H. Mao et al., “Eie: Efficient inference engine on
compressed deep neural network,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), 2016, pp.
243–254.

[13] S. Zhang, Z. Du, L. Zhang et al., “Cambricon-x: An accelerator
for sparse neural networks,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2016, pp. 1–
12.

[14] J. Albericio, P. Judd, T. Hetherington et al., “Cnvlutin: Ineffectual-
neuron-free deep neural network computing,” in 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture
(ISCA), 2016, pp. 1–13.

[15] A. Parashar, M. Rhu, A. Mukkara et al., “Scnn: An accelerator
for compressed-sparse convolutional neural networks,” in 2017
ACM/IEEE 44th Annual International Symposium on Computer Archi-
tecture (ISCA), 2017, pp. 27–40.

[16] P. Judd, J. Albericio, and A. Moshovos, “Stripes: Bit-serial deep
neural network computing,” IEEE Computer Architecture Letters,
vol. 16, no. 1, pp. 80–83, 2017.

[17] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos,
“Loom: Exploiting weight and activation precisions to accelerate
convolutional neural networks,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), 2018, pp. 1–6.

[18] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra,
and H. Esmaeilzadeh, “Bit fusion: Bit-level dynamically com-
posable architecture for accelerating deep neural network,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), 2018, pp. 764–775.

[19] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “Unpu:
An energy-efficient deep neural network accelerator with fully
variable weight bit precision,” IEEE Journal of Solid-State Circuits,
vol. 54, no. 1, pp. 173–185, 2019.

[20] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov,
and A. Moshovos, “Bit-pragmatic deep neural network comput-
ing,” in 2017 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2017, pp. 382–394.

[21] S. Sharify, A. D. Lascorz, M. Mahmoud, M. Nikolic, K. Siu, D. M.
Stuart, Z. Poulos, and A. Moshovos, “Laconic deep learning in-
ference acceleration,” in 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA), 2019, pp. 304–317.

[22] A. Delmas Lascorz, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud,
S. Sharify, M. Nikolic, K. Siu, and A. Moshovos, “Bit-tactical:
A software/hardware approach to exploiting value and bit
sparsity in neural networks,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 749–763.
[Online]. Available: https://doi.org/10.1145/3297858.3304041

[23] H. Lu, L. Chang, C. Li, Z. Zhu, S. Lu, Y. Liu, and
M. Zhang, “Distilling bit-level sparsity parallelism for general
purpose deep learning acceleration,” in MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 963–976. [Online]. Available:
https://doi.org/10.1145/3466752.3480123

[24] Kung, “Why systolic architectures?” Computer, vol. 15, no. 1, pp.
37–46, 1982.

[25] W. Sun, “Sense: Model hardware co-design for accelerating sparse
cnn on systolic array,” https://arxiv.org/abs/2202.00389.

[26] “Coco dataset,” https://cocodataset.org/#download.
[27] M. Paganini, “Pruning tutorial,” https://pytorch.org/tutorials/

intermediate/pruning_tutorial.html.
[28] R. Balasubramonian, A. B. Kahng, N. Muralimanohar et al., “Cacti

7: New tools for interconnect exploration in innovative off-chip
memories,” ACM Trans. Archit. Code Optim., vol. 14, no. 2, jun
2017. [Online]. Available: https://doi.org/10.1145/3085572

https://doi.org/10.1145/3065386
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/3297858.3304041
https://doi.org/10.1145/3466752.3480123
https://arxiv.org/abs/2202.00389
https://cocodataset.org/#download
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html
https://doi.org/10.1145/3085572

	1 Introduction
	2 Preliminary
	2.1 Computing Process of NN
	2.2 Challenges of Sparse bit-serial computing

	3 Methodology
	3.1 Bit-Sparsity Quantization
	3.2 Sparse Bit-serial Processing

	4 Bit-balance Architecture
	4.1 Overview
	4.2 Systolic-based PE Array
	4.3 On-chip Buffer

	5 Dataflow of Sparse Bit-serial Processing
	5.1 Data Partition
	5.2 Mapping Algorithm

	6 Experiments
	6.1 Implementation
	6.2 Performance
	6.3 Energy Efficiency and Resource Efficiency
	6.4 Sensitivity to Sparsity
	6.5 Comparison with Basic Bit-serial Architecture

	7 Conclusion
	References

