
1

Game-based Adaptive FLOPs and Partition Point
Decision Mechanism with Latency and

Energy-Efficient Tradeoff for Edge Intelligence
Xin Niu, Yajing Huang, Zhiwei Wang, Chen Yu, Member, IEEE, and Hai Jin, Fellow, IEEE

Abstract—As the product of the combination of edge com-
puting and artificial intelligence, edge intelligence (EI) not only
solves the problem of insufficient computing capacity of the end
device, but also can provide users with various types of intel-
ligent services. However, offline and online model partitioning
methods respectively have problems of poor adaptability to the
real computing environment and delayed feedback. In addition,
previous work on optimizing energy consumption through model
partitioning often ignores the latency of intelligent services.
Similarly, the energy consumption of end devices and edge servers
is usually not considered when optimizing latency. Therefore, we
propose game-based adaptive floating-point operations and par-
tition point decision mechanism (GAFPD) to efficiently find the
optimal partition point that reduces latency and improves energy
efficiency simultaneously in a dynamically changing computing
environment. Numerous simulation experiments and robot-based
EI system experiments show that GAFPD can simultaneously
reduce the latency of intelligent services and improve the energy
efficiency of edge devices, while exhibiting strong adaptability to
bandwidth changes.

Index Terms—Edge intelligence, model partitioning, latency
and energy consumption optimization, dynamically changing
computing environment.

I. INTRODUCTION

W ITH the boom of artificial intelligence (AI) applica-
tions and services, deep neural network (DNN) [1],

as a typical technology with the prominent superiority in
deep learning, has been widely applied in various intelligent
services, including smart healthcare [2], object detection [3],
autonomous driving [4] and so on. At the same time, the rapid
development of mobile computing is driving the popularity of
end devices, the International Data Center (IDC) predicts that
billions of end devices will be connected to the Internet and
generate hundreds of millions of bytes of data at the edge of
the network by 2025 [5]. Driven by AI and mobile computing,
there is an urgent need to push AI to the network edge, so
as to make the best use of data at the network edge and
explore the computing potential of edge devices (end devices
and edge servers). As an emerging computing paradigm that
sinks resources and services to the edge of the network,
edge computing [6] is undoubtedly a good choice. Under

This work was supported by NSFC under Grant 62272179. Xin Niu,
Zhiwei Wang, Yajing Huang, Chen Yu, and Hai Jin are with the Na-
tional Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Big Data Technology
and System Lab, Cluster and Grid Computing Lab, School of Computer
Science and Technology, Huazhong University of Science and Technology,
Wuhan, 430074, Hubei, China. E-mails: {xinniu, hjy777, wangzw, yuchen
and hjin}@hust.edu.cn

EdgeDevice

WAN(4G,5G,WiFi)

(a) Traditional pipeline for model partitioning.

EdgeDevice

WAN(4G,5G,WiFi)

Latency

Energy

Consumption

Nash

equilibrium FLOPs

Output data size

Nash
equilibrium degree

Different FLOPs

Model

partitioning

(b) GAFPD pipeline for model partitioning.

Fig. 1. Comparison between traditional and GAFPD pipeline for model
partitioning. The traditional model partitioning only optimizes latency or
energy consumption. GAFPD first obtain Nash equilibrium FLOPs with
respect to latency and energy consumption. Then combine the output data size,
Nash equilibrium degree and FLOPs of partition points to build a regression
model. Finally, GAFPD determines the optimal partition point with latency
and energy consumption tradeoff.

this tendency, the combination of AI and edge computing is
inevitable, which has also led to a new cross-research, namely
edge intelligence (EI) [7].

With the popularity and application of DNNs, more and
more intelligent services are provided through DNNs in EI.
Furthermore, the end device usually offloads computing tasks
to the edge server. However, compared with cloud centers, the
limited computing resources of edge servers are difficult to
satisfy the demands of massive computing tasks represented by
DNNs. With the improvement of the computing capacity of the
end equipment [8], partitioning the DNN model and offloading
part of the computing task to the edge server is a proven
solution (Fig. 1(a)). In the process of providing intelligent
services, latency is an important factor affecting quality of
service (QoS) [9]. Among numerous intelligent services, most
of them are latency-sensitive, such as autonomous driving,
object detection and so on. Therefore, latency optimization of
intelligent services in EI is very important. In addition, one of
the obvious drawbacks of the end device is that its energy
is limited [10]. In order to be able to provide sustainable
and high-quality intelligent services, the energy consumption
optimization in EI cannot be ignored.

Studies have shown that partitioning the DNN model by lay-
er can reduce latency or energy consumption [11]. Of course,

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

2

the selection of partition points is critical when partitioning the
DNN model. The existing partition point selection methods
are mainly classified into two categories: offline optimization
[12]–[15] and online learning [16]–[19]. The offline opti-
mization [12]–[15] approaches treat the selection of partition
points as a static global optimization problem, aiming to
find the optimal or near-optimal partition point. However, the
computing environment where EI provides intelligent services
is changing dynamically, offline optimization approaches may
be ineffective because they are highly complex and cannot
make timely decisions. Although it is possible to obtain the
optimal partition point through online learning [16]–[19], it
takes a period of time for them to learn to get the optimal
partition point. In addition, the reduction of latency and the
improvement of energy efficiency typically come at the ex-
pense of the energy consumption of edge devices and QoS for
intelligent services, respectively. Therefore, how to efficiently
find the optimal partition point that can reduce latency and
improve energy efficiency at same time in a dynamically
changing computing environment is currently a key issue in
EI that needs to be addressed.

In order to conquer the above challenges, we propose game-
based adaptive floating-point operations (FLOPs) and partition
point decision mechanism (GAFPD), which consists of game-
based adaptive FLOPs decision mechanism (GAFDM) and
partition point decision mechanism (PDM). As shown in Fig.
1(b), we demonstrate how GAFPD operates. Firstly, GAFDM
obtains the minimum latency and lowest energy consumption
of edge devices to complete the computing task at the cur-
rent moment, along with the corresponding partition points.
Moreover, estimate the latency of edge server to complete
the computing task offloaded by the end device. Secondly,
estimate the latency and energy consumption of the end device
to complete the computing task alone. On this basis, gain the
ability of model partitioning to reduce latency and improve
energy efficiency. Thirdly, obtain the Nash equilibrium FLOPs
with respect to latency and energy consumption. Finally,
combine the output data size, Nash equilibrium degree and
FLOPs of partition points, PDM constructs a regression model
and selects the optimal partition point that reduces latency
and improves energy efficiency simultaneously. The main
contributions of this paper are as follows:

• Research on DNN models: We allocate the DNN models
to the end device by layer, analyzing the relationship
among latency, energy consumption, FLOPs allocated to
the end device, and output data size of each partition
point. We find that allocating reasonable FLOPs to the
end device can reduce latency and improve energy ef-
ficiency simultaneously. Furthermore, the impact of the
output data size of each partition point on latency and
energy consumption cannot be ignored.

• GAFDM: Based on the relationship among latency, ener-
gy consumption, and FLOPs allocated to the end device,
the GAFDM determines the Nash equilibrium FLOPs
allocated to the end device through the game with respect
to latency and energy consumption.

• PDM: Considering the impact of the output data size

of partition points on latency and energy consumption,
combined with Nash equilibrium degree and FLOPs of
partition points, we design the PDM to select the optimal
partition point that achieve the tradeoff between latency
and energy consumption.

• GAFPD for theoretical feasibility and simulation effi-
ciency: Theoretical analysis and numerous performance
evaluations show that GAFPD not only theoretically
computationally feasible, but also can reduce latency and
improve energy efficiency simultaneously.

The reminder of this paper is organized as follows. In
Section II, we discuss related work briefly. Section III shows
the system model, research on DNN model, problem formula-
tion, and solution in detail, and Section IV gives a detailed
description of GAFPD. In Section V, we present various
performance evaluation and Section VI draws the conclusion.

II. RELATED WORK

Recently, academia and industry pay more attention to EI.
However, while benefiting various fields, there are key issues
in EI that need to be addressed, such as latency optimization
[15], [17], [20], [21] and energy consumption optimization
[13], [16], [22]. Then, we will discuss and analyze the latency
and energy consumption optimization in detail.

As an important research direction to improve QoS in
EI, latency optimization has attracted the attention of many
researchers. While model compression [23], [24] and model
early exit [18], [25] can accelerate the DNN inference, these
methods result in a loss of accuracy and are not suitable for
intelligent services with high accuracy. Therefore, the model
partitioning that has no effect on accuracy is a good choice. To
address poor real-time performance as well as low quality of
user experience in EI, Li et al. [26] proposed the device-edge
collaborative inference framework—Edgent, which combined
model partitioning and right sizing. The experimental results
demonstrated that Edgent can achieve low-latency services in
enabling on-demand EI. Xue et al. [27] proposed a DNN
inference acceleration offloading scheme based on model par-
titioning, which optimized the inference latency and reduces
the computing pressure on the end device. Meanwhile, Ren et
al. [28] proposed an efficient model partitioning method based
on deep reinforcement learning, which made the best use of
the effective resources of edge devices to efficiently complete
computing tasks under the premise of ensuring accuracy. In
order to facilitate the partition of DNN models, Lin et al.
[21] proposed to convert the DNN model into graph, and then
heuristically assigned partitioned sub-models to available pro-
cessors. Experimental results demonstrated that the proposed
mechanism can achieve the lowest latency compared to other
state-of-the-art mechanisms.

The energy consumption optimization is also a key issue in
the sustainable development of EI [29], [30]. Considering that
the end device is constrained by the limited computing capabil-
ity, Zeng et al. [31] designed the CoEdge, which utilized avail-
able computation resources of edge devices and partitioned
the DNN model. Furthermore, the CoEdge achieved at least
25.5% energy savings. While optimizing the network structure

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

3

of DNNs can reduce energy consumption [32], it inevitably
resulted in a decline in the overall performance of DNNs. In
order to ensure the performance of DNNs, Xue et al. [33]
combined model partitioning and computing offloading to de-
sign a low-energy-efficient strategy, which was a good solution
to the problem that low-battery capacity end devices cannot
support efficient DNNs inference. Ghasemi et al. [34] proposed
a framework for edge servers collaborate with end devices to
provide intelligent services, which employed Markov decision
process to determine which device completes the computing
task at each layer of a DNN model. The framework not only
met the demand of latency of intelligent services, but also
effectively reduced system energy consumption. Aiming at the
complex problems of computing task offloading, collaborative
computing, and resource allocation in EI, Tan et al. [35]
formulated a non-convex mixed integer optimization problem
and used reinforcement learning to solve it, which minimized
the energy consumption of the computing task.

A careful investigation of the above works finds that they
have the following limitations: (1) many researches, e.g.,
[18], [24], [27], [28], [32]–[34], have the problem of delayed
feedback in optimizing latency or energy consumption. These
methods may be ineffective when dealing with real-world
systems with real-time connectivity and dynamically changing
computing environments, because they are not able to make
optimal or near-optimal decisions in a timely manner. (2)
various existing researches, e.g., [18], [24], [27], [28], the
energy consumption of edge devices is often ignored when
optimizing latency. Similarly, [32]–[34], latency is not noticed
during energy consumption optimization. Aiming at the above
problems, we propose the GAFPD that is capable of efficiently
selecting the optimal partitioning point in dynamically chang-
ing computing environments to reduce latency and improve
energy efficiency simultaneously.

III. SYSTEM MODEL, RESEARCH ON DNN MODELS,
PROBLEM FORMULATION AND SOLUTION

A. System model
In the EI, the edge server S is placed alongside a base

station. Within the coverage of cellular network, S federates
m end devices U = {u1, u2, ..., um} to provide intelligent
services to users, where one end device corresponds to one
user. Due to different intelligent services adopt different DNN
models, the FLOPs that edge devices need to complete are
different. For a DNN model with n layers L = {l1, l2, ..., ln},
there are n + 1 partition points N = {0, 1, 2,, n}. We use
D = {d1, d2, ..., dn} to denote the output data size of each
layer of the DNN model. For each lk ∈ L(1 ≤ k ≤ n),
it outputs the data of size dk. When partitioning the DNN
model, any partition point s ∈ N(0 < s < n) partitions the
DNN model into two parts, where ui complete the computing
tasks from layer 1 to s and the result of layer s is transmitted
to S, which completes the computing tasks from layer s + 1
to n. In particular, s = 0 indicates that the computing tasks
are completely completed by S and s = n indicates that the
computing tasks are completely completed by ui.

After partitioning the DNN model, the energy consump-
tion to complete the computing task consists of three main

TABLE I
MAIN NOTATIONS

Notation Meaning
S The edge server.
L The set of DNNs model layers.
lk The k-th layer of the DNNs model.
N The set of partition points.
s The partition point.
D The set of output data size.

dk, Fk The output data size and FLOPs of lk .
U The set of end devices.
m,n The number of end devices and layers.
ς The effective switching capacitance.

fui , f
S
i The computing resource of ui and S.

FT , FE
The FLOPs allocated to ui when latency and energy
consumption are lowest.

α, β
The ability of model partitioning to reduce latency and
improve energy efficiency.

Pi, R
t
i The transmission power and transmission rate of ui.

B, hi, N0 The channel bandwidth, channel gain, and noise power.

Eu
i , E

t
i

The energy consumption of ui to complete computing task
and transmit data.

ES
i

The inference energy consumption of S to complete com-
puting task offloaded by ui.

Ti The latency of computing task allocated to ui.
tui , t

S
i The inference latency of ui and S.

tti The transmission latency of ui.

xk, yk
The boolean indicator of whether the computing task of
lk is allocated to ui and S.

Cu
i ,CS

i
The number of computing resources consumed by ui and
S to complete one FLOP.

H The case that the computing task cannot be completed.

hT , hE

The latency-optimal and energy consumption-optimal
FLOPs that allocated to the end device when the com-
puting task cannot be completed.

sT , sE
The partition points with satisfactory latency and energy
consumption.

zT , zE

The mapping functions that determine the FLOPs that
allocated to the end device with satisfactory latency and
energy consumption.

q(s)
The partition function that determines the FLOPs allocated
to the player.

fs The Nash equilibrium degree of the partition point s.

P f
i

The regression model of ui evaluates the fitness of the
partition point.

components: the inference energy consumption Eui of ui, the
transmission energy consumption Eti of ui, and the inference
energy consumption ESi of S. Generally, the unit of energy
consumption is Joule (J). When ui complete the computing
task, we use fui to denote the computing resources (i.e., the
number of clock cycles per second of the CPU or GPU) that
the end device can provide. The energy consumption per unit
of computing resources is ς(fui)2, where ς is the effective
switching capacitance depending on the chip architecture [36].
And the unit of ς is Farad (F). Fk is the FLOPs of layer
k, and the number of computing resources consumed by ui
to complete one FLOP is Cui . Then the inference energy
consumption of ui is

Eui =

s∑
k=1

FkC
u
i ς(f

u
i)

2 (1)

In this paper, we utilize orthogonal frequency division mul-
tiple access (OFDMA) to enable the communication among
edge devices [37]. There are a total of m end devices, and

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

4

input conv relu norm pool conv relu norm pool conv relu conv relu conv relu pool drop fc relu drop fc relu fc
0

40

80

120

160

200

L
at
en
cy
(m
s)

Partition point

Server processing latency

Data transmission latency

Client processing latency

AlexNet Latency

Best

latency

0.0

0.5

1.0

1.5

F
L
O
P
s(
×
1
0
9
)

(a) Latency and FLOPs breakdown.

input conv relu norm pool conv relu norm pool conv relu conv relu conv relu pool drop fc relu drop fc relu fc
0.00

0.02

0.04

0.06

0.08

0.10

E
n
er
g
y
(J
)

Partition Point

Data Transmission Energy

Mobile Processing Energy

AlexNet Energy Consumption

Best

erengy

0.0

0.5

1.0

1.5

F
L
O
P
s(
×
1
0
9
)

(b) Energy consumption and FLOPs breakdown.

Fig. 2. Latency, energy consumption and FLOPs of AlexNet at different partition points.

OFDMA divides the total bandwidth B into m orthogonal
sub-channels of size B/m. When U = {u1, u2, ..., um} com-
municates with S, S allocates the m sub-channels borrowed
from the base station to U = {u1, u2, ..., um}. For the
computing task that ui offloads to S, we use Pi and hi to
respectively denote the transmission power and channel gain
of ui communicating with S. Due to the interference among
different sub-channels [36], then the transmission rate is

Rti = Blog2(1 +
Pihi

N0 +
∑
uj∈U\{ui} Pjhj

) (2)

where N0 is the background noise power. The units of B, Pi,
N0, and Rti respectively are Hertz (Hz), Watt (W), W, and
bit/s (bps).

According to equation (2), the transmission energy con-
sumption Eti is

Eti = Pidk/R
t
i (3)

where dk denotes the output data size of lk.
For the edge server S, the computing resource it can

provides is fSi , and the computing resource consumed by S
to complete one FLOP is CSi . Then its energy consumption
to complete the offloaded computing task is

ESi =

n∑
k=s+1

FkC
S
i ς(f

S
i)

2
(4)

Here, we focus on the energy consumed by ui, including
Eui and Eti . We can obtain the energy consumption of ui

Ei = Eui + Eti (5)

Similarly, the latency of edge devices to complete the
computing task consists of three main components: the in-
ference latency of ui, the transmission latency, and the in-
ference latency of S. The inference latency of ui and S to
complete the computing task at the lk layer respectively are
tui,k = Fk/(C

u
i f

u
i) and tSi,k = Fk/(C

S
i f

S
i). Furthermore, the

computing resources owned by ui and S determine the infer-
ence latency. The output data size of lk is dk. If the partition
point is s = k, then the transmission latency is tti,k = dk/R

t
i .

Therefore, the latency to complete the computing task is

Ti =

n∑
k=1

xkt
u
i,k + (1− xk)tSi,k + ykt

t
i,k (6)

where xk, yk ∈ {0, 1}. When the computing task of lk is
completed by the end device, xk = 1, otherwise, xk = 0.
If s 6 k, we have yk = 0, otherwise yk = 1.

B. Research on DNN models

Here, taking AlexNet [38] as an example, we allocate
AlexNet to the end device by layer. Then, we analyze the rela-
tionship among latency, energy consumption, and the FLOPs
allocated to the end device. About the edge devices, we select
the NUC with 2.80GHz 8× 11th Gen Intel(R) Core(TM) i7-
1165G7 as the end device1, and we use the device equipped
with the 32G NVIDIA TESLA V100 as the edge server
platform. The edge devices use the AlexNet to perform image
classification over CIFAR-10 [39].

Latency and energy consumption characteristics of DNN
models by layer—As shown in Fig. 2, each histogram in
Fig. 2(a) and Fig. 2(b) respectively represents the latency and
the energy consumption of end-to-edge when partitioning the
AlexNet at different layer. In Fig. 2, the leftmost and rightmost
histograms respectively represent the scenarios where the
edge server and the end device complete the computing task
alone. For convenience, we abbreviate them as Edge-only and
End-only. Furthermore, we also use broken line to represent
the FLOPs allocated to the end device in Fig. 2. With the
amount of FLOPs allocated to the end device increases, the
inference latency of the end device is gradually increasing.
Meanwhile, the energy consumption of the end device is also
gradually increasing. The latency and the energy consumption
of transmitting data are different when the partition points
are different, the main reason is that the output data size of
AlexNet varies at different partition points. Therefore, if you
want to optimize latency and energy consumption, you need
to allocate appropriate FLOPs to the end device. Besides, you
also should consider the output data size at each partition
point, because it determines the transmission latency and
energy consumption.

Key observations— (1) The latency and the energy con-
sumption of transmitting data respectively are the primary
factors determining overall latency and energy consumption;
(2) Although the edge server has significant computing ad-
vantages compared to the end device, the impact of data
transmission results in the End-only sometimes having lower
latency and higher energy consumption than Edge-only; (3)
The appropriate FLOPs allocated to the end device can reduce
latency and improve energy efficiency of edge devices.

1https://www.intel.com/content/www/us/en/products/docs/boards-
kits/nuc/edge-compute.html

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

5

C. Problem formulation

The edge devices want to provide low latency intelligent
services to users with as little energy consumption as possible
in EI, but the partition points with minimum latency and lowest
energy consumption sometimes are different [11]. Therefore,
how to obtain the optimal partition point that can reduce
latency and improve energy efficiency at the same time is the
key problem that needs to be solved at present. Considering
that latency and energy consumption are determined by the
FLOPs allocated to the end device and the output data size of
the partition point. Therefore, we will obtain the optimal par-
tition point that simultaneously reduces latency and improves
energy efficiency in the following two steps. Firstly, we find
the FLOPs allocated to the end device where the latency and
energy consumption reach Nash equilibrium. According to the
obtained Nash equilibrium FLOPs, we can obtain the Nash
equilibrium degree of each partition point. Secondly, combined
with the output data size, Nash equilibrium degree, and FLOPs
of partition points, we establish the regression model and
select the optimal partition point that reduces latency and
improves energy efficiency at same time.

In order to get the Nash equilibrium FLOPs, we define
the following problem. Firstly, we define a convex, closed
complete subset X on R2, where (sT , sE) denotes the pair
of partition points with satisfactory latency and energy con-
sumption. When sT = sE , it means that the partition points
with satisfactory latency and lowest energy consumption are
the same, and we add (sT , sE) to X . Moreover, we use H to
denote the case that the computing task cannot be completed,
at this point, the partition points with satisfactory latency and
lowest energy consumption are different. Suppose that for any
point X ∪ {H}, there are two mapping functions zT and zE
that determine the FLOPs allocated to the end device, whose
corresponding sets are defined as

Z = {(zT , zE) : z(s) = FT , z(s) = FE , s ∈ X} (7)
for the H , we have h = (zT (H), zE(H)) = (0, 0).

When selecting the partition point, it is assumed that the
user is rational, that is, the Nash equilibrium FLOPs can be
found. Then, the problem we are going to solve is able to
defined as follows:

Definition 1: Bargaining problem. If (Z, h) satisfies the
following properties: (1) h ∈ Z; (2) for any (FT , FE) in Z,
there is always FT ≥ hT , FE ≥ hE ; (3) Z is convex, bounded,
and closed. Then (Z, h) is a bargaining problem.

According to Definition 1, find the FLOPs allocated to the
end device where the latency and energy consumption satis-
factory is a bargaining problem. Nash proposed and proved
that every bargaining problem (Z, h) has a corresponding
bargaining solution F ∗ = (F ∗T , F

∗
E) [40] and satisfies the

following conditions [41],
arg

0≤α,β≤1
max (FT − h1)α(FE − h2)β (8)

where (FT , FE) ∈ R2, (FT , FE) ≥ (h1, h2), α and β respec-
tively denote the ability of model partitioning to reduce latency
and improve energy efficiency.

For the ability of model partitioning to reduce latency α,
α = 0 when the minimum latency Ti of model partitioning is

greater than the latency Tia in which the end device completes
the computing task alone. Otherwise, we assign the ratio of Ti
to Tia to α. Similarly, for the ability of model partitioning to
reduce energy consumption β, β = 0 when Eit is greater than
Ei

a that the end device completes the computing task alone.
Otherwise, we assign the ratio of Ei to Eia to β. In particular,
when a large number of end devices offload computing tasks
to the edge server causing the edge server to overload (i.e.,
tSi > T ai), we set α = 1 and β = 0.

Besides, we count the FLOPs that allocated to the end
device and the output data size of each partition point. Then,
we establish the regression model P fi of ui to evaluate the
suitability of s to ui. The input to P fi consists of Fs that
allocated to the end device, the output data size ds, and the
Nash equilibrium degree fs, where Fs, ds and fs are all
normalized values. In addition, fs is the FLOPs difference
between the partition point s and the Nash equilibrium FLOPs.
Finally, we select the partition point with the smallest P fi
as the optimal partition point. Therefore, the partition point
decision problem can be defined as:

min P fi (Fs, ds, fs), (9)
s.t. 0 ≤ s ≤ n, (9a)

0 ≤ Fs, ds, fs ≤ 1. (9b)

D. Nash bargaining solution

We formulate the problem of finding the FLOPs allocated to
the end device that simultaneously optimize latency and energy
consumption as a dynamic bargaining game with complete
information. The essence of the bargaining game lies in how
the players divide the desired item. In this paper, we define
F ′ = F2−F1 as the resource that two players want to divide,
where F1 = min(FT , FE), F2 = max(FT , FE), and [0, F ′] is
the bargaining range for two players. We denote the partition
function as q(s) : [0, F ′]→ R, let q′1 and q′2 (q′1, q

′
2 ∈ [0, F ′]

and q′1 ≤ q′2) respectively represent the bargaining results for
the two players. Nash [40], [41] proved that q′1 +q′2 ≤ F ′ and
Eq.(7) achieves its maximum value if and only if q′1+q′2 = F ′.
Thus, we can obtain the following theorem.

Theorem 1. When α = 1 and β = 1, the Nash equi-
librium solution of the bargaining problem (Z, h) is z1 =
z2 = (F2 − F1)/2 and the maximum value of Eq.(7) is
(F1 − F2)2/4. Otherwise, the Nash equilibrium solution is
z = F1 + (1 − β)(F2 − F1)/(1 − αβ) and the maximum
value of Eq.(7) is α(1− β)2(F1 − F2)2/(1− αβ)2, where
F1 = min(FT , FE), F2 = max(FT , FE).

Proof. When Eq.(7) takes the maximum value, we can
obtain the Nash equilibrium solution of the game. Due to
(h1, h2) = (0, 0), we need to obtain the maximum value of
FαT F

β
E to get the Nash equilibrium solution.

First, we consider the case of α = β = 1. We need to find
a point that maximizes the value of FTFE , that is, find the
values of F1 and F2 corresponding to the maximum value of
F1F2. Since F ′ = F2 − F1 and q′1 + q′2 = F ′, we can obtain

(FT − d1)α(FE − d2)β

= −
(
z1 − F2−F1

2

)
+ (F2−F1)

2

4

(10)

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

6

Obviously, the maximum value of (FT − h1)α(FE − h2)β

is (F1 − F2)2/4, and the corresponding value of q′1 is (F2 −
F1)/2. Then the FLOPs that the end device need to complete
is (FT + FE)/2.

Then we discuss the general case where α and β are not
simultaneously equal to 1. The two players alternate their
bidding, and in each round, each player attempts to reduce
the other player’s share and increase its own share.

We assume that the two players reach a consensus after r
rounds of the game. The share that one player can obtain is
q′1, and q′1 is equal to α or β times the result of the previous
round of bargaining. In the bargaining game with complete
information, the other player knows that the player will be
satisfied with the share q′1 received in round r. Besides, the
offer of the player in round r− 1 will not exceed αq′1 or βq′1.
To maximize the payoff of the first player, the other player of
the game will make an offer (αq′1, 1−αq′1) or (βq′1, 1−βq′1)
in round r − 1.

For the other player, it knows that the player who gets αq′1
or βq′1 share in round r−1 will offer β(1−αq′1) or α(1−βq′1)
in r − 2 round. Therefore, for the other player, it will offer
(1−β(1−αq′1), β(1−αq′1)) or (1−α(1−βq′1), α(1−βq′1))
in round r − 1, in other words, the share it can get in round
r − 1 is 1− β(1− αq′1) or 1− α(1− βq′1).

Therefore, we can get 1 − β(1 − αq′1) = q′1 or 1 −
α(1 − βq′1) = q′1, then q′1 = (1 − β)/(1 − αβ) or q′1 =
(β−αβ)/(1−αβ). Since the range of the game is [0, F2−F1],
we can get the result of the game is FT = F1 + (1 −
β)(F2−F1)/(1−αβ) or FT = F2− (F2−F1)β(1−α)/(1−
αβ), and the maximum value of (FT − d1)α(FE − d2)β is
α(1− β)2(F1 − F2)2/(1− αβ)2. �

E. Partition point decision model
Here, we model the ability of each partition point to simulta-

neously optimize latency and energy consumption. As defined
in Section III-C, the partition point for simultaneously reduc-
ing latency and improving energy efficiency is determined by
Fs, ds, and fs jointly. Therefore, for each partition point, we
first measure the latency and energy consumption under varied
configurable parameters. Then, compared with the end device
to complete the computing task alone, we quantify the ability
of each partition point to reduce latency and improve energy
efficiency. Next, we establish a regression model for partition
points to judge their ability to simultaneously optimize latency
and energy consumption. We use logarithmic or linear func-
tions as regression functions, and the percentage reduction in
latency and energy consumption as performance metrics.

In the regression function, every variable(Fs, ds, and fs)
plays an indispensable role in assessing the partition point’s
ability to reduce latency and improve energy efficiency simul-
taneously. In the Section III-B, we have elaborated the impact
of the FLOPs allocated to the end device and the output data
size of each partition point on latency and energy consumption.
The fs denotes how far the partition point s deviates from
the Nash equilibrium FLOPs. The importance of each of the
aforementioned variables can be derived through training.

As previously mentioned, it is an analysis step required
for each DNN model to establish the regression model. The

Algorithm 1 Game-based adaptive FLOPs and partition point
decision mechanism (GAFPD)
Input: The end device ui, the FLOPsi that ui need to

complete, the output data size Di = {d1i , d2i , ..., dni } of
each partition point of the selected DNNs model, the
regression model P fs .

Output: Partition point si.
1: Ti, s

T
i ← get minimum latency and partition point;

2: Ei, s
E
i ← get lowest energy consumption and partition

point;
3: tSi ← get the inference latency of S;
4: Eai , T

a
i ← get energy consumption and latency when ui

completes the inference task alone;
5: if tSi > T ai then
6: α← 1, β ← 0;
7: else
8: if Ti > T ai then
9: α← 0;

10: else
11: α← 1− Ti/T ai ;
12: end if
13: if Eti > Eai then
14: β ← 0;
15: else
16: β ← 1− Ei/Eai ;
17: end if
18: end if
19: FNi ← GAFDM(α, β, FLOPsi, Ei, s

E
i , Ti, s

T
i);

20: si ← PDM(FLOPsi, Di, F
N
i , P

f
s , s

E
i , s

T
i);

21: return si.

established PDM can directly assist edge devices to select the
optimal partition point that simultaneously reduces latency and
improves energy efficiency without additional overhead.

IV. GAME-BASED ADAPTIVE FLOPS AND PARTITION
POINT DECISION MECHANISM.

In order to solve the problem defined in Section III, we pro-
pose GAFPD (Fig. 3). As shown in Algorithm 1, for any end
device ui, our proposed mechanisms consist of the following
four main steps: (1) Obtain the model partition points with
minimum latency and the lowest energy consumption, along
with their corresponding partition points. Moreover, estimate
the latency of edge server to complete the computing task
offloaded by the end device (lines 1-3); (2) Estimate the
inference latency and energy consumption when the end device
complete the computing task alone, obtain the ability to reduce
latency and improve energy efficiency that the edge server
collaborate with the end device to complete computing task
(lines 4-18); (3) A bargaining game based on the above in-
formation is established, then obtain Nash equilibrium FLOPs
with satisfactory latency and energy consumption (line 19);
(4) Obtain the partition point through PDM (line 20).

A. Game-based adaptive FLOPs decision mechanism
The purpose of GAFDM is to obtain the Nash equilibrium

FLOPs that reduce latency and improve energy efficiency at

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

7

1) FLOPs Bargaining (Latency and

energy consumption)

2) Partition point decision

Bargaining

DogAct

3) Partition the DNNs model

DogAct

sF

sd

sf

Different partition points

Nash equilibrium degrees

Different partition points with different output data size

Act Dog

DogAct

Transmission

Different partition points with different FLOPs

0.6 MFLOPs 8 MFLOPs

Computing

task

The load of edge

server and uplink rate

Fig. 3. Game-based adaptive FLOPs and partition point decision mechanism.

Algorithm 2 Gamed-based adaptive FLOPs decision mecha-
nism (GAFDM)
Input: α, β, Ei, sEi , Ti, sTi , and FLOPsi.
Output: Nash equilibrium FLOPs F1 + min(FE , FT).
1: F1 = 0; F2 = max(FE , FT)−min(FE , FT); F ′ = F2 −
F1; r = 1;

2: while ∆1,∆2 ← MAX to ∆1 ≤ 10−3 or ∆2 ≤ 10−3

do
3: if α = 1 and β = 1 then
4: Calculate F1 = F1 + f(r), F2 = F2 − f(r) where

f(r) = F ′/[(α+ β) + e−2(r−1)] and ∆2 = |F1F2 −
(FE − FT)2/4|;

5: else
6: F1 = F1 + F ′(1− β)/(1− αβ);
7: F2 = F2 − F ′β(1− α)/(1− αβ);
8: end if
9: ∆1 = |F1 − F2|, F ′ = F2 − F1, r = r + 1;

10: end while
11: return F1 + min(FE , FT).

same time. As shown in Algorithm 2, one player of the game
first gives its bid, that is, the FLOPs F1. The other player
gives the FLOPs F2. In each round of the game, both players
aim to reach a Nash equilibrium with respect to FLOPs by
making certain concessions until the difference between their
strategies is less than or equal |F1 − F2| ≤ 10−3. We discuss
the following two cases, when α = β = 1, the concession
function of two players of the game is f(r) = F ′/[(α+ β) +
e−2(r−1)], where r denotes the number of rounds in the game,
and F ′ = F2 − F1 in every round of the bargaining process.
In particular, when 0 ≤ α < 1 and 0 ≤ α < 1, after one
round of the game, the two players reach an agreement on
the FLOPs value according to Theorem 1, resulting in F1 =
F1 + F ′(1− β)/(1− αβ). Finally, the two players determine
the Nash equilibrium FLOPs for ui with satisfactory latency
and energy consumption, which is F1 + min(FE , FT).

B. Partition point decision mechanism

As shown in Algorithm 3, after getting the Nash equilibrium
FLOPs allocated to the end device ui, we first calculate the
Nash equilibrium degree for the partition points between sEi

Algorithm 3 Partition point decision mechanism (PDM)
Input: FLOPsi,Di,FNi ,P fs , sEi , sTi .
Output: Partition point si.
1: ssi = min(sEi , s

t
i), sei = max(sEi , s

t
i);

2: for each sji in (ssi , s
e
i) do

3: f ji = |F ji − FNi |;
4: end for
5: Normalize of {F si , F

s+1
i ,, F ei }, {dsi , d

s+1
i ,, dei} and

{fsi , f
s+1
i ,, fei };

6: for each sji in (ssi , s
e
i) do

7: P fi,j ← P fi (F ji , d
j
i , f

j
i);

8: end for
9: Sort P fi,j according to P fi,s′ ≤ P

f
i,s′+1 ≤ ... ≤ P

f
i,e′ ;

10: si ← ss
′

i ;
11: return si.

and sTi . Then, we calculate the ratio of each partition point’s
Nash equilibrium degree to the maximum Nash equilibrium
degree among these partition points. Subsequently, we obtain
the normalized Nash equilibrium degree for each partition
points. Similarly, we normalize the FLOPs allocated to ui and
the output data size at each partition point between sEi and
sTi . Next, we use the regression model P fi,j to calculate the
fitness for each partition point. Finally, we sort P fi,j in non-
decreasing order and select the point ss

′

i with the minimum
P fi,e′ as the final partition point.

C. A Working Example

We illustrate how GAFDM determines the Nash equilibrium
FLOPs and PDM determines the final partition point through
the following example. There are four computing tasks that
require the end device and edge server to complete, the FLOPs
allocated to the end device with the lowest energy consumption
and minimum latency are presented in Table II. Besides, we
use the binary group (α, β) to denote the ability of model
partitioning to reduce latency and energy consumption. After
obtaining the Nash equilibrium FLOPs, we use the PDM to
determine the partition point, and the required information is
presented in Table III. In Table II and Table III, task refers to
computing task.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

8

TABLE II
RELATED INFORMATION AND RESULTS ABOUT BARGAINING

Task FE(FLOPs) FT (FLOPs) (α, β) Bargaining reslut
1 1 M 0.5 M (1,1) 0.75 M
2 1.5 M 1 M (1,0.8) 1 M
3 1 M 0.5 M (0.5,1) 1 M
4 2 M 1 M (1, 1) 1.5 M

TABLE III
RELATED INFORMATION AND RESULTS ABOUT PDM

Partition point FLOPs(M) Output data size
Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4

0 0 0 0 0 0.25 0.25 0.25 0.25
1 0.5 1 0.5 1 1 1 0.75 2
2 0.75 1.5 1 1.5 0.25 1.5 1.25 2.5
3 1 2.5 1.5 2 1 2.5 2 3

As shown in Table II, we take the computing task 1 as
an example to illustrate the bargaining, the FLOPs of the
end device with the lowest energy consumption and min-
imum latency respectively are 1 M and 0.5 M. The two
players will play the game on the FLOPs that allocated to
the end device, and the concession function of the game is
f(r) = 0.5/(2 + e−2(r−1)). First, the player with the lowest
energy consumption proposes that the FLOPs allocated to the
end device are 5/6 M, while the acceptable FLOPs for the
player with the minimum latency are 2/3 M. Therefore, the
two players cannot reach an agreement and need to continue
the game. According to Algorithm 2, after a certain number of
rounds of the game, the two players finally reach an agreement
on 0.75 M. As for the computing task 2, because α and β are
not simultaneously equal to 1, they reach an agreement on 1
M after one round of game according to Theorem 1. Similarly,
for the computing tasks 3 and 4, the final results of the games
respectively are 1 M and 1.5 M.

As shown in Table III, taking the computing task 1 as an
example, we illustrate how to determine the final partition
point. First, we calculate the Nash equilibrium degree of the
partition points from the minimum latency to the lowest energy
consumption, and the Nash equilibrium degree of partition
points 1, 2, and 3 of computing task 1 respectively are 0.25, 0,
and 0.25. Then, we normalize the FLOPs, Nash equalization
degree, and output data size of the partition points. The nor-
malized results of the above three values corresponding to the
partition points 1, 2, and 3 of computing task 1 respectively are
(0.22, 0.33, 0.45), (0.5, 0, 0.5), and (0.45, 0.1, 0.45). Finally,
using the regression model to evaluates the fitness of each
partition point. Here, we assume that the regression model is
P f1 = F1+f1+d1, where F1, f1, and d1 respectively represent
normalized results of FLOPs, Nash equilibrium degree, and
output data size. The fitness of partition points 1, 2, and 3
of computing task 1 are (1.15, 0.43, 1.4). Therefore, the final
partition point of computing task 1 is 2. Similarly, we can get
that the final partition point of computing task 2, 3, and 4
respectively are 1, 2, and 2.

D. Theoretical analysis

For any end device ui and edge server S, the computa-
tional complexity of getting Ti, s

T
i , Ei, s

E
i , E

a
i , T ai , and TSi

is constant. In addition, the computational complexity of
obtaining the ability to reduce latency and improve energy
efficiency that edge devices complete computing task is also
constant. Subsequently, we obtain Nash equilibrium FLOPs
with satisfactory latency and energy consumption through
gaming. When α = 1 and β = 1, we can get the Nash
equilibrium FLOPs in ten rounds of game. Otherwise, we
can get the Nash equilibrium FLOPs in one round of game.
In other words, the computational complexity of ui obtains
Nash equilibrium FLOPs is constant. Then, we calculate and
normalize the Nash equilibrium degree of the partition points
between sEi and sTi , the computational complexity is O(n).
Similarly, the computational complexity of normalizing the
FLOPs allocated to ui and the output data size at each partition
point between sEi and sTi is also O(n). Next, we calculate
the fitness of the aforementioned partition points through the
regression model P fi,j and sort the results, the computational
complexity is O(n · logn). There are a total of m end devices
in the coverage of S. Therefore, the computational complexity
of selecting partition points for edge devices is O(mn · logn).

In summary, our proposed GAFPD can select the optimal
partition point that reduces latency and improves energy
efficiency with polynomial complexity, that is, it is compu-
tationally feasible.

V. EXPERIMENT EVALUATIONS

In this section, we first give a brief introduction to the
experimental settings, mainly including experimental parame-
ters, DNN models, dataset, benchmarks and so on. Then, we
verify the feasibility of our proposed mechanism through a
series of simulation experiments. Here, we mainly focus on the
optimization of latency and energy consumption, adaptability
to changes in bandwidth, the impact of the number of end
devices on performance, and the impact of the transmission
power on performance. Finally, we deploy GAFPD on an EI
system based on robots to verify its effectiveness.

A. Experiment settings

We consider the scenario where a single server combines
multiple end devices to provide intelligent services to users.
In this scenario, the number of end devices are randomly
distributed in [1,100], and the bandwidth resources of edge
devices is B = 40 MHz. The computing task can be completed
by the end device with fui = [0.1, 2.1] GHz, and the energy
consumption per unit of computing resource is ς(fui)2 =
[0, 4× 10−9] J. When the end device offloads the computing
task to the edge server, the transmission power is Pi = 0.1
W, the noise power N0 = 10−9 W, the channel gain hi is
uniformly distributed in [10−5, 10−3], and the transmission
rate is Rti = [0, 5] Mb/s [42]. Then, the edge server completes
the offloaded computing task with fSi = [0.1, 2.1] GHz,
and the energy consumption per unit of computing resource
is ς(fui)2 = [0, 1.5 × 10−9] J. In addition, the number of
computing resources consumed by the end device and edge
server to complete one FLOP respectively are Cui = 1/32
and CSi = 1/32. That is, the end device and edge server

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

9

TABLE IV
LATENCY SPEEDUP AND ENERGY CONSUMPTION SAVE OF DIFFERENT

MECHANISMS COMPARED TO END-ONLY.

ResNet18 MobileNet VGG16

Latency Energy
consumption Latency Energy

consumption Latency Energy
consumption

End-only 200 ms 0.203 J 100 ms 0.173 J 610 ms 2.296 J
Edge-only +94.406% -36.946% +93.406% -63.006% -52.113% -95.818%

Neurosurgeon-L 0 0 0 0 -52.113% -95.819%
Neurosurgeon-E +94.406% -36.946% +93.406% -63.006% -52.113% -95.819%

GAFPD +29.568% -14.286% +1.806% -50.867% -52.113% -95.819%

are capable of performing 32 single-precision floating-point
calculations per clock cycle.

Then, we select three DNNs models (ReseNet18 [43],
MobileNet [44], and VGG16 [45]) to evaluate the performance
of GAFPD for image classification over CIFAR-10 [39] on the
machine learning platform Pytorch. Moreover, we select the
following benchmarks for comparison.

Benchmarks. (1) End-only: All computing tasks are com-
pleted by the end device. (2) Edge-only: The end device of-
floads all computing tasks to the edge server. (3) Neurosurgeon
with optimal latency (Neurosurgeon-L) [11]: The Neurosur-
geon selects the partition point with optimal latency. (4) Neu-
rosurgeon with optimal energy consumption (Neurosurgeon-
E) [11]: The Neurosurgeon selects the partition point with
optimal energy consumption. (5) Autodidactic neurosurgeon
(ANS) [17]: The ANS obtains the partition point with optimal
latency through the built-in learning module.

B. Simulation results
In this subsection, we analyze the experimental results. It is

important to note that the real execution time of the GAFPD
and benchmarks is between 0 and 1 ms. Compared to the time
taken by edge devices edge devices to complete computing
tasks, the real execution time of each mechanism is negligible.
In other words, the real execution time of each mechanism
does not affect the selection of partition points.

1) Latency and energy consumption:We conduct a se-
ries of simulation experiments based on the above exper-
iment settings. We select End-only, Neurosurgeon-L, and
Neurosurgeon-E as baselines, and the experimental results are
shown in Tables IV, V, and VI. In the Tables, the bold data in
the first row represents the baseline, and we have recorded its
latency and energy consumption. Subsequently, we record the
percentage improvement in latency and energy consumption
compared to the baseline for different mechanisms. Among
them, positive numbers indicate the percentage increase in
latency and energy consumption compared to the baseline
for different mechanisms, while negative numbers indicate
the percentage reduction. Now, we proceed to analyze the
experimental results.

In Table IV, for lightweight DNN models, such as ResNet18
and MobileNet, Neurosurgeon-L has similar latency and en-
ergy consumption compared to End-only. This is due to the
end device’s computing capacity being efficiently handle the
computing tasks of these lightweight DNN models. We also
find that the ratio of the increase in latency of GAFPD to the
decrease in energy consumption is 2.07 for ResNet18, while
the ratios for Edge-only and Neurosurgeon-E are 2.56. Similar-
ly, for MobileNet, GAFPD is able to trade a 1.806% increase

TABLE V
LATENCY SPEEDUP AND ENERGY CONSUMPTION SAVE OF DIFFERENT

MECHANISMS COMPARED TO NEUROSURGEON-L

ResNet18 MobileNet VGG16

Latency Energy
consumption Latency Energy

consumption Latency Energy
consumption

Neurosurgeon-L 200 ms 0.203 J 100 ms 0.173 J 292.109 ms 0.096 J
End-only 0 0 0 0 +108.826% +2291.667%
Edge-only +94.406% -36.946% +93.406% -63.006% 0 0

Neurosurgeon-E +94.406% -36.946% +93.406% -63.006% 0 0
GAFPD +29.568% -14.286% +1.806% -50.867% 0 0

TABLE VI
LATENCY SPEEDUP AND ENERGY CONSUMPTION SAVE OF DIFFERENT

MECHANISMS COMPARED TO NEUROSURGEON-E

ResNet18 MobileNet VGG16

Latency Energy
consumption Latency Energy

consumption Latency Energy
consumption

Neurosurgeon-E 388.812 ms 0.128 J 193.406 ms 0.064 J 292.109 ms 0.096 J
End-only -48.561% +58.594% -48.295% +170.312% +108.826% +2291.667%
Edge-only 0 0 0 0 0 0

Neurosurgeon-L -48.561% +58.593% -48.295% +170.312% 0 0
GAFPD -33.352% +35.938% -47.362% +32.812% 0 0

in latency for a 50.867% reduction in energy consumption. In
other words, GAFPD can achieve greater energy consumption
savings with a lower incremental cost in latency. For DNN
models with high complexity, such as VGG16, completely
offloading computing tasks to the edge server is undoubtedly
a superior option.

As mentioned above, in Table V, for lightweight DNN
models, Neurosurgeon-L has similar latency and energy con-
sumption compared to End-only. Therefore, we do not present
repeated comparisons between Neurosurgeon-L and other
mechanisms. For VGG16 with high complexity, the latency
and energy consumption of GAFPD are comparable to those
of Neurosurgeon-L, indicating that GAFPD is feasible.

In Table VI, for ResNet18 and MobileNet, when compared
to Neurosurgeon-E, GAFPD demonstrates a reduction in la-
tency, albeit at the cost of increased energy consumption.
And compared with End-only and Neurosurgeon-L, GAFPD
shows the smallest percentage increase in energy consumption.
Finally, for VGG16 with high complexity, the latency and
energy consumption of GAFPD are the same as those of
Neurosurgeon-E, and the selected partition point is optimal,
which shows that GAFPD is feasible.

2) Impact of bandwidth: The above experimental results
prove that GAFPD can reduce latency and improve energy
efficiency at same time. Furthermore, to prove the adaptability
of GAFPD to changing bandwidths, we perform the image
classification task over CIFAR-10 with AlexNet to evaluate
the adaptability of GAFPD when the bandwidth changes.

First of all, we compare the performance of GAFPD and
ANS under changing bandwidth conditions, the experimental
results are shown in Fig. 4. When the bandwidth is 10 MHz,
the partition point selected by GAFPD and ANS for AlexNet
is 4. When the bandwidth is reduced from 10 MHz to 1 MHz,
GAFPD quickly adjusts the partition point to 22, resulting in
a latency of 78 ms and an energy consumption of 0.105 J.
However, the partition point selected by ANS remains at 4,
resulting in a latency of 278.817 ms and energy consumption
of 0.099 J. Meanwhile, it takes a period of adaptation for ANS
to adjust the partition point to 22. Compared to ANS, GAFPD
achieves a reduction of 72.02% in latency at the expense of

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

10

0 100 200 300 400 500 600 700 800

0

10

20

0

10

20

0

5

10

G
A
F
P
D

Index of computing tasks

GAFPD

A
N
S

ANS

B
an
d
W
id
th Bandwidth(MHz)

Fig. 4. Partition point selection of GAFPD and ANS under changing
bandwidths.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

150

300

450

600

750

900

L
at
en
cy
(m
s)

Bandwidth(MHz)

Neurosurgeon-L

Neurosurgeon-E

GAFPD

(a) Latency

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E
n
er
g
y
co
n
su
m
p
ti
o
n
(J
)

Bandwidth(MHz)

Neurosurgeon-L

Neurosurgeon-E

GAFPD

(b) Energy consumption

Fig. 5. Latency and energy consumption of AlexNet under different band-
widths.

only 5.71% increase in energy consumption. Subsequently,
when the bandwidth increases from 1 MHz to 3 MHz, GAFPD
promptly adjusts the partition point to 8, resulting in a latency
of 95.752 ms and an energy consumption of 0.07 J. At this
point, ANS has adjusted the division point to 22 through
online learning, and GAFPD can sacrifice a 22.72% increase
in latency for a 33.33% reduction in energy consumption.
Finally, when the bandwidth increases from 3 MHz to 10
MHz, the selected partition point for GAFPD is 0, resulting in
a latency of 38.545 ms and an energy consumption of 0.019
J. On the other hand, the latency of ANS is 78 ms, while its
energy consumption is 0.105 J. Overall, when the bandwidth
changes, GAFPD not only outperforms ANS, but also solves
the problem of delayed feedback of ANS.

Furthermore, we test the ability of different mechanisms to
adapt to changing bandwidth. According to the analysis of the
results of Table IV, V, and VI, it can be concluded that for
lightweight DNN models, the latency and energy consumed
of Neurosurgeon-L are the same as those of End-only. And
Neurosurgeon-E has the same latency and energy consump-
tion as Edge-only. Therefore, we choose Neurosurgeon-L,
Neurosurgeon-E, and GAFPD to partition the AlexNet when
the bandwidth varies between 0.1 MHz to 5 MHz. The results
of these experiments are shown in Fig. 5.

In Fig. 5, Fig. 5(a) and Fig. 5(b) respectively depict the la-
tency and energy consumption of different model partitioning
mechanisms under different bandwidths. When the bandwidth
is greater than 1 MHz, the latency of Neurosurgeon-E increas-

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

P
ar
ti
ti
o
n
p
o
in
t

The number of end devices

Neurosurgeon-L

Neurosurgeon-E

GAFPD

Fig. 6. Partition point selection of different mechanisms under different
number of end devices.

es rapidly, and simultaneously, its the energy consumption
decreases rapidly. With the increase of bandwidth, the energy
consumption of data transmission becomes lower than that
of the end device completing the computing task alone. So,
the end device offload the computing task to the edge server.
However, the latency introduced by data transmission is much
greater than that of the end device completing computing tasks
alone. With the increase of bandwidth, latency generated by
data transmission gradually decreases, and both the latency and
energy consumption of Neurosurgeon-E gradually decrease.
When the bandwidth is greater than 3.5 MHz, the latency and
energy consumption of Neurosurgeon-E become comparable
to those of GAFPD. When the bandwidth is greater than 4.0
MHz, the latency and energy consumption of the three model
partitioning mechanisms (Neurosurgeon-L, Neurosurgeon-E,
and GAFPD) become comparable, indicating that they have
chosen a similar partition point.

Based on the simulation results above, it is evident that
GAFPD takes into account the impact of latency and energy
consumption on edge devices in selecting the partition point
as the bandwidth changes. In addition, when the bandwidth
is greater than 1.5 MHz and less than 3.5 MHz, GAFPD
prioritizes energy efficiency over latency, making a strategic
tradeoff between the two. When latency is not a critical
requirement for the computing task, it is a more energy-
efficient choice for end devices with limited energy. based on
the results of simulation experiments, it can be observed that
GAFPD adaptively selects the overall optimal partition point
in response to changes in bandwidth.

3) Impact of the number of end devices: In order to evaluate
the impact of network scale on the performance of GAFPD.
We begin with an initial number of end devices set at 1 and
increment the number of end devices by 5 each time until
the total number of end devices reaches 100. Then, we record
the partition points selected by different mechanisms as the
number of end devices changes. The experimental results are
presented in Fig. 6.

According to Fig. 6, when the number of end devices is less
than 30, the partition point selected by GAFPD corresponds to
that of Neurosurgeon-L or Neurosurgeon-E. The main reason
is that the goal of GAFPD is to select the optimal partition
point that can simultaneously reduce latency and improve
energy efficiency. That is, GAFPD aims to achieve greater
energy consumption reduction or latency reduction, while
limiting the increase of latency or energy consumption. When

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

11

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

50

100

150

200

250

300

350

400

L
at
en
cy
(m
s)

Transmission power (W)

Neurosurgeon-L

Neurosurgeon-E

GAFPD

(a) Latency

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

E
n
er
g
y
co
n
su
m
p
ti
o
n
(J
)

Transmission power (W)

Neurosurgeon-L

Neurosurgeon-E

GAFPD

(b) Energy consumption

Fig. 7. Latency and energy consumption of AlexNet under different trans-
mission powers.

the number of end devices ranges between 30 and 45, the
allocated bandwidth per end device diminishes as the number
of end devices increases. Therefore, GAFPD selects the 8-th
layer of AlexNet with smaller intermediate layer output as the
partition point for the newly connected end device to achieve
the tradeoff between latency and energy consumption. When
the number of end devices exceeds than 45, the high load
of the edge server causes higher inference latency. Moreover,
communication between edge devices results in increased
latency and energy consumption. Therefore, GAFPD allocates
the computing task to the end device to achieve the tradeoff
between latency and energy consumption. When the number
of end devices exceeds 85, Neurosurgeon-L, Neurosurgeon-
E, and GAFPD all choose to allocate the computing task
to the end device. The main reason is that the latency and
energy consumption of offloading computing tasks to the edge
server are much higher than those of end devices to complete
computing tasks alone.

4) Impact of the transmission power: In order to evaluate
the impact of transmission power changes on performance, we
initiate the transmission power of the end device at 0.05 W and
gradually increase it by increments of 0.01 W until it reaches
0.15 W. Similarly, we perform the image classification task
over CIFAR-10 with AlexNet. Then, we compare the latency
and energy consumption of Neurosurgeon-L, Neurosurgeon-
E, and GAFPD to when completing the computing task. The
experimental results are shown in Fig. 7.

From the Fig. 7, when the transmission power is less than
0.09 W, the latency of Neurosurgeon-L is less than that of
Neurosurgeon-E and GAFPD. And the energy consumption
of Neurosurgeon-L is higher than that of Neurosurgeon-E and
GAFPD. The main reason is that when the transmission power
is low, the communication latency between the end device
and the edge server is much greater than the latency that
the end device completes the computing task alone. However,
the energy consumption of data transmission is less than that
of the end device to complete the computing task alone. As
the transmission power increases, the communication latency
between edge devices gradually decreases. Therefore, when
the transmission power is greater than 0.09 W, the latency
of Neurosurgeon-L and GAFPD is equal and lower than
that of Neurosurgeon-E, i.e., the partition points selected by
Neurosurgeon-L and GAFPD is the same. At the same time,
the energy consumption of Neurosurgeon-L and GAFPD is

...

...

...

...

...

...

...

...

Input li-1l0 li

li+1 li+2 ln Output

Router

Edge Server

Wireless Transmission

1

2

2

3

4

4

Fig. 8. An EI system based on RMUA. (¬ The end device captures the
current battle environment through its camera, and then utilizes the GAFPD
deployed on the end device to obtain the partition points. After that, the
NVIDIA Jetson TX2 embedded in the end device performs the corresponding
computing tasks; The end device transmits the computing result to the edge
server via the router; ® The edge server completes the remaining computing
tasks and obtains the final inference result, which is to distinguish between
enemy and friendly robots; ¯ The edge server transmits the final inference
result to the end device via the router.)

equal and higher than that of Neurosurgeon-E.
With the change of transmission powers, GAFPD com-

prehensively considers the impact of latency and energy
consumption on edge devices to select partition points. In
particular, when the transmission power is greater than 0.09
W, GAFPD is able to exchange a 43.24% increase in energy
consumption for an 81.83% reduction in latency. Therefore,
we can conclude that the GAFPD is able to select the optimal
partition point to reduce latency and improve energy efficiency
as the transmission power changes.

C. Experimental results on EI system

We deploy GAFPD on an EI system based on the RoboMas-
ter University AI Challenge (RMUA)2, and then evaluate its
efficacy in terms of latency reduction and energy efficiency
improvement. The EI system based on the RMUA platform
is shown in Fig. 8, which is composed of end devices, a
router, and an edge server. Furthermore, we briefly illustrate
the completion process of the computing task together with
Fig. 8. The end device is equipped with NVIDIA Jetson TX2,
and it has a battery with an initial capacity of 4700 mAh. The
edge server is equipped with an NVIDIA GeForce RTX2060
GPU, one of NVIDIA’s latest offerings for servers.

1) Latency and energy consumption: Here, we first deploy
End-only, Edge-only, Neurosurgeon-L, Neurosurgeon-E, and
GAFPD on the EI system based on the RMUA platform.
Then, we fully charge the end device and count the number
of inferences that each mechanism can complete when the
end device depletes its battery. In addition, we also measure
the latency associated with each mechanism for completing a
single inference. For convenience, we utilize the number of in-
ferences to assess the energy consumption of each mechanism.
Similar to the simulation, we select End-only, Neurosurgeon-
L, and Neurosurgeon-E as baselines. The experimental results
are presented in Tables VII, VIII, and IX. These tables record
the latency of different mechanisms when completing one

2https://www.robomaster.com/zh-CN/robo/icra?djifrom=rmu1

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

12

TABLE VII
LATENCY SPEEDUP AND ENERGY CONSUMPTION SAVE OF DIFFERENT

MECHANISMS COMPARED TO END-ONLY BASED ON RMUA.

ResNet18 MobileNet VGG16

Latency The number
of inferences Latency The number

of inferences Latency The number
of inferences

End-only 303 ms 95512 112 ms 98242 1104 ms 6384
Edge-only +190.429% +90.171% +475.892% +183.327% -76.721% +4844.612%

Neurosurgeon-L 0 0 0 0 -76.721% +4844.612%
Neurosurgeon-E +190.429% +90.171% +475.892% +183.327% -76.721% +4844.612%

GAFPD +60.726% +27.035% +129.464% +88.885% -76.721% +4844.612%

TABLE VIII
LATENCY SPEEDUP AND ENERGY CONSUMPTION SAVE OF DIFFERENT
MECHANISMS COMPARED TO NEUROSURGEON-L BASED ON RMUA.

ResNet18 MobileNet VGG16

Latency The number
of inferences Latency The number

of inferences Latency The number
of inferences

Neurosurgeon-L 303 ms 95512 112 ms 98242 257 ms 315664
End-only 0 0 0 0 +329.572% -97.978%
Edge-only +190.429% +90.171% +475.892% +183.327% 0 0

Neurosurgeon-E +190.429% +90.171% +475.892% +183.327% 0 0
GAFPD +60.726% +27.035% +129.464% +88.885% 0 0

inference using various DNN models. They also record the
number of inferences that can be completed with the energy
consumption of the end device with a 4700 mAh capacity.
Among them, the column showing the number of inferences
indicates the percentage increase (positive) or decrease (neg-
ative) of the number of inferences for different mechanisms
compared to the baseline.

Similar to the simulation results, the Neurosurgeon-L and
End-only have similar effects on reducing latency and energy
consumption in Table VII. When using lightweight DNN
models like ResNet18 and MobileNet, the percentage increase
in the number of inferences for GAFPD is smaller compared to
Edge-only and Neurosurgeon-E. However, in terms of latency,
GAFPD causes a much smaller percentage increase compared
to both Edge-only and EOPM. The latency generated by
the Edge-only and Neurosurgeon-E is too high for latency-
sensitive computing tasks in the EI system based on the
RMUA platform. GAFPD is a superior choice to reduce
energy consumption, albeit with a certain increase in latency.
For VGG16, it is undoubtedly a better choice to hand over
computing tasks to the edge server, which can not only reduce
latency, but also greatly reduce the energy consumption.

In Table VIII, for ResNet18 and MobileNet, End-only has
the same latency and the number of inferences that can be
completed as Neurosurgeon-L, so we no longer repeat the
analysis of them. For VGG16 with high complexity, compared
with the experimental results in Table VII, the latency of
Neurosurgeon-L is much smaller than that of End-only, and
Neurosurgeon-L can complete 48.45× more computing tasks
compared to End-only. In addition, the GAFPD incurs the
same latency and can complete the same amount of inferences
as Neurosurgeon-E, which is the optimal result, indicating that
our proposed GAFPD is feasible.

In Table IX, it can be seen that the Edge-only has the same
latency and can complete the same amount of inferences as
Neurosurgeon-E. Since computing tasks are handed over to
the edge server, Neurosurgeon-E and Edge-only can complete
more inferences. However, limited by the bandwidth, the
inference latency of Neurosurgeon-E and Edge-only is higher
than that of several other mechanisms. For ResNet18 and

TABLE IX
LATENCY SPEEDUP AND ENERGY CONSUMPTION SAVE OF DIFFERENT
MECHANISMS COMPARED TO NEUROSURGEON-E BASED ON RMUA.

ResNet18 MobileNet VGG16

Latency The number
of inferences Latency The number

of inferences Latency The number
of inferences

Neurosurgeon-E 880 ms 181636 645 ms 278346 257 ms 315664
End-only -65.568% -47.416% -82.636% -64.705% +329.572% -97.978%
Edge-only 0 0 0 0 0 0

Neurosurgeon-L -65.568% -47.416% -82.636% -64.705% 0 0
GAFPD -44.659% -33.199% -60.155% -33.333% 0 0

0 1 2 3 4 5

200

400

600

800

1000

L
at
en
cy
(m
s)

Neurosurgeon-L

Neurosurgeon-E

GAFPD

Bandwidth(MHz)

(a) Latency

0 1 2 3 4 5

1.5

2.0

2.5

3.0

3.5

4.0

Bandwidth(MHz)

T
h
e
n
u
m
b
er
o
f
in
fe
re
n
ce
s(
×
1
0
5
)

Neurosurgeon-L

Neurosurgeon-E

GAFPD

(b) The number of inferences

Fig. 9. Latency and the number of inferences of AlexNet under different
bandwidths on the EI system based on the RMUA platform.

MobileNet, although the latency of GAFPD is higher than that
of End-only and Neurosurgeon-L, the number of inferences
that GAFPD can complete is higher than that of End-only
and Neurosurgeon-L. Especially for energy-constrained end
devices, it is important to reduce energy consumption within
tolerable latency. For VGG16, the latency of GAFPD and
the number of inferences that GAFPD can complete are
comparable to those of Neurosurgeon-E, which shows that our
proposed GAFPD is feasible.

2) Impact of bandwidth: Next, we evaluate the adaptability
of GAFPD to bandwidth changes. Here, we use AlexNet
to perform image classification over CIFAR-10. Similar to
the previous simulation experiment, we select three model
partitioning mechanisms: Neurosurgeon-L, Neurosurgeon-E,
and GAFPD. We measure the latency and the number of
inferences of the EI system based on RMUA under different
bandwidths. The results are shown in Fig. 9.

In Fig. 9, it can be seen that when the bandwidth is low
(0.5 MHz), the latency and the number of inferences that
the three model partitioning mechanisms can complete on the
EI system based on RMUA are the same. This is because
when the bandwidth is low, data transfer takes a significantly
longer time and consumes a considerable amount of energy.
As a result, all three model partitioning mechanisms opt for
the end device to complete the computing task. When the
bandwidth increases to 1 MHz, the number of inferences that
the EI system can complete gradually increases. At the same
time, the latency of Neurosurgeon-E reaches its maximum
value. With the continuous increase of bandwidth, the latency
of Neurosurgeon-E gradually decreases, and the number of
inferences gradually increases. When the bandwidth is greater
than 2.5 MHz, Neurosurgeon-E and GAFPD select the same
partition point. When the bandwidth reaches 5 MHz, the three
model partitioning mechanisms we selected all select the same
partition point. This is because as the bandwidth increases,
the latency and energy consumption of data transmission are

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

13

lower, Neurosurgeon-E and GAFPD tend to choose the same
partition point. When the bandwidth is high enough, the
latency and energy consumption of data transmission are lower
than that of end device complete the computing task alone, and
the three model partitioning mechanisms tend to choose the
same partition point.

With the change of bandwidth, GAFPD neither optimizes
the latency separately like Neurosurgeon-L, resulting in an
increase in energy consumption, nor does it optimize the en-
ergy consumption separately like Neurosurgeon-E, increasing
latency and affecting the QoS. In addition, when the bandwidth
varies between 1.5 MHz and 4 MHz, GAFPD can trade a
small increase in latency off a large increase in the number
of inferences (improve energy efficiency). Therefore, it can
be seen that GAFPD can adaptively select the overall optimal
partition point in response to changes in bandwidth.

VI. CONCLUSION

Previous work to optimize latency or energy consumption
through model partitioning has problems with limited adapt-
ability to dynamically changing computing environments and
delayed feedback. In addition, they often neglect the impact
of energy consumption on edge devices when optimizing
latency, or result in increased latency as a consequence of
reducing energy consumption. The computational characteris-
tics of DNN models demonstrate that the latency and energy
consumption of edge devices in EI are not only related to the
FLOPs allocated to end devices, but are also influenced by
the output data size at each partition point of the DNN model.
Therefore, we propose GAFPD to efficiently find the optimal
partition point that can reduce latency and improve energy
efficiency simultaneously. Theoretical analysis and numerous
experiments have been proved that GAFPD can optimize laten-
cy and energy consumption simultaneously while adapting to
changing environments. Furthermore, the experimental results
on the EI demonstrate the effectiveness of GAFPD in reducing
latency and improving energy efficiency.

REFERENCES

[1] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy et al., “Evolving deep
neural networks,” in Artificial intelligence in the age of neural networks
and brain computing. Elsevier, 2019, pp. 293–312.

[2] C. Scheuermann, T. Binderberger, N. von Frankenberg, and A. Wern-
er, “Digital twin: A machine learning approach to predict individual
stress levels in extreme environments,” in Adjunct Proceedings of the
2020 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2020 ACM International Symposium
on Wearable Computers, 2020, pp. 657–664.

[3] X. Dai, Y. Chen, B. Xiao, D. Chen, M. Liu, L. Yuan, and L. Zhang,
“Dynamic head: Unifying object detection heads with attentions,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 7373–7382.

[4] H. Lee, Y. Choi, T. Han, and K. Kim, “Probabilistically guaranteeing
end-to-end latencies in autonomous vehicle computing systems,” IEEE
Transactions on Computers, vol. 71, no. 12, pp. 3361–3374, 2022.

[5] X. Niu, C. Yu, and H. Jin, “Crsm: Computation reloading driven by
spatial-temporal mobility in edge-assisted automated industrial cyber-
physical systems,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 12, pp. 9283–9291, 2022.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[7] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[8] A. Burrello, A. Garofalo, N. Bruschi, G. Tagliavini, D. Rossi, and
F. Conti, “Dory: Automatic end-to-end deployment of real-world dnns
on low-cost iot mcus,” IEEE Transactions on Computers, vol. 70, no. 8,
pp. 1253–1268, 2021.

[9] G. Zhu, Z. Lyu, X. Jiao, P. Liu, M. Chen, J. Xu, S. Cui, and P. Zhang,
“Pushing ai to wireless network edge: an overview on integrated
sensing, communication, and computation towards 6g,” Science China
Information Sciences, vol. 66, no. 3, p. 130301, 2023.

[10] C. Jiang, T. Fan, H. Gao, W. Shi, L. Liu, C. Cérin, and J. Wan, “Energy
aware edge computing: A survey,” Computer Communications, vol. 151,
pp. 556–580, 2020.

[11] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615–629, 2017.

[12] Y. Duan and J. Wu, “Joint optimization of dnn partition and scheduling
for mobile cloud computing,” in 50th International Conference on
Parallel Processing, 2021, pp. 1–10.

[13] X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and G. Min, “Energy-
efficient offloading for dnn-based smart iot systems in cloud-edge
environments,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 3, pp. 683–697, 2021.

[14] J. Li, W. Liang, Y. Li, Z. Xu, X. Jia, and S. Guo, “Throughput maxi-
mization of delay-aware dnn inference in edge computing by exploring
dnn model partitioning and inference parallelism,” IEEE Transactions
on Mobile Computing, 2021.

[15] Z. Zeng, C. Liu, Z. Tang, K. Li, and K. Li, “Acctfm: An effective intra-
layer model parallelization strategy for training large-scale transformer-
based models,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 12, pp. 4326–4338, 2022.

[16] Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, “Edge intelligence for
energy-efficient computation offloading and resource allocation in 5g
beyond,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10,
pp. 12 175–12 186, 2020.

[17] L. Zhang, L. Chen, and J. Xu, “Autodidactic neurosurgeon: Collaborative
deep inference for mobile edge intelligence via online learning,” in
Proceedings of the Web Conference 2021, 2021, pp. 3111–3123.

[18] F. Dong, H. Wang, D. Shen, Z. Huang, Q. He, J. Zhang, L. Wen,
and T. Zhang, “Multi-exit dnn inference acceleration based on multi-
dimensional optimization for edge intelligence,” IEEE Transactions on
Mobile Computing, 2022.

[19] H. Dai, J. Wu, Y. Wang, and C. Xu, “Towards scalable and efficient
deep-rl in edge computing: A game-based partition approach,” Journal
of Parallel and Distributed Computing, vol. 168, pp. 108–119, 2022.

[20] J. Wang, J. Hu, G. Min, W. Zhan, A. Y. Zomaya, and N. Georgalas,
“Dependent task offloading for edge computing based on deep rein-
forcement learning,” IEEE Transactions on Computers, vol. 71, no. 10,
pp. 2449–2461, 2022.

[21] P. Lin, Z. Shi, Z. Xiao, C. Chen, and K. Li, “Latency-driven model
placement for efficient edge intelligence service,” IEEE Transactions on
Services Computing, vol. 15, no. 2, pp. 591–601, 2022.

[22] H. Yuan, D. Guo, G. Tang, and L. Luo, “Online energy-aware task
dispatching with qos guarantee in edge computing,” Chinese Journal on
Internet of Things, vol. 5, no. 2, pp. 71–77, 2021.

[23] L. Wang, L. Xiang, J. Xu, J. Chen, X. Zhao, D. Yao, X. Wang, and B. Li,
“Context-aware deep model compression for edge cloud computing,” in
2020 IEEE 40th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2020, pp. 787–797.

[24] S. Liu, G. Yu, R. Yin, J. Yuan, L. Shen, and C. Liu, “Joint model
pruning and device selection for communication-efficient federated edge
learning,” IEEE Transactions on Communications, vol. 70, no. 1, pp.
231–244, 2021.

[25] W. Ju, D. Yuan, W. Bao, L. Ge, and B. B. Zhou, “edeepsave: Saving
dnn inference using early exit during handovers in mobile edge environ-
ment,” ACM Transactions on Sensor Networks (TOSN), vol. 17, no. 3,
pp. 1–28, 2021.

[26] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating
deep neural network inference via edge computing,” IEEE Transactions
on Wireless Communications, vol. 19, no. 1, pp. 447–457, 2019.

[27] M. Xue, H. Wu, R. Li, M. Xu, and P. Jiao, “Eosdnn: An efficient
offloading scheme for dnn inference acceleration in local-edge-cloud
collaborative environments,” IEEE Transactions on Green Communica-
tions and Networking, vol. 6, no. 1, pp. 248–264, 2021.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

14

[28] P. Ren, X. Qiao, Y. Huang, L. Liu, C. Pu, and S. Dustdar, “Fine-grained
elastic partitioning for distributed dnn towards mobile web ar services
in the 5g era,” IEEE Transactions on Services Computing, 2021.

[29] Q. Wang, Y. Xiao, H. Zhu, Z. Sun, Y. Li, and X. Ge, “Towards energy-
efficient federated edge intelligence for iot networks,” in 2021 IEEE 41st
International Conference on Distributed Computing Systems Workshops
(ICDCSW). IEEE, 2021, pp. 55–62.

[30] V. Hayyolalam, M. Aloqaily, Ö. Özkasap, and M. Guizani, “Edge in-
telligence for empowering iot-based healthcare systems,” IEEE Wireless
Communications, vol. 28, no. 3, pp. 6–14, 2021.

[31] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “Coedge: Cooperative
dnn inference with adaptive workload partitioning over heterogeneous
edge devices,” IEEE/ACM Transactions on Networking, vol. 29, no. 2,
pp. 595–608, 2020.

[32] I. Chakraborty, D. Roy, I. Garg, A. Ankit, and K. Roy, “Construct-
ing energy-efficient mixed-precision neural networks through principal
component analysis for edge intelligence,” Nature Machine Intelligence,
vol. 2, no. 1, pp. 43–55, 2020.

[33] M. Xue, H. Wu, G. Peng, and K. Wolter, “Ddpqn: An efficient dnn of-
floading strategy in local-edge-cloud collaborative environments,” IEEE
Transactions on Services Computing, vol. 15, no. 2, pp. 640–655, 2021.

[34] M. Ghasemi, D. Rakhmatov, C.-J. Wu, and S. Vrudhula, “Edgewise:
Energy-efficient cnn computation on edge devices under stochastic
communication delays,” ACM Transactions on Embedded Computing
Systems (TECS), 2022.

[35] L. Tan, Z. Kuang, J. Gao, and L. Zhao, “Energy-efficient collaborative
multi-access edge computing via deep reinforcement learning,” IEEE
Transactions on Industrial Informatics, 2022.

[36] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM transactions
on networking, vol. 24, no. 5, pp. 2795–2808, 2015.

[37] S.-H. Kim, S. Park, M. Chen, and C.-H. Youn, “An optimal pricing
scheme for the energy-efficient mobile edge computation offloading with
ofdma,” IEEE Communications Letters, vol. 22, no. 9, pp. 1922–1925,
2018.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[39] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[40] J. F. Nash and Jr., “The bargaining problem,” Econometrica, vol. 18,
no. 2, pp. 155–162, 1950.

[41] J. Nash, “Two-person cooperative games,” Econometrica, vol. 21, pp.
128–140, 1950.

[42] H. Jiang, X. Dai, Z. Xiao, and A. K. Iyengar, “Joint task offloading
and resource allocation for energy-constrained mobile edge computing,”
IEEE Transactions on Mobile Computing, 2022.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[44] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional
neural networks for mobile vision applications,” arXiv preprint arX-
iv:1704.04861, 2017.

[45] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

Xin Niu received the B.S. degree in Internet of
Things engineering and the M.S. degree in computer
science and technology from the College of Comput-
er Science, Chongqing University, Chongqing, Chi-
na, in 2017 and 2020, respectively. He is currently
pursuing his Ph.D. degree in the Services Computing
Technology and System Laboratory, Big Data Tech-
nology and System Laboratory, Cluster and Grid
Computing Laboratory, School of Computer Science
and Technology, Huazhong University of Science
and Technology, Wuhan, China, under the guidance

of Prof. Chen Yu. His research interests include edge intelligence, edge
computing, and ubiquitous computing.

Yajing Huang received the B.S. degree from Honors
College of Northwestern Polytechnical University,
China in 2021. She is currently pursuing her M.S.
degree in the Services Computing Technology and
System Laboratory, Big Data Technology and Sys-
tem Laboratory, Cluster and Grid Computing Labo-
ratory, School of Computer Science and Technology,
Huazhong University of Science and Technology,
Wuhan, China, under the guidance of Prof. Chen Yu.
Her main research topics include edge intelligence,
edge computing, and reinforcement learning.

Zhiwei Wang received the B.S. degree from College
of Computer Science and Technology of Chongqing
University, China in 2021. He is currently pursuing
his M.S. degree in the Services Computing Technol-
ogy and System Laboratory, Big Data Technology
and System Laboratory, Cluster and Grid Comput-
ing Laboratory, School of Computer Science and
Technology, Huazhong University of Science and
Technology, Wuhan, China, under the guidance of
Prof. Chen Yu. His research interests include edge
intelligence, edge computing, and deep learning.

Chen Yu (Member, IEEE) received the BS degree
in mathematics and the MS degree in computer
science from Wuhan University, Wuhan, China, in
1998 and 2002, respectively, and the PhD degree in
information science from Tohoku University, Sendai,
Japan, in 2005. From 2005 to 2006, he was a
Japan Science and Technology Agency postdoctoral
researcher with the Japan Advanced Institute of
Science and Technology In 2006, he was at Japan
Society for the Promotion of Science postdoctoral
fellow with the Japan Advanced Institute of Science

and Technology. Since 2008, he has been with the School of Computer Science
and Technology, Huazhong University of Science and Technology, Wuhan,
where he is currently a professor and a special research fellow, working in
the areas of ubiquitous computing, edge computing and industrial Internet.

Hai Jin (Fellow, IEEE) received the Ph.D. degree
in computer engineering from HUST, in 1994. He
is a Cheung Kung scholars chair professor of com-
puter science and engineering with the Huazhong
University of Science and Technology (HUST), Chi-
na. In 1996, he was awarded a German Academic
Exchange Service fellowship to visit the Technical
University of Chemnitz in Germany. He was award-
ed the Excellent Youth Award from the National
Science Foundation of China in 2001. He is the chief
scientist of China Grid, the largest grid computing

project in China, and the chief scientists of the National 973 Basic Research
Program Project of Virtualization Technology of Computing System, and
Cloud Security. His research interests include computer architecture, virtu-
alization technology, cluster computing and cloud computing, peer-to-peer
computing, network storage, and network security. He is a fellow of the IEEE
and a member of the ACM.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3354033

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

