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Abstract—Data deduplication technologies are widely exploited to reduce capacity demands for storage. Previous chunk-based offline
deduplication technologies often cause serious performance overhead due to data chunking and indexing. Particularly, they are not
efficient for non-volatile memory (NVM) based storage systems because they cannot fully exploit the byte-addressability feature of
NVMs for fine-grained deduplication. In this paper, we propose I/O Causality based In-line Deduplication (ICID) to maximize the
deduplication ratio for NVM-based storage systems. Unlike previous inline deduplication schemes that use hash indexes to identify
duplicate data slices, ICID records memory-copy operations in a B-tree structure to achieve causality-based inline deduplication. We
propose two novel techniques to manage memory-copy records in the B-tree efficiently. First, to speed up the B-tree lookup, we group
memory-copy records targeted to the same page in a B-tree node to improve data locality. Second, we exploit the spatial locality of
memory accesses to identify outdated memory-copy records, and delete them in time to reduce memory consumption of the B-tree.
We evaluate ICID in a system equipped with Intel Optane DC Persistent Memory Modules. For a typical KV store–LevelDB, our
experimental results show that ICID achieves up to 16× higher deduplication ratio and reduces the time cost of data deduplication by
47% on average compared with state-of-the-art deduplication schemes.

Index Terms—Data Deduplication, I/O Causality, Non-Volatile Memory.
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1 INTRODUCTION

DATA deduplication techniques have long been studied
for space saving in storage systems. They eliminate

duplicate data at file or chunk levels by identifying the same
data using cryptographic hash functions such as SHA-1 or
MD5. Data deduplication can be performed in an offline or
inline mode [1]. The offline deduplication is conducted after
the data has been written to the storage device, and thus
usually causes write amplification. In contrast, the inline
deduplication detects the duplicate data before writing it
back into storage, and thus can reduce data redundancy
and the wear of storage devices. More importantly, inline
deduplication has the potential to explore the correlation
among I/O operations at runtime, and may significantly
improve the deduplication ratio.

Non-volatile memory (NVM) technologies such as Intel
3D Xpoint [2] offer much lower cost, higher density and
energy efficiency than traditional DRAM technologies [3],
[4]. They have become a promising complement to DRAM
to bridge the performance gap between main memory and
SSD/HDD storage devices [5]. However, NVMs often suffer
from limited write endurance, a typical PCM cell can only
sustain 107-108 writes [4], [6]. Inline deduplication is a
promising approach for reducing the storage consumption
and the wear of NVM devices. Unfortunately, existing inline
deduplication schemes are not efficient for new NVM de-
vices. Since previous data deduplication techniques [7], [8]
are designed for block devices such as HDD and SSD, they
suffer from high computation and storage overhead due to
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data chunking and indexing. For example, to chunk 1 TB
data without any redundancy using 4 KB blocks, Content-
Defined Chunking (CDC) [9] algorithm has to compute rolling
hashes for almost 1012 times during the chunking stage.
Moreover, the SHA-1 algorithm introduces 5 GB fingerprints
(20 bytes per fingerprint) to index those chunks [10], [11].
Since DRAM resource is expensive and limited, many re-
cent proposals store most fingerprints on disk. Thus, it is
expensive to search those fingerprints in storage [11], [12].

Moreover, existing inline deduplication schemes have to
make a tradeoff between the deduplication ratio and the
read throughput. Since the performance difference between
the sequential read and the random read is significant for
SSD/HDD devices, as shown in Table 1, using big chunks
(such as 4 KB or 8 KB) [13], [14] can mitigate the perfor-
mance degradation due to random accesses to SSD/HDD,
and also avoids read amplification if the chunk is larger than
the disk block. Moreover, using big chunks can also mitigate
the total size of fingerprints and the cost of indexing. In
contrast, using small chunks can improve the deduplication
ratio, but lowers the read throughput and increase the cost
of indexing. Currently, most deduplication systems tend
to use big chunks to improve the read throughput and to
mitigate the cost of indexing, at the expense of a lower
deduplication ratio.

The advent of byte-addressable NVM devices such as
Intel Optane DC Persistent Memory Modules (DCPMM) [2]
offers an opportunity to use small chunks for data dedu-
plication because the random read throughput of the NVM
device is much higher than that of SSD/HDD devices. As
shown in Table 1, the random read throughput of NVM
is as high as 74% of its sequential read throughput. Its
random/sequential ratio of read throughput is about 9∼20×
higher than that of SSDs, and 104× higher than that of
HDD. In-line deduplication systems using small chunks can
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TABLE 1: The performance characteristics of different stor-
age devices including Intel Optane NVM, three SSDs, and
HDD. The models of three SSDs are WD Blue SN550 NVMe,
HP EX900 NVMe, and WD Blue SATA.

Devices Read Throughput (MB/s)
Sequential Random Rand./Seq.

NVM 1256 936 73.99%

SSD1 1240 45 3.63%
SSD2 998 38.7 3.88%
SSD3 479 38 8.10%

HDD 161 1.15 0.71%

achieve high deduplication ratio, and thus extend NVMs’
lifetime by reducing the amount of data written to NVMs.
However, with smaller chunks, existing chunk-based dedu-
plication systems still suffer significant performance and
storage overhead [10], [11] because 1) more chunks are gen-
erated, and more fingerprints should be calculated; 2) more
fingerprints should be stored in memory and are compared
during data deduplication.

To achieve fine-grained data deduplication with low
cost for these in-memory file operations, we design an I/O
causality-based inline deduplication (ICID) scheme by fully
exploiting the byte-addressability of NVMs. Unlike previous
inline deduplication schemes that identify duplicate data by
fingerprints at the granularity of chunks (4 or 8 KB), ICID
takes the advantage of byte-addressable NVMs to achieve
inline deduplication at the granularity of bytes. ICID pro-
vides a set of new APIs to record the mapping between the
source address and the destination address of each memory-
copy operation in a B-tree structure. According to the I/O
causality between data copying and file writing operations,
ICID is able to find the duplicate data in fine-grained sizes.

ICID achieves data deduplication in three steps. First,
when ICID opens a file, it maps the file to the main mem-
ory. Second, when the file is read, ICID converts the read
operation into a memory-copy operation. ICID records the
memory-copy operation in a B-tree (called “rec-tree” in the
remainder of this paper) for each process. Third, when the
updated data in the DRAM is written back to the storage,
ICID accelerates data comparation between the written data
and the original data using Advanced Vector Extensions (AVX)
hardware, i.e., SIMD instructions, and finds out the ac-
tual duplicate data slices. Unlike traditional chunk-based
deduplication schemes that identify duplicate data without
application semantics, ICID can exploit the I/O causality in
a program to minimize the search space of data redundancy.

However, it is usually expensive to maintain all memory-
copy operations for I/O-intensive applications. ICID still
faces two major challenges to manage memory-copy records
efficiently. First, how to organize the records of memory-
copy operations with low cost of lookup? Second, how to
identify and delete outdated records in the rec-tree effec-
tively? To address these challenges, we propose two key
technologies as follows:

• Using a hybrid data structure to store memory-copy
records. To achieve low-latency lookup, we organize
memory-copy records in a B-tree. Each node in the
tree contains all records of memory-copy operations

targeted to the same memory page, and is indexed by
the page number. In each node, records are organized
in a linked-list/array structure. In this way, we manage
records at the page granularity to decrease the number
of nodes, and thus reduces the latency of the B-tree
lookup. Moreover, since the access pattern of most
records features spatial locality, storing adjacent records
in a continuous memory space accelerates the data
retrieval.

• Garbage collection for outdated memory-copy
records. To find out useful memory-copy records in
the rec-tree quickly, ICID exploits the order between
adjacent memory-copy operations within a single page
to delete outdated records. If the destination address
of a newly-inserted record is lower than the highest
one in the current page, ICID deletes the record whose
destination address is higher than the inserted one’s
because the memory of high address will most likely
be updated in the future, and thus a new record would
replace the old ones.

We implement ICID as a stand-alone library using about
3500 lines of code (LOC). In addition, we develop a user-
space filesystem to support ICID based on FUSE [15]. For a
typical KV store–LevelDB, our evaluation shows that ICID
achieves up to 16× higher deduplication ratio and reduces
the cost of data deduplication by 47%, compared with state-
of-the-art deduplication schemes.

2 BACKGROUND AND RELATED WORK

In this section, we first introduce some necessary back-
ground, and then describe the related work.

2.1 Chunk-based Data Deduplication
Chunk-based data deduplication is usually implemented
as follows. 1) Chunking and Hashing: the deduplication
system splits the data into different chunks and calculates
the fingerprint (hash value) of each chunk. 2) Indexing
and Deduplication: the deduplication system uses the fin-
gerprint to find a redundant chunk and only keeps the
unique one. Specifically, for each chunk, the deduplication
system searches its fingerprint from a set of fingerprints. If
the fingerprint already exists, the chunk is identified as a
redundant one and should be abandoned. Otherwise, the
chunk is stored in the storage system, and its fingerprint is
added into the fingerprint set.

2.2 Data Redundancy Characteristics
In real-world scenarios, there have been a wide range of file
processing applications that need to frequently edit (update)
existing files, such as office software, video editors, and so
on. Typically, these applications manage files in three steps:
1) read data from disk, 2) modify the data in main memory,
and 3) write the modified data back to storage in a new
place. Because the modified data is not written in an in-
place manner, there are often a high degree of redundancy
between the original data and the modified data. In contrast,
ICID tracks these I/O operations to identify redundancy
and only write the modified portion to storage, thereby
saving storage space.
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Fig. 1: Applicable and inapplicable scenarios for ICID.

Many previous studies have observed the spatial locality
of data redundancy [16], [17], [18], i.e., most redundant
data are physically continuous. For such a large continu-
ous redundant data, traditional chunk-based redundancy
detection approaches usually have to split it into many
chunks and calculate their hashes one by one, suffering high
computation overhead due to chunking and hashing. The
spatial locality characteristic motivates us to explore I/O
semantic for identifying continuous redundancy, thereby
reducing the search space of redundancy detection.

We note that this work focuses on data deduplication for
in-memory file operations. As illustrated in Figure 1(a), ICID
only deduplicates data that is modified from local storage.
In other scenarios where redundant data originates from
remote sources, as shown in Figure 1(b), there is no I/O
causality. Moreover, ICID also cannot be used for scenarios
such as compression/decompression, encryption/decryp-
tion, and pre-existing redundancy in a file. In these cases,
chunk-based data deduplication approaches [9], [18], [19],
[20] are more appropriate.

2.3 Related Work
Deduplication can be divided into file-level and chunk-level
according to the data granularity. Chunk-based dedupli-
cation is more popular because it identifies redundancy
at a smaller granularity, and thus can achieve a higher
deduplication ratio [10]. To split a file, the deduplication
system needs to find an appropriate cutting point for all
chunks and calculate their fingerprints. The file may be
split by Fixed-Size Chunking (FSC) [19] or more complex
Content-Defined Chunking (CDC) [9]. FSC splits a file
into fixed-size chunks, and offers extremely low cost of
chunking. However, it usually suffers from a boundary-shift
problem [10], i.e., an insertion/deletion in the input stream
would result in continuous boundary-shifting for all chunks
after the updated position, resulting in a significant decline
of the deduplication ratio. CDC addresses this problem by
calculating the cutting point according to the data content,
and thus the cost of chunking is much higher than that of
FSC. As shown in Figure 2, CDC continuously calculates the
fingerprint (fp) of the sliding window. If the hash value sat-
isfies a given condition for chunking (e.g. fp mod 212 = 0),
CDC splits the input stream at this position. For each byte
of sliding, CDC should calculate the fingerprint of the
sliding window and test the chunking condition, and thus
causes extremely high performance overhead. To reduce the
cost, the Rabin fingerprinting scheme [9] can calculate new
fingerprints based on the previous one. AE [21] explores
the asymmetrical local range to identify cut-points, and
thus improves the throughput of chunking. FastCDC [22]
improves the performance of chunking by simplifying the
condition testing and carefully choosing cutting points.

data

𝑓𝑝 𝑚𝑜𝑑 212 = 0𝑓𝑝 𝑚𝑜𝑑 212 ≠ 0

*            *                      *            *         *

Fig. 2: Content-defined chunking with a sliding window of
3 bytes. The data in this example is split into 5 chunks, and the
cutting points are marked with stars.

After chunking, fingerprints are indexed to facilitate the
identification of duplicate data. Most previous proposals
maintain a large portion of fingerprints in disk, and only
keep the most recently used fingerprints in memory. To
alleviate the cost of frequent accesses to disk, Aronovich
et al. [23] exploit the similarity of backup streams and
large chunks (16 MB) to reduce the size of fingerprints.
DDFS [24] and SiLo [11] achieve a similar goal by exploring
the similarity and spatial locality of data streams. ICID is
completely different from these studies because it does not
use hash functions to identify redundant data.

Data deduplication systems can be implemented in dif-
ferent layers of the I/O stack. CAFTL [18] and CA-SSD [25]
achieve deduplication in flash translation layer (FTL) of SSDs
to reduce the wear-out and prolong their lifespan. Dmd-
edup [26] is implemented in the block layer with fixed-
size chunking. NV-Dedup [20] achieves deduplication for an
NVM-based filesystem. FPC [27] integrates a deduplication
scheme into EXT4/F2FS filesystems to reduce the write traf-
fic. ICID offers a deduplication library that can be flexibly
integrated with different applications, such as KV stores and
text/multimedia editors.

There have been only a very few studies on data dedu-
plication by exploiting the causality among I/O operations.
NLE-DFFS [28] is a deduplication system designed for flash-
based filesystems. It mainly targets to non-linear editing
(such as video editing) in an embedded system. However,
because it maintains all metadata of memory operations
in a list and lacks an effective method to manage/reclaim
the metadata, the effectiveness of NLE-DFFS is not clear
in a large-scale storage system. Provenance-aware storage
systems [29] maintain the lineage of different files by track-
ing command line and system calls. They are mainly used
for debugging, auditing, intrusion detection. Unfortunately,
they lack sufficient information about data redundancy
among files. Inspired by those proposals, we take the first
step to explore I/O causality based data deduplication for
NVMs, and develop a deduplication library for applications.

3 MOTIVATIONS

We observe that a large amount of duplicated data are
caused by file processing applications, such as office soft-
ware, video editors, and KV store systems. These applica-
tions may frequently update (i.e., insert/merge/truncate)
a portion of data in existing files. Because of the semantic
gap between applications and filesystems, the filesystem
treats the updated file as new data and write all content
to storage directly. Since the filesystem is oblivious to the
partial redundancy between the source file and the target
file, it often causes unnecessary write traffic and significant
write amplification. Traditional chunk-based deduplication
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systems all overlook the rich I/O semantics of applications.
They usually suffer significant performance and storage
overhead due to the fingerprint computation and indexing.

In this paper, ICID tries to eliminate the semantic gap
between application and filesytems by tracking the data lin-
eage between files, and achieves fine-grained data dedupli-
cation by fully exploiting the promising features of NVMs,
i.e., byte-addressability and high random read bandwidth
relative to SSD/HDD. For example, if file A is generated
by combining file B and file C through memory-copy
operations, we can track file A’s lineage by recording these
memory-copy operations in a special data structure. When
file A is written back to an NVM-based file system, we
can exploit the data lineage to eliminate data redundancy
among file A, B, C , and only write the metadata of file
A rather than its content to the NVM. We call this ap-
proach as I/O causality based in-line deduplication. It can
significantly reduce the data traffic written to NVMs, and
improves data deduplication ratio. However, our approach
still faces several challenges.

First, how to organize the records of memory-copy operations
with low cost of lookup? As all I/O causality relationships
are recorded in a tree-like data structure called rec-tree,
ICID needs to search the rec-tree to update or retrieve the
I/O causality for each copy/write operation. Since these
operations are frequently performed in most programs, the
search procedure should be as fast as possible. Thus, we
should carefully organize the memory-copy records in a
data structure and manage them efficiently.

Second, how to identify and abandon outdated records in the
rec-tree efficiently? As the program continues to run, more
and more records are stored in the rec-tree. As time goes
by, most records become useless because the program’s data
corresponding to the outdated record may be updated or
overwritten. These outdated records should be abandoned
in time because they waste memory space. Moreover, mas-
sive records also increase the latency of the B-tree lookup.
However, it is challenging to identify outdated records
accurately and efficiently.

Third, how to identify the duplicate portion efficiently when
the data is written to NVM? When the file data is copied to
memory, the data may be updated or overwritten. Because
it is costly to track all memory updates, ICID compares the
written data with the original file to identify the redundancy.
Since byte-by-byte data comparison is usually costly, it is es-
sential to design an efficient approach for data comparison.

4 DESIGN AND IMPLEMENTATION

In this section, we present the design details of ICID. To
achieve high deduplication ratio while minimizing the per-
formance overhead, we propose three key techniques, i.e.,
organizing memory-copy records in a B-tree structure at the
page granularity, garbage collection for outdated memory-
copy records, and data comparison using SIMD hardware.

4.1 Overview
To bridge the semantic gap between applications and
filesystems, we develop a user-level I/O library to support
in-line data deduplication during file operations. ICID de-
fines a set of filesystem interfaces similar to POSIX I/O

TABLE 2: Key APIs in the ICID library

Operations APIs

file
open/close

int ICID_open (const char *path, int oflag,
...)
int ICID_close (int fd)

memory
copy

void *ICID_memcpy (void * dest, void *
src, size t len)

memory
compare

void *ICID_memcmp (void * s1, void * s2,
size t len)

memory
map/unmap

void * ICID_mmap (void *addr, size t len,
int prot, int flags, int fd, off t offset)
int ICID_munmap (void *addr, size t len)

file
read/write

size t ICID_read (int fd, void *buf, size t
len)
size t ICID_write (int fd, void *buf,
size t len)

A B C DA B C D

A' B C D'A' B C D'

A' D'A' D'

track reads track writes

Memory

ICID_FS

only A and D 
are updated

File 1File 0

link

Fig. 3: An example of data deduplication in ICID

interfaces, such as ICID_open(), ICID_read(), and
ICID_write(). The difference between ICID and POSIX
for programmers is that the name of ICID APIs starts with a
prefix “ICID_”. The key APIs in ICID are listed in Table 2.

For the file open operation (ICID_open()), ICID
not only creates a file descriptor, but also maps (i.e.,
ICID_mmap()) the file to main memory. In the later, the
file read (e.g., ICID_read()) is actually replaced by a
memory-copy operation. We use copy in the following to
refer to both traditional copy and read operations. A B-
tree (called rec-tree) is created to maintain the metadata of
memory-copy operations for a single process. Each record
in the rec-tree corresponds a memory-copy operation. ICID
relies on these memory-copy records to get hints about
the potential duplicate data. Before the updated file data
is written back (ICID_write()) from a memory buffer
to storage, ICID checks whether the data is copied from
existing files by querying correlated records in the rec-tree.
If the original data is copied from an existing file, ICID
exploits SIMD hardware to further check which portion of
data is completely the same as the original file’s. Finally,
ICID updates the metadata of the redundant data, and write
back data slices without any redundancy.

Figure 3 illustrates an example of data deduplication in
ICID when a file is updated and saved as another file. When
File 0 is loaded into memory, ICID tracks I/O operations to
detect data redundancy. When the updated File 0 is written
back, ICID only writes the updated data block A’ and D’ to
storage, and the unmodified data blocks (B and C) are linked
to their original versions in File 0. In this way, only modified
data blocks in memory are written to storage, thereby saving
storage space.

Figure 4 illustrates the detailed workflow of data dedu-
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ICID_open ICID_open
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File BFile A

①

Memory s s’

⑨

buf

Fig. 4: A illustration of file appending in ICID. This example shows how ICID detects data redundancy when a program appends
a portion of data from file A to file B. The solid and dotted arrows represent the flow of data and metadata, respectively.

plication in ICID. We append a portion of file A to file B.
Both file A and file B are stored in our user-level filesystem
called ICID FS. Because the appended data is copied from
file A, it can be deduplicated inline. At first, files A and B
are opened and transparently mapped to main memory ( 1 ).
When the program reads (copies) a portion of data (S) from
file A, ICID first copies the data to the destination buffer ( 2 ),
and then records the memory-copy operation in the rec-
tree of the program ( 3 ). When the data in the memory
buffer (S′) should be written back ( 4 ), the program calls
ICID_write. ICID searches the rec-tree to check whether
the data S′ is originally copied from existing files ( 5 ). If
the data in the buffer is not copied from other files, the
data S′ is directly appended to file B in ICID FS ( 6 ).
Otherwise, ICID_memcmp ( 7 ) is performed to inspect the
duplicate portion because the data (S′) may be updated by
the program. If the data S′ is exactly the same as S, the
metadata of file B is updated ( 8 ), and thus avoid writing the
content to the storage. Otherwise, the data content is written
back, similar to the ordinary file write operation ( 9 ).

Figure 5 shows the pseudo code of the example illus-
trated in Figure 4. In lines 4-5, ICID opens the file and
maps them to main memory silently. In line 7, ICID_read
actually uses a memory-copy operation instead of a read
operation in the background to copy the file content to the
buffer, and then inserts the memory-copy record into the
rec-tree. In line 8, ICID_write identifies the data redun-
dancy and writes the data (or metadata) back.

We note that these ICID APIs are only used for I/O
operations that may cause data redundancy, such as file
copying/merging/truncation etc., because these operations
have to rewrite existing file data into storage. For other
file operations, no matter the file is deduplicated or not,
the traditional file APIs are used, without accessing the
rec-tree. Moreover, ICID APIs are applicable for both in-
memory and on-disk file systems no matter the NVM is
used as main memory or directly access (DAX) supported
storage devices. Although ICID can be also used by tra-
ditional SSD/HDD devices, the fine-grained deduplication
may cause sever read/write amplification due to block-
based I/O operations. Thus, the ICID library is particularly
beneficial to NVM-based storage systems.

ICID manages one rec-tree for each program, and
achieves data deduplication when a program is editing files.
However, when the deduplicated data is written back to
storage, its metadata is still managed by the file system, and
is visible to all programs globally. Thus, the scope of dedu-

 

1. int appendFiles(char *fileA, char *fileB){   

2.     int fd_A, fd_B;   

3.     char *buf;   

4.     fd_A = ICID_open(fileA, O_RDONLY);   

5.     fd_B = ICID_open(fileB, O_RDWR, O_APPEND);   

6.     buf = malloc(fd_A.size);   

7.     ICID_read(fd_A, buf, fd_A.size);   

8.     return ICID_write(fd_B, buf, fd_A.size);   

9. }   

 

 

 

1. int appendFiles(char *fileA, char *fileB){ 

2.     int fd_A, fd_B; 

3.     char *buf; 

4.     fd_A = ICID_open(fileA, O_RDONLY); 

5.     fd_B = ICID_open(fileB, O_RDWR, O_APPEND); 

6.     buf = malloc(fd_A.size); 

7.     ICID_read(fd_A, buf, fd_A.size); 

8.     return ICID_write(fd_B, buf, fd_A.size); 

9. } 

Fig. 5: File appending using ICID interfaces.

plication is per-program execution, but the deduplication
effects are propagated to the file system globally.

The rec-tree is only stored in main memory. When
a program is running, the rec-tree is used to record all
memory-copy operations for in-line deduplication. When
the program ends, the rec-tree is deleted and the consumed
memory is reclaimed. We do not need to persist the rec-tree
because it becomes useless when the data is written to the
storage. Upon a power failure, it is unnecessary to recover
the old rec-tree because it becomes valueless, and a new
rec-tree will be rebuilt when the program restarts.

4.2 Data Structure of Memory-Copy Records

To look up memory-copy records efficiently and facilitate
the garbage collection of outdated records (§ 4.3), ICID
uses a resizable array to store memory-copy records whose
destination addresses are related to the same page in as-
cending order, and manages each resizable array in a node
of a B-tree. For each program, all memory-copy records are
managed in a B-tree-like data structure (called rec-tree). The
address range of each tree node corresponds to one page
(4 KB), and memory-copy operations involved in a page
are recorded in the corresponding tree node. Since multiple
threads may simultaneously read/modify the rec-tree, we
use a readers-writer lock to guarantee exclusive access to a
data node in the B-tree. For each memory-copy operation,
such as ICID_memcpy() and ICID_read(), ICID gener-
ates a new memory-copy record. A record contains both
the source and destination addresses to identify a unique
memory-copy operation. If the data is read/copied from
existing files, the record is inserted into the rec-tree. As
shown in Figure 6, the leftmost rectangle shows the struc-
ture of a memory-copy record. The file descriptor and the
file offset (offsetInFile) together specify the source address
of the memory-copy. The page number and the page offset
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}

…

record array linked list B-tree

…

Fig. 6: The data structure of rec-tree

(offsetInPage) together determine the destination address.
The page number is stored in the node of the B-tree because
it is shared by multiple records.

The rec-tree is frequently accessed by ICID APIs due
to two reasons. First, for each memory-copy operation,
ICID should check whether the memory-copy comes from a
mapped memory area. If not, ICID searches the rec-tree to
check whether the data is copied from existing files. Second,
for each write operation, ICID also has to search the rec-
tree to check whether the written data is redundant. How-
ever, frequent memory-copy operations imply that massive
memory-copy records are generated. If we simply manage
these records in a pure B-tree structure, the record lookup is
often costly.

To mitigate the cost of record lookup, we advocate a
coarse-grained B-tree in which a data node is composed of
a resizable array (or array list), as shown in Figure 6. All
records whose destination addresses target to the same page
are clustered in a single node of the B-tree, i.e., these records
in a single node are indexed by the same page number. Since
the number of records in a node is variable, we use two
lightweight data structures (i.e., linked lists and arrays) to
store these records.

We note that it is inefficient to use only a linked list or a
array solely because they both have disadvantages. Linked
list is efficient for insert/delete operations, but shows poor
performance of data traversal due to pointer chasing, i.e.,
each data node causes extra memory accesses to pointers
when traversing the linked list. In contrast, an array can be
quickly accessed by simply refereeing to its index number,
but its immutable size lacks flexibility. The memory space
must be allocated with the array’s size during the initial-
ization. In our case, assume three tree nodes contain 2, 3,
and 20 records, respectively, and each record is 16 bytes, 320
(i.e., 20×16) bytes are required to store each record using
arrays solely. Thus, total 560 (320×3-(2+3+20)×16) bytes of
memory space are wasted, and only 41.7% of the total array
space is used.

To fully exploit the advantages of both linked lists and
arrays, we integrate linked lists with arrays to implement
a resizable array. As shown in Figure 6, we organize all
records in a three-level data structure including B-tree,
linked lists, and arrays. Inside the tree node, each element
of the linked list contains an array, and each record in the
array represents a memory-copy operation. The node of B-
tree keeps both the tail and head of the linked list. For each
insertion, ICID directly writes a record into an array if it is
not fully used. Otherwise, ICID first allocates a new array
for the linked list, and then insert the record into the array.

Our three-level data structure is cost-efficient for both
data retrieval and memory consumption. First, organizing
memory-copy records in the page granularity reduces the
number of tree nodes, and thus reduces the cost of data

searching. Second, when a memory-copy record is traversed
by ICID, our data structure offers higher performance for
data traversal in arrays. The combination of arrays and
linked lists also reduces memory consumption. In the same
situation as the previous example (three tree nodes with 2,
3, 20 records respectively), if we set the array size to 6, our
approach only needs 5 arrays (d2/6e +d3/6e+d20/6e), caus-
ing 176 bytes memory waste (16×6×5-(2+3+20)×16 bytes),
less than one third of the array.

Since ICID may frequently insert/delete memory-copy
records in the rec-tree, the size of array list may be changed
dynamically. We use a reserved memory pool to reduce the
cost of memory allocation for the array list.

4.3 Garbage Collection of Memory-Copy Records
It is essential to delete outdated memory-copy records
in time from the rec-tree. The reasons are as follows: 1)
Outdated records are valueless. These records increase the
amount of nodes in the memory, and thus increase the
latency of traversal. 2) Outdated records unnecessarily con-
sume memory capacity. 3) Outdated records often provide
fallacious hints about the duplicate data. They lead to un-
necessary data comparison (§ 4.4) which increases the cost
of data deduplication.

There are mainly two scenarios that memory-copy
records become outdated. First, if a new record’s destination
address overlaps with an old one’s, the old one is deemed
as an outdated record. Second, after a memory-copy op-
eration, some operations such as variable assignment or
memset() may overwrite the copied data. In this case,
the previous memory-copy record becomes an outdated
record. However, it is difficult to identify these outdated
records. Since memory-copy operations are often conducted
in a continuous memory space, it needs range queries to
identify these outdated records. A simple approach is to
traverse existing records before inserting a new record, and
find out records whose destination address overlaps with
the new one. In this way, only the first kind of outdated
records can be detected, and thus a traverse of records is
required for each memory copy, unnecessarily increasing the
performance overhead.

To figure out the pattern of memory-copy operations, we
examine three applications, i.e., Patch [30], FFmpeg [31] and
LevelDB [32]. We find that the destination addresses of adjacent
memory-copy operations mainly follow an ascending order, i.e.,
most destination addresses are increasing. The reason is that the
virtual memory is often allocated to process from the low
address to the high address. This observation also fits for
the programming habit for most programmers. Based on
this observation, we have Inference 1:

Inference 1: In a single continuous memory region, if the
destination address of a newly-inserted memory-copy record
is lower than others’, the record with a higher destination
address is expected to become outdated in the near future.

Since deleting those records that would become outdated
soon has a little impact on the deduplication ratio, we
advocate Optimization 1 to delete outdated records.

Optimization 1: the memory-copy record whose desti-
nation address is higher than the newly-inserted one can
be deleted. Since each node only contains memory-copy
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records within a 4 KB page, ICID does not delete records
whose destination addresses are beyond the current page
address. Upon each insertion, ICID first finds the node in
the rec-tree according to the page number. Second, ICID
traverses the array/linked list structure inside the node,
and deletes all records whose destination address is equal
to or higher than the newly-inserted one’s. Third, ICID
relocates the following records to fill the hole caused by
the deletion. At last, ICID adds the record to the tail of
the array/linked list structure. In this way, ICID is able to
delete most outdated records in time. However, traversing
and relocating records inside tree nodes upon each insertion
often cause non-trivial performance overhead. Fortunately,
these traversal and relocation operations are unnecessary
because the Optimization 1 can guarantee all records in the
array list are ordered, as described in Inference 2.

Inference 2: All memory-copy records inside a single
node of the rec-tree are arranged in ascending order of the
destination address.

Proof. For each newly-inserted memory-copy record ei and
its destination address D(ei), Optimization 1 guarantees
that the record ei has the highest destination address in this
array list, i.e., D(ej) < D(ei)(1 6 j < i). Since all records
are inserted in this way, for each record ek(k > 1), it satisfies
D(ek−1) < D(ek).

Based on Inference 2, we have Optimization 2: all
memory-copy records in each resizable array can be sorted
in ascending order if we directly delete outdated memory-
copy records upon each insertion, without causing any
data movement. As shown in Figure 7, for each insertion
of the memory-copy record, ICID first finds the node in the
rec-tree according to the page number. Then, ICID compares
the new record’s destination address with the last record in
the array list (i.e., 25700 in Figure 7(b)). If the new record’s
address is higher, ICID appends the record to the tail of the
array list (Figure 7(b)); Otherwise, ICID takes the following
steps:

1) traverses the array list to find the insert position, i.e., the
first record whose destination address is higher than the
newly-inserted one’s;

2) deletes all records after the insert position;

3) write the new record at the insert position (Figure 7(c)).

However, traversing the array list to find out the insert
position is still time-consuming. ICID can accelerate the
traversal because all records in the array list are arranged
in an ascending order (Inference 2). ICID only compares
the first element of adjacent arrays to find out an array
that contains the insert position quickly. Then, it traverses
the array to locate the insert position. For example, in
Figure 7(c), before inserting the record of 23700, ICID first
compares 20492 and 22408 with 23700, and then traverses
the array from the record 22408 till it finds the record 24080.

We note that ICID may delete useful memory-copy
records in a few cases. Thus, ICID may lose a few opportu-
nities to find duplicate data. However, the wrongly-deleted
memory-copy records do not affect the correctness of ap-
plications because the rec-tree is only used to find duplicate
data. Our evaluation in § 5.2 shows that ICID achieves rather
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Fig. 7: Data management in the resizable array. Memory-
copy records are represented in the following format: [destination
address : file : file offset]. Sub-figure (a) shows the ordered
structure after using Optimization 1, Sub-figure(b) and (c) shows
the data structure after inserting memory-copy records with the
destination addresses 26000 and 23700, respectively. Because
26000 is higher than all records, it is appended to the tail. Before
inserting the record of 23700, ICID deletes all records whose
addresses are higher than 23700 (24080, 25700, and 26000).

TABLE 3: Time consumption of writing data to NVM and
data comparison (byte-by-byte and AVX2)

Data size
(Bytes)

Time consumption (ns)
write to NVM byte-by-byte AVX2

128 1782 201 41
256 1785 358 38
1024 4986 3679 77
4096 8667 15484 249
8192 14260 31294 469

high deduplication ratio, implying that Inference 1 is well fit
for most real-world cases. We also note that when a mapped
file is unmapped, ICID deletes all records corresponding to
the file from the rec-tree. In this way, ICID ensures that no
outdated memory-copy record can survive in the process’
memory space forever.

ICID offers several advantages as follows. First, the data
volume of records is reduced significantly, and thus reduces
the cost of record traversing during data deduplication.
Second, the record traversal is only needed when the des-
tination address of newly-inserted record is lower than the
one at the tail. Third, for each traversal of the array list, ICID
only needs to access a small portion of records, and thus
further reduces the traversal cost. Fourth, no data relocation
is required because we always delete outdated memory-
copy records from the tail of linked list.

4.4 Data Comparison

When a file is copied to a memory buffer, the content
may be changed by applications. Since the I/O causality
derived from memory-copy operations only offer hints to
identify potential redundancy between the original file and
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the data to be written, ICID should compare the data with
the original file to figure out the real duplicate parts before
the data in the buffer is written back to storage.

Table 3 shows the time consumption of writing data back
to NVM and byte-by-byte comparison. When the data size
is bigger than 4 KB, the time consumed by the byte-by-
byte comparison is even longer than the latency of writing
data back to the NVM, indicating the inefficiency of directly
comparing. ICID explores SIMD hardware to accelerate the
data comparison. With AVX2 hardware extensions, ICID can
compare 256 bits of data in a single instruction. Taking 4
KB data as an example, AVX2 is 62 times faster than the
byte-by-byte comparison. ICID compares the data in the
buffer with the original file from the front to the end. If
it finds a different byte between the buffer and the original
file, the comparison stops and ICID calculates the length of
duplicate data. If all content in the buffer is verified as the
same as the original file, the whole buffer is deemed as a
duplicate data.

4.5 File Organization
We implement ICID in an NVM-based storage system for
deduplication, called NVMDedup. In the following, we
mainly introduce how deduplicated files are managed. Gen-
erally, a file in NVMDedup is often composed of a num-
ber of extents. Each extent identifies a continuous area in
the storage through an offset and an length. The physical
addresses represented by extents in different files may be
overlapped. Since a file may contain multiple small extents,
the number of extents in a file may be very large. To
accelerate the file read operation, NVMDedup organizes all
extents of a file in a unique B-tree. When a file is updated,
NVMDedup exploits Copy-On-Write (COW) mechanism to
guarantee data integrity because a data slice may be shared
by multiple files. The in-place updating mechanism may
face a risk of data corruption in the presence of a power
failure or a system crash. As shown in Figure 8, assuming
the extent A is shared by multiple files. When the extent A is
updated by File N , it is cloned and updated as a new extent
A’. However, A’ is only referenced by File N , while other
files still refer to the old extent A. As a result, each program
can only see the new version of data updated by itself, while
the original version of data remains unchanged. ICID FS
uses a journal to protect the metadata in the presence of
system crashes. The journaling mechanism has been widely
used in a variety of file systems [33], [34]. Before updating
the metadata, ICID FS stores the new metadata in a log re-
gion. After the metadata has been updated successfully, the
log is committed and marked for deletion. When a system
crashes and restarts again, ICID FS checks the log region
and redo the uncommitted log. This journaling mechanism
can guarantee metadata consistency upon system crashes.
With COW and journaling mechanisms, ICID guarantees the
consistency of both data and metadata.

4.6 Garbage Collection for ICID FS
In this section, we briefly introduce the garbage collection
(GC) of file systems. We note that it is different from the
garbage collection of rec-tree. When a file is deleted in
ICID FS, only the metadata of this file is deleted because

A A'

Files

Extents

File 0 File N

A

File N... File 0 File N-1...

(a) An extent shared by multiple files

A A'

Files

Extents

File 0 File N

A

File N... File 0 File N-1...

(b) Extents after an update

Fig. 8: An illustration of the copy-on-write mechanism

the corresponding extents may be referenced by other files.
Thus, a few extents may be not referenced by any file,
and becomes garbage. ICID FS should reclaim the storage
space consumed by those unreferenced extents periodically.
During the GC process, the GC thread scans all metadata
and calculates the reference count of each extent. All ex-
tents with zero reference are deleted. The GC thread also
performs data compaction to eliminate fragmented storage
space. During compaction, different extents are compacted
in continuous physical addresses, and thus multiple smaller
free regions are consolidated into larger ones. This process
continues till the consolidated free space becomes larger
than 4 KB. When an extent is being moved by the GC
thread, we use locks to block any accesses to this extent, and
thus can guarantee data integrity and consistency during
GC. To minimize performance impact on user applications,
NVMDedup triggers the GC process when the CPU load
is low. However, when the available storage space is lower
than a given threshold, the GC should be performed soon.

5 EVALUATION

In this section, we conduct experiments to demonstrate
the efficiency of ICID. Compared with the state-of-the-
art chunk-based deduplication systems, ICID shows better
performance on data deduplication for in-memory file oper-
ations: ICID achieves higher deduplication ratios, and also
improves the efficiency of data deduplication.

5.1 Experimental Setup

System Setup. We run experiments on a real-system
equipped with two Intel Xeon Gold 6230 CPUs running
at 2.1 GHz and 128 GB DDR4 memory. If not specified
otherwise, all experiments use 128 GB Intel Optane DCPMM
DIMMs in the fsdax mode. The operating system is Ubuntu
19.01 with a kernel version 5.1.1. ICID runs on ICID FS,
while chunk-based deduplication approaches use EXT4
filesystem mounted with rw, realtime options.

Benchmarks. We evaluate ICID with 4 real-world bench-
marks: LevelDB [32], GNU Patch [30], FFmpeg [31], and
Download. They are representative applications of key-
value store, version control, video editing, and network
transmission. LevelDB is a popular key-value (KV) store that
stores KV pairs in Sorted Strings Tables (SSTables). LevelDB
uses LSM-tree to organize SSTable files in multiple levels.
As the size of the KV store increases, the data volume in
a single level would exceeds its storage limitation. At this
time, LevelDB picks multiple files and compacts them into a
new and larger file, and then stores it in the next level. Since
the newly-generated file comes from existing files, there are
quite a lot data redundancy among these files. GNU Patch
applies patch files to one or more original files. FFmpeg
is a multimedia library that underpins the media services
of YouTube and iTunes. LevelDB, GNU Patch, FFmpeg all
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TABLE 4: The deduplication ratio of different schemes

Schemes Deduplication Ratio
LevelDB Patch FFmpeg Download

FSC [19] 4.58% 0.02% 0.09% 3.3%
AE [21] 4.50% 0.02% 0.06% 13.7%

RABIN [36] 4.40% 0.00% 0.07% 13.9%
FastCDC [22] 4.60% 0.02% 0.10% 14.3%

ICID 81.36% 98.43% 53.24% 0%

clip or merge existing files into new files, and thus usually
cause high data redundancy. To apply ICID APIs to these
benchmarks, we modify about 60, 30, 10 lines of code (LOC)
in LevelDB, FFmpeg, and Patch, respectively.

For LevelDB, we use its native benchmark–db bench
and disable the content compression. By default, this bench-
mark writes one million randomly-generated KV pairs with
16-byte keys and 100-byte values into the KV store. In our
experiments, we mainly use LevelDB as our benchmark
because it can easily change the dataset by configuring the
number of KV pairs and value size. For FFmpeg, we clip
the first half of a video. The container format of the file is
avi, with video encoded in MPEG-4 and audio encoded in
AC-3. Both the container format and video/audio encoding
are widely used in industrial production systems and the
daily life. For GNU Patch, we download different versions
of Linux kernel sources and their patches to patch them.
In our evaluation, we only find data duplication between
the patched file and the original file. We also construct a
benchmark called “download” to evaluate a scenario where
the input data comes from Internet. Each scheme downloads
3 GB of the same dataset comprising papers and slides.

Systems for Comparison. To compare ICID with chunk-
based deduplication schemes, we design a general frame-
work to track data to be written and split it into chunks
which are deduplicated using a similar approach like NV-
Dedup [20]. We use XXHash [35] to calculate fingerprints
of these chunks for high throughput. We compare ICID
with four typical chunk-based schemes: FSC [19], Rabin [36],
AE [21], and FastCDC [22]. We integrate these approaches
into the I/O stack by intercepting write system calls, and
then measure the deduplication ratio and the execution time
of different workloads. The chunk size is 4 KB by default.

To demonstrate the advantages of our key designs
for I/O-causality based deduplication, we also implement
another version of ICID called ICID DO for compari-
son. Unlike the full implementation of ICID, ICID DO
deletes all records whose destination addresses overlap with
the newly-inserted one upon each insertion. This simple
garbage collection scheme is memory efficient, but may
incorrectly delete useful memory records.

5.2 Deduplication Ratio

We evaluate the dedudplication ratio of different dedud-
plication schemes using four real-world applications. The
results are shown in Table 4. For the first three benchmarks,
ICID achieves the highest deduplication ratio compared
with chunk-based deduplication schemes. The deduplica-
tion ratio of chunk-based schemes is lower than 5%. The
root causes are two-folds. First, the small size of written
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Fig. 9: The data deduplication ratio in LevelDB

data in these applications limits the effectiveness of chunk-
based schemes. Patch and FFmpeg tend to write a small
amount of data (e.g., 1024 bytes) in a single I/O opera-
tion. Then, those small inputs are chunked by chunk-based
schemes. Since the expected chunk size is larger than the
input, these chunk-based schemes treat the whole input as
a single chunk. In other words, chunk-based schemes are
not effective for those small inputs. Second, since chunk-
based schemes have no application semantics to hint the
data duplication, they may mix the duplicate data and
the unique data into the same chunk, and thus achieve
low deduplication ratios. In contrast, ICID records the I/O-
causality of in-memory file operations, and uses them as
hints for data deduplication in a more fine-grained manner.
Thus, ICID achieves the highest deduplication ratio. For
download benchmark, ICID shows a deduplication ratio
of zero because there is no I/O causality among these
downloaded files, and thus cannot identify the redundant
data. In contrast, other chunk-based deduplication schemes
show reasonable deduplication ratios. These benchmarks
demonstrate that there is not a one-size-fits-all approach for
different scenarios. ICID is particularly effective for process-
ing local files, while chunk-based deduplication schemes are
more applicable to other scenarios.

To evaluate the sensitivity of the deduplication ratio to
the size of duplicate data, we run LevelDB with various
value sizes. As shown in Figure 9, ICID achieves the highest
deduplication ratio for all cases. Since the redundancy of
LevelDB is mainly caused by rewriting key-value pairs dur-
ing compaction, larger value sizes cause more redundancy,
and thus result in higher duplication ratios for all schemes.
ICID can achieve rather high duplication ratios even when
the value size is smaller than the chunk size (4 KB). Benefit-
ing from I/O-causality, ICID DO also shows higher dedu-
plication ratios than chunk-based schemes when the value
is smaller than 2 KB. ICID can improve the deduplication
ratio by up to 16× compared with other schemes. Because
ICID can identify and delete outdated memory-copy records
in the rec-tree more correctly, it can further improve the
deduplication ratio.

In most cases, FSC shows the lowest deduplication ra-
tio as it does not consider the content of the input dur-
ing chunking. However, for the value size of 8,192 bytes,
FSC shows a higher deduplication ratio than CDC-based
schemes except AE. The reason is that the written data con-
tains some metadata which are unlikely to be duplicated, for
example, CRC, filter block, and footer [32]. These metadata
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Fig. 10: Write traffic volume of different approaches. Data is
normalized to LevelDB with compression enabled.

are usually placed in the tail of the buffer. Because the value
size can be divided by the chunk size, FSC is likely to place
the metadata in a single chunk. Unlike fixed size chunking,
CDC-based schemes perform chunking based on the content
of data, and thus have a higher possibility to mix KV pairs
and the metadata (i.e., the duplicate and unique data) into
the same chunk, causing a lower deduplication ratio.

5.3 Write Traffic Reduction

ICID detects data redundancy by tracking memory-copy
operations, and thus cannot handle compressed data. As
a result, ICID has to disable content compression in Lev-
elDB. In the following, we verify whether the finer-grained
deduplication in ICID can reduce more write traffic than the
content compression in LevelDB. Figure 9 shows the write
traffic of different approaches, all normalized to the vanilla
LevelDB with content compression enabled. For chunk-
based approaches, we enable the content compression in
LevelDB. ICID achieves about 60% write traffic reduction
on average because of its high deduplication ratios. Chunk-
based approaches achieve much less write traffic reduction
because of their low deduplication ratios. ICI DO results
in larger write traffic than the vanilla LevelDB because
ICID DO leads to less write traffic reduction than content
compression in LevelDB. However, ICID DO is just used
for comparison, it is impractical for real-world scenarios.
Overall, even ICID disables the content compression, it can
still achieve significant write traffic reduction compared
with chunk-based approaches.

We also analyze the impact of write traffic reduction
on the life time of NVM devices. Generally, the lifetime
of NVMs is proportional to its capacity and is inversely
proportional to the data volume written on it. Assume C
is the capacity of the NVM device, D is the volume of the
original write traffic, and R is the deduplication ratio. We
use the following equation C

D×(1−R) to estimate the lifetime
of NVM devices. According to the write traffic volume
shown in Figure 10, ICID can prolong the lifetime of NVM
devices by 2.1–4.1 times.

5.4 Throughput

To better understand the impact of ICID on the performance
of different workloads, we run LevelDB with different
value sizes, and compare I/O operations per second (IOPS)
of LevelDB with the standalone execution without data
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Fig. 11: The impact of data duplication on the IOPS of Lev-
elDB, all results are normalized to the IOPS of standalone
execution without deduplication.
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Fig. 12: The deduplication time of different schemes varies
with the value size in LevelDB, all normalized to ICID.

deduplication. As shown in Figure 11, all results are nor-
malized to the IOPS of LevelDB without deduplication. Our
experiments show that the average IOPS of vanilla LevelDB
is 230 KOps/s, with an average latency of 4.3 us. When the
value size is as small as 128 bytes, ICID lowers the IOPS of
LevelDB by 60%, while other chunk-based data duplication
schemes degrade the application performance even by 76%.
The performance overhead of ICID is mainly attributed to
the lookup cost of the rec-tree. With the growth of value
size, the performance of ICID gradually approximates to
that of the vanilla LevelDB. When the value size is as large
as 8 KB, ICID can even improve the throughput by about
10% because the benefit of write traffic reduction eventually
exceeds the cost of data deduplication. ICID spends similar
time to detect the potential redundancy in the rec-tree,
regardless of the size of I/O operations. However, for larger
I/O sizes, ICID can detect more redundancy at one time.
Thus, ICID achieves more data traffic reduction for large
KV pairs while the cost of redundancy detection is similar
to that of small KV pairs. We find that the throughput of
chunk-based schemes is also improved when the value size
increases. The reason is that larger value sizes lead to higher
deduplication ratios and less write traffic.

5.5 Efficiency of Data Deduplication
In this section, we evaluate the efficiency of different data
deduplication schemes by measuring the execution time of
data deduplication. To make a fair comparison, we write
the original data on the file system no matter whether we
find out the duplicate data slices, so that all deduplication
systems spend almost the same time on file read and writ-
ten. We run LevelDB with various value sizes and measure
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the execution time of workloads. As shown in Figure 12,
ICID can reduce the time cost of data deduplication by 22%
on average compared with ICID DO. This implies that the
rec-tree is efficient for reducing the runtime overhead of
deduplication.

Compared with other deduplication schemes, ICID re-
duces the execution time of workloads by 47% on aver-
age. ICID is the most efficient deduplication scheme for
all workloads. The reason is that ICID can significantly
decrease the search space of data deduplication via track-
ing I/O-causality among in-memory file operations. ICID
records memory-copy operations in a rec-tree, and then
exploits these records to find out the hint about data re-
dundancy. Thus, ICID can significantly reduce the the cost
of data deduplication compared with traditional chunk-
based schemes. Moreover, ICID exploits an efficient garbage
collection scheme to delete outdated memory-copy records,
and further shrinks the search space of data deduplication.
FSC shows much shorter execution time than other chunk-
based schemes because it chunks the input file in a fixed
size, and thus avoids the time-consuming cut-point calcu-
lation. However, FSC usually shows lower deduplication
ratio, introduces more data chunks, and spend more time
on searching the indexes.

To better understand the performance overhead of ICID
and chunk-based deduplication approaches, we run Lev-
elDB with the value size of 4 KB and measure the execution
time of different steps in these two approaches. As shown
in Figure 13, chunk-based approaches spend about 66%
more time than ICID to deduplicate the same volume of
data. ICID spends about 82.4% of total execution time on
maintaining memory-copy records. Since ICID leads to an
insertion or a deletion in the rec-tree for each memory-copy
which is often a frequent operation in many file-processing
applications, it is not surprising that the majority of time is
spent in maintaining these records. ICID only spends ap-
proximately 15.3% of total execution time to search the po-
tential redundancy in the rec-tree for write operations which
are much less frequent than memory-copy operations. The
data comparison accounts for only 2.3% of total execution
time because ICID can significantly accelerate this operation
through AVX instructions. For chunk-based deduplication
approaches, the chunking and hashing operations spend
most of total execution time. Chunking is particularly time-
consuming because it has to calculate a rolling hash for each
byte of input. Hashing also accounts for a large amount
of time due to its high computation complexity. Overall,
chunk-based approaches are much more costly than ICID.

5.6 Sensitivity to the Chunk Size

To evaluate the impact of the chunk size on the deduplica-
tion ratio and the deduplication time, we run LevelDB with
one million unique key-value pairs using different chunk
sizes. The key and value sizes are set to 16 and 1024 bytes,
respectively. As shown in Figure 14, when the chunk size is
smaller, although the deduplication ratio is higher, chunk-
based schemes suffer unacceptable performance overhead
in terms of long deduplication time due to hashing and in-
dexing. Thus, it is often impractical to use very small chunk
sizes for in-line deduplication. Most deduplication systems
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Fig. 13: Average time consumption of different steps in
chunk-based approaches and ICID, all normalized to ICID.
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(b) Deduplication time of LevelDB under different chunk sizes

Fig. 14: Deduplication ratio and time of LevelDB under
different chunk sizes.

use a chunk size of 4 KB or 8 KB [13], [14] in practise. In
contrast, ICID can always achieve high deduplication ratio
no matter how the chunk size varies because ICID exploits
the I/O causality between file operations rather than the
content of data to identify data redundancy.

5.7 Memory Consumption
ICID needs to keep a rec-tree in memory to trace I/O-
causality among in-memory file operations, and thus con-
sumes an amount of memory. In order to demonstrate the
necessity of our garbage collection scheme for memory-
copy records, we implemented the third derivation of I/O-
causality based deduplication scheme called ICID KA. It
does not reclaim outdated memory records and keeps all
these records in memory. We use five datasets with different
numbers of KV pairs, and the key and value sizes are 16 and
100 bytes, respectively. We measure the memory consumed
by ICID, ICID DO, and ICID KA, FastCDC, respectively.
As shown in Table 5, ICID consumes a small amount of
memory no matter how many KV pairs are inserted into
LevelDB, because ICID deletes outdated records timely. It
even does not use up the reserved memory pool. The mem-
ory consumption of ICID KA grows rapidly when the data
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TABLE 5: Memory consumption of rec-tree for LevelDB

Schemes Memory consumption (MB) for # million KVs
2 4 8 16 32

ICID 5.7 5.7 5.7 5.7 5.7
ICID DO 0.1623 0.164 0.1643 0.1641 0.1644
ICID KA 211.1 583.7 1542 3950 9894
FastCDC 1.1 2.4 4.2 9.3 18.3

TABLE 6: The ratio of metadata size to duplicated data size

Schemes
metadata
dedup.data

× 100% for # bytes of values
128 256 512 1024 2048 4096 8192

ICID 25.1 12.9 6.8 3.7 2.2 1.2 0.9

FastCDC 28.5 28.4 23.9 18.2 16.3 5.7 2.8

volume of KV pairs increase exponentially. Since ICID KA
keeps all memory-copy records in memory, it consumes up
to 9 GB memory when the number of KV pairs becomes 32
millions. Because ICID DO deletes all memory-copy records
that overlap with the newly-inserted one, it significantly re-
duces the memory consumption to about 0.1 MB. However,
this aggressive garbage collection strategy has a negative
impact on the deduplication ratio, as shown in § 5.2. Chunk-
based schemes use main memory to cache fingerprints of
chunks, and the size of fingerprints grows linearly with
the size of dataset. Since all chunk-based schemes split
data into chunks in similar sizes, they generate almost the
same amount of chunks and fingerprints. Therefore, we
only take FastCDC as an example to present the memory
consumption of chunk-based schemes in Table 5.

In summary, IDIC DO shows rather low storage over-
head, but results in low deduplication ratios. ICID KA
incurs significant storage overhead, and thus is impractical
in real-world scenarios. ICID achieves high deduplication
ratio at the expense of moderate storage overhead. As a
result, ICID is the optimal choice in practice.

5.8 Storage Overhead of File Metadata

Although the data deduplication ratio is critical for a dedu-
plication system, the metadata introduced by deduplication
schemes may offset the saving of storage space. In this
section, we focus on the storage overhead of metadata
for both ICID and chunk-based deduplication systems (the
rec-tree resides only in memory § 5.7). The metadata in
ICID is mainly composed of the metadata used to index
extents in ICID FS. For chunk-based deduplication systems,
the metadata includes both fingerprints and the data used
to index chunks. We find that chunk-based deduplication
systems show similar storage overhead of metadata, and
thus only show the result of FastCDC in Table 6. For most
value sizes, the ratio of the metadata size to the duplicated
data size for ICID is much lower than that of chunk-based
deduplication systems. The reason is that chunk-based sys-
tems cause additional storage overhead of fingerprints for
all data, while ICID only needs to index the duplicate data.
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Fig. 15: The throughput of LevelDB with garbage collection
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Fig. 16: Integration of chunk-based deduplication into ICID

5.9 Garbage Collection Performance

To evaluate the impact of GC on the throughput of LevelDB,
we construct the data store with a 128 GB dataset, and
update KV pairs continuously. The GC thread is manually
triggered once the updated data volume exceeds 16 GB.
Figure 15 illustrates how the IOPS varies with the data
volume of write traffic. We can find that the performance
degradation due to GC is very limited. For larger value
sizes, the GC incurs less performance degradation because
larger extents usually result in larger fragments, and thus
less extents should be moved to generate large free space
during the GC. Overall, GC has only a slight impact on the
throughput of LevelDB.

6 DISCUSSIONS

Integrating Chunk-based Deduplication into ICID. ICID
is designed to deduplicate data redundancy caused by file
operations (i.e., insert/merge/truncate). Because ICID offers
high deduplication ratios and low overhead of deduplica-
tion, it can be an effective supplement to traditional chunk-
based deduplication schemes. Thus, an optional deduplica-
tion framework that integrates chunk-based deduplication
approaches into ICID can be applicable to different sce-
narios. As illustrated in Figure 16, for each write request
of a process, the deduplication framework should first
check whether there are correlated memory-copy records
in the rec-tree. If no record is retrieved, the write request
is forwarded to the chunk-based deduplication module.
Otherwise, the write request is handled by ICID. Since
the integrated deduplication framework does not change
the I/O path of ICID, the performance of ICID remains
unchanged. For the chunk-based deduplication module, the
integrated deduplication framework only results in trivial
performance overhead due to the lookup cost of the rec-tree.
We note that only read and memory-copy operations would
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generate new memory-copy records and update the rec-tree,
while write operations only trigger a lookup of the rec-
tree. Thus, if a program only receives data from periphery
input devices and writes it to local storage, the rec-tree
of this program would be always empty, incurring trivial
performance overhead. Our experimental results show that
the average latency for searching the rec-tree is 0.14 us.
Compared with the 4.7 us latency of a write request (4 KB),
the lookup cost of the rec-tree introduces only 3% additional
latency, and the throughput remains unchanged.

Storage Fragmentation. Existing data deduplication sys-
tems face severe fragmentation problems. The fragmenta-
tion can cause random reads and lowers the throughput of
data restoration. Some proposals exploit rewriting schemes
to relocate unique chunks, and thus can mitigate the frag-
mentation problem to some extent [37]. A few proposals
exploit other optimizations such as caching to accelerate
the data restoration [38] due to fragmentation. However,
the fragmentation problem is always accompanied with the
data deduplication. We can explore defragmentation tech-
nologies [39] to mitigate this problem in an offline manner.
On the other hand, since the random read performance of
NVMs is much higher than that of SSDs/HDDs (Table 1),
the fragmentation is no longer a critical problem for NVM-
based storage systems.

Correctness of ICID. LevelDB maintains checksums of
data blocks to verify data integrity. Thus, when a data
block is read from storage, the accuracy of our deduplica-
tion scheme can be confirmed by validating the checksum.
LevelDB would report an error once it finds a data block
is corrupt. We perform identical computational tasks (in-
cluding patching, compiling, and video editing) on ICID
and a native system without deduplication. We compare the
checksums of each file generated by these two systems. The
consistent checksums also confirm the correctness of ICID
implementation.

7 CONCLUSION

In this paper, we present an I/O Causality-based In-line
Deduplication (ICID) scheme for NVM-based storage. ICID
records the I/O causality among in-memory file operations
to achieve in-line data deduplication, and avoid the time-
consuming calculation of fingerprints caused by previous
chunk-based deduplication schemes. We advocate two key
technologies to manage memory-copy operations in a B-tree
efficiently, i.e., a hybrid data structure to store memory-
copy records, and a location-dependent garbage collection
scheme for deleting outdated memory-copy records. Our
experimental result demonstrates that ICID achieves up to
16× higher deduplication ratio than state-of-the-art dedu-
plication schemes, and also reduces the time overhead of
data deduplication by 47% on average.
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