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Multilevel Cooperative Search for the
Circuit/Hypergraph Partitioning Problem

Min Ouyang, Michel Toulouse, Krishnaiyan ThulasiramBgellow, IEEE Fred Glover, and Jitender S. Deogun

Abstract—The objectives in this paper are twofold: design an tion of netlists) that involve static clusters (blocks) of modules
approach for the netlist partitioning problem using the coopera- from the original netlist instance. Since the clusters are static,
tive multilevel search paradigm introduced by Toulouseet al. and the search space of coarsened hypergraphs is often a tiny frac-
study the effectiveness of this paradigm for solving combinatorial ti fth h f th iginal optimizati bl
optimization problems, in particular, those arising in the very IOIfl ofthe _Searc Space ot the original optimization pro em:
large scale integration (VLSI) computer-aided design (CAD) area. This reduction in the search spaces enables a speedy execution
The authors present a cooperative multilevel search algorithm of multilevel algorithms. Unfortunately, it also imposes serious
CoMHP and describe a parallel implementation on the SGI 02000 |imjtations on the ability of multilevel algorithms to provide
system. Experiments on ISPD98 benchmark suite of circuits show, good quality partitionings. These limitations of the multilevel

for four-way and eight-way partitioning, a reduction of 3% to . . .
15% in theysize of %ypere):jge cuts cc?mpared to those obtained paradigm have been recently addressed in [7] and [11] using

by hMETIS. Bisections of hypergraphs based on the algorithm More dynamic coarsening strategies. In this paper, we present a
also outperform hMETIS, although more modestly. The authors broader strategy to address this issue.

present experimental results to demonstrate that the cooperation  Qur approach is based on a bottom-up algorithm design tech-
scheme plays a key role in the performance of COMHP. In fact, g6 called cooperative search. According to this approach, a

the improvement in the quality of the solutions produced by - . g
CoMHP is to a large extent independent of the partitioners set of different search algorithms is first selected. Each algo-

used in the implementation of COMHP. The experimental results fithm is implemented as an independent program that runs in
also demonstrate the effectiveness of the cooperative multileveltime sharing with the other programs on a sequential computer
search paradigm for solving the netlist partitioning problem and  or in parallel if several computing units are available. If the
show that the cooperative multilevel search strategy can be used yiference among the programs is only based on the stochastic
as a paradigm for designing effective solution techniques for - . - .

properties of a generic algorithm or on different search parame-

combinatorial optimization problems such as those arising in the - -
VLSI CAD area. ters, then we can think of those programs as the multiple restarts

. . Lo . of the same algorithm. However, unlike restart, programs in a
Index Terms—Combinatorial optimization, cooperative search, . hi ith h other b
graph partitioning, multilevel algorithms, VLS physical design. ~ coOperative search interact with each other basedoopera-
tion protocolthat specifies how the search programs cooperate
at run time. Intuitively, as framed in Huberman’s paper [10],
. INTRODUCTION cooperation is an exchange of “hints” that may confuse some

ETLIST partitioning is an important and well-studied research processes, but will also help others. Overall, hint sharing

N search topic in the very large scale integration (VLSi)"nproves the performance and has been used with success to
computer-aided design (CAD) area. Several classes of heurisfl@§ign search heuristics in the context of constraint satisfaction
have been proposed to address this problem [2]. Recently, nifioblems [3], [8] and to parallelize some metaheuristics [13],
tilevel algorithms have been applied to the netlist partitionirlid4l, [16], [17].
problem [11]. This approach has since become the standard tdhe present paper introduces the cooperative multilevel
partition netlists. hypergraph partitioning algorithm (CoMHP), an asynchronous

In the multilevel paradigm, Fiduccia—Mattheyses (FM) type4ariation for hypergraph partitioning of the cooperative algo-
of move-based heuristics execute moves in coarsened hypRm in [18]. Our hypergraph partitioning method uses a new

graphs (hypergraphs are a common mathematical represeﬁﬁust Coarsening Strategy which is based on partitioning rather
than clustering, as it is usually done by multilevel algorithms.

. . . ._Next, we introduce a cooperation protocol which supports a
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II. BASIC DEFINITIONS AND PARTITION-BASED COARSENING  peredge ofH; if and only if there exists a hyperedgé € F

/ 1 1 1 -
Hypergraphs are commonly used as a formal representat%H:h thaie! has ”Of‘em".’ty intersection with each cluster repre
ented by the vertices in

of netlists. LetH, = (Vp, Eo) be a hypergraph representatior? : .
of a given netlist instancd/, is a set of, vertices and a set Basically, the above definition formally states how coarsened

of m hyperedges which represent, respectively, the modulesLylpﬁrgraphﬂi are formed; each clus(t;r in ;her[])artitiog def;ned
vertices and signal nets of the netlist. The &gtis a subset y the mapping; represents a vertex &; and a hyperedgeo

of the powersee"> of the vertices inHo, i.e.,c € Ey is a H, becomes an appropriately modified hyperedgéfpif the
subset ofV;,. Note that the superset of,a sétis defined as vertices ine are not all in the same cluster of the partitioning
the collection of all subsets &. Given this formalization, the dff'”e‘_’ byC_i. For;]nsta;nce, if each hyperedge &} is a p.?flr
problem of partitioning the modules of a netlist intcsubsets °© V%rt'ceé mVO’ht hen oruC;A s fjb: {gi“’ Cié} ebEi_ !

P, P,, ..., P, can be stated as a combinatorial optimizatiofi® ° € Yo SU¢ that € C;, andb € C;, and{a, b} is a

problem where one tries to find an instardd@,, P, ..., Py} yperedge_inEo. . .
of the mapping In our hierarchical clustering approach, each mapping

is obtained by solving a hypergraph partitioning problem

P:Vy — 2% (1) for Hy. The family of mappings as defined in (3) is derived
from the solution of then/2’-way partitioning problems
that minimizes the cost function for Hy, for 0 < ¢ < [. The solution of then/2'-way par-
m titioning, i.e., then/2! subsets, become the set of vertices
flz) = Z w(e;) @ Vv, = {Cy, Ciay ..., C; (n/21y}- Next the coarsened hyper-
i=1 graphsH; are generated from the mappingsas described in

wherew(e;) = 1 if ¢; is a hyperedge that spans more than orfRefinition 2. We identify this hierarchical coarsening strategy

P,, andw(e;) = 0, otherwise. The subsef3 are subject to the S partition-based coarseningrhis algorithm can be trivially
constraints: parallelized by running the partitioning processes and the

g . hypergraph generations on different processors. The parallel
1) B P =03 #5); time requirement is dominated by the processor that computes
2) |Vo|/ck < |B;| < ¢|Vo|/k for some constant > 1.0; L
3) U;;_l P =V, the partitioning fork =~ n/2.

Constraints 1) and 3) ensure tha®,, P, ..., P} is a par-
tition and constraint 2) sets bounds on the cardinalitieg;,of 1ll. CoMHP: DESCRIPTION ANDCONVERGENCEBEHAVIOR
in the partitions. The set of instances from Mapping (1) satis-

fying these constraints are identified as taution spaceX, In this section, we present in detail, the different components

of this problem. The above problem is a generalization of tﬁ)é %urlTulttlle(;/el_tcooperanve seatr)cr;] algorl'flrjrr]n, C;OM;'P’ and a
graph partitioning problem, an NP-complete problem [6]. Corroce ic;}scu AXF:F? ;:k?nve:ﬁenceth ena\r/;%r'r fehre aier prﬁ— Each
sequently, search heuristics are handy to provide good solutiGfig>c> 0 » (NE Same as the NUMDEr ofnypergrapns. =ac
in reasonable computational time. procesy; takes as input the hypergraph. The processes run

Multilevel algorithms initiate processing by a hierarchical" parallel,_gpplylng th‘? same com_p_05|t|on_of FM-like hyper-
clustering of the vertices off,, yielding hypergraphs with graph partitioning heuristics to partition their hypergraph. Ac-

fewer vertices, i.e.coarsened hypergraph&/sually, recursive cording 0 Deﬁmuon L moving a vertaxin a coargened hyper-
matching-based clusterirgjgorithms such asdge-coarsening graphif; is equwalept to moving a cluster of verticesfi, t.he
hyperedge-coarseningnaximal matching and modified-hy- cluster corresponding to vertexc H;. Consequently, while a

pergraph-coarseningd], [11] are used to coarsen hypergraphéj.roces% searches for good patrtitionings in the coarsened hy-

Our clsteing siegy acresses e probem of conwractfFUSDL, ackialyaplores o sobln spate Thuh
the netlist as a partitioning problem. In this paper, hierarchica P !

clustering and coarsened hypergraph are defined in the f —X(.J do not ovgrlap complete!y. Thisis bgcquse, as in standard
lowing manner. multllevel al_gonthms, h|erarch|ca_1l clusteringin CoMHP creates
Definition 1: Let different neighborhoods to solutions iy.
The computational cost of executing a move in neighbor-
Ci: Vo — 2V0, i=1,...,1 (3) hoods based on coarsenings is independent of the size of the
clusters inHy. It only depends on the number of neighbors of
be a family ofl mappings wher€; maps the vertices afl, the current solution; this number goes on decreasing as the hy-
into |V;| clustersC;y, Cia, ..., Cyy; such thatC;,, N C;, =0 pergraphs are more highly coarsened. This is a clear advantage
if v # v and U;]'L Ci; = Vo. The family of mappings in (3) of these neighborhoods. On the other hand, if the coarsening
defines ahierarchical clusteringof the vertices o, whenever cannot be undone, the logical moveshfy only involve the
[Vi] > |Viqr|foralli =1,2, ..., 1 —1. clusters of vertices i, associated by the Mapping (3). All
Definition 2: A coarsened hypergraptl; = {V;, E;} isthe the possible combinations of such clusters Bubsets can only
set of vertices; and hyperedge#’; such that: 1 € V; isa generate a small fraction of the solutionsAfy. This is not a
cluster (subset}’;; of vertices fromV}, as defined by the map- problem by itself since it is usual for local searches to explore
ping C; (Note: to simplify notationy may also be denoted by only a fraction of the solution space. Rather, the problem is when
the corresponding clusté?;;.) and 2) a subsetof V; is a hy- the small search spaces of coarsened hypergraphs have no good
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solutions, their exploration is then hopeless, even using the b
search methods.

This limitation of the coarsening approach has in fact bet
partially identified in [7], [11] by observing that an initial parti-
tioning can be refined in different ways depending upon how ti
coarsening is executed [11]. Those papers propose a multiph
refinement as a mechanism to refocus the search spaces. ¢
multiphase refinement is based on a recursive call of the mu
level algorithm from the same coarsened hypergraph inthe m
tilevel structure. A randomized coarsening is used during tl
multiphase refinement. In [11], this coarsening is initiated froi
the best partitioning obtained from the refinement or from tr
previous iteration of the multiphase refinement. The multipha
refinement iterates until the best solution cannot be improvi
further. The initial refinement phase of the multilevel procedure
is then resumed. Fig. 1. Interaction operators: (a) coarsened hypergraphs (dashed lines indicate

Ol_Jr multilev_el cooperative algorithm is similar in Spirit-to?&a)rtiﬁltc::;)rgglgib(:)oIggz\ltg?muonlng operator, (c) local clustering operator, and
multiphase refinement. It also produces many “recoarsenings”
of the hypergraphs which allow the search processes to explore

Local_partitioning( );

new regions in the solution spacdg,. 1. for each vertex v € V;
2. for each elite partitioning = € X]_,
A. Refinement Phase 3. for each subset Ps of elite partitioning z
- . . . 4. if(vNPs #0) & (v ¢ Fs)) then
T_he initial coarsening may fail to provide access to good 5. create new vertex v; = v N Ps;
regions of the solution space. We now describe how the 6. if v not yet marked to “delete” then mark it;
partitionings discovered by the search heuristics during the endfor; .
. . . 7. if v is marked to “delete” goto line 1;
refinement phase can be used to develop a dynamic coarsening endfor;

strategy. Our dynamic coarsening strategy is supported by the  endfor;

cooperation protocol of CoMHP. This protocol specifies the

processes’ neighborhood structure, the kind of interactioR§- 2- Pseudocode of the local partitioning operator.

(hint exchanges) allowed among search processes, and what to

do with the hints exchanged. tioning operator and the local clustering operator redefine the
The neighborhood structure in the current implementationésarsening of hypergraphs. On the other hand, the interpolation

an array of processes: procegscan only interact with pro- operator reinitiates the search of some of the move based heuris-

cessey,_; andp;1. This neighborhood structure mirrors theics used by each process. More specifically, in the interpolation

hierarchical clustering ofy, whereH; has for neighbors hy- operator, one elite partitioning frol; ., is selected as the ini-

pergraphd;_; andH,, in the sequence of increasingly coarstial solution of a move based heuristic in hypergragh We

ened hypergraphs. The boundary conditions in the array are haow describe, in detail, these three operators. Fig. 1 is used for

dled in the following mannemg only interacts withp,, p; only illustration of the workings of these operators. Fig. 1(a) gives

interacts withp;_1. Hy, Hy, and H, with one elite partitioning for each indicated
Each interaction involves exchange of “hints” or informatiofy dashed lines.

based on “elite partitionings” and taking appropriate actions. 1) Local Partitioning Operator: Local partitioning changes

Elite partitionings are those that we expect to give us hints astt® coarsening off; by splitting someof its vertices. Vertices

the nature of optimum partitionings. For instance, a partitioninglusters) inH; are split based on the information provided by

which has the smallest hyperedge cut among all those partitithe set of elite partitioning&’/_, from hypergraph;_,. The

ings generated by the search method used, may be considéwedl partitioning operator finds clusters= V; (line 1 in Fig. 2)

elite at that stage. LeX; be the search space &f;, whereas such thatv has at least two vertices b € V; that are into

X! is the set of elite partitionings df;. Different approaches two different subsets (line 4) of one of the elite partitionings

have been tested to create each eliteXseof hypergraphH;. of X/_;. When this happens, the vertices Hf, in the inter-

The approach presented in Fig. 4 initializes the elite set tosaction of the sets N P; form a new vertex; of H; (line 5).

good partitioning generated by a search method. A newly gebnce the local partitioning operator has been completed, a spe-

erated partitioning is added 8/ if its hyperedge-cut value is cial routine is called which generates a new coarsened hyper-

not larger than 10% of the smallest of the hyperedge cuts of thephH; reflecting the changes in the mappifig provoked by

partitionings already in the séf,. We also limit the size oK. the execution of the local partitioning operator. Note that in the

If the addition of a partitioning increases this limit, we removpseudocode of Fig. 2, after the first elite partitioning for which

from X! the partitioning which has the highest hyperedge-cute find at least one nonempty intersection with a subset in this

value among all those already in the &t partitioning, we end the “for loop” (beginning at line 1) for this
The operators, to be described soon, specify how to use thegtex. In other words, we split a vertex with respect to only one

elite partitionings at the level of each process. The local parélite partitioning, if possible.
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We shall first illustrate the local partitioning operator with a ~ Localclustering( );
. . . - . . 1. for each vertex v € V;_;
hypothetical example. Then the illustration will be given using

. 2. 7=0
Fig. 1. 3. for each elite partitioning z € X_,
Consider the hypergrapH;. Pick any vertexs of H; (line 4. for each subset P in partitioning 2
1 in Fig. 2). Note thaty € V; is a cluster of vertices off,. 5 if (v C P) then j=j+1;
. endfor;
Letv = {2,7,8,9. Here 2, 7, 8, and 9 are all vertices of endfor;
H,. Consider an elite partitioning of H;_; (line 2 in Fig. 2). 6. if j is equal to k, mark v as a candidate for merging;

Here, we assume that the optimization problem is to search for ~ endfor;
optimum three-way partitionings. Let the three subsets in t
partitioningz be P, = {1, 2, 3, 8, 12, P, = {9, 11, 13, 14,
andP; = {4, 5, 6, 7, 10. Now we get (line 4 in Fig. 2)

Iu% 3. Pseudocode of the local clustering operator.

So, the verteX is splitinto the two vertice§3} and{2}, and the
vNP ={2,8}, vNP={9}, and vnP;={7}. vertexd is split into the two vertice¢7} and{6}. Note that the
verticesa andc are not split because they are strictly included
We then create the following new vertices (line 5 in Fig. 2) as'g 11 and %, respectively. The resulting coarsening/éf is
result of splitting vertex of H;: shown in Fig. 1(b). Note that thI.S new coqrsenlngﬁfenqples
the search spack; to overlap with the regions of identified
by the elite bisection.
{285 {9}, and {7}. 2) Local Clustering Operator:Local clustering changes the

. . . ) coarsening ofH; by mergingsomeof the vertices (clusters)
Once we identify a partitioning (as above) and split vertex H,_, into new vertices forH,. A vertex from H;_, be-

thenv is marked to be deleted (line 6) and the operator returnsitgmes a “candidate for merging” if it is strictly included in one
line 1 to pick a new vertex and check if it could be split as abovgf the subsets of each elite partitioning fralfj_, (line 5 in

In case the elite partitioningdoes not help to split the vertex g 3y The identification of which vertex can be a candidate
we pick another parpgomng from the list (_)f_ehte partltlonl_nngor merging is needed because between the time a partitioning
Xiy-If ho ellt_e partitioning leads t? a splitting of then th's_ enters the set of elite partitionings and the time local clustering
vertexv in H; is !e_ft L_mchanged as it was before the executiog run, many vertices ofl;_, may have been split or clustered

of the local partitioning operator. The algorithm for the local,,c, that some of them may overlap more than one subset of an
partitioning operator terminates once all the verticeiphave elite partitioning. According to the definition of (2), a vertex is

been considered for possible splittings. _ strictly included in exactly one subset of a partitioning. There-
We now return to Fig. 1 for another illustration of the loc ore, if j = kin line 6, vertexv is strictly included in one subset

partitioning operator with a concrete example. Consider the lyr o 5 lite partitioning. Once the candidates for merging have
pergraphfi, of Fig. 1(a). (Vertices of coarsened hypergraphs g%.q, identified, a pair of vertices can be merged if both ver-
well as the subsets of partitionings are sets of vertices from tf;

> ) ices satisfy the two following conditions: 1) both vertices lie
hypergraphi,.) This hypergraph has four verticesb, ¢. d € = g the same hyperedge and 2) both vertices are together in the
V1, whereq is a cluster{0, 1} of vertices ofHy, b is a cluster

X S0 _ -~ same subset in all elite partitionings. Note that two vertiges
{2, 3} of vertices ofH,, and so on. The elite bisection & is andv, of H;_, are on the same hyperedgef H, if they are

£ =10,1,3 % andP; = {2, 4,5, §. This elite bisection in- ,+h, strictly included ire. For instance, in the case each hyper-
dicates that potentially good solutions exist in the region of t ge is a pair of vertices, then andw, are on the hyperedge

solution space in which vertices 2 and 3 are in the different supz , _ {1, v2}. Once a vertex is identified as candidate for

sets of each bisection. But yertices 2and 3form a cluster; merging, the vertex is labeled with the subset of each elite par-
swaps onH; always move vertices 2 and 3 &f,

; : ) together so titioning where it has been found. Vertices with the same label
that they are in the same subset of the bisectioHpbecause satisfy condition 2 above.

they form a single vertex i, . The region of the solution space v’ shall next illustrate the local clustering operator with a
corresponding to the elite bisection&f, is not reachable in the hypothetical example. Consider vertiagsandvs of H;_, (line
search space defined by the coarsened hyperdiapAlthough 1in Fig. 3). Letv, = {6, 8} andv, = {12, 13, and |étT1 7
the search space &f; is smaller thanX, and therefore faster to andz3 be the three elite partitionings (ﬁi—i- That is, 7they
explore, this advantage is lost because search spadees not form the setX!_,. Assuming three-way partitionings, let the
overlap with good solutions of the basic optimization proble%ree subsets ’i’lfnl 5 andzs be

This problem is detected by the local partitioning operator be- ’

cause the intersection of the sétand P, is not empty and

is not strictly included in?; . Similarly, the intersection of the =, ={2, 7,9, 11}, {1, 3, 5, 10}, {4, 6, 8, 12, 13, 14}
setsb and P, is nonempty and is not strictly included inF. zo =1{1,3,4,5 10}, {2,7,9, 11,14}, {6,8, 12, 13}

Also, the intersections of vertek= {6, 7} with P, andP; are : T T '
nonempty. In other words 6.7 ! 2 z3=1{6,8,12,13,}, {2,7.9,11, 14}, {1, 3,4, 5, 10}.

We can see that the vertex = {6, 8} is strictly included in
bnk ={3} and bnPp ={2} one of the subsets in each of the above elite partitionings (lines
dnP, ={7} and dn P, ={6}. 3,4, 5in Fig. 3) and so it is eligible for merging. Similarly, the
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vertexvo = {12, 13} is also eligible for merging. I& = {3,6, CoMHP(); /* process p; */
8,9, 10, 12, 13 is a hyperedge, then both andv, lie on this I“'é‘;lr'lzpalféznm using Z-way partitioning
hyperedge, and so we can merge them to form a ve6e8, algorithm (see Seation IT);

12, 13} for the hypergraplH;. Compute an initial partitioning x;
N turn to Fig. 1 f ther illustration of the loca v = & BestEdgeCut = f(@);
ow we return to Fig. 1 for another illustration ot the 10Ca wpiie not terminated /* begin main loop */

clustering operator with a concrete example. According to tl1.  Apply local partitioning operator to H;
elite bisection off, [see Fig. 1(a)], vertices 0 and 1 are in the la. For each partitioning y found using FMS and PFM on new H;

. . . ) . . 1b.  if f(y) < BestEdgeCut then
same subset of this elite bisection. These vertices also lie on X! = X! Uy; BestEdgeCut = f(y);
same hyperedge. So, they are merged to form vertek H; if |X | > NumberO f AllowedEliteSolutions then
[see Fig. 1(c)]. For similar reasons, we merge vertices 4 anc Remove the worst elite solution from X/;

: 2. Get a partitioning = from X/ i41 (interpolation operator);
to form vertexb of Hy, merge vertices 2 and 6 to form vertex For each partitioning y found using FMS and PFM with

. .
of Hy, and merge vertices 3 and 7 to form vertbaf H;. These = as the initial solution

verticesa, b, ¢, andd now define the new coarsened hypergrap2b. run 1b;
Hi. Apply local clustering operator to current Hj;

3 a. Run la and 1b;
Local clustering tends to reduce the number of vertices ing 1t number of vertices < 500 do random search

coarsened hypergraph and therefore to reduce the size of else execute hMETIS;
search space. This balances the effect of the local partitioni4a. Run 1b; L
operator which tends to increase the number of vertices. It a 5; er?;esr:l;f;r{ggzt:}n criterion;
makes the search space retreat from overlapping with unintEnd coMHP

esting regions of the solution space. Together, local partitioning

and local clustering operators allow the search spaces to mbife4- COMHP for process;.

in the solution space, which is the desired effect of recoarsening.

3) Interpolation Operator:In the interpolation operator, tics and the three operators that handle hints from neighbor
one partitioning from the set of elite partitionings Hi,, is processes. Each iteration of the loop executes the following
selected to be the initial solution of a move-based heuristic $s@quence of operations: local partitioning, local searches,
hypergraphH;. Our interpolation operator would be identicainterpolation, local searches, local clustering, local searches,
to the interpolation operator of multilevel algorithms if itand global searches. Fig. 4 contains an abbreviated pseudocode
was not for the way we compute the coarsened hypergrapfus.this loop for procesg;.

Recursive coarsening used by most multilevel algorithms isThe initialization phase computes a coarsened hypergraph
such that vertice€’;; € H; are formed by the clustering of two and an initial partitioning. The initial partitioning is required to
vertices fromH,_; . For example, when vertices v € Hy are provide a first elite solution to the sét/ and an initial solution
mapped together to an aggregéalg_,); € H; 1, those two to the iterative local search methods used in the main loop (un-
vertices are necessarily mappedtg, the superset of’;_;y; like constructive methods, iterative methods have to be provided
in the coarsened hypergragh;. Hypergraphs generated withwith an initial solution that they then improve).

recursive coarsening are said to be related level by level. ThisThe execution sequence of the interaction operators (local
is not necessarily the case with our coarsening strategy. Teatitioning, interpolation, local clustering) has been chosen ar-
vertices ofHy that are mapped to a clustéf; € H; may be bitrarily. However, once the local partitioning operator is per-
spread over several clusters in each hypergidphy > i. formed at level, hypergraphi; is modified. We then run iter-

Returning to Fig. 1, assume the elite partitioning of hyative local search methods (line 1a) on this new hypergféph
pergraphH- is selected as initial solution for a move-basetb calculate new hyperedge cuts as well as to discover potential
heuristic of procesg; associated with hypergrapH;. The elite solutions (line 1b). As local search methods we have used
elite partitioning cannot be used because hypergrdphand the Sanchis partitioning algorithm (FMS) [15], and the mul-
H, are not related level by level. For example, vertesf H; tiway partitioning by free moves (PFM) proposed by Dasdan
spreads over verticesand f of hypergraphH, (same thing and Aykanat[5]. Next, online 2, the interpolation operator is ap-
for b). The elite partitioning ofif; cannot be a partitioning for plied to get an elite solution from X ,, so thate can be used
the hypergraplH;. In order to use the partitioning frorl;, as an initial solution for the search methods FMS and PFM. Fi-
we change the coarsening Hf . A split of vertices inH; that nally, the local clustering operator is applied, which transforms
spreads over more than one vertexHn is performed using H; once again, allowing us to repeat the execution of FMS and
a similar procedure as for the local partitioning operator. ThBM on a different hypergrapH;.
is, we consider splitting the vertices b, ¢, andd of H; [see The search of line 4 in Fig. 4 serves two different purposes.
Fig. 1(a)] using the bisection aff; shown in Fig. 1(a). As For highly coarsened hypergraphs, less than 500 vertices for ex-
shown in Fig. 1(d), after the split, it becomes possible to usenple, several random searches could be executed. As these hy-
the elite partitioning fronf, as an initial solution to one of the pergraphs are very small, the main loop runs very fast and the
move-based heuristics in our search method. process may run out of elite partitionings from neighboring pro-

4) The Search Heuristic of CoOMHP’s Processédfe are cesses. By executing many random searches, we slow down the
now ready to describe the search heuristic run bylthe1l execution of the main loop while having chances to discover
search processes of COMHP. This search heuristic combinegyaod partitionings. The second purpose is to execute a search
a single iterative loop, several hypergraph partitioning heurisf H; which does not depend on any initial partitioning. Both
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the hMETIS software and random searches have this chardee system. Hints have first to change the static neighborhood
teristic (our random search routine consists of an initial parstructures defined by coarsened hypergraphs before directing
tioning generated randomly, followed by the execution of an ithe search in new regions of the solution space. This is unlike
erative search to refine the random patrtitioning). any other cooperative algorithms. We believe that this is the

All the processes run the same combination of heuristics areison why the best solutions found by CoMHP are very close
interaction operators, except for the special conditions that hatdthose of cooperative procedures that meet the requirements
for the boundaries processesandp; and for the difference be- above. However, the performance of cooperating processes in
tween highly coarsened hypergraphs and the other hypergraf@@MHP does not settle in a log-normal distribution because

CoMHP is an asynchronous algorithm in the sense that eablkre are usually too few processes and hints are often strongly
process executes the iterative loop of the search method withoatrelated. Rather, the cooperation protocol in CoMHP is such
synchronization with other processes. Therefore, processesthat it tends to minimize the differences between the hyperedge
sociated with highly coarsened hypergraphs run more iteratiangs of the elite partitionings. The evolution of COMHP settles
of the search method compared, for example, to the processiast minimum energy state (such as Hopfield networks [9]). The
sociated withH,. The time requirement for the cooperation proenergy function is given by the sum of the differences between
tocol is the same for all processes. Furthermore, this time tbe averages for the hyperedge cfits) of the elite partition-
guirement is insignificant compared to the time required by thegs z of the different processes

search heuristics.
(X @) X f@)

B. Convergence Behavior of COMHP EX) = Z w@'(j;(/' — x@'{); | . 4)
7 i+1

Because of the local interactions among the search processes, =0

the convergence behavior of cooperative algorithms is some-

times modeled according to the theory of complex systems. Fdi€ initial state of the system is given by the elite partitionings
example, Huberman [10] uses a probabilistic model to show tH&mputed after the coarsening phase. If the coarsening phase
the performance of cooperating processes is log-normally digsuccessful, the elite partitionings from neighboring processes
tributed for successful cooperative algorithms, in contrast witll have different hyperedge cuts. The differentials among the
the normal distribution of independent searches (or restartd§st hyperedge cuts of neighbor processes create opportunities
In this model, the effect of cooperation on the distribution i& change, by percolation, the coarsening of the neighbor hyper-
a smaller number of average quality searches but an increg&aPhs. New coarsenings provide new elite partitionings which
of the length of the tails on both sides of the distribution. TH8 turn affect the coarsening of neighboring hypergraphs. This
long tail of the positive side of the distribution produces theercolation process stops to have an impact on the exploration
overall performance improvement. But to achieve such perfdit the solution space when all the elite partitionings have about

mance improvement, the cooperative procedure must satisfy th@ same hyperedge cuts, which corresponds to a minimum en-
following requirements. ergy level of the system. Once the system has reached such a

minimum energy state, the quality of the best partitioning does

1) Alarge set of heuristically guided searches. rtlgt improve much. In terms of the best partitioning, when the
2) Th h i - L ; e ’ .
) The searches apply successfully different search stra stem [as modeled in (4)] is stable, that s, it has reached a fixed

ies, leading to nonredundant explorations of the solutioh .
gpace g P point, the computation can then be ended.

3) Processes exchange some useful information (hints) that
allows some of them to cut the number of steps required IV. EXPERIMENTAL RESULTS

to reach an optimal or acceptable solution. We have evaluated the performance of our COMHP algorithm

4) Hints are statistically independent. on the ISPD98 benchmark suite of netlists [1], comparing the
Requirements 1 and 2 are necessary to provide statistical ingderformance of CoMHP with version 1.5.3 of the hMETIS par-
pendence among the hints. In practice, however, these requiitining package. We have implemented a parallel version of
ments often conflict with one another. Either the number @iur hypergraph partitioning algorithm and have run it on the SGI
guided searches is too small or the explorations of the differesxdmputer at the Research Computing Facility (RCF) of the Uni-
searches overlap in the solution space. When this happens, campsity of Nebraska-Lincoln. hMETIS has also been run on this
erative programs do not provide consistent quality of solutionsame environment. RCF possesses a shared memory SGI 02000
they converge well on some instances, yet very poorly on otherstem with 16 250-Mhz R10k CPUs, 4-GB main memory, and
instances of the same optimization problem. runs on the IRIX 6.5 Operating System. For each problem in-

Besides addressing the limitations induced by static coastance, we have executed ten runs of hMETIS with recursive bi-
ened hypergraphs in standard multilevel algorithms, a secosettion and ten runs with hMETIS-Kway (the direct approach)
motivation for mixing the cooperative paradigm with the mulf12]. Our algorithm has been run for ten iterations of process
tilevel paradigm has been to address the issue of conflictipng. Since hypergrapl#, is the largest one in the sequence of
requirements facing many implementations of cooperative dlypergraphs, procegg takes more time than any other process
gorithms. In the context of cooperative search, the stability td complete one iteration of the refinement phase.
coarsened hypergraphs helps to reduce the negative influenc&bles | and Il present the two-, four—, and eight-way hyper-
that suboptimal hints can have on the convergence behavioredfje cuts for, respectively, the unit cell area and the nonunit
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TABLE | TABLE Il
MIN-CUT TWO-, FOUR, EIGHT-WAY PARTITIONING RESULTSWITH UP TO A RUN-TIME PERFORMANCE FORMIN-CUT TWO-, FOUR, EIGHT-WAY
10% DeVIATION FROM EXACT PARTITIONING. CELLS ARE ASSIGNED PARTITIONING WITH UP TO A 10% DeEVIATION FROM EXACT PARTITIONING.
UNIT AREA (COLUMNS “hM” AND “Co” STAND, RESPECTIVELY, FOR CELLS ARE ASSIGNEDUNIT AREA
hMETIS aND CoHMP)
Circuit 2-way 4-way 8-way
Circuit 2-way 4-way 8-way hM | Co | hM | Co | hM | Co
hM | Co | hM | Co | bM | Co IBMOL || 02] 5 |03 ] 7 | 05 ] 11
IBMO1 || 180 | 180 | 495 | 430 | 750 | 711 IBMO2 || 0.4 ] 10 | 0.7 | 12 | 1.1 | 21
IBMO2 || 262 | 262 | 616 | 560 | 1841 | 1483 IBMO3 [{ 04 | 16 | 0.8 | 17 [ 1.1 | 25
IBMO3 || 953 | 950 | 1682 | 1619 | 2402 | 2219 IBMO4 [f 0.5 16 [ 1.0 | 19 [ 1.3 | 26
IBMO4 || 529 | 530 | 1689 | 1597 | 2778 | 2507 IBMO5 [ 0.7 ] 18 | 1.2 | 24 | 1.6 | 30
IBMOS || 1708 | 1697 | 3024 | 2888 | 4306 | 3874 IBMO6 [ 0.6 | 21 | 1.2 | 23 | 1.7 | 33
IBMO6 || 889 | 890 | 1484 | 1465 | 2275 | 2204 IBMO7 [ 1.1 | 32 | 20 | 38 [ 26 | &3
IBMO7 || 849 | 824 [ 2188 | 2036 | 3308 | 3098 IBMO8 [[ 1.6 | 36 | 2.6 | 51 | 3.4 | 59
IBMOS8 || 1142 | 1140 | 2363 | 2241 | 3469 | 3240 IBMO9 || 1.0 [ 34 | 2.0 | 40 [ 2.6 | 58
IBMO09 || 629 | 620 | 1670 | 1606 | 2659 | 2474 IBM10 || 22 | 56 | 3.5 | 65 | 5.0 | 91
IBM10 || 1256 | 1249 | 2283 | 2164 | 3761 | 3305 IBM11 [| 1.5 | 50 | 30 | 59 | 3.9 | 78
IBM11 || 960 | 960 | 2321 | 2196 | 3433 | 3160 IBM12 || 1.9 | 62 | 46 | 73 | 5.1 | 115
IBM12 || 1881 | 1872 | 3730 | 3520 | 5972 | 5384 IBM13 || 2.0} 60 | 3.6 | 72 | 5.1 | 100
IBM13 || 840 | 832 | 1661 | 1671 | 2717 | 2483 IBM14 {{ 59 | 79 | 9.1 | 141 | 13.0 | 169
IBM14 || 1891 | 1816 | 3278 | 3097 | 5060 | 4263 IBM15 || 6.6 | 121 | 11.0 | 176 | 14.1 | 217
IBM15 || 2598 | 2619 | 5019 | 4591 | 6623 | 5960 IBM16 || 7.6 | 142 | 13.3 | 192 | 19.0 | 238
IBM16 || 1755 | 1709 | 3816 | 3745 | 6475 | 5360 IBM17 || 9.4 | 219 | 17.1 | 196 | 22.2 | 374
IBM17 || 2212 | 2187 | 5395 | 5194 | 8695 | 7960 IBM18 || 7.7 | 178 | 15.1 | 192 | 20.4 | 301
IBM18 || 1525 | 1521 | 2881 | 2810 | 5169 | 4435
TABLE IV
TABLE I RUN-TIME PERFORMANCE FORMIN-CUT TwO-, FOUR, EIGHT-WAY
MIN-CUT TWO-, FOUR, EIGHT-WAY PARTITIONING RESULTSWITH UP TO A PARTITIONING WITH UP TO A 10% DeVIATION FROM EXACT PARTITIONING.
10% DEeVIATION FROM EXACT PARTITIONING. CELLS ARE ASSIGNED CELLS ARE ASSIGNEDNON-UNIT (ACTUAL) AREA
NON-UNIT (ACTUAL) AREA
Circuit 2-way 4-way 8-way
Circuit 2-way 4-way 8-way hM | Co [ bM [ Co | hM | Co
M T Co hM Co hM Co IBMO1 || 0.2 6 0.3 7 05 | 11

IBMO1 || 217 | 215 | 343 | 340 | 606 | 573 IBMO2 || 03 | 10 | 0.7 | 13 [ 1.0 | 20
IBMO2 || 266 | 247 | 470 | 399 | 833 | 762 IBMO3 || 04 | 11 | 0.8 | 19 [ 1.2 | 26
IBMO3 || 707 | 608 | 1348 | 1220 | 1981 | 1879 IBMO4 || 05 | 16 | 09 | 18 [ 1.3 | 26
IBMO4 || 440 | 438 | 1321 | 1209 | 2408 | 2241 IBMO5 |} 06 | 18 | 1.2 | 23 [ 1.6 | 35
IBMO5 [ 1716 | 1681 | 3002 | 2895 | 4331 | 3950 IBMO6 | 05 | 15 | 1.2 | 22 | 1.7 | 35
IBMO6 || 367 | 363 | 1149 | 1056 | 1716 | 1688 IBMO7 | 1.0 | 29 | 2.0 | 41 | 2.7 | 54
IBMO7 || 716 | 721 | 1539 | 1480 | 2918 | 2707 IBMOS {| 1.2 | 25 | 2.2 | 35 | 3.1 | 57
IBMOS8 {| 1149 | 1120 | 2143 | 1992 | 3330 | 3120 IBMO9 ([ 1.1 | 40 | 1.8 | 45 | 2.6 | 65
IBMO9 || 523 | 519 | 1418 | 1334 | 2337 | 2079 IBM10O [ 1.7 | 52 | 34 | 64 | 49 | 93
IBM10 || 769 | 734 | 1845 | 1636 | 3098 | 2751 IBM11 [ 1.4 | 44 | 2.7 | 53 | 44 | 88
IBM11 || 697 | 688 | 1893 | 1699 | 2948 | 2768 IBM12 || 2.0 | 58 | 3.8 | 75 | 5.1 | 113
IBM12 || 1975 | 1970 | 3577 | 3402 | 4957 | 4762 IBM13 [f 1.9 | 53 | 3.7 | 71 | 49 | 113
IBM13 || 859 | 832 | 1698 | 1568 | 2439 | 2298 IBM14 || 6.0 { 81 | 9.0 | 145} 13.0 | 151
IBM14 || 1520 | 1494 | 3048 | 2869 | 4833 | 4360 IBM15 || 5.6 | 111 | 12.0 | 160 | 14.2 | 197
IBM15 || 1786 | 1771 | 4435 | 4314 | 6111 | 5756 IBM16 || 6.7 | 168 | 13.1 | 197 | 18.0 | 264
IBM16 || 1681 | 1639 | 3562 | 3149 | 5580 | 5146 IBM17 || 11.2 | 243 | 18.2 | 286 | 23.8 | 354
IBM17 || 2252 | 2156 | 4824 | 4393 | 8222 | 7003 IBM18 || 8.7 | 189 | 15.9 | 235 | 20.5 | 296
IBM18 || 1520 | 1520 | 3104 | 2941 | 4833 | 4416

total time to run ten iterations @f plus the time to perform the

(real) cell area with CoMHP (Co) and hMETIS (hM). Out of thecoarsening phase. For hMETIS we report the time to execute
108 tests executed, hMETIS outperforms or yields the same og&e run of the bisection approach in order to factor the use of
sults as CoMHP in eight instances, while CoMHP outperfornsgveral processors by CoMHP. This biases the results slightly in
hMETIS in 100 instances. For two-way partitioning, the imfavor of hMETIS given that COMHP uses ten processors only
provements of COMHP over hMETIS are not significant. Fdior a few problem instances.
four-way and eight-way partitioning, CoMHP can get up to a As can be seen from Tables Ill and IV, on average hMETIS
15% improvement in the hyperedge cuts over hMETIS. F@& 20 to 25 times faster than CoMHP for the 108 tests. A
hMETIS, Tables | and Il report the best solution of bisectiotime-optimized implementation of CoMHP can improve on
or hMETIS-Kway. In 102 cases, hMETIS with bisection foundhe current prototype in the following ways. The outer loop of
the best solution while hMETIS-Kway found the best solutio€oMHP has only a few sequential dependencies, therefore it
in the six other instances. can be easily parallelized. Though this parallelization will not

Tables lll and IV present the runtimes (parallel computatione¢duce the work ratio between CoMHP and other partitioners,
time) of both algorithms. For COMHP, the runtime indicates thié will considerably improve the time ratio. Secondly, the
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TABLE V effectiveness of this paradigm for solving combinatorial opti-
COMPARING HYPEREDGECUTS BETWEEN COHMP AND ChMETIS (GOLUMNS ; P ; ; 1 i
*Co" AND “Ch" STAND, RESPECTIVELY, FOR COHMP AND ChMETIS). mization problems, in particular, thqse arising in the \/LSI CAD
UP TO A 10% DEVIATION FROM EXACT PARTITIONING. CELLS ARE area. We have presented the design and parallel implementa-
ASSIGNEDUNIT AREA tion of an algorithm, called CoMHP, for the netlist partitioning
problem. In this algorithm we combine the multilevel paradigm
Circuit 2-way 4-way 8 way and the cooperative search paradigm and take advantage of the
Co | Ch | Co | Ch | Co [ Ch P paradig 9
TBMOL T 180 1 180 | 430 | 431 | 711 | 705 good features of both these paradigms. To date, the most suc-
IBMO2 || 262 | 262 | 560 | 537 | 1483 | 1492 cessful approach to the netlist partitioning problem has been the
IBMO03 || 950 | 950 | 1619 [ 1646 [ 2219 | 2294 multilevel algorithm hMETIS of Karypi®t al. [11] which for-
IBMO4 || 530 | 527 | 1597 | 1573 | 2507 | 2534 mulates the netlist partitioning problem as a hypergraph parti-
IBMO5 || 1697 | 1703 | 2888 | 2905 | 3874 | 3875 tioning problem. So, we have chosen this algorithm for a com-
TBMO06 || 890 | 802 | 1465 | 1467 | 2204 | 2222 9p - 20, _ s alg
TBMO07 || 824 | 824 | 2036 | 2033 | 3098 | 3113 parative evaluation of the quality of solutions produced.
IBMOS || 1140 | 1140 | 2241 | 2266 | 3240 | 3217 In CoMHP, each level is associated with a coarsened (appro-

priately reduced) hypergraph and a search program derived from

known heuristics such as the FM heuristics. These programs ex-
amount of improvement in the hyperedge cuts of COMHP {scute searches on the coarsened hypergraphs at their respective
not significant after two or three iterations of the search phaggels. A distinguishing feature of COMHP is the use of a co-
by procesgy. At that point the energy function (4) is low andgperation protocol to control the coarsening of the hypergraphs
seems stable in its minimum. Running the current prototypg the different levels. This involves the use of three coopera-
implementation of CoMHP only two or three iterations Wilkion operators. The effectiveness of the algorithm depends on
not result in any serious degradations of the results obtaing@ specification and implementation of these operators. They
using ten iterations, which means we can get similar results @ntrol the coarsening which impacts the solution subspaces ex-
in Tables | and Il with only about 1/5 to 1/3 of run times as ifpjored at the different levels. We have been conservative in ex-
Tables Il and IV. Thirdly, the computational time of COMHPpoiting this aspect of the cooperation strategy. Improvements
is dominated by the execution of the global and local searggth in terms of computational time and quality of partitionings
subroutines. We believe we can reduce the time spent in (g result from the choice of elite solutions (those selected at
global and local searches by adapting these routines to CoMIidReh |evel for information sharing), the choice of operators for
for example, by not flipping all vertices for refinement, butefinement, and the selection of the levels between which coop-
rather stopping the search after flipping part (20%, for e¥ration takes place.
ample) of the vertices. However, even if all these optimizations oyr cooperative search paradigm can be applied to create
were realized, it is obvious that COMHP will not be fastepartitioning methods capable of partitioning hypergraphs with
than hMETIS, or other partitioners for that matter, given thded vertices, which could enhance the usefulness of this para-
CoMHP uses repeatedly those partitioners as subroutines. §n in VLS| design. The refinement phase of COMHP is flex-
the other hand, with the same amount of computing resourGgfe and can adapt to local constraints imposed on coarsening
as givento CoMHP (when run for ten iterationggj, h(METIS  py specific needs from the physical design process.
did not improve noticeably the quality of partitionings reported |, the case of COMHP, each iteration of the slowest process
in Tables | and II. The situation is, however, different whegyecutes hMETIS, FM, and FMS as subroutines. It is there-
hMETIS is embedded in CoMHP. Computational results frofgre not surprising that COMHP takes considerably longer than
a “cooperative hMETIS” to be called ChMETIS are reportedny of its subroutines. On the other hand, our work supports
in Table V for netlists IBMO1 to IBMO8. The computationthe hypothesis that individual search algorithms, with the same
of these hyperedge cuts is based on the procedure of Figaftount of computing resources as the cooperative computa-
after replacing the local partitioners FMS and PFM by calls {n (through restarts or other means), cannot match the per-
hMETIS (except for line 2a, since search after interpolatiggrmance of a successful cooperative algorithm. Based on the
starts from an initial partitioning). The quality of hyperedggesyits presented in this paper, we believe that multilevel design
cuts produced by ChMETIS is very close to the quality of thoggovides such a successful approach to develop cooperation pro-
produced by COMHP. Since hMETIS is faster than FMS angcols. The cooperative multilevel search paradigm in combina-
PFM, computational times were about 10% to 20% better thgBn with other heuristics will help produce solutions with better
CoMHP. Table V clearly demonstrates that the cooperatifality than those obtained by the original heuristics. This par-
scheme plays a key role in the quality of the solutions producggigm will also be useful to design algorithms for other combi-
by CoMHP. The improvement in the quality of the solutiongatorial optimization problems (besides partitioning) arising in

produced by CoMHP is to a large extent independent of thge \/| S| CAD area. Our work in this paper is the first study to
partitioners used in the implementation of COMHP. demonstrate this.
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