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Multilevel Cooperative Search for the
Circuit/Hypergraph Partitioning Problem

Min Ouyang, Michel Toulouse, Krishnaiyan Thulasiraman, Fellow, IEEE, Fred Glover, and Jitender S. Deogun

Abstract—The objectives in this paper are twofold: design an
approach for the netlist partitioning problem using the coopera-
tive multilevel search paradigm introduced by Toulouseet al.and
study the effectiveness of this paradigm for solving combinatorial
optimization problems, in particular, those arising in the very
large scale integration (VLSI) computer-aided design (CAD) area.
The authors present a cooperative multilevel search algorithm
CoMHP and describe a parallel implementation on the SGI O2000
system. Experiments on ISPD98 benchmark suite of circuits show,
for four-way and eight-way partitioning, a reduction of 3% to
15% in the size of hyperedge cuts compared to those obtained
by hMETIS. Bisections of hypergraphs based on the algorithm
also outperform hMETIS, although more modestly. The authors
present experimental results to demonstrate that the cooperation
scheme plays a key role in the performance of CoMHP. In fact,
the improvement in the quality of the solutions produced by
CoMHP is to a large extent independent of the partitioners
used in the implementation of CoMHP. The experimental results
also demonstrate the effectiveness of the cooperative multilevel
search paradigm for solving the netlist partitioning problem and
show that the cooperative multilevel search strategy can be used
as a paradigm for designing effective solution techniques for
combinatorial optimization problems such as those arising in the
VLSI CAD area.

Index Terms—Combinatorial optimization, cooperative search,
graph partitioning, multilevel algorithms, VLSI physical design.

I. INTRODUCTION

NETLIST partitioning is an important and well-studied re-
search topic in the very large scale integration (VLSI)

computer-aided design (CAD) area. Several classes of heuristics
have been proposed to address this problem [2]. Recently, mul-
tilevel algorithms have been applied to the netlist partitioning
problem [11]. This approach has since become the standard to
partition netlists.

In the multilevel paradigm, Fiduccia–Mattheyses (FM) types
of move-based heuristics execute moves in coarsened hyper-
graphs (hypergraphs are a common mathematical representa-
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tion of netlists) that involve static clusters (blocks) of modules
from the original netlist instance. Since the clusters are static,
the search space of coarsened hypergraphs is often a tiny frac-
tion of the search space of the original optimization problem.
This reduction in the search spaces enables a speedy execution
of multilevel algorithms. Unfortunately, it also imposes serious
limitations on the ability of multilevel algorithms to provide
good quality partitionings. These limitations of the multilevel
paradigm have been recently addressed in [7] and [11] using
more dynamic coarsening strategies. In this paper, we present a
broader strategy to address this issue.

Our approach is based on a bottom-up algorithm design tech-
nique called cooperative search. According to this approach, a
set of different search algorithms is first selected. Each algo-
rithm is implemented as an independent program that runs in
time sharing with the other programs on a sequential computer
or in parallel if several computing units are available. If the
difference among the programs is only based on the stochastic
properties of a generic algorithm or on different search parame-
ters, then we can think of those programs as the multiple restarts
of the same algorithm. However, unlike restart, programs in a
cooperative search interact with each other based on acoopera-
tion protocolthat specifies how the search programs cooperate
at run time. Intuitively, as framed in Huberman’s paper [10],
cooperation is an exchange of “hints” that may confuse some
search processes, but will also help others. Overall, hint sharing
improves the performance and has been used with success to
design search heuristics in the context of constraint satisfaction
problems [3], [8] and to parallelize some metaheuristics [13],
[14], [16], [17].

The present paper introduces the cooperative multilevel
hypergraph partitioning algorithm (CoMHP), an asynchronous
variation for hypergraph partitioning of the cooperative algo-
rithm in [18]. Our hypergraph partitioning method uses a new
netlist coarsening strategy which is based on partitioning rather
than clustering, as it is usually done by multilevel algorithms.
Next, we introduce a cooperation protocol which supports a
dynamic “recoarsening” strategy addressing the convergence
problems of standard multilevel algorithms. Finally, we give
an intuitive description of the convergence behavior for this
system of cooperating search algorithms.

The rest of the paper is structured as follows. Section II in-
troduces a few definitions and our coarsening strategy. Sec-
tion III describes the cooperative algorithm and its convergence
behavior. Section IV reports and discusses the results of the tests
conducted on the ISPD98 benchmark suite of circuits. Finally,
Section V concludes with some suggestions for future work.

0278-0070/02$17.00 © 2002 IEEE
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II. BASIC DEFINITIONS AND PARTITION-BASED COARSENING

Hypergraphs are commonly used as a formal representation
of netlists. Let be a hypergraph representation
of a given netlist instance. is a set of vertices and a set
of hyperedges which represent, respectively, the modules or
vertices and signal nets of the netlist. The set is a subset
of the powerset of the vertices in , i.e., is a
subset of . Note that the superset of a setis defined as
the collection of all subsets of. Given this formalization, the
problem of partitioning the modules of a netlist intosubsets

can be stated as a combinatorial optimization
problem where one tries to find an instance
of the mapping

(1)

that minimizes the cost function

(2)

where if is a hyperedge that spans more than one
, and , otherwise. The subsets are subject to the

constraints:

1) ;
2) for some constant ;
3) .

Constraints 1) and 3) ensure that is a par-
tition and constraint 2) sets bounds on the cardinalities of
in the partitions. The set of instances from Mapping (1) satis-
fying these constraints are identified as thesolution space
of this problem. The above problem is a generalization of the
graph partitioning problem, an NP-complete problem [6]. Con-
sequently, search heuristics are handy to provide good solutions
in reasonable computational time.

Multilevel algorithms initiate processing by a hierarchical
clustering of the vertices of , yielding hypergraphs with
fewer vertices, i.e.,coarsened hypergraphs. Usually, recursive
matching-based clusteringalgorithms such asedge-coarsening,
hyperedge-coarsening, maximal matching, and modified-hy-
pergraph-coarsening[4], [11] are used to coarsen hypergraphs.
Our clustering strategy addresses the problem of contracting
the netlist as a partitioning problem. In this paper, hierarchical
clustering and coarsened hypergraph are defined in the fol-
lowing manner.

Definition 1: Let

(3)

be a family of mappings where maps the vertices of
into clusters such that
if and . The family of mappings in (3)
defines ahierarchical clusteringof the vertices of whenever

for all .
Definition 2: A coarsened hypergraph is the

set of vertices and hyperedges such that: 1) is a
cluster (subset) of vertices from as defined by the map-
ping (Note: to simplify notation, may also be denoted by
the corresponding cluster .) and 2) a subset of is a hy-

peredge of if and only if there exists a hyperedge
such that has nonempty intersection with each cluster repre-
sented by the vertices in.

Basically, the above definition formally states how coarsened
hypergraphs are formed; each cluster in the partition defined
by the mapping represents a vertex of and a hyperedgeof

becomes an appropriately modified hyperedge ofif the
vertices in are not all in the same cluster of the partitioning
defined by . For instance, if each hyperedge of is a pair
of vertices in , then for , iff

such that and and is a
hyperedge in .

In our hierarchical clustering approach, each mapping
is obtained by solving a hypergraph partitioning problem
for . The family of mappings as defined in (3) is derived
from the solution of the -way partitioning problems
for , for . The solution of the -way par-
titioning, i.e., the subsets, become the set of vertices

. Next the coarsened hyper-
graphs are generated from the mappingsas described in
Definition 2. We identify this hierarchical coarsening strategy
aspartition-based coarsening. This algorithm can be trivially
parallelized by running the partitioning processes and the
hypergraph generations on different processors. The parallel
time requirement is dominated by the processor that computes
the partitioning for .

III. CoMHP: DESCRIPTION ANDCONVERGENCEBEHAVIOR

In this section, we present in detail, the different components
of our multilevel cooperative search algorithm, CoMHP, and a
model to study its convergence behavior. There are pro-
cesses in CoMHP, the same as the number of hypergraphs. Each
process takes as input the hypergraph. The processes run
in parallel, applying the same composition of FM-like hyper-
graph partitioning heuristics to partition their hypergraph. Ac-
cording to Definition 1, moving a vertexin a coarsened hyper-
graph is equivalent to moving a cluster of vertices in, the
cluster corresponding to vertex . Consequently, while a
process searches for good partitionings in the coarsened hy-
pergraph , it actually explores the solution space. Though
all the processes use the same local search methods, the searches
in do not overlap completely. This is because, as in standard
multilevel algorithms, hierarchical clustering in CoMHP creates
different neighborhoods to solutions in .

The computational cost of executing a move in neighbor-
hoods based on coarsenings is independent of the size of the
clusters in . It only depends on the number of neighbors of
the current solution; this number goes on decreasing as the hy-
pergraphs are more highly coarsened. This is a clear advantage
of these neighborhoods. On the other hand, if the coarsening
cannot be undone, the logical moves in only involve the
clusters of vertices in associated by the Mapping (3). All
the possible combinations of such clusters insubsets can only
generate a small fraction of the solutions in. This is not a
problem by itself since it is usual for local searches to explore
only a fraction of the solution space. Rather, the problem is when
the small search spaces of coarsened hypergraphs have no good
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solutions, their exploration is then hopeless, even using the best
search methods.

This limitation of the coarsening approach has in fact been
partially identified in [7], [11] by observing that an initial parti-
tioning can be refined in different ways depending upon how the
coarsening is executed [11]. Those papers propose a multiphase
refinement as a mechanism to refocus the search spaces. Such
multiphase refinement is based on a recursive call of the multi-
level algorithm from the same coarsened hypergraph in the mul-
tilevel structure. A randomized coarsening is used during the
multiphase refinement. In [11], this coarsening is initiated from
the best partitioning obtained from the refinement or from the
previous iteration of the multiphase refinement. The multiphase
refinement iterates until the best solution cannot be improved
further. The initial refinement phase of the multilevel procedure
is then resumed.

Our multilevel cooperative algorithm is similar in spirit to
multiphase refinement. It also produces many “recoarsenings”
of the hypergraphs which allow the search processes to explore
new regions in the solution space .

A. Refinement Phase

The initial coarsening may fail to provide access to good
regions of the solution space. We now describe how the
partitionings discovered by the search heuristics during the
refinement phase can be used to develop a dynamic coarsening
strategy. Our dynamic coarsening strategy is supported by the
cooperation protocol of CoMHP. This protocol specifies the
processes’ neighborhood structure, the kind of interactions
(hint exchanges) allowed among search processes, and what to
do with the hints exchanged.

The neighborhood structure in the current implementation is
an array of processes: processcan only interact with pro-
cesses and . This neighborhood structure mirrors the
hierarchical clustering of , where has for neighbors hy-
pergraphs and in the sequence of increasingly coars-
ened hypergraphs. The boundary conditions in the array are han-
dled in the following manner: only interacts with , only
interacts with .

Each interaction involves exchange of “hints” or information
based on “elite partitionings” and taking appropriate actions.
Elite partitionings are those that we expect to give us hints as to
the nature of optimum partitionings. For instance, a partitioning,
which has the smallest hyperedge cut among all those partition-
ings generated by the search method used, may be considered
elite at that stage. Let be the search space of , whereas

is the set of elite partitionings of . Different approaches
have been tested to create each elite setof hypergraph .
The approach presented in Fig. 4 initializes the elite set to a
good partitioning generated by a search method. A newly gen-
erated partitioning is added to if its hyperedge-cut value is
not larger than 10% of the smallest of the hyperedge cuts of the
partitionings already in the set . We also limit the size of .
If the addition of a partitioning increases this limit, we remove
from the partitioning which has the highest hyperedge-cut
value among all those already in the set.

The operators, to be described soon, specify how to use the
elite partitionings at the level of each process. The local parti-

Fig. 1. Interaction operators: (a) coarsened hypergraphs (dashed lines indicate
partitionings), (b) local partitioning operator, (c) local clustering operator, and
(d) interpolation operator.

Fig. 2. Pseudocode of the local partitioning operator.

tioning operator and the local clustering operator redefine the
coarsening of hypergraphs. On the other hand, the interpolation
operator reinitiates the search of some of the move based heuris-
tics used by each process. More specifically, in the interpolation
operator, one elite partitioning from is selected as the ini-
tial solution of a move based heuristic in hypergraph. We
now describe, in detail, these three operators. Fig. 1 is used for
illustration of the workings of these operators. Fig. 1(a) gives

and with one elite partitioning for each indicated
by dashed lines.

1) Local Partitioning Operator: Local partitioning changes
the coarsening of by splittingsomeof its vertices. Vertices
(clusters) in are split based on the information provided by
the set of elite partitionings from hypergraph . The
local partitioning operator finds clusters (line 1 in Fig. 2)
such that has at least two vertices that are into
two different subsets (line 4) of one of the elite partitionings
of . When this happens, the vertices of in the inter-
section of the sets form a new vertex of (line 5).
Once the local partitioning operator has been completed, a spe-
cial routine is called which generates a new coarsened hyper-
graph reflecting the changes in the mapping, provoked by
the execution of the local partitioning operator. Note that in the
pseudocode of Fig. 2, after the first elite partitioning for which
we find at least one nonempty intersection with a subset in this
partitioning, we end the “for loop” (beginning at line 1) for this
vertex. In other words, we split a vertex with respect to only one
elite partitioning, if possible.
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We shall first illustrate the local partitioning operator with a
hypothetical example. Then the illustration will be given using
Fig. 1.

Consider the hypergraph . Pick any vertex of (line
1 in Fig. 2). Note that is a cluster of vertices of .
Let 2, 7, 8, 9 . Here 2, 7, 8, and 9 are all vertices of

. Consider an elite partitioning of (line 2 in Fig. 2).
Here, we assume that the optimization problem is to search for
optimum three-way partitionings. Let the three subsets in the
partitioning be 1, 2, 3, 8, 12, 9, 11, 13, 14,
and 4, 5, 6, 7, 10. Now we get (line 4 in Fig. 2)

and

We then create the following new vertices (line 5 in Fig. 2) as a
result of splitting vertex of :

and

Once we identify a partitioning (as above) and split vertex,
then is marked to be deleted (line 6) and the operator returns to
line 1 to pick a new vertex and check if it could be split as above.
In case the elite partitioningdoes not help to split the vertex,
we pick another partitioning from the list of elite partitionings

. If no elite partitioning leads to a splitting of, then this
vertex in is left unchanged as it was before the execution
of the local partitioning operator. The algorithm for the local
partitioning operator terminates once all the vertices ofhave
been considered for possible splittings.

We now return to Fig. 1 for another illustration of the local
partitioning operator with a concrete example. Consider the hy-
pergraph of Fig. 1(a). (Vertices of coarsened hypergraphs as
well as the subsets of partitionings are sets of vertices from the
hypergraph .) This hypergraph has four vertices

, where is a cluster 0, 1 of vertices of , is a cluster
2, 3 of vertices of , and so on. The elite bisection of is

0, 1, 3, 7 and 2, 4, 5, 6 . This elite bisection in-
dicates that potentially good solutions exist in the region of the
solution space in which vertices 2 and 3 are in the different sub-
sets of each bisection. But in , vertices 2 and 3 form a cluster;
swaps on always move vertices 2 and 3 of together so
that they are in the same subset of the bisection ofbecause
they form a single vertex in . The region of the solution space
corresponding to the elite bisection of is not reachable in the
search space defined by the coarsened hypergraph. Although
the search space of is smaller than and therefore faster to
explore, this advantage is lost because search spacedoes not
overlap with good solutions of the basic optimization problem.
This problem is detected by the local partitioning operator be-
cause the intersection of the setsand is not empty and
is not strictly included in . Similarly, the intersection of the
sets and is nonempty and is not strictly included in .
Also, the intersections of vertex 6, 7 with and are
nonempty. In other words

and

and

Fig. 3. Pseudocode of the local clustering operator.

So, the vertex is split into the two vertices3 and 2 , and the
vertex is split into the two vertices7 and 6 . Note that the
vertices and are not split because they are strictly included
in and , respectively. The resulting coarsening of is
shown in Fig. 1(b). Note that this new coarsening ofenables
the search space to overlap with the regions of identified
by the elite bisection.

2) Local Clustering Operator:Local clustering changes the
coarsening of by mergingsomeof the vertices (clusters)
of into new vertices for . A vertex from be-
comes a “candidate for merging” if it is strictly included in one
of the subsets of each elite partitioning from (line 5 in
Fig. 3). The identification of which vertex can be a candidate
for merging is needed because between the time a partitioning
enters the set of elite partitionings and the time local clustering
is run, many vertices of may have been split or clustered
such that some of them may overlap more than one subset of an
elite partitioning. According to the definition of (2), a vertex is
strictly included in exactly one subset of a partitioning. There-
fore, if in line 6, vertex is strictly included in one subset
of each elite partitioning. Once the candidates for merging have
been identified, a pair of vertices can be merged if both ver-
tices satisfy the two following conditions: 1) both vertices lie
on the same hyperedge and 2) both vertices are together in the
same subset in all elite partitionings. Note that two vertices
and of are on the same hyperedgeof if they are
both strictly included in . For instance, in the case each hyper-
edge is a pair of vertices, then and are on the hyperedge

if . Once a vertex is identified as candidate for
merging, the vertex is labeled with the subset of each elite par-
titioning where it has been found. Vertices with the same label
satisfy condition 2 above.

We shall next illustrate the local clustering operator with a
hypothetical example. Consider verticesand of (line
1 in Fig. 3). Let 6, 8 and 12, 13 , and let
and be the three elite partitionings of . That is, they
form the set . Assuming three-way partitionings, let the
three subsets in and be

We can see that the vertex 6, 8 is strictly included in
one of the subsets in each of the above elite partitionings (lines
3, 4, 5 in Fig. 3) and so it is eligible for merging. Similarly, the
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vertex 12, 13 is also eligible for merging. If 3, 6,
8, 9, 10, 12, 13 is a hyperedge, then both and lie on this
hyperedge, and so we can merge them to form a vertex6, 8,
12, 13 for the hypergraph .

Now we return to Fig. 1 for another illustration of the local
clustering operator with a concrete example. According to the
elite bisection of [see Fig. 1(a)], vertices 0 and 1 are in the
same subset of this elite bisection. These vertices also lie on the
same hyperedge. So, they are merged to form vertexof
[see Fig. 1(c)]. For similar reasons, we merge vertices 4 and 5
to form vertex of , merge vertices 2 and 6 to form vertex
of , and merge vertices 3 and 7 to form vertexof . These
vertices and now define the new coarsened hypergraph

.
Local clustering tends to reduce the number of vertices in a

coarsened hypergraph and therefore to reduce the size of the
search space. This balances the effect of the local partitioning
operator which tends to increase the number of vertices. It also
makes the search space retreat from overlapping with uninter-
esting regions of the solution space. Together, local partitioning
and local clustering operators allow the search spaces to move
in the solution space, which is the desired effect of recoarsening.

3) Interpolation Operator: In the interpolation operator,
one partitioning from the set of elite partitionings of is
selected to be the initial solution of a move-based heuristic in
hypergraph . Our interpolation operator would be identical
to the interpolation operator of multilevel algorithms if it
was not for the way we compute the coarsened hypergraphs.
Recursive coarsening used by most multilevel algorithms is
such that vertices are formed by the clustering of two
vertices from . For example, when vertices are
mapped together to an aggregate , those two
vertices are necessarily mapped to, the superset of
in the coarsened hypergraph . Hypergraphs generated with
recursive coarsening are said to be related level by level. This
is not necessarily the case with our coarsening strategy. The
vertices of that are mapped to a cluster may be
spread over several clusters in each hypergraph .

Returning to Fig. 1, assume the elite partitioning of hy-
pergraph is selected as initial solution for a move-based
heuristic of process associated with hypergraph . The
elite partitioning cannot be used because hypergraphsand

are not related level by level. For example, vertexof
spreads over vertices and of hypergraph (same thing
for ). The elite partitioning of cannot be a partitioning for
the hypergraph . In order to use the partitioning from ,
we change the coarsening of . A split of vertices in that
spreads over more than one vertex in is performed using
a similar procedure as for the local partitioning operator. That
is, we consider splitting the vertices and of [see
Fig. 1(a)] using the bisection of shown in Fig. 1(a). As
shown in Fig. 1(d), after the split, it becomes possible to use
the elite partitioning from as an initial solution to one of the
move-based heuristics in our search method.

4) The Search Heuristic of CoMHP’s Processes:We are
now ready to describe the search heuristic run by the
search processes of CoMHP. This search heuristic combines, in
a single iterative loop, several hypergraph partitioning heuris-

Fig. 4. CoMHP for processp .

tics and the three operators that handle hints from neighbor
processes. Each iteration of the loop executes the following
sequence of operations: local partitioning, local searches,
interpolation, local searches, local clustering, local searches,
and global searches. Fig. 4 contains an abbreviated pseudocode
for this loop for process .

The initialization phase computes a coarsened hypergraph
and an initial partitioning. The initial partitioning is required to
provide a first elite solution to the set and an initial solution
to the iterative local search methods used in the main loop (un-
like constructive methods, iterative methods have to be provided
with an initial solution that they then improve).

The execution sequence of the interaction operators (local
partitioning, interpolation, local clustering) has been chosen ar-
bitrarily. However, once the local partitioning operator is per-
formed at level , hypergraph is modified. We then run iter-
ative local search methods (line 1a) on this new hypergraph
to calculate new hyperedge cuts as well as to discover potential
elite solutions (line 1b). As local search methods we have used
the Sanchis partitioning algorithm (FMS) [15], and the mul-
tiway partitioning by free moves (PFM) proposed by Dasdan
and Aykanat [5]. Next, on line 2, the interpolation operator is ap-
plied to get an elite solution from , so that can be used
as an initial solution for the search methods FMS and PFM. Fi-
nally, the local clustering operator is applied, which transforms

once again, allowing us to repeat the execution of FMS and
PFM on a different hypergraph .

The search of line 4 in Fig. 4 serves two different purposes.
For highly coarsened hypergraphs, less than 500 vertices for ex-
ample, several random searches could be executed. As these hy-
pergraphs are very small, the main loop runs very fast and the
process may run out of elite partitionings from neighboring pro-
cesses. By executing many random searches, we slow down the
execution of the main loop while having chances to discover
good partitionings. The second purpose is to execute a search
of which does not depend on any initial partitioning. Both
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the hMETIS software and random searches have this charac-
teristic (our random search routine consists of an initial parti-
tioning generated randomly, followed by the execution of an it-
erative search to refine the random partitioning).

All the processes run the same combination of heuristics and
interaction operators, except for the special conditions that hold
for the boundaries processesand and for the difference be-
tween highly coarsened hypergraphs and the other hypergraphs.

CoMHP is an asynchronous algorithm in the sense that each
process executes the iterative loop of the search method without
synchronization with other processes. Therefore, processes as-
sociated with highly coarsened hypergraphs run more iterations
of the search method compared, for example, to the process as-
sociated with . The time requirement for the cooperation pro-
tocol is the same for all processes. Furthermore, this time re-
quirement is insignificant compared to the time required by the
search heuristics.

B. Convergence Behavior of CoMHP

Because of the local interactions among the search processes,
the convergence behavior of cooperative algorithms is some-
times modeled according to the theory of complex systems. For
example, Huberman [10] uses a probabilistic model to show that
the performance of cooperating processes is log-normally dis-
tributed for successful cooperative algorithms, in contrast with
the normal distribution of independent searches (or restarts).
In this model, the effect of cooperation on the distribution is
a smaller number of average quality searches but an increase
of the length of the tails on both sides of the distribution. The
long tail of the positive side of the distribution produces the
overall performance improvement. But to achieve such perfor-
mance improvement, the cooperative procedure must satisfy the
following requirements.

1) A large set of heuristically guided searches.
2) The searches apply successfully different search strate-

gies, leading to nonredundant explorations of the solution
space.

3) Processes exchange some useful information (hints) that
allows some of them to cut the number of steps required
to reach an optimal or acceptable solution.

4) Hints are statistically independent.

Requirements 1 and 2 are necessary to provide statistical inde-
pendence among the hints. In practice, however, these require-
ments often conflict with one another. Either the number of
guided searches is too small or the explorations of the different
searches overlap in the solution space. When this happens, coop-
erative programs do not provide consistent quality of solutions:
they converge well on some instances, yet very poorly on other
instances of the same optimization problem.

Besides addressing the limitations induced by static coars-
ened hypergraphs in standard multilevel algorithms, a second
motivation for mixing the cooperative paradigm with the mul-
tilevel paradigm has been to address the issue of conflicting
requirements facing many implementations of cooperative al-
gorithms. In the context of cooperative search, the stability of
coarsened hypergraphs helps to reduce the negative influence
that suboptimal hints can have on the convergence behavior of

the system. Hints have first to change the static neighborhood
structures defined by coarsened hypergraphs before directing
the search in new regions of the solution space. This is unlike
any other cooperative algorithms. We believe that this is the
reason why the best solutions found by CoMHP are very close
to those of cooperative procedures that meet the requirements
above. However, the performance of cooperating processes in
CoMHP does not settle in a log-normal distribution because
there are usually too few processes and hints are often strongly
correlated. Rather, the cooperation protocol in CoMHP is such
that it tends to minimize the differences between the hyperedge
cuts of the elite partitionings. The evolution of CoMHP settles
in a minimum energy state (such as Hopfield networks [9]). The
energy function is given by the sum of the differences between
the averages for the hyperedge cuts of the elite partition-
ings of the different processes

(4)

The initial state of the system is given by the elite partitionings
computed after the coarsening phase. If the coarsening phase
is successful, the elite partitionings from neighboring processes
will have different hyperedge cuts. The differentials among the
best hyperedge cuts of neighbor processes create opportunities
to change, by percolation, the coarsening of the neighbor hyper-
graphs. New coarsenings provide new elite partitionings which
in turn affect the coarsening of neighboring hypergraphs. This
percolation process stops to have an impact on the exploration
of the solution space when all the elite partitionings have about
the same hyperedge cuts, which corresponds to a minimum en-
ergy level of the system. Once the system has reached such a
minimum energy state, the quality of the best partitioning does
not improve much. In terms of the best partitioning, when the
system [as modeled in (4)] is stable, that is, it has reached a fixed
point, the computation can then be ended.

IV. EXPERIMENTAL RESULTS

We have evaluated the performance of our CoMHP algorithm
on the ISPD98 benchmark suite of netlists [1], comparing the
performance of CoMHP with version 1.5.3 of the hMETIS par-
titioning package. We have implemented a parallel version of
our hypergraph partitioning algorithm and have run it on the SGI
computer at the Research Computing Facility (RCF) of the Uni-
versity of Nebraska-Lincoln. hMETIS has also been run on this
same environment. RCF possesses a shared memory SGI O2000
system with 16 250-Mhz R10k CPUs, 4-GB main memory, and
runs on the IRIX 6.5 Operating System. For each problem in-
stance, we have executed ten runs of hMETIS with recursive bi-
section and ten runs with hMETIS-Kway (the direct approach)
[12]. Our algorithm has been run for ten iterations of process

. Since hypergraph is the largest one in the sequence of
hypergraphs, process takes more time than any other process
to complete one iteration of the refinement phase.

Tables I and II present the two-, four–, and eight-way hyper-
edge cuts for, respectively, the unit cell area and the nonunit
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TABLE I
MIN-CUT TWO-, FOUR, EIGHT-WAY PARTITIONING RESULTSWITH UP TO A

10% DEVIATION FROM EXACT PARTITIONING. CELLS ARE ASSIGNED

UNIT AREA (COLUMNS “hM” AND “Co” STAND, RESPECTIVELY, FOR

hMETIS AND CoHMP)

TABLE II
MIN-CUT TWO-, FOUR, EIGHT-WAY PARTITIONING RESULTSWITH UP TO A

10% DEVIATION FROM EXACT PARTITIONING. CELLS ARE ASSIGNED

NON-UNIT (ACTUAL) AREA

(real) cell area with CoMHP (Co) and hMETIS (hM). Out of the
108 tests executed, hMETIS outperforms or yields the same re-
sults as CoMHP in eight instances, while CoMHP outperforms
hMETIS in 100 instances. For two-way partitioning, the im-
provements of CoMHP over hMETIS are not significant. For
four-way and eight-way partitioning, CoMHP can get up to a
15% improvement in the hyperedge cuts over hMETIS. For
hMETIS, Tables I and II report the best solution of bisection
or hMETIS-Kway. In 102 cases, hMETIS with bisection found
the best solution while hMETIS-Kway found the best solution
in the six other instances.

Tables III and IV present the runtimes (parallel computational
time) of both algorithms. For CoMHP, the runtime indicates the

TABLE III
RUN-TIME PERFORMANCE FORMIN-CUT TWO-, FOUR, EIGHT-WAY

PARTITIONING WITH UP TO A 10% DEVIATION FROM EXACT PARTITIONING.
CELLS ARE ASSIGNEDUNIT AREA

TABLE IV
RUN-TIME PERFORMANCE FORMIN-CUT TWO-, FOUR, EIGHT-WAY

PARTITIONING WITH UP TO A 10% DEVIATION FROM EXACT PARTITIONING.
CELLS ARE ASSIGNEDNON-UNIT (ACTUAL) AREA

total time to run ten iterations of plus the time to perform the
coarsening phase. For hMETIS we report the time to execute
one run of the bisection approach in order to factor the use of
several processors by CoMHP. This biases the results slightly in
favor of hMETIS given that CoMHP uses ten processors only
for a few problem instances.

As can be seen from Tables III and IV, on average hMETIS
is 20 to 25 times faster than CoMHP for the 108 tests. A
time-optimized implementation of CoMHP can improve on
the current prototype in the following ways. The outer loop of
CoMHP has only a few sequential dependencies, therefore it
can be easily parallelized. Though this parallelization will not
reduce the work ratio between CoMHP and other partitioners,
it will considerably improve the time ratio. Secondly, the
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TABLE V
COMPARING HYPEREDGECUTS BETWEENCoHMPAND ChMETIS (COLUMNS

“Co” AND “Ch” STAND, RESPECTIVELY, FOR CoHMP AND ChMETIS).
UP TO A 10% DEVIATION FROM EXACT PARTITIONING. CELLS ARE

ASSIGNEDUNIT AREA

amount of improvement in the hyperedge cuts of CoMHP is
not significant after two or three iterations of the search phase
by process . At that point the energy function (4) is low and
seems stable in its minimum. Running the current prototype
implementation of CoMHP only two or three iterations will
not result in any serious degradations of the results obtained
using ten iterations, which means we can get similar results as
in Tables I and II with only about 1/5 to 1/3 of run times as in
Tables III and IV. Thirdly, the computational time of CoMHP
is dominated by the execution of the global and local search
subroutines. We believe we can reduce the time spent in the
global and local searches by adapting these routines to CoMHP,
for example, by not flipping all vertices for refinement, but
rather stopping the search after flipping part (20%, for ex-
ample) of the vertices. However, even if all these optimizations
were realized, it is obvious that CoMHP will not be faster
than hMETIS, or other partitioners for that matter, given that
CoMHP uses repeatedly those partitioners as subroutines. On
the other hand, with the same amount of computing resources
as given to CoMHP (when run for ten iterations of), hMETIS
did not improve noticeably the quality of partitionings reported
in Tables I and II. The situation is, however, different when
hMETIS is embedded in CoMHP. Computational results from
a “cooperative hMETIS” to be called ChMETIS are reported
in Table V for netlists IBM01 to IBM08. The computation
of these hyperedge cuts is based on the procedure of Fig. 4
after replacing the local partitioners FMS and PFM by calls to
hMETIS (except for line 2a, since search after interpolation
starts from an initial partitioning). The quality of hyperedge
cuts produced by ChMETIS is very close to the quality of those
produced by CoMHP. Since hMETIS is faster than FMS and
PFM, computational times were about 10% to 20% better than
CoMHP. Table V clearly demonstrates that the cooperation
scheme plays a key role in the quality of the solutions produced
by CoMHP. The improvement in the quality of the solutions
produced by CoMHP is to a large extent independent of the
partitioners used in the implementation of CoMHP.

V. SUMMARY AND DISCUSSION

We have explored two objectives: design an approach for
the netlist partitioning problem using the cooperative multilevel
search paradigm introduced by Toulouseet al.[18] and study the

effectiveness of this paradigm for solving combinatorial opti-
mization problems, in particular, those arising in the VLSI CAD
area. We have presented the design and parallel implementa-
tion of an algorithm, called CoMHP, for the netlist partitioning
problem. In this algorithm we combine the multilevel paradigm
and the cooperative search paradigm and take advantage of the
good features of both these paradigms. To date, the most suc-
cessful approach to the netlist partitioning problem has been the
multilevel algorithm hMETIS of Karypiset al. [11] which for-
mulates the netlist partitioning problem as a hypergraph parti-
tioning problem. So, we have chosen this algorithm for a com-
parative evaluation of the quality of solutions produced.

In CoMHP, each level is associated with a coarsened (appro-
priately reduced) hypergraph and a search program derived from
known heuristics such as the FM heuristics. These programs ex-
ecute searches on the coarsened hypergraphs at their respective
levels. A distinguishing feature of CoMHP is the use of a co-
operation protocol to control the coarsening of the hypergraphs
at the different levels. This involves the use of three coopera-
tion operators. The effectiveness of the algorithm depends on
the specification and implementation of these operators. They
control the coarsening which impacts the solution subspaces ex-
plored at the different levels. We have been conservative in ex-
ploiting this aspect of the cooperation strategy. Improvements
both in terms of computational time and quality of partitionings
will result from the choice of elite solutions (those selected at
each level for information sharing), the choice of operators for
refinement, and the selection of the levels between which coop-
eration takes place.

Our cooperative search paradigm can be applied to create
partitioning methods capable of partitioning hypergraphs with
fixed vertices, which could enhance the usefulness of this para-
digm in VLSI design. The refinement phase of CoMHP is flex-
ible and can adapt to local constraints imposed on coarsening
by specific needs from the physical design process.

In the case of CoMHP, each iteration of the slowest process
executes hMETIS, FM, and FMS as subroutines. It is there-
fore not surprising that CoMHP takes considerably longer than
any of its subroutines. On the other hand, our work supports
the hypothesis that individual search algorithms, with the same
amount of computing resources as the cooperative computa-
tion (through restarts or other means), cannot match the per-
formance of a successful cooperative algorithm. Based on the
results presented in this paper, we believe that multilevel design
provides such a successful approach to develop cooperation pro-
tocols. The cooperative multilevel search paradigm in combina-
tion with other heuristics will help produce solutions with better
quality than those obtained by the original heuristics. This par-
adigm will also be useful to design algorithms for other combi-
natorial optimization problems (besides partitioning) arising in
the VLSI CAD area. Our work in this paper is the first study to
demonstrate this.
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