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Abstract—The authors introduce an Intellectual Property Pro-
tection (IPP) technique for graph partitioning which watermarks
solutions to the graph partitioning problems so that they carry an
author’s signature. This technique is completely transparent to
the actual computer-aided design tool which does the partitioning
and is implemented by preprocessing and postprocessing alone.
The authors propose five different schemes for the watermarking
of partitioning solutions. The goal is to construct a partitioning
solution which not only has a small edge cut, but also encodes
the signature of the author. The key idea of all of our schemes is
to map the signature into a set of constraints and then satisfy a
disproportionate number of these constraints. Four of our schemes
are based upon the idea of encouraging groups of vertices to be
in the same partition. The fifth is based upon the encouragement
of certain edges to be cut by the partitioning. The fifth scheme
shows superior performances on all of the cases which we tested,
including both two-way and multiway partitioning. The water-
marking scheme produces solutions that have very low-quality
degradation levels, yet carry signatures that are convincingly
unambiguous, extremely unlikely to be present by coincidence
and difficult to detect or remove without completely resolving the
partitioning problem.

Index Terms—Partitioning, VLSI design, watermarking.

I. INTRODUCTION

T HE EXPONENTIAL growth of very large scale integra-
tion (VLSI) design integration has a number of major

ramifications on the design process and the associated research.
We focus on one that is exceptionally important: intellectual
property protection (IPP). IPP is becoming more important
as information becomes rapidly and easily accessible. In the
semiconductor industry, explosive proliferation of reusable
core-based designs in particular is motivating a need for ef-
fective and efficient IPP schemes and tools. We address this
issue in the context of graph partitioning.

Graph partitioning is a critical optimization problem that has
many applications, particularly in the semiconductor design
process. Higher levels of integration emphasizes a need for
even more logical and physical level partitioning. Partitioning
is the only synthesis task conducted at all levels of the design
process, from the system [10] and behavioral levels to the logic
synthesis and physical design levels [1]. Partitioning also plays
an important role in design analysis; it is widely studied in the
simulation, manufacturing, testing, and emulation literature.
Outside of VLSI design, partitioning is a widely used step
in many engineering and scientific areas, including parallel
programming and database storage.
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We offer an IPP technique for graph partitioning which
watermarkssolutions to graph partitioning problems so that they
carry an author’s signature. We developed, implemented, and
evaluated five different schemes for watermarking partitioning
solutions. All of our schemes use the same basic principle of
mapping an author’s signature into a set of constraints and
then modifying the partitioning objective function so that a
disproportionate number of these constraints are satisfied. Our
technique is completely transparent to the actual computer-
aided design (CAD) tool which does the partitioning and is
implemented by preprocessing and postprocessing alone.

Watermarked solutions have low-quality degradation, yet
carry signatures that are convincingly unambiguous, extremely
unlikely to be present by coincidence and difficult to detect or
remove without completely resolving the partitioning problem.
We now introduce our approach using a small example.

Here we outline an example of watermarking on a graph par-
titioning instance. Consider the graph, G16, in Fig. 1. This graph
has 16 vertices and 31 edges. It was created randomly by spec-
ifying that there are 16 vertices and that each potential edge
will occur with an independent probability of 0.25. We wish to
demonstrate that, for even a graph this small, it is possible to
watermark solutions of the graph partitioning problem. We will
also show, in general, that the potential for watermarking exists
by demonstrating what happens to the number of solutions of
various qualities when certain constraints are enforced. For the
sake of this example the graph partitioning problem is formally
defined below.

Problem: MIN -WAY BALANCED GRAPH
PARTITION

Instance: Graph
Solution: A partition of into

disjoint sets
with for .
Measure: The sum of the weight of

edges between the disjoint sets,
i.e., .
This measure is called the edge-cut

of the graph.

Variations of this problem allow for weighted vertices or
edges, hyperedges rather than edges, and relaxed balance
constraints. Finding a solution to any of these problems with
minimum edge-cut is NP-hard [9]. For this example, we are
concerned with two-way exactly balanced graph partitioning.

The core idea behind our watermarking technique is to se-
lect a set of constraints that correspond to our watermark and
then to find a solution to the problem that satisfies a dispropor-
tionate number of these constraints. We can accomplish this by
preprocessing the problem instance and then running the parti-
tioner (any partitioner) on the modified instance. The number
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Fig. 1. Flow of the generic forensic engineering approach.

and type of constraints imposed, as well as the number that are
satisfied, determine the strength of the watermark.

For this illustrative example, our constraints will be of the
type “vertex and vertex must be on the same side of the
partition.” We will enforce this by merging the selected vertices
as a preprocessing step. Here constraints can never be broken,
so we face a simple tradeoff between the number of constraints
added and the quality of our solutions. If, for each constraint,

and are simply selected randomly from the set of vertices,
then the probability of each constraint having occurred in some
solution by coincidence alone is 1/2. Since these probabilities
are independent of each other, the probability ofconstraints
all occurring in a solution by coincidence is . Random con-
straints do not encode a signature, but pseudorandom constraints
have the same statistical properties and can encode a signature.

Most partitioning heuristics will quickly find the optimal so-
lution of a problem instance this small, so rather than report the
output of an actual partitioner, we will display an exhaustive
list of the number of solutions of various qualities in Fig. 3. We
do not count partitions that are mirror images of partitions we
have already listed. The vertical axis represents edge-cut values
and the horizontal axis represents the number of solutions on
a logarithmic scale. The outermost curve shows the number of
solutions that have various edge-cuts. From this curve one can
see that the min cut is 9, that the max cut is 25, and that (for ex-
ample) there are 371 distinct solutions with an edge-cut of 13.
It is important to observe that for this graph there is only one
solution with a cut of the minimum size 9. Thus, it is unreason-
able to expect to find a watermarked solution which also has cut
value of 9.

The other curves correspond to the results of progressively
merging pair after pair of vertices together. Eventually, enough
vertices are merged together that it is impossible to find bal-
anced solutions at all. This occurred when 12 constraints were
enforced. These pairs encode a signature. They were selected
using a cryptographically strong pseudorandom number gener-
ator seeded in a way that will be discussed later. After the first
three of these pairs are contracted (Fig. 2), the min cut is 10,
the max cut is 23, and there are 37 different solutions with an
edge-cut of 13. All of these solutions satisfy all three constraints
and hence there is at most a one-in-eight chance of finding one
of these solutions by coincidence. Hence, a partitioner that re-

Fig. 2. Graph resulting from G16 after merging the vertex pairs (16,14), (6,2),
and (16,4).

turned the partition with an edge-cut of 10 would yield a high
quality, watermarked solution.

Fig. 4 shows a similar graph for a different list of vertex pairs.
It is clear that with the addition of each constraint of this type,
the number of solutions of various qualities that satisfy all of
the constraints drop by about 50%. This tends to occur evenly
throughout the distribution of edge-cut values. As the number
of enforced constraints increases, vertices tend to group together
into clusters that become large enough to have serious effects on
the balance criteria for partitioning. As a result, the drop slowly
grows larger than 50%. This does not normally become a con-
cern until a relatively large number of these constraints have
been imposed.

The tradeoff between watermarking quality (the strength
of the proof of authorship) and design quality is a critical
one. In principle, there are two ways how one can discuss
this problem. One is mathematically, either combinatorial or
probabilistic. Combinatorial analysis is impractical for all but
very small examples. For probabilistic analysis, one has to
assume a particular distribution for edge existence in a par-
ticular type of graph and by using probabilistic methods to
calculate the expected results before and after the addition
of watermarking constraints. This technique has been very
popular in discrete mathematics and in particular the com-
puter science community [3]. The second option is to study
the performance of the techniques on a number of real-life
designs.

We opted for the second option for two reasons. The first
is that to the best of our knowledge, there is no known prob-
abilistic approach for treating the partitioning problem. More
importantly, it is well known that different algorithms perform
better on different instances of the problem [26]. Therefore, the
real test of the effectiveness of the approach and algorithms are
instances of real-life standard benchmarks.

II. RELATED WORK

This section reviews related work in the areas of graph parti-
tioning, watermarking, and cryptography.
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Fig. 3. Number of distinct partitioning solutions of the graph G16 with particular edge-cuts as the following pairs of vertices are merged together (in order):
(16,14), (6,2), (16,4), (9,8), (5,16), (9,4), (11,10), (9,4), (15,16), (9,7), (2,3), (13,5), (13,14), (10,12), (14,3), (9,8).

Fig. 4. Number of distinct partitioning solutions of the graph G16 with particular edge-cuts as pairs of vertices are merged together (in order): (7,14), (2,6), (14,9),
(13,7), (4,15), (1,13), (11,14), (12,3), (16,15), (13,2), (1,4), (2,3), (12,14), (14,3), (6,12), (6,16).

The graph partitioning problem is ubiquitous in many fields
of computer science and engineering. It has important applica-
tions in areas ranging from work-load balancing in parallel pro-
gramming to database storage and in particular to VLSI design
and CAD techniques [1].

The graph partitioning problem is NP-complete. Therefore,
many heuristic methods are proposed to find high quality
partitions. Alpert and Kahng [1] provide a thorough survey of
partitioning for VLSI applications. In this paper, we watermark
partitions produced by the circuit partitioner of Alpertet al.
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[2]. We also watermark partitions produced by METIS, a
partitioner by Karypis and Kumar [17], which is used primarily
for parallel programming applications.

Recently, the development of various IPP techniques such as
watermarking [25], [37], fingerprinting [4], [6], [29], forensic
engineering [19], metering [21], and obfuscation have attracted
a great deal of attention. There are two types of artifacts that
can be watermarked: static and active. Watermarking techniques
have been proposed for watermarking images [36], video, audio
[20], as well as textual objects [5]. Techniques for watermarking
computer generated objects such as graphics have been pro-
posed for modeling and animation [32].

For functional artifacts, watermarking techniques have been
developed on several levels of abstraction. These levels include
system-level design, high level logic synthesis, and physical
design [12], [15], [18], [22], [23]. In addition, several new
watermarking techniques have been developed. They include
multiple watermarking [22], fragile watermarks [24], plagia-
rism, and software watermarking [7].

Steganography is closely related to cryptography, which has
generally received more attention [14]. The traditional task of
cryptography is the enciphering of messages using secret codes
such that access to the message is limited to those who know
how to decipher the message.

Several cryptographic techniques are relevant to the first
step of our watermarking approach, specifically, techniques
which find a set of constraints to add to the instance of the
optimization problem which is to be watermarked. The specific
method we use involves the cryptographic hash function MD5,
the public-key cryptosystem RSA, and a stream cipher which
may be equivalent to the stream cipher RC4 [31]. We use the
PGP software package [27] for MD5 and RSA calculations.

Many other cryptographic techniques can potentially be
used to introduce important concepts into our watermarking
technique. Specifically, digital signatures, revocable signatures,
group signatures, undeniable signatures, and zero-knowledge
proof signatures have promising applications for watermarking
[31].

III. OBJECTIVES ANDMETRICS

This section outlines the objectives of watermarking tech-
niques in general and presents metrics with which to measure,
compare, and evaluate watermarking techniques on various
instances of optimization problems, including those of graph
partitioning problems.

The objectives of watermarking techniques vary wildly de-
pending upon the goals of the watermark itself and upon the
type of host media that is being watermarked. We assume that
the core goal of watermarking is to embed information about
the author or owner into an instance of media. We often refer to
this information as the signature.

Low Overhead:The watermark should have limited impact
upon the quality of the instance of the host media.

Proof of Ownership:The watermark should be convincing
evidence to someone who can read it that this instance of the
host media was watermarked by the owner.

Hard to Find Ghost Signatures: Ghost Signatures, or more
simply ghosts, are false signatures or watermarks that are not
actually there. An effective watermarking method must assure
that the task of finding a ghost signature is either impossible or
computationally difficult.

There are many properties of watermarks that may be consid-
ered optional. Depending upon the specific goals of a watermark
and upon the media the watermarking technique is applied to,
each one of these properties may be absolutely necessary, inap-
plicable, or even undesirable. Our technique satisfies all of the
properties listed as follows.

Transparency:The watermarking technique is done in such
a way that it is be completely invisible to the other tools used.
This allows the watermarking technique to be used in conjunc-
tion with any existing or future set of tools that perform the same
functions.

Difficult to Detect: The watermark should be difficult to
detect. For many types of watermarking techniques, including
ours, it may be easy to remove watermarks if they are detected,
so difficult to detect is a prerequisite to being tamperproof.

Tamperproof: The watermark is difficult or impossible for
an adversary to remove without severe negative impact upon
the quality of the watermarked object if the adversary cannot
detect the watermark directly, but does know or suspect that a
watermark is present.

Difficult to Forge Signatures:It must be difficult for an ad-
versary to place a watermark on an instance of media that claims
that the instance belongs to anyone other than the adversary.

The objectives for the watermarking of optimization prob-
lems motivates several metrics. These metrics allow the mea-
surement, comparison, and evaluation of watermarks on various
problem instances.

Design Metric Degradation:Since solution quality is well
defined for optimization problems, the quality degradation can
be easily expressed. For minimization problems it is the ratio of
the watermarked solution’s quality to an unmarked solution’s
quality minus 1.

Strength of Authorship Proof:The probability, , that a so-
lution to an optimization problem that was not watermarked by
a certain author coincidentally contains that author’s signature
must be low. This clearly must be low so that a competitor’s so-
lution is convincingly unlikely to carry your watermarkpurely
by coincidence. What should be considered “convincingly un-
likely” is very subjective. Probabilities in the range of 10to
10 may arguably be acceptable. If brute force attacks to find
ghost signatures are possible, probabilities as low as 2may
be necessary.

Resiliency Metrics:Attacks that attempt to tamper with a so-
lution until the solution is no longer watermarked usually trade
the degradation of the strength of authorship proof with degra-
dation of the solution quality. The strength of authorship proof
should be sufficiently strong so that it can degrade somewhat
and still be strong enough to be convincing. If the watermarking
protocol is such that the possibility of brute force attacks ex-
ists, then the strength of authorship proof of a tampered solution
should also be strong enough to resist brute force attacks to find
ghost signatures.
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Fig. 5. The watermarking process.

It is also very difficult to predict what type of attacks one can
try against the watermarking-based intellectual property pro-
tection. Essentially, the question is how much one can benefit
from knowing one solution of the computationally intractable
problem to generate another sufficiently different solution. In-
tuition says that the most effective way is most likely to conduct
iterative improvement-based search, but other types of attacks
can be envisioned. Therefore, one can define resiliency with re-
spect to a set of expected attacks. It is important to emphasize
that the resiliency of a watermarked solution is greatly enhanced
by the nature of design process. If one alters the solution at one
level that almost invariably indicates a need to alter the solution
even more at the later levels of the design process. This implies
that there is a greatly reduced benefit on conducting any attack.

IV. A PPROACH

The approach for watermarking the solutions of graph parti-
tioning problems is shown in Fig. 5. The general strategy is to
add some number of constraints of some type and to satisfy a
disproportionate number of them. The type of constraints and
the tactics by which they are encouraged to be satisfied are dis-
cussed later in this section. All of them have in common the se-
lection of “random” vertices or (hyper)edges. These selections
are not truly random and are actually where the user’s specific
information of the watermark are used. Selections are chosen
by a pseudorandom number generator which is seeded by the
signature.

The current process we use for generating constraints is
shown in Fig. 6. It is done this way so that the encoding scheme
yields sufficiently randomized constraints and so that it is
difficult to detect and forge signatures.

The figure shows both the encoding process and the process
by which one verifies that a signature is present. MD5 is a

Fig. 6. Process for encoding watermark constraints.

one-way hash function. RSA is a public key encryption system.
“Alleged RC4” is a stream cipher. We use MD5 and RSA only
from within the PGP software package. The bit-stream that is the
output of “alleged RC4” is a cryptographically strong pseudo-
random bit-stream. The “simple encoding” box uses it for tasks
like choosing “random” vertices and (hyper)edges.

To verify a signature, one must show that both the signature
is present in the partitioning solution and that the signature
corresponds to the text file and the PGP public key of the
supposed owner. Demonstrating that the signature exists in the
partitioning solution is achieved by demonstrating that enough
of the signature’s constraints are satisfied to be unusual or
noncoincidental. One can show that the signature corresponds
to the text file and the owner’s public key by running PGP.

The protocol for deciding what RSA keys and text files are
used is unspecified. If there is any “degree of freedom” in their
selection, then a brute force attack may be able to find ghost sig-
natures. In order for this attack to be computationally difficult,

must be sufficiently small. is likely to be strong
enough.

Watermarks are added by defining a set of constraints that
correspond to the watermark and then finding a solution that
satisfies a sufficiently disproportionate number of these con-
straints. The success of this endeavor can be measured by the
amount of design metric degradation and the strength of author-
ship proof. There are many different types of constraints that
can be defined. Additionally, there are many tactics by which
these constraints can be imposed in such a way that it is likely
that solutions will satisfy a disproportionate number of them. In
the introduction, we discussed constraining pairs of vertices to
be on the same side of the partition by merging them together.
Here, we discuss that tactic as well as four others. We demon-
strate their performance in the experimental results section. The
choice of which tactic to use and how many constraints to add
can make the difference between poor watermarking results and
excellent results.

Each tactic uses only preprocessing methods on the problem
instance. Postprocessing methods such as FM refinement [8]
can be used in conjunction with any of them. The postprocessing
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should yield a solution with improved edge-cut (lower design
metric degradation), but decreased strength of authorship proof
(due to constraints being broken). This may yield a more favor-
able tradeoff between these two quantities. The constraints im-
posed by each tactic are completely independent of each other.
Because of this, the same constraint may occur several times.
In this case it is either satisfied many times or broken many
times. Each constraint involves some “random” choice such as
choosing a random vertex or edge. As we mentioned before,
these choices are not actually random, but use a cryptographi-
cally strong pseudorandom number generator.

Because all of the constraints are chosen independently,,
the probability of a solution carrying an author’s watermark
purely by coincidence can be computed by a simple binomial.

is a metric for the strength of authorship proof. Letbe the
number of constraints imposed,be the number of these that
arenot satisfied, and be the probability of a constraint being
satisfied purely by coincidence. Note that if constraints were not
independent of each other,would not be well defined. Now,
denotes the probability thator more of the total constraints
are satisfied by coincidence .

Overestimating the value is acceptable, since this will
always make larger. A larger value for means a weaker
strength of authorship proof, so this can never be used to
improve the supposed strength of our watermark. This allows
us to estimate when its exact value is not known. Each tactic
depends upon some assumptions. These generally relate to
how the graph or hypergraph is specified and to whether the
actual partitioner is capable of partitioning certain types of
graphs. They are specified with the description of the tactic,
but some commonalities are mentioned here.

Watermarking-based IPP relies on the fact that one can
establish a one-to-one relationship between text (signature) and
the structure of the problem (for the case of partitioning, the
relationship between nodes and edges in the graph). Unless the
relationship between the signature and the structure (canonical
ordering) is established, one can always claim that his text
(signature) is actually embedded in a given solution when each
constraint is interpreted in a particular way. There are two ways
how one can remedy this situation properly. The first relies on
the use of one-way functions. A one-way function, ,
is a function where it is easy, in the computational sense, to
find given , but computationally overwhelmingly difficult
and time consuming to calculateif is given. Therefore, if
it is requested that before embedding the signature one has to
go through a one-way function from thedomain being the
signature and thedomain being the watermarking constraints,
it is clear that it is essentially impossible to find a way of
calculating text which corresponds to the given constraints. In
practice, to create an effective one-way function it is a standard
approach to use seeded pseudorandom generators for this task.

The other option is to use a completely specified canonical or-
dering of all nodes and edges, and therefore all constraints. For
example, one can put the following rank order priority function
in place.

1) All nodes with higher degree have smaller number or-
dering then nodes with smaller degree.

2) If two nodes have the same degree, then the one whose
neighbors have a higher total sum of degree has a lower
numbering.

3) If two measures are equal, then the node which has the
higher sum of squares of the degrees of its neighbors has
a lower numbering.

4) If all three previous measures are equal, then the node
whose neighbor’s neighbors has higher sum of degrees
has a lower numbering.

It is obvious that it is easy to derive an arbitrary long pri-
ority ranking. Nevertheless, if the graph is highly symmetric this
function would not be able to uniquely resolve the numbering
of the nodes and edges. While this is extremely unlikely in prac-
tice, still it is, at least from the theoretical point of view, safe to
use the first option.

In order to watermark, a “canonical” ordering of the vertices
should be provided with the graph or hypergraph specification.
For all of our tactics we are concerned about the relationships
between particular sets of vertices or (hyper)edges and the final
partition. In order to properly specify exactlywhich vertices
or (hyper)edges we are referring to, a vertex ordering must be
provided. Although it is possible to simply choose an arbitrary
ordering, it will require solving the graph isomorphism problem
to solely determine if we are partitioning the same graph as
an attacker who selects a different ordering. Since the graph
isomorphism problem is generally considered “hard” [9], this
is a bad idea. Hence a “canonical” ordering must be provided.
Although it may be possible to have watermarking tactics
that do not require this list, all of the tactics listed below
do. For similar reasons, some of the tactics also require a
“canonical” (hyper)edge ordering as well. For applications
like VLSI design where watermarking is likely to occur, the
problems are specified very thoroughly and this information
is readily available.

Some of the tactics do not apply to certain types of parti-
tioners as they may require that the partitioner function correctly
on graphs that have certain properties such as weighted vertices
or weighted (hyper)edges. Note that partitioners that can ac-
cept hyperedges can automatically accept weighted hyperedges
by simply adding duplicates. We introduce each of the tactics
below. For each tactic, we discuss the type of constraints, the
technique by which they are enforced, the conditions that must
exist to use the tactic (assumptions), and the method of com-
puting , the probability of a constraint being satisfied purely
by coincidence. This valueis used to compute .

Merge Random Pairs of Vertices:Random vertices and
are selected. If they are in the same partition, then the constraint
is considered satisfied; otherwise, it is broken. The constraint
is imposed by merging the vertices together before the parti-
tioning occurs. The merging process yields a graph that has both
weighted vertices and edges. The graph partitioner must be able
to partition this type of graph in order for this tactic to be viable.
Each constraint is satisfied by coincidence in a two-way parti-
tioning solution with probability 0.5, so . For a -way
partitioning solution, each constraint is satisfied by coincidence
with probability .

Add Edges Between Random Pairs of Vertices:Random ver-
tices and are selected. As with the “merge random pairs”
tactic, the constraint is considered satisfied only if the two ver-
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tices are in the same partition. To make this more likely to
occur, an edge is added between the two vertices. If there al-
ready is an edge between them, its weight is increased by one.
The graph partitioner must be able to partition a graph that has
weighted edges for this tactic to work. As above, the constraints
are satisfied in a-way partition by coincidence with probability

.
Merge Random Edges:Choose a random edge. The con-

straint is considered satisfied only if all of the vertices that are
incident to the edge are in the same partition. The constraint
is imposed by merging all of the vertices together. As with the
other merging tactic, the partitioner must be able to partition
a graph that has weighted vertices and edges. Additionally, a
“canonical” ordering of the edges must be provided so that a
random edge may be chosen in a meaningful way.

Let be the number of edges in the original graph. Let
be the edge-cut of a particular partitioning solution. Let be
the value of the minimum-way cut on the graph. Let be an
estimate to that is expected to be less than or equal to. In this
paper, we simply guess a “reasonable” value for, but some
methods can produce a true lower bound. Each constraint is sat-
isfied by coincidence in a particular-way partitioning solution

with probability . If we wish to provide
a single value for that will not vary with the edge-cut of the
solution we are considering, using will work.
This will overestimate the true value ofand produce a single
conservative value for .

Thicken Random Edges:Choose a random edge. As with
the “merge random edge” tactic, the constraint is satisfied if all
of its terminals are in the same partition. This tactic makes this
more likely to occur by adding one to the weight of the edge. We
refer to this as “thickening” the edge. Using this tactic requires
that a “canonical” ordering of edges is provided and that the un-
derlying partitioner can partition graphs with weighted edges.
As discussed in merge random edges, the probability of a con-
straint being satisfied by coincidence is.

Drop Random Edges:Choose a random edge. The con-
straint is considered satisfied if the edge is cut in the partitioning
solution (all of its terminals arenot in the same partition). Oth-
erwise, the constraint is not satisfied. This tactic removes the
edge from the graph, so that constraints are more likely to be
satisfied. To use this tactic, a “canonical” list of edges must be
provided. The host graph partitioner does not need to be capable
of partitioning weighted graphs.

Let be the number of edges in the original graph and let
be the edge-cut of a particular partitioning solution. Each

constraint is satisfied by coincidence in a particular-way par-
titioning solution with probability . If we wish to
compute a single value forthat will protect all solutions whose
edge-cut is less than or equal to some value, then we can set

. Clearly, we must choose a value forthat is greater
than or equal to the edge-cut of our watermarked solution.

V. EXPERIMENTAL RESULTS

The key tradeoff of watermarking IPP is between the wa-
termarking quality (degradation of the quality of solution) and
the design quality. In this section, we analyze experimentally
this tradeoff on a number of popular partitioning design bench-

TABLE I
BENCHMARK CHARACTERISTICS

marks. We report watermarking results on several benchmarks
from the CAD Benchmarking Laboratory. The benchmarks we
report on in this paper are shown in Table I. The first column
names the circuits. The second through fourth columns pro-
file the structure of the circuits. Columns five and six show
the lowest and highest edge-cut values for which two-way par-
titions will have a probability of coincidentally containing
the watermark that is less than or equal to the one we report.
These values are only used in the analysis of some of the tac-
tics. The “merge hyperedges” and “thicken hyperedge” tactics
use the “low” values. The “drop hyperedges” tactic uses the
“high” value. Columns seven and eight show the same data for
four-way partitions.

The underlying partitioner we use is a circuit partitioner
by Alpert et al. [2]. We experimented with both two-way
and four-way partitioning. Fig. 7(a)–(f) shows two-way parti-
tioning. The axis represents the edge-cut of the watermarked
solution. The axis (scaled logographically) represents the
probability of achieving a solution by coincidence. There
are five curves, one for each tactic. is computed by a
binomial formula as described in the previous section. The
binomial formula takes values , , and as inputs. The value

can be computed in an obvious manner. For example, for
two-way partitioning on the graph 19 ks, the “merge random
pairs of nodes” tactic and the “add hyperedge between random
pairs of nodes” tactic both use . The “merge random
hyperedge” and “thicken random hyperedge” tactics use

. The “drop random hyperedge tactic”
uses .

The values of and are not directly available from the
figures, however. As an example, though, consider the point lo-
cated at about (126, 310 ) on Fig. 7(a). This is a point in the
middle of the “drop random hyperedges” line. This point corre-
sponds to dropping 300 random hyperedges from the circuit and
then partitioning the resultant hyperraph. When this is done, 47
of the constraints are satisfied and 253 are broken. That is 47
of the 155 hyperedges that were cut are from our 300! This is
amazing when you consider that the expected value is around
14. Computing the binomial with , , and

, we get . Any parti-
tioning solution of edge-cut 200 or less will have at most this
probability of coincidentally containing the watermark. If we
had chosen to set instead, then we would get

, but would only protect solutions whose
edge-cut was less than or equal to our own with this strength.
Additional experimental results can be found in [35].

Apparent in all of the circuit partitioning experimental results
is the superiority of the fifth “drop random edges” tactic. It dis-
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Fig. 7. Tradeoff between degree of edge-cut degradation and strength of authorship proof for two-way partitioning. Five tactics are compared.

plays a very linear pattern on these figures, usually with a slope
close to 1. Although the other tactics do occasionally perform
better that this one, it is only by a small amount and only for
a small region of the graph. This tactic’s superior performance
stems from a favorable tradeoff between the cost in edge-cut that
is paid with each added constraint and the payoff in the strength
of authorship proof that is gained with each added constraint.

VI. CONCLUSION

Partitioning is an ubiquitous task in all synthesis and verifica-
tion steps of the design process. We proposed the first approach
for intellectual property protection of partitioning solutions
using a watermarking scheme. We demonstrate the proposed
objective function modification watermarking schemes on a
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number of real life examples. The technique and our imple-
mentation are completely transparent to the CAD synthesis
tools and are implemented by preprocessing and postprocessing
alone. Solutions produced using our approach simultaneously
are very close to the best known solutions, carry signatures
that are exceptionally unambiguous, are extremely unlikely
to be present by coincidence, and are difficult to detect or
remove.
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