
TEG: A New Post-Layout Optimization Method ∗

Shuo Zhang
Department of Computer Engineering

University of California
Santa Cruz, California 95064

shzhang@soe.ucsc.edu

Wayne W.-M. Dai
Department of Computer Engineering

University of California
Santa Cruz, California 95064

dai@soe.ucsc.edu

ABSTRACT
Post-layout is an important stage in the modern VLSI de-
sign. With the completed detail routing, it is the only stage
where extraction and verification tools can get accurate re-
sults for further optimization. But the problem is that de-
sign optimization or modification are very hard to perform
in the post-layout stage, because most layout elements are
under tight geometry constraints due to the routing. In this
paper we propose a new method to resolve this problem,
named TEG. Based on an improved topological layout rep-
resentation and a set of layout operation algorithms, TEG
provides an incremental layout modification environment for
the post-layout applications. Experimental results showed
that TEG was efficient and effective in processing industry
VLSI designs.

1. INTRODUCTION
The modern VLSI industry always targets at higher chip

performance. This continuously brings out new design method-
ologies. And as the product life cycles become shorter and
shorter, the design time also become very important: prod-
ucts late to the market cause lose of revenue and market
share. Currently the challenge is how to achieve the spec-
ified chip performance while keeping the scheduled design
time.
In the VLSI design flow, verification and then optimiza-

tion is almost used in every stage. In all stages before detail
routing, design verification inevitably bases on some predic-
tions because of the lack of precise geometry information
of wires. But as design enters ultra deep sub-micron and
giga-scale era, the divergence between these predictions and
the final layout becomes further and further from satisfac-
tion. While after detail routing, which is the post-layout
stage, because all layout physical information are available,
design verifications are able to get accurate results. But
the problem is in this stage it is hard to perform design

∗
This work is supported in part by MARCO/DARPA Gigascale

Silicon Research Center (GSRC).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
ISPD’02, April 7-10, 2002, San Diego, California, USA
Copyright 2002 ACM 1-58113-460-6/02/0004 ...$5.00.

(a) Geometry Layout (b) Topological Layout

Figure 1: Topological Layout

optimizations. Due to the completed detail routing, every
layout change is restrained, such as wire sizing, wire spac-
ing, rip-up and reroute, and via relocation, etc. Whether
a change can be achieved depends on how much layout re-
source is available in the local area, which is confined by the
surrounding wires; and in most case the local space is too
limited to do any layout change. Until now the only solution
is back to previous design stages with new design constraints
which represent the preferred layout changes. Considering
placement and routing usually take days even weeks of CPU
time, the additional design iterations for layout change place
a heavy burden on the design time issue.
To solve this problem between design verification and opti-

mization, we propose a new method targeting layout changes
in post-layout stage, TEG. TEG can provide a layout change
as much as required resources, which is from local area, or
the beyond, or even from the whole layout. In addition to
actualizing changes for optimization, TEG also keeps intact
other parts of the layout. It serves as an incremental layout
modification environment for post-layout optimizations. By
avoiding design iterations for layout change, TEG preserves
the design time with the chip performance.
TEG bases on the topological encoding of the layout, or

topological layout. The layout we always mention after the
detail routing is actually geometrical layout, in which all lay-
out elements, including wires, pins, vias, obstacles and etc,
have specified size, shape and location. Topological layout
only captures the relative shapes, positions and connections
of elements but no geometry information of the wires; a wire
is the spatial relationship with respect to other elements.
Figure 1 shows a layout example in geometry and topologi-
cal. The elimination of wiring geometry releases layout mod-
ifications from the local geometry constraints, making them
feasible and practical in post-layout stage.
Through TEG, a post-layout optimization works as below:

Geometrical
Layout

Post-layout
Optimization

Topological
Layout

topology
extraction

layout
problems

layout
operations

DRVs TEG

geometry
transform

Extraction &
Verification

Layout
Modification

DRV Solver
remove
DRVs

Topological
DRC

Figure 2: Post-layout optimization through TEG

First, the topological layout is extracted from the geomet-
rical layout; then layout modifications, which are specified
by the post-layout optimization, are performed on the topo-
logical layout, such as wiring sizing and spacing or rip-up
and reroute; a topological design rule check (DRC) and a
design rule violation (DRV) solver can be used interactively
with layout modifications to ensure the topological layout
represents a valid geometry layout; finally the modified lay-
out is converted back into geometry. The flow is illustrated
in Figure 2.
The rest of this paper is organized as follows. We first in-

troduce the topological layout encoding, in section 2, includ-
ing some previous works and our improved encoding model.
Then we explain the topological DRC and the DRV solver
in section 3. After that we discuss some issues about the
modifications on the topological layout in section 4, focus-
ing on an essential operation, vertex moving. At last there
are the experimental results and conclusion. Because so far
the geometry transform operation is simply based on the
work of Staepelaere [11], we didn’t include it in this paper.

2. TOPOLOGICAL LAYOUT ENCODING
The concept of topological layout is derived from the re-

search that dealt with topological routing [7]. Topological
routing only concerns with determining the rough paths of
the interconnect. It provides better results than regular ge-
ometry routing in some difficult routing examples [6] [3] [8].
However, since the topological routing algorithm needs to es-
timate the actual geometry information, it encounters prob-
lems while handling large scale IC cases. It motivated other
works to use the topological wiring model for cell or layout
compaction [9] [13] [2], via minimization [4] and crossing
minimization [1].
The widely used topological encoding model is Rubber

Band Sketch (RBS). It was first introduced by Leiserson
and Maley [7] [9]. Representing wires as rubber-bands allows
easy and intuitive manipulation of layout objects. Through
RBS, Maley also proposed an algorithm to test the sketch
routability. Following his work, Staepelaere [11] proposed a
faster geometry transform algorithm. There is also a com-
plete layout system based on RBS, “SURF” [12]. The key
advantage of RBS is the layout modification [5]. The modifi-
cation process is very clear and straightforward because the
relationships between the wires and terminals are explicitly
represented in RBS. But on the another hand, this explicit-
ness also brings RBS a critical disadvantage: the data size

(b) TEG: Triangulation Graph(a) Topological Layout

Figure 3: Triangulation Encoding Graph

grows dramatically as the layout size and complexity in-
creases. It limits RBS to the small scale applications only.
Yu [14] proposed a cut-based topological encoding for in-

cremental routability check. A “cut” is a straight line be-
tween two non-wire objects in the layout, and it could cross
a number of wires in the layout topology. Cuts are the main
objects instead of wires in this encoding, so the layout ba-
sis is detached from the geometry position of wiring. The
number of crossing wires in each cut is used to represent
the layout topology. Although data size of this encoding is
significantly reduced compared with RBS, the layout oper-
ations are hard to perform or need a large amount of calcu-
lation, such as layout modifications. The inefficiency limits
its usage in practical layout works.
Our topological encoding model targets on both small

data size and efficient layout operation supports. It was
improved from Yu’s Encoding. In this encoding, a layout
is described by Triangulation Encoding Graph, which is also
the origin of the name of our optimization method, TEG.

A Triangulation Encoding Graph of a layout instance
is a triangulation graph T(V, E). V includes all the termi-
nals, vias, Steiner points, the vertices of obstacles and layout
boundary in the layout. Each vertex in V has a geometry po-
sition. Each edge in E is embedded with a sequence of the
intersecting wires.

In this encoding, the wiring topology is implicitly repre-
sented on a triangulation of the layout. As the example in
Figure 3, a triangulation graph is constructed from the topo-
logical layout(a). According to wiring topology, each edge is
embedded with a sequence of crossing wires (b) (each wire is
illustrated as lines between its crossings). For a multi-layer
layout, each layer is represented by a encoding graph and
different layers are connected by their physical relationship,
such as a via crossing two layers.
Through “SURF”, the implementation of Yu’s encoding

and Triangulation Encoding Graph, industry designs showed
that using our encoding, the data size of a layout is reduced
by 60% on average compared with RBS, and it is only up to
10% larger than Yu’s encoding. And Triangulation Encod-
ing Graph has efficient supports for every layout operation
required by post-layout optimization flow. The topological
layout extraction and design rule check have similar speed
as Yu’s, at average 10 times faster than RBS; while the the
layout modification also runs much faster than Yu’s, and
even faster than RBS.

3. TOPOLOGICAL DESIGN RULE CHECK
AND DRV SOLVER

s

v1 v2e

α

β

δ

γ

s

v1 v2

α

β

δ

γ

 t

(a) a Seal Pair (s, e) (b) insert an virtul vertex t
between α and β

e

Figure 4: Sealing pair

Through TEG, theoretically any layout modification can
be performed. But we need to determine whether the mod-
ified topological layout represents a valid geometrical lay-
out, where ’valid’ means a planar layout without any DRVs.
This is the task of the topological design rule check. A fail
topological DRC means the preferred modifications are not
acceptable through local available layout resource, but they
could be accepted if utilizing the resources from the other
part of the layout. The DRV solver can help them to achieve
that. This indeed converts the local geometry constraints
to the global constraints, bringing TEG advantages over the
normal geometry layout methods.

3.1 Cut and Sealing Pair
Like our topological layout encoding model, the topologi-

cal DRC in TEG is also cut-based. A cut is safe if the flow
of the cut is not larger than the capacity [9]. An unsafe
cut means there is a DRV between the two vertices of this
cut. Leiserson and Maly [7] [9] used the cut safety to deter-
mine the routability of the topological sketch, proving the
following theorem.

Routability Theorem 1. A layout is routable if and
only if every cut is safe.

There is O(n2) cuts inside a layout and each cut crosses
O(m) nets, where n is number of vertices and m is the num-
ber of wires. So it takes O(mn2) for one check, unacceptable
for a practical DRC algorithm. Valainis and Kaptanoglu
et al. [13] introduced a “sealing” concept for design rule
check. The “sealing” can help to determine the relationship
between the vertex in the center and other vertices. But
they cannot prove the relation between “sealing” and the
routability of the layout.
We improve “sealing” into a “Sealing Pair” (SP) concept.

This improvement speeds up the DRC process because SP is
based on the triangles from the encoding graph, while “seal-
ing” requires a pre-calculation for a convex polygon to start
with and potentially brings overlapped calculation. And
other than the regular rectilinear wiring, SP also supports
octilinear and all-angle wiring for versatile routing style.
The most important thing brought by “Sealing Pair” is a
new layout routability theorem with which the validness of
the topological layout can be theoretically determined.
Based on a triangle (s, v1, v2), a sealing pair (SP) includes

a vertex s and its opposite edge e, as SP(s, e) shown in
Figure 4(a). The characteristic of a SP is the status, either
sealed or unsealed. In order to determine its status, first of
all, we check the three cuts inside the triangle, like (sv1),
(sv2) and e in Figure 4(a). If any of them is not safe, the
SP is unsealed. Otherwise, we insert a virtual vertex t on

(a) cut (s,t) is not safe (b) expand to two sub-SPs

ss

v1

v2

α

β δ
γ

t

e
v1 v2

α

β
δ

γ

c

SP1

SP2

e

Figure 5: Sealing pair expansion

e, and let t have the largest size while keeping the cut e

safe. In Figure 4, assumed using rectilinear wiring pattern,
the shape of t is square. It would be octagon for octilinear
wiring or circle for the all-angle wiring. We put t at every
possible position on e. As Figure 4, there are three crossing
nets, α, βandγ, so there are four possible positions for t,
between v1 and α, between α and β, between β and γ or
between γ and v2. We check the cuts between s and t in all
cases: if every of them is safe, this SP is sealed. We have
proved all these cuts are safe if and only if the two cut at
the both ends are safe, i.e., the cut when t is in [v1, α] or in
[γ, v2] in the example. This reduces the running time of this
step to constant. Here we skip the proof detail because of
its simpleness.
If any cut between s and one t is not safe, as shown in

Figure5(a), we need to expend SP in order to determine
its status. In the triangulation graph, every edge, except
the layout boundary, belongs to two triangles. So we can
find the other triangle which share the common edge e, and
the opposite vertex c to s, Figure 5(b). Then we swap the
diagonal in this quadrilateral (s, v1, c, v2) and get two sub-
SPs, SP1(s, (cv1)) and SP2(s, (cv2)). We repeat the same
process as above to determine the status of SP1 and SP2.
If both of them are sealed, SP is sealed. This recursive
expansion will continue until we determine the status of SP.
If it is not seal, we must have found one cut is unsafe, which
is a design rule violation,

s

β

δ

γ

t

a b

m

α

Figure 6: an indirect unsafe cut (s, t)

3.2 Sealing Pair Routability Theorem
Based on the Sealing Pair, we developed a new routability

theorem.

Routability Theorem 2. A layout is routable if all seal-
ing pairs in the triangulation encoding graph are sealed.

PROOF Suppose all SPs in the triangulation graph are
sealed but there exists at least one unsafe cut. It is apparent
that this unsafe cut cannot be a direct cut, e.g. an edge in
the graph. Otherwise, the SPs around this cut are unsealed

DRV SOLVER (drvList)

for ∀d ∈ drvList, d is between v1, v2

if d is in safe status
then continue
if v1 is not frozen
then move v1 to position p to make d safe

if more DRVs are created
then move v1 partially back to avoid new DRVs.
freeze v1 at current position

if d is not safe and v2 is not frozen
then move v2 to position p to make d safe

if more DRVs are created
then move v2 back to original position
freeze v2 at current position

endfor
clear all freezing in this pass.

Figure 7: DRV solver algorithm

as we discussed above. Thus it is an indirect cut in the
graph. Let’s consider the simplest case, two-edge indirect
cut. The ”two-edge” indirect cut stands for the indirect
cut whose two vertices can be connected through at least
two edges in the triangulation graph, as the unsafe (st) in
Figure 6, which is not an edge in the triangulation graph.
Suppose this cut crosses the edge (ab) at point m, for any
situation of wire topology, either cut (sm) or (tm) must be
unsafe. Without losing generality, we assume cut (sm) is
unsafe. Because SP (s, (ab)) is sealed, a virtual vertex v has
been tested on the position between net β and δ on (ab)
as point m. The cut (sv) has the same flow as cut (sm)
and less capacity since the virtual vertex v is not smaller
than the point m: so cut (sv) is unsafe. Then two sub-
SPs have been expanded and neither is sealed due to the
unsafe cut (st) – SP is not sealed, contradicting with our
”all sealed” statement. Therefore any two-edge indirect cut
must be safe. Similarly we can prove any three-edge indirect
cut is safe based on safe direct cuts and two-edge indirect
cuts. Finally, all cuts in the triangulation graph are safe:
according to Routability Theorem 1, the layout is routable.
2

With this theorem, we can perform DRC by checking the
status of total O(n) SPs in the layout, where n is the num-
ber of vertices. Theoretically, the process to determine the
status of a SP could run recursively until reach an obstacle
or boundary of the design. However, experiments on real
VLSI designs show that there are less than 0.05% SPs need
over 4 levels of expansion. And to determine the status of m
SPs from the initial layout triangulation, on average 1.1 ·m
sub-SPs are expanded to: the DRC checks 2.1 ·m SPs in to-
tal. So the running time is practically linear to the number
of vertices in the layout.

3.3 Design Rule Violation Solver
With the topological design rule check, we could find some

DRVs on the topological layout. A DRV means the layout
resource is not enough in its local area. The DRV solver
can remove a DRV as managing the routing resource [10]: It
moves some available resource from other parts of the layout
to the violation area; or in other words, moves the DRV
vertices toward the area with more resources. It actually

(d)Updated encoding graph

v

d

β α γ

τ

δ

A

B

C

D

E

FG

H

v
d

β

β

α

α
γ

γ
τ

τδ

(c) Triangulation reconstruction

A

B

C

D

E

FG

H

v
d

(b) Initial wiring topology

β α γ

τ

δ

A

B

C

D

E

FG

H

(a) Moving path and IFR

v
d

A

B

C

D

E

FG

H

Figure 8: An example of vertex move

gives each layout modification as much resource as possible
from global view of the layout.
The DRV solver algorithm is shown in Figure 7. For each

DRV in the list, it is an unsafe cut d between two vertices
v1 and v2 reported by DRC. To make this cut safe, first
we move v1 to a new position in the direction leaving v2

so that d becomes safe. Then we perform an incremental
DRC around v1: If the total number of DRVs in the layout
decreases, we accept the new position of v1, freezing it so
that it will not be moved again in this solver pass; Otherwise,
we move v1 partially back toward its original position so
that every new-created DRV can be avoided and also freeze
it there. Then we move v2 in the similar way to make d safe.
This algorithm is called repeatedly until no more DRVs can
be solved.

4. LAYOUT MODIFICATION ON TEG
With DRC and DRV solver, TEG provides an incremen-

tal layout modification environment for the post layout op-
timization applications. Normally layout modifications in-
clude wire sizing, wire spacing, rip-up and reroute, and etc.
We can see, all these modifications need to go through DRC
and DRV solver to take effect on the final layout. As de-
scribed in last section, the DRV solver algorithm is based
on moving the DRV vertices to remove the DRV, so we
must have a fast and robust vertex-moving operation. With
vertex-moving, we can also achieve via relocation, obsta-
cle/cell moving, or even buffer insertion. In the following
we will discuss the vertex-moving operation in TEG.

4.1 Vertex-moving
The vertex-moving problem is defined as below:

Vertex-moving Problem Given a triangulation encod-
ing graph S, a vertex v, and a destination d, generate a
triangulation encoding graph S ′, produced by continuous mo-
tions of v from its initial position to d.

Operating within a single routing layer, a vertex is moved
by a series of continuous motions which is specified by the
moving path. And the influential region (IFR) for a vertex-
moving is defined as a set which includes all the triangles
that have common points with the moving path. As shown
in Figure 8(a), the arrow line (vd) is the moving path and

VERTEX MOVING (Vertex v, Destination d)

influReg ← FIND IFR(v, d)
wvList← GENERATE WVLIST(iReg)
RECONSTRUCT TRIANGULATION(v, d, iReg)
for ∀e ∈ wvList in order

if e is a vertex
then continue
else w ← the wire crosses at e

if e is the first crossing of w in wvList

then continue
else e′ ← first crossing of w in wvList

INSERT WIRE (e, e′, w, wvList, iReg)
endfor

INSERT WIRE(start, end, wvlist, iReg)
initial wire stack ST

outWire← NULL

for ∀e ∈ wvlist from start to end in order
if e is a vertex
then for ∀edge connected to e inside reg

put w in the crossing list of edge, next to outWire

else if outWire 6= e

then PUSH(outWire, ST)
outWire← e

else outWire← POPUP(ST)
endfor

Figure 9: Vertex-moving algorithm

the bold dot-line illustrates the influential region, which is
the polygon (ABCDEFGH). It is easy to prove that only
the layout topology inside IFR could be changed by this
vertex moving.

4.2 Triangulation Encoding Graph Update
To update the Triangulation Encoding Graph inside IFR

for a vertex-moving, we need to reconstruct the triangu-
lation as well as the intersecting sequences of new edges.
Figure 8 shows an example of the Triangulation Encoding
Graph update procedure.
First, we record the initial wiring topology. It is done

through a vertex-wire list, which includes the vertices and
the wire crossing sequences along the boundary. As Fig-
ure 8(b), starting from the cross point between wire α and
edge (AH), the vertex-wire list is (α, A, β, B, β, α, C, δ,
D, γ, E, τ , F , τ , G, H, γ). Here the wire name stands
for a wire crossing. This list keeps the wiring topology by
the relative position between wires and vertices along IFR
boundary. In the next, we reconstruct the layout triangu-
lation inside IFR by using a standard graph triangulation
algorithms, as Figure 8(c). Then, we use this vertex-wire
list to generate the intersecting sequences of new edges.
For example, considering the wiring topology of α, we can

find the vertex-wire subsequence from the vertex-wire list
between two crossings of α, which is (A, β,B, β). There are
A and B in this subsequence, meaning that wire α crosses
any edge connected to vertex A or B inside IFR: the edge
(BH). Wire β is also in this subsequence, meaning for the
edge which wire α and β both cross, wire α is after wire β

in its wire intersecting sequence. Similarly, considering wire
γ, the vertex-wire subsequence is (E, τ, F, τ,G,H) between
its two crossings. So wire γ crosses any edge connected to

Table 1: Experimental examples
dsgn1 dsgn2 dsgn3 dsgn4 dsgn5 dsgn6

Cells 4.9K 8.8K 14.6K 71K 88K 134K
Nets 5.0K 8.8K 17.3K 36.7K 41.8K 41K
Pins 26K 47.5K 76.8K 265K 323K 330K
Layers 3 5 5 4 4 4
TEG 18M 25M 48M 147M 132M 127M

Table 2: Running time of operations in TEG
dsgn1 dsgn2 dsgn3 dsgn4 dsgn5 dsgn6

Imp. 51 52 79 205 223 207
Mod. 0.08 0.10 0.11 0.12 0.11 0.11
DRC 14 16 19 29 23 25
Solver 2.2 1.8 1.9 2.9 2.6 2.6
Geom. 31 54 121 336 466 384

E, F , G or H inside IFR: totally seven edges, (Ed), (Fd),
(Gd), (GD), (GC), (HC), (HB). And because wire τ is
also in this subsequence, for the edge which both wire γ and
τ cross, γ is after τ . So the wire crossing sequence of edge
(Fd) is (τ, γ), starting from vertex F .
The main part of the vertex-moving algorithm is outlined

in 9. Some implementation details are omitted here, such as
selecting the start point of the vertex-wire list, arranging the
wires which are incident to the moving vertex, and dealing
with the redundant edge crossing for wires.

5. EXPERIMENTAL RESULTS
Our experimental examples (Table 1) are routed and cell-

based designs, the scale ranging from 4K cells to more than
130K cells, all in Cadence LEF/DEF format. Most of them
are real industry designs. The capability to handle large
scale design is one of the advantages of TEG over others
topological layout tools. The numbers of cells, nets, pins
and metal layers of each design are listed in Table 1, with
the memory usage in TEG at the bottom. As the number
of cells, nets and pins increase, the memory usage increases
in an acceptable rate.
In the experiment, at first we import each example into

TEG. Next, some selected modifications are performed on
the layout. We run the DRC and DRV solver to ensure that
the modified layout can be transformed back into a valid ge-
ometry layout. Then, we generate a new DEF file from the
modified design. In the end we use Cadence Silicon Ensem-
ble load the new DEF file and verify its connectivity and
geometry. Silicon Ensemble doesn’t find any connectivity
or geometry problem from the new DEF files except some
antenna issues which are initially from the original design.
TEG is running on a Intel Pentium III 550MHz.
One experiment targets on demonstrating the running

time of the basic layout operations in TEG. We simply per-
form 500 random-selected via-moving through each design.
The results are in Table 2, all numbers in seconds. ‘Mod.’
is the average time for one via-moving operation. ‘DRC’
is the total time used by topological DRC after these 500
via-movings, in which on average 30000 sealing pairs are
processed, ‘Solver’ is the average running time to remove
one DRV. This table indicates that the running time of de-
sign import and geometry transform increases as the scale of

(a) Original layout (b) After wire sizing

Figure 10: Wire sizing through TEG

(a) Original layout (b) After wire distribution

Figure 11: Wire distribution through TEG

the design becomes larger. And the running time of vertex-
moving, topological DRC and DRV solver is almost constant
in each case.
In another experiment, we perform wire sizing on the lay-

out. Increasing the wire width is widely used in post lay-
out optimization such as crosstalk-delay fixing, IR-drop re-
duction and etc. We randomly picked up 0.5% wires from
the original layout, then change their width to 3× mini-
mum width, followed by DRC and DRV solver. Figure 10
shows part of example “dsgn1”, displaying only metal layer
2 and layer 3. In the modified layout(b), we can see the vias
around the widened wires have been moved outward by the
DRV solver.
We pick up wire distribution in the third experiment.

Wire distribution increases the wire spacing if there is more
space available than the minimum. It can be used to im-
prove the layout yield and manufacturability, or decrease the
metal density difference for less chemical-mechanical polish-
ing(CMP) process variation. Figure 11 shows part of ex-
ample “dsgn1”, This example is also from design “dsgn1”,
displaying metal layer 2 and layer 3. After wire distribu-
tion Figure 11 (b), the wire density in both layer become
more uniformed without rerouting any wires and filling any
dummy metal.

6. CONCLUSION
In post layout stage of the VLSI design, the problem is not

whether we can verify and analyze the design precisely, or
what and where the layout problem is, or what optimization
or modifications should be performed on the layout: many
EDA tools are available to do these; the problem remains
on how modifications can be achieved with geometry con-
straints all over the layout. In most cases, even the small
change is not acceptable due to the limited local resources.

In this paper a new method TEG was proposed to solves
this problem by processing the layout topologically. With
a improved topological layout encoding model and a set of
efficient layout operation procedures, including layout ex-
traction, design rule check, DRV solver, vertex-moving and
geometry transform, TEG provides an incremental layout
modification environment for the post layout optimization.
The experimental results showed TEG was efficient and ef-
fective in processing industry VLSI designs.

7. REFERENCES
[1] H.-F. S. Chen and D. T. Lee. On crossing
minimization problem. IEEE Trans. Computer-aided
Design, 17(5):406–418, May 1998.

[2] H.-F. S. Chen and D. T. Lee. A faster one-demensional
topological compaction algorithm withjog insertion.
Algorithmica, 28(4):390–421, December 2000.

[3] J. Cong, M. Hossain, and N. A. Sherwani. A provably
good multilayer topological planar routing algorithm
in IC layout design. IEEE Trans. Computer-aided
Design, 12(1):70–78, January 1993.

[4] J. Cong and C. L. Liu. On the k-layer subset and
topological via minimization problems. IEEE Trans.
Computer-aided Design, 10(8):972–981, August 1991.

[5] W. W.-M. Dai, R. Kong, J. Jue, and M. Sato. Rubber
band routing and dynamic data representation. In
Proc. Intl. Conf. Computer-aided Design, pages 52–55,
Santa Clara, CA, November 1990. IEEE Computer
Society.

[6] S. Haruyama, D. Wong, and D. S. Fussell. Topological
channel routing. IEEE Trans. Computer-aided Design,
11(10):1177–1197, October 1992.

[7] C. E. Leiserson and F. M. Maley. Algorithms for
routing and testing routability of planar VLSI layouts.
In Proc. 17th Ann. ACM Symp. Theory of Computing,
pages 69–78, New York, NY, 1985. ACM.

[8] A. Lim, V. Thanvantri, and S. Sahni. Planar
topological routing. IEEE Trans. Computer-aided
Design, 16(6):651–656, June 1997.

[9] F. M. Maley. Single-layer wire routing and
compaction. MIT Press, Cambridge, MA, 1990.

[10] P. Morton and W. Dai. Routing resource management
for post-route optimization. Tech Report
UCSC-CRL-02-12, University of California, Santa
Cruz, February 2002.

[11] D. Staepelaere. Geometric transformations for a
rubber-band sketch. Master’s thesis, University of
California, Santa Cruz, 1992.

[12] D. Staepelaere, J. Jue, T. Dayan, and W. W.-M. Dai.
Surf: A rubber-band routing system for multichip
modules. IEEE Design and Test of Computers,
December 1993.

[13] J. Valainis, S. Kaptanoglu, E. Liu, and R. Suaya.
Two-dimensional IC layout compaction based on
topological design rule checking. IEEE Trans.
Computer-aided Design, 9(3):260–275, March 1990.

[14] M.-F. Yu. Topological Encoding and Interchangeable
Pin Routing. PhD thesis, University of California,
Santa Cruz, December 1997.

	Main Page
	ISPD'02
	Front Matter
	Table of Contents
	Author Index

