IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003 573

A Practical Methodology for Early Buffer and
Wire Resource Allocation

Charles J. AlpertSenior Member, IEERliang Hu, Sachin S. Sapatnekiaellow, IEEE and Paul G. Villarrubia

Abstract—As technology scales, interconnect-centric design o
flows become imperative for achieving timing closure. Preplan- d
ning buffers and wires in the layout is critical for such flows.
Both buffers and wires must be considered simultaneously, since b i
wire routes determine buffer requirements and buffer locations i T T T T
constrain the wire routes. In contrast to recently proposed - -y
buffer-block planning approaches, our novel design methodology dmea o o
distributes a set ofbuffer sitesthroughout the design. This allows =
one to use a tile graph to abstract thébuffer planning problem and
simultaneously addresswire planning. We present a four-stage
heuristic called resource allocation for buffer and interconnect
distribution for resource allocation that includes a new, efficient : L GEay
technique for buffer insertion using a length-based constraint. r o
Extensive experiments validate the effectiveness of this approach. R e

Index Terms—Buffer insertion, deep submicron, interconnect
synthesis, layout, physical design, Steiner tree.

l. INTRODUCTION Fig. 1. Buffer-block plan on MCNC xerox circuit [9], reproduced here with
) permission of the authors. The ten big blocks are functional blocks and the rest

UFFER insertion has become a critical step in deejse buffer blocks.

submicrometer design as interconnect now plays a domi-
nating role in determining system performance. The insertigare that an achievable routing solution exists during the phys-
of buffers and inverters on signal nets can provide seveiahl floorplanning stage. Thus, global wiring must be planned
advantages, including reducing interconnect delay, restrainiggrly to minimize routing congestion, hot spots, and crosstalk
noise, improving the slew rate, and fixing electrical violationgroblems later on in the flow.
[3], [13]. Current designs easily require thousands of nets to be
buffered, and Cong [6] speculates that close to 800 000 bufféts Buffer-Block Planning Methodology

will be_ requirgd _for designs in 50-nm technqlqu. In response to the need for an interconnect-centric design
Achieving timing closure becomes more difficult when bUﬁanethodology a new body of researchhmsffer-block planning
insertion is deferred to the back. end of the design process, EH?;{% recently established itself in the literature [8], [10], [11],
the. buffers must be s.queez.ed into whatever leftover space [lﬁﬂ [17]. These works focus on “physical-level interconnect
mains. The problem is particularly acute for custom desig anning,” as described in [7]. The works of [8], [16], and [17]
where large IP core macros and custom data flow structures giig,rqnose the creation of additional buffer blocks to be inserted
present, blocking out significant areas from buffering possibilizy, an existing floorplan. These buffer blocks are essentially
ties. Application-specified integrated circuit (ASIC) designs Cat‘ap—level macro blocks containing only buffers. Caetgal. [8]
also run into similar headaches if they are dense or have loc%%posed to construct these blocks ugemgible regionsA fea-
dense hot spots. i sible region is the largest polygon in which a buffer can be in-
To manage the large number of buffers and also achieve highyye g for a particular net such that the net's timing constraint
performarjce on the f:rltlcal global nets, buffers must.be plannfédsatisfied. Sarkaet al. [16] added a notion of independence
for early in the design so that the rest of the design flow {§ ¢ feasible regions in [8] while also trying to relieve routing
aware .Qf the required buffering resources. In addition, deS'QBngestion during optimization. Tang and Wong [17] proposed
routability has also become a critical problem; one must makge optimal buffer-block planning algorithm in terms of maxi-
mizing the number of inserted buffers (assuming that one buffer
Manuscript received September 12, 2001; revised March 22, 2002 and Augsssufficient for each net). Finally, Dragatal.[10] presented a

5, 2002. This paper was recommended by Associate Editor C.-K. Cheng. ' my|ticommodity flow-based approach to buffering two-pin nets
C. J. Alpert and P. G. Villarrubia are with the IBM Corporation, Austin, TX

78758 USA (alpert@austin.ibm.com). assuming that a buffer-block plar_1 had alre_ady been created. This
_J. Hu is with the Department of Electrical Engineering, Texas A&M Univerapproach was extended to multipin nets in [11].
sity, College Station, TX 77843-3128 USA. Fig. 1 shows the result of buffer-block planning [8] on the

S. S. Sapatnekar is with the Department of Electrical Engineering and Cop)-
puter Science, University of Minnesota, Minneapolis, MN 55455 USA. Microelectronics Center of North Carolina (MCNC) circuit

Digital Object Identifier 10.1109/TCAD.2003.810749 xerox where the buffer blocks are indicated by dashes in

0278-0070/03$17.00 © 2003 IEEE

574 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

between blocks. Observe that buffers are essentially packeds Space needs to be allocated for spare circuits to facilitate
between larger existing floorplanned blocks. We argue there metal-only engineering changes (ECOs) late in the design
are two fundamental problems with the buffer-block planning cycle.
approach. » The design needs to be populated with decoupling capac-
1) Since buffers are used to connect global wires, there will itors to enhance local power supply and signal stability.
be considerable contention for routing resources in the * Spreading of the design will help maximize the probability
regions between macro blocks. The design may not be Of successful routing by spreading out areas with signifi-
routable due to heavy congestion between blocks. cant wire congestion.
2) Buffers must be placed in poor locations since better I?—L'or these reasons, current IBM ASIC methodology typically
cations are blocked. Some blocks may even be so I"jlrl(uj"seesa lacement density of 70% or less, e.g., in any small region
that routing over the block is infeasible, even if buffers]cth ?\] ty30(y fthe d ! .g.,_” b y i Thg
are inserted immediately before and after the block. Fop,. © oib area, ateast 557 ofihe aesign W'_ D€ emply. Thus,
) : . .0ften the space for buffer sites already exists; it just needs to be
example, signal integrity could degrade beyond the po'gxploited
of recovery or wire delay may simply be too high. One -)
may be able to alleviate the problem by using wider wires Buffer sites can also be a powerful tooI.for semi-custom de-
on thick metal, powering up to very large buffers, etc., bi@dns [19]. For example, a data flow typically routes several
these solutions exacerbate the congestion problem regular signal buses across collect|ons_0f datf_zl ﬂow_elements.
The flaws are not with buffer-block plannimgr se rather, it These rou_tes should pe |mplem(_anted with straight wires yvher-
is certainly a reasonable method for preplanning buffers withYe" Possible. Collectively, the wires occupy a dense portion of
current design flows. However, buffer-block planning is realgﬁe routing region wh|_ch severely I|m|t§ the ability for either de-
an interconnect-centric idea being applied to a device/logic-céfUrS or other routes in the data path itself. If the data bus nets
tric flow. Ultimately, this methodology will not be sustainablg®duire buffering, one would like to have buffer locations avail-
as design complexity continues to increase. A different methdRle Wlt_hln the_ data path routing region to_av0|d detours. If the
ology is required! buffers lie outside the routing region, the wires may have to take
Ideally, buffers should be dispersed with some regulari@rge detourstoreachthe k_)ufferswhlch can S|gp|f|cantly hurtthe
throughout the design. Clumping buffers together, e.g., fining olnapa.rt of the de:&_gnthat can ill afford |t.. If_buffergtes
buffer blocks, or between abutting macros invites routing/® designed into the original data path layout, it is possible to
headaches. A more uniform distribution of buffers will als@dd buffers late in the design cycle while maintaining straight

naturally spread out global wire§here must be a way to allow Wiring of the data bus nets.

buffers to be inserted inside blocks Buffer sites can also be used for a flat design style, e.g., a
) sea of buffer sites can be sprinkled throughout the placement.
B. Buffer Site Methodology For hierarchical designs, one can view the buffer sites as flat

We propose an alternative methodology. Macro blodk derive a similar sprinkling, but their distribution will likely
designers must allow global buffer and wiring resources ¢ less uniform. Some macro blocks could have 5%-10% of
be interspersed within their designs wherever possible. Thite area devoted to buffer sites, while a similar block in a dif-
resource allocation need not be uniform; a block with a lowégrent part of the chip may require much less. To help decide
performance requirement and complexity may be able to affdfte allocation of buffers sites to macros, one could assume an
to allocate a higher percentage of its resources. A cacheifinite number of available buffer sites, run a buffer allocation
blocks within a data path may not be able to allocate ahgol like resource allocation for buffer and interconnect distri-
resources. Ideally, as this “hole in a macro” methodologgution (RABID), and compute the number of buffers inserted
becomes widespread, even future IP blocks will have someibfeach block. Then, this number can be used to help determine
their area devoted to buffering resources. the actual number of buffer sites to allocate within the block.

To set aside a buffer resource within a block, the designer ddf matter which design style is used, a resource allocation al-
insert what we call duffer site i.e., physical area which cangorithm can view buffer sites as flat, which enables it to make
denote either a buffer, inverter (with a range of power levels), 86signments to global routes based on buffer site distribution.
even a decoupling capacitor. When a buffer site gets assigned tgome advantages of this methodology are as follows.

a net, a logical gate from the technology is actually specified.
Until this assignment takes place, buffer sites are not connected® Routing congestion between blocks can easily be allevi-
to any nets. ated.

Allocating a percentage of a macro block for buffer sites may * Buffers do not have to be placed in suboptimal locations
be viewed as wasteful; however, if the sites are not used for When the optimal location lies inside a block.
buffering, there are other ways to utilize them. In fact, it is de- * One no longer has to squeeze buffers into tight spaces
sirable not to place cells in a particular block at 100% density Petween blocks, thereby forcing other cells to be moved
for the following reasons. which can cause timing violations and hurt timing closure.

 Slew constraints, which previously could only be satisfied

INote that we are referring to buffers for signal nets, not clock buffers. Com- with thick metal (with wide wires) routing, can now be
pared to generic buffers, clock buffers occupy more area, draw more current, isfied iV si h b buff
create hot spots, etc., all of which require different constraints and objectives satistied more easlly since the space between buffers can

than proposed in this work. be reduced in the presence of large blocks.

ALPERT et al. A PRACTICAL METHODOLOGY FOR EARLY BUFFER AND WIRE RESOURCE ALLOCATION 575

The main disadvantage of this methodology is that seve — T —— —
tools have to be modified or built from scratch to handle buffe Tog ot i S A T
sites. The data model must recognize a buffer site, the rou|| & LA IR L0 IR PO Y IR I (N
. . . . il pb| B | 1
i a]
must be able to route into a buffer site, the design environme — v
must allow the user to create and delete buffer sites, etc. So|| , | B | s Th e 2|8 20 s)0

tools may be able to piggyback onto support already built r 1" ! D P

for ECOs. For example, the placement tool needs to be able|| © [* | , | & |0 S R R N i
disperse buffer sites within a design; this task is quite simil 0 . ol ol 1t 1o lo |1
to the dispersing spare logic cells in the placement for futu

ECOs. Further, the methodology still must be able to hanc T '] N U I O A R
certain custom blocks with highly structured array-type logi = ©

which cannot afford to have any buffer sites inserted. If these

blocks become too large though, they must be either split |ig. 2. (a) Set of 68 buffer site locations can be tiled and (b) abstracted to a
spread out in such a way as to allow buffers inside, even if thi&a! number of buffer sites lying within each file.

are inserted in a regular structure.

analysis results are often grossly pessimistic because in-
C. Technical Contribution terconnect synthesis has not taken place. At this stage,
one needs to globally insert buffers while tracking wire
congestion before the floorplan can even be evaluated.
For example, in a design with a desired 5-ns clock pe-
riod, say that one floorplan has a worst slack-af0 ns
while a different floorplan has a worst slack e#3 ns.

We propose a new buffer and wire resource allocation for-
mulation. Assuming that locations for buffer sites have already
been chosen, the problem is to assign buffers to global nets
such that each buffer corresponds to an existing buffer site. We
model the problem with a tile graph to manage the complexity ;) :)
of thousands of buffer sites and to integrate wire congestion | € designer cannot determine which floorplan is better

into the problem statement. We propose the following four-stage because the slacks f(_)r both are so absurdly _fa_r from their
heuristic called RABID. targets. Buffer and wire planning must be efficiently per-

formed first, then the design can be timed to provide a
meaningful worst slack timing that the designer can use
for evaluation. We envision performing buffer and wire
planning each time the designer wants to evaluate a floor-
plan.

1) Construct low-cost, low-radius Steiner trees for each net.

2) Rip-up and reroute nets to reduce wire congestion.

3) Insert buffers on all nets which require them. This stage
is based on a van Ginneken [18] style dynamic program-

ming algorithm, yet we can find the optimal solution for The first characteristic suggests that one does not need to

agwen net more efﬂm_ently than [18]. worry about exactly where buffer sites are placed. The block
4) R_|p—up, reroute, and reln_sert buifers on nets to reduce b%tgsigners should have the freedom to sprinkle buffer sites into

wire and buffer congestmn. their designs so that performance is not compromised; there just
Unlike the approaches in [8], [10], [16], and [17], our algoy eeds to be a sufficient number of buffer sites somewhere.

rithm is designed to handle ner with multiple siqks (asis [1.1] " The optimization algorithm can view the thousands of buffer
The remamderofthe paper is as fpllows. Sectl_on Il descrlbgﬁ,eS within atile graph Fig. 2(a) shows 68 buffer sites lying
our problem formulation and model_lng assumpﬂons, and S%’thin the region of the chip. A tiling over the chip’s area can
tion il presen@s our four-step heunstu;. Expgrlments aré Pl used to abstract each individual buffer site to a set of buffer
sented in Section IV and we conclude in Section V. sites lying at the center of each tile [Fig. 2(BAfter a buffer is
assigned to a particular tile, an actual buffer site can be allocated
II. PROBLEM FORMULATION as a postprocessing step. The tile graph offers both a complexity
o reduction advantage (especially when there are thousands of
There are two fundamental characteristics of buffer and wiggitter sites) and also the ability to manage routing congestion
planning which drive our formulation. across tile boundaries. The granularity of the tiling depends on
1) Finding the absolute optimal locations for a buffer is nahe desired accuracy/runtime tradeoff and on the current stage
particularly important. Cong@t al. [8] showed that one in the design flow.
may be able to move a buffer a considerable distanceThe second characteristic suggests that timing constraints are
from its ideal location while incurring a fairly small delaynot dependable in the early floorplanning stage. Our formula-
penalty. Their concept of feasible regions for buffer insetion relies on a global rule of thumb for the maximum distance
tion is based on the principle that there is a wide range bétween consecutive buffers. This rule of thumb was also used
reasonably good buffer locations. for buffer planning by Dragaet al. [10]. They note that for a
2) At the interconnect-centric floorplanning stage, timingigh-end microprocessor design in 0.26+ CMOS technology,
constraints are generally not available since macro blopkpeaters are required at intervals of at most 4560 Such a
designs are incomplete and global routing and extraction
have not been performed. Potentially crude timing anal-2Note that several tiles have zero buffer sites. These might correspond to a
. . . cache, data path, or other critical part of the design for which buffer sites cannot
ysis may not even be possible when there is too mu

: - - - o BBinserted. Having some zero buffer site tiles is not prohibitive; too many will
incomplete information. Even when possible, the timingbviously hinder solution quality.

576 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

Fig. 4. Example of spanning tree edge overlap removal.

Fig. 3. Driver with seven sinks, whereby the maximum distance allowed ® There exists a routing after buffering such that for all
between gates is three. With this interpretation of the distance rule, the driving ¢, , € E, the number of wires crossing fromto v is
gate must drive 11 units of wirelength. less than or equal tW(e)

u,v).

A solution to this problem implies that constraints are

rule is necessary to ensure that the slew rate is sufficiently shagjisfied, though one can also optimize secondary objectives,
at the input to all gate&Note that later in the design flow, when€-3- total wirelength, maximum and average wire congestion,
more accurate timing information is available, one can rip up tfa@ximum and average buffer congestion, and net delays. Our
buffering solution for a given net and recompute a potential'ﬂﬁ””snc seeks a solution that satisfies the problem formulation
better solution via a timing-driven buffering algorithm. while also trying to optimize these secondary objectives.

We represent a tiling by a gragh(V, E) whereV’ is the set Note that the purpose of our formulation is not to find the
of tiles, and edge,, , is in E if u andz} are neighboring tiles. final b_uffering and routing _of the desigp. Rather, it can be used
Given a tilew, let B(v) be the number of buffer sites within {0 €stimate needed buffering and routing resources or as a pre-
the tile. LetN = {n1.n») be the set of global nets cursor to timing analysis for more accurate floorplan evaluation.

. -) s ltm
and leti,,, , be the maximum permissible number of wire©nce deeper into the physical design flow, nets which generate
that can cfudgs between and v without causing overflow. If suboptimal performance or lie in timing-critical paths should be

b(v) denotes the number of buffers assigned tahe buffer re-optimized using more accurate timing constraints and wire
congestion fop is given byb(v)/B(v). Similarly, given aglobal CaPacitances.

routing of N, if w(e,) denotes the number of wires which

cross between tileg andw, the wire congestion for edgg , is ll. RABID HEURISTIC

given byw(eu,v) /W (€u,,). The purpose of the RABID heuristic is to show how buffer
For netn;, let L; be the maximum wire length (in units of anq wire planning can be integrated into a tile-based global
tiles) that can be driven by either the driversf or a buffer oyting methodology. We follow a traditional rip-up and reroute
inserted om;. This interpretation of maximum distance avoidg;ype of strategy. RABID proceeds in four stages: i) initial Steiner
the scenario that could occur in Fig. 3. The figure shows a drivgge construction: ii) wire congestion reduction; iii) buffer as-
with seven sinks whereby the distance between the driver afinment; and iv) final post processing. The primary innovations
each sink is three tile units. Using this interpretation of the digye within stages 3 and 4 which handle buffer site assignment.
tance constraint results in a legal solution where the source 98t8ges 1 and 2 deliver an initial congestion-aware global routing
drives 11 tile units of wiring without requiring any buffers. For &g|ution as a starting point. One could alternatively begin with

slew-based distance rule, the extra interconnect (and sink logeh solution from any global router, e.g., the multicommodity
may cause weak signals at the sinks. Thus, our rule requiresfi3@-based approach of [1].

total length of interconnect that can be driven by any gate to be

no more thary;. A. Stage 1: Initial Steiner Tree Construction

In this stage, we want a preliminary routing of each net so

A. Problem Formulation . .
that congested regions can be evaluated and reduced in each

Given a filing of the chip area#(V,E), nets N = stage. As opposed to a pure minimum length construction, the
{n1,n2,...,nm}, the number of buffer site3(v), and tile {ree should be timing-driven, yet timing constraints are not nec-
length constraintsl.;, assign buffers to nets such that th@ssarily available. Hence, we adopt the Prim—Dijkstra construc-
following apply. tion [4] which generates a hybrid between a minimum spanning

* b(v) < B(v) forall v € V', whereb(v) is the number of tree and shortest path tree. The result is a spanning tree which
buffers assigned to tile. trades off radius and wire length.
* Each nety; € N satisfies its tile length constraink, .4 Next, each spanning tree is then converted to a Steiner tree via

a greedy overlap removal algorithm that iteratively searches for
the two tree edges with the largest potential wire length overlap.

3A similar maximum distance rule was also used in the design of a receftSteiner point is introduced to remove the overlap as shown in
high-performance IBM microprocessor with 170 million transistors [15].

maximum distance between buffers was derived based on the desired iﬁf)lg- 4. The algorlthm terminates when no further overlap re-
slew rate, and this rule was used to guide global buffer insertion. Global timimgoval is possible.
constraints were not used, nor were they even available.

4In general, one will use the same number of tilgsfor each net. However,
if some nets can be routed on higher metal layers while others cannot, differerftThe tradeoff requires a user parameter between zero and one, where a lower
nets can have differedt; values depending on their layer. Also, a larger valuemumber emphasizes wirelength, while a higher number emphasizes path length.
of L; can be used in conjunction with wider wire width assignment. Our experiments use a value of 0.4.

ALPERT et al. A PRACTICAL METHODOLOGY FOR EARLY BUFFER AND WIRE RESOURCE ALLOCATION 577

B. Stage 2: Wire Congestion Reduction o ' N o
The next step is to rip-up-and-reroute to reduce wire conges- d v

tion. The tile graphG(V, E) is constructed from the existing B(v)] 8 5 | 12 3 5 0

Steiner routes, and the congestion of each eflga is com- bv)| 3 4 2 3 0 0

puted. Instead of ripping up nets in congested regions, werip-up |p(v)| 2.5| 3.6] 2 | 0.8 | 4 5

and reroute every net, a technique similar in spirit to Nair's g(v)| 1.3] 8.6] 0.5] o [1.0] o

method [14]. This approach is less likely to become trapped in
a local minima. The net ordering is first fixed (we sort in ordegig. 5. Example of how buffer costs are computed. For a valug of 3, the
of smallest to largest delays), and each net is processed in teptimal solution is shown having a total cost of 1.5.
according to the ordering. The advantage is that even nets which
do not violate congestion constraints can be improved to furth
reduce congestion so that other nets can be successfully rerot
in subsequent iterations. The algorithm terminates after eith
three complete iterations ar(e., .,) /W (e.,») < 1 holds for all
ew,w € E. From experience, we observe only nominal potentie
improvement after the third iteration.

To reroute the net, the entire net is deleted and then rerout Set v © par(v)
using an approach similar to[5], as opposed t_o rerouting a}sing 3. Let v be such that pa‘r(v) — 5 Retumn min{C,ij][|0<j<L} .
edge. The new tree is constructed on the tile graph using tl—
same Prim-Dijkstra cost function in Stage 1, except that the COSE « i le-sink buffer insertion aldorithm
for each edge is not its Manhattan distance. The routing occurg ™ 9 9 '

across the tile graph using the following congestion-based cost
function: An optimal solution can be found in linear time in terms of

wlew)41 ¢ wleas) the number of tiles spanned by the ngt (assumingith# con- _
Coste,.,) = { Wiewo)wleas)’ W(eu,v)_< 1 } . @ stant). The approach uses a van Ginneken [18] style dynamic
’ 00, otherwise programming algorithm, but has lower time complexity because
the number of candidates for each node is, at most,
We begin with the simple case of a ngtwith a single source
d sinks. Letpar(v) be the parent node of tilein the route,

Single-Sink Buffer Insertion Algorithm

1.Set C,[j] = 0 for 1 <j <L, where 7 is the single-sink. Set v = .
2. while v#s do
for j =1t L;—1 do
Set Cparlil = CLi—1]
Set Cpup01 = g(par(v)) +min{C,Ij110<j<L;}

The cost is the number of wires that will be crossing divided
by the number of wires still available. The purpose of this costis

to have the penalty become increasingly high as the edge corfi
closer to full capacity. We perform a wavefront expansion frofy'C assume thaf(v) has been computed for all nodes on the

the tile which contains the source, updating the lowest tile cd¥ tr:] bet\l/V(te.e a?dt. Att etafl:_frl]nc')d:, th? t?]rraﬁ” sgortesth.e coit]
with each expansion. When each sink in the net is reached, e solutions from to . The index of the array determines the

algorithm terminates, and the tree subsequently recovered rz}ance downstream fromto the last buffer inserted. Thus, the

tracing back the edges on the path from each sink to the soufte®y Is indexed from O té; — 1 sincev cannot be at dista_nce
9 g P more thanL; from the last available buffer. The full algorithm

C. Stage 3: Buffer Assignment is shown in Fig. 6. _
0 | . . . h . Step 1 initializes the cost arrdy; to zero for the sink. The
nce a low-congestion routing exists, the next step assi aorithmthentraverses up toward the source, iteratively setting

buffer sites to each net. We perform this assignment iterativ ¥e values for the cost array. Step 2 computes the values for
starting with the net with highest delay. Before buffers are as;

. . . o ; “par(v) given the values for. The value ofC,,,.(v)[] for j > 0
signed, we first estimate the probability of a net occupying atil simply G, [j — 1] since no buffer is being inserted atfor
For a netn; passing through tile, the probability of a buffer .

f being | d is defined be th this case. If a buffer is to be insertedatr(v), then the cost
romw being inserted onto, Is define ad/L;. Letp(v) be the Cpar(v)[0] is computed by adding the current cost for insertion,
sum of these probabilities for tile over all unprocessed nets.

, to the lowest cost seen at One can recover the
Recall thatB(v) is the number of buffer sites inandb(v) is a(par(v))

solution by storin at the index inC',, which was used to
the current number of used buffer sites. We define the gest y Gar(v)

f . icular buffer si generate the solution.
or using a particular bufter site as Fig. 7 shows how the cost array is computed for the two-pin

{ bv)+p()+1 g bv) 1} example in Fig. 5 (withl; = 3), and the dark lines show how

B)=blv) » 7 B) (2) to trace back the solution. Observe from the table that costs are
00, otherwise . . .
’ shifted down and to the left as one moves from right to left, with
Observe the similarity between (2) and (1). Both significantlihe exception of entries with index zero.
increase the penalty as resources become more contentious. The algorithm is optimal since each possible solution is pre-
Fig. 5 shows an example of how the buffer cost is computeskrved during the execution. One can exploit the fact that the
Note that thep(v) values do not include the currently processedumber of possible candidates at each node is no morelthan
net. The cos§(v) is computed for each tile, andv) is included to give a space and time complexity©fnL;), wheren is the
in the cost for a net if a buffer is insertedkatin the example, if number of tiles spanned by the net. This is a significant advan-
L; = 3, the minimum cost solution has buffers in the third anthge over similar dynamic programming approaches [12], [18],
fifth tiles with cost0.5 + 1.0 = 1.5. [20] which have at least(n?) time complexity. Of course,

q(v) =

578 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

somgce Si;)k Multi-Sink Butffer Insertion Algorithm

AdvanceTile(w): for j = 1to L;—1 do K, |j] = C,[j—-1]
g 138605 = 10 = BufferTile(w,v): K, [0] = g(v)+min{C,[j1]|0<j<L;}
c,l0] 2.8 9.6 'Li e L1.0 = L0 ?i@:"d:':(vz(:);: (’[']=min{ S Kl S =.}
i1 9.6, 1.4 «B1.f « Mol o SRR wor " ™
C,[2] 1. (oo 1.0 oo 0 0 0 BujferMultiBran[ches(v, W))

C,[0] = min lCVIOL qv) + min{ Yy K Y Jus L,-”
Fig. 7. Execution of the single source algorithm on the example in Fig. 5. Tl we W) we W)

optimal solution has cost 1.5; the dark lines show how this cost is obtained. | 1 pick any sink v.

repeat v#5 do
2. if v is a sink then

Q Set C,[j1 =0 for 1<j<L,.
3. Let W(v) be the children of v

for each we W(v)
I AdvanceTile(w)
= B[R] [ef A [
|| % % 4. JoinChildren(v, W(v))
@ |o (b) © (CY 0] 5. if there are more than one children

Ml BufferTile(w)
BufferMultiBranches(v, W(v)).
Fig. 8. For anode with two children, buffers may be used to (a, b) drive bo | 6- mark v as visited o
branches, (b) decouple the left branch, (c) decouple the right branch, or pick unvisited node v such that w is visited for all we W(v) .

decouple both branches. until v = §
7.Retun min{C[j110<j<L;} .

the reason for the reduced time complexity is not a better alggg. 9. Algorithm for buffer insertion for multiple sinks.
rithm; all these algorithms incorporate a similar dynamic pro-
gramming framework. Rather, the complexity advantage is ob-If the net hasn sinks, then Step 4 will be executed exactly
tained by making different assumptions, such as equally spa¢ed- 1 times; thus, Step 4 adds(mL?) additional time com-
tiles and a length-based objective, that simplify the problem. plexity above and beyond that of the single-sink algorithm’s
Extending the algorithm to multisink nets is fairly straightO(nL;) complexity. Consequently, the multisink variation has
forward. One still keeps a cost array at each node, but updatidggnL; + n.L;) time complexity. Typically, one would expect
the cost becomes a bit trickier when a node has multiple chine second term to dominate, especially when the number of
dren. LetW (v) be the set of children of. We keep an inter- sinks is small. However, for nets with lots of sinks and with
mediate cost arrajk’,, wherew € W (v) to represent the costa large required tile separation, the first term could potentially
of buffering the next tile, and then we join all the children coglominate.
arrays together int@’,. For example, four of the eight possible]]
cases for buffering with two children are shown in Fig. 8. BotR- Stage 4: Final Post Processing
(a) and (b) show a buffer driving both branches, (b) shows de-The final stage of RABID attempts to reduce buffer con-
coupling of the left branch, (c) shows decoupling of the riglgestion, wire congestion, and the number of nets which, up
branch, and (d) shows decoupling both branches. Observe tinatil now, have failed to meet their length constraint. Using the
in these cases, we allow multiple buffers to be inserted in tkame flow as in stage 2, each net is ripped up and rerouted, and
same tile, as shown in (b) and (d). the buffers for the net are removed as well. However, for mul-
The complete algorithm is shown in Fig. 9. The algorithrtipin nets, the net is ripped up omwo-pathat a time, where a
flows from the sinks to the source in a similar manner &/o-path is a path in the tree which begins and ends at either a
the single-sink algorithm in Fig. 7. For readability, we hav&teiner node, source, or sink, and contains only vertices of de-
broken the pseudocode into four smaller subroutines: Agdree two. The two ends of the two-path are then reconnected via
vanceTile, BufferTile, JoinChildren, and BufferMultiChildren.the path that minimizes the sum of wire and buffer congestion
AdvanceTile and BufferTile perform the same concept as aosts [(1) and (2)].
the single-sink algorithm, moving up to the next parent tile The minimum cost two-path is computed as follows. Call the
and buffering on that tile. For multisink nets, this buffering igndpoint of the original two-path that is in the same sub-tree as
considered for the decoupling branch, hence, it is perform#te source théeadand the other endpoint thail. The algo-
for each child ofv. JoinChildren then merges the intermediatdthm proceeds bottom-up in a manner similar to the single-sink
K, cost arrays into a singl€,, array for tilev. Finally, if there buffer insertion algorithm (and also the buffer insertion, maze-
is more than one child, we need to consider additional bufferimguting algorithms of [12] and [20]). Starting from the tail, each
to drive multiple branches. The BufferMultiChildren routineneighbor of the current minimum-cost tile is visited, and the
handles the case of Fig. 8(a) and {b). costarray is updated. For each elementin the cost array, a pointer

6Fig. 9 can handle three children, but it does not allow a buffer to drive two of “Note that these buffer and wire congestions costs are of the same order of
the three branches. Handling this case is straightforward but tedious; we omihagnitude, so we simply add their costs. Alternatively, one could use any linear
to preserve the readability of the algorithm. combination of the two cost functions.

ALPERT et al. A PRACTICAL METHODOLOGY FOR EARLY BUFFER AND WIRE RESOURCE ALLOCATION

TABLE |
TEST CIRCUIT STATISTICS AND PARAMETERS FOR THEFIRST SET OF
EXPERIMENTS

circuit | cells | nets | pads | sinks | grid | tilearea | L; | buffer [%chip
size| (mm?) sites | area tiles.
apte 9| 77| 73| 141]30x33 036 6| 1200 0.13
Xerox 101 171 2| 390 30x30 035 5| 3000 0.38
hp] 11 68| 45| 187} 30x30 042 6] 2350 0.25
ami33 | 33| 112| 43| 324]33x30 046| 5| 2750 0.24
ami49 | 49| 368| 22| 493]30x30 067 | 5] 11450 0.75
playout | 621294 | 192 | 1663 | 33x30 0.75| 6] 27550 1.47
ac3] 27| 200{ 75| 409|]30x30 049 6] 3550 0.32
xc5) 50| 975 2] 2149 | 30x30 054 6] 13550 1.11
hc7] 77| 430 51| 1318 | 30x30 1.04 5] 7780 0.33 .
a9c3 | 1471148 | 22 1526 | 30x30 1.08 5] 12780 0.52

is maintained back to the tile which was used to generate that
cost. The algorithm iteratively expands the tile with lowest cost

and updates the costs of neighboring tiles during wavefront ex- *
pansion. The cost for the new tile also includes the wire con-

gestion cost of crossing the tile boundary. When the head of the
two-path is reached, the minimum cost solution is recovered by *
tracing back out the path to the tail. The buffers for the entire
net are then ripped out and reinserted as in Stage 3.

579

more than one millimeter long on a side. For each benchmark, a
random nine by nine set of tiles was prohibited from having any

inserted buffer sites to correspond to a large cache-like object.
The buffer sites were randomly distributed among the remaining

The floorplans were generated using the buffer-block plan-
ning code supplied by Coret al.[8]. We generated a floorplan
by first running buffer-block planning, then removing the in-
serted buffer blocks. This code performs its initial floorplanning
using a Monte Carlo simulated annealing technique. The results
for each stage and each test case are summarized in Table Il. We
present only the cumulative results for the four random circuits.
The statistics presented are:

the maximum and average wire congestion over all edges
in the tile graph;

the sum of the wiring overflows, i.e., the sum over all
euwr € B of w(eyy) — Wiews), for wheneverw(e,,) >
W(euv);

< the maximum and average buffer density;

the number of buffers inserted;

 the number of nets for which the tile length constraint was

not satisfied;
total wirelength in millimeters;

« maximum and average delays in picoseconds to each sink;

CPU time in seconds.

Note, that no timing constraints are used, so we use average

IV. EXPERIMENTAL RESULTS

and maximum source-to-sink delays to give an indication for the

: . _ quality of timing.
We implemented RABID in C++ on an RS6000/595 machine We make several observations.

with 1 GB of memory. We tested our code on ten benchmarks
which we obtained from the authors of [8]. The first six are «
from the collaborative benchmarking laboratory (CBL), and the
other four are randomly generat&d/e also embed the designs

in the same 0.18m technology used in [8]. The statistics of the
benchmarks are summarized in the first five columns of Table I.
The nets and sinks columns present slightly smaller values thane
in [8] to reflect the nets that Congt al. did not optimize since

they did not require buffers.

A. General Performance

Ouir first set of experiments studies the performance of each
of RABID’s four stages. The grid size and number of buffer
sites used are presented in Table I. We chose the grid size to
have 30 tiles on the shorter side of the chip, and then derived the
number of tiles for the longest side, so that each tile was roughly
square. The seventh column gives the area of each tile in square
millimeters. The total number of buffer sites for each circuit
were also chosen arbitrarily. The number was chosen to be large
enough so that buffer congestion is low, but small enough so that *
the percent of the total chip area occupied by buffer sites is less
than 2% of the total chip area. From the last column, observe
that the percentage of the chip area is less than 1% for all but
two cases. Except for the last two random circuits, no tile is

8The fifth random benchmark from [8], called pc2, has some internal prob-
lems and is no longer in use.

The wire congestion constraint is always satisfied. If one
ignores wire congestion, as is done in Stage 1, then the
maximum wire congestion is typically a factor of two to
three above capacity and there are several hundred over-
flows.

The algorithm never violates the buffer site constraint, but
typically utilizes at least one tile to full buffer capacity. As
seen from the small average buffer densities in Table II,
the total number of buffer sites chosen is actually quite
small relative to total area. The number of buffers, failures,
and wire length all decline from Stages 3 to 4 (except for
the wire length and the number of buffers for apte), which
shows that our final postprocessing step is quite effective.
The number of nets which fail to meet the length constraint
is typically small, but not zero. These violations are caused
almost exclusively by the existence of the large nine by
nine tiled region with no buffer sites that was inserted into
each design.

Net delays increase significantly from Stages 1 to 2 during
the congestion avoidance rerouting stage, but the inser-
tion of buffers in Stage 3, reduces delay significantly even
though the buffer insertion algorithm is “delay ignorant.”
The maximum and average delay is always less after Stage
4 than Stage 1, except for the maximum delay of xerox.
The CPU time is almost exclusively dominated by the two
rerouting stages: 2 and 4. Thus, our buffer insertion algo-
rithm in Stage 3 is efficient in practice.

580

STAGE BY STAGE EXPERIMENTAL RESULTS FOR THESIX CBL CIRCUITS. THE FINAL RESULTS ARESHOWN FOR THELAST FOUR RANDOM CIRCUITS

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

TABLE I

o Wire Congest | Over- | Buffer Density . wire | delay to sink | CPU
circuit | Stage #bufs | #fails

max | avg | flows | max avg length | max | avg | (s)

1] 2.00] 0.15] 225| 0.00(0.00 0 771 1410 5029 | 1700 0

2| 0.62] 0.18 0.00| 0.00 0 77| 1706 | 5390 2156] 11

apte 3] 0.62] 0.18 1.00| 043 483 6| 1706 1632| 796 1

4] 0.75] 0.18 1.00| 047 529 4] 1761 1688 | 828 37

1] 2.00] 0.16] 466| 0.00{ 0.00 0 171 2537 3361|1529 0

2| 0.80] 022 0.00| 0.00 0 171| 3449 5836|2010| 27

T3 080 022 T00| 041] 1179] 8| 3449| 3216|1289| 2

4| 0.60] 0.19 1.00 041 1119 41 3054 3622|1181 113

11 3.25] 0.31] 368| 0.00(0.00 0 68| 1405| 5672|1995 0

2| 1.00] 0.39 0.00 0.00 0 68| 1818 6723|2440 13

hp 3] 1.00| 0.39 1.00] 022 525 7| 1818 1922 767 0

41 0.75] 0.36 1.00] 020 479 2| 1703 | 1713 | 752 61

1] 2.50] 0.31 365 0.00 0.00 0 112] 2471| 9016 | 4413 0

. 2| 1.00] 0.38 0.00 0.00 0 112 | 3028 | 12735 | 5690 27

ami33 3| 1.00| 038 1.00] 0.37| 968 3| 3028 | 2242|1043 1

41 1.00] 0.37 1.00 0.381 961 0| 2958 | 2265|1050 81

1| 2.18] 0.37]| 887 0.00 0.00 0] 368| 5881| 7601{ 1730 0

oid0 2| 1.00] 0.54 0] 000] 0.00 0| 368] 872028784 (3200| 45

31 1.00 054 0 1.00 0.20 | 2310 15| 8720 4416| 997 2

4| 1.00] 043 0 0.86 0.16 | 1739 41 7019 2547 820 111

1] 2.38] 0.22 2333| 0.00{ 0.00 0| 1294]22555| 8633 {1989 - 1

playout 2] 0.67] 0.29 0 0.00 0.00 0] 1294130177 {22977 [2915 | 221

31 0.67| 029 0 1.00 0.21] 5711 136 130177 | 3682|1033 4

4] 0.70] 0.25 0] 087 0.19| 5076 34126168 | 30321 900| 453

ac3| 14| 0.62] 0.31 0 1.00[0.35] 1148 15| 4659 | 2030| 828 130

xc5) 14 0.86]| 044 0 1.00| 0.28| 3649 16 [17078 | 10165 | 1533 | 542

he7| 1-4(1.00{ 0.52 0 1.00] 036(2702 28| 13499 | 4062|1002 | 257

a9%3]| 14| 1.00] 0.56 0 1.00 045 5601 27128990 | 3077|1110 484

B. Variations delays decrease significantly. Having no more than one in every

_ five buffer sites occupied appears necessary to obtain good so-
Our next set of experiments examines the behavior of RABIRtions.

when the number of available buffer sites varies. We ran our al-In our next set of experiments, we keep the number of buffer
gorithm on each of the six CBL circuits three times using smablites constant, but vary the size of the grid. The results are sum-
medium, and large numbers of buffer sites that are randonmarized in Table IV for a sampling of three of the test cases.
distributed (with the blocked nine by nine region). The otheDbserve that the maximum wire congestion increases with the
parameters are the same as in the previous set of experimemisaber of tiles. A finer-grained tiling implies tighter wire con-
Results are summarized in Table I1I. The three lines for each cifestion, e.g., dividing a tile into four equal-sized tiles increases
cuit correspond to small, medium, and large numbers of buffgfe number of congestion constraints by a factor of three. The in-
sites. The number of buffer sites was chosen somewhat adyeased wire congestion may cause an increase in the maximum
trarily so that significant differences would result between ea@yay because of long detours, though the average congestion
row in the table. For example, if increasing the number of buffegn stay the same. However, a finer tiling means one can design
sites by 50% did not yield much improvement, we would subsg-length constraint that is more appropriate, e.g., for & 1Q
quently increase that percentage until significant improvemegyid one might need a length constraint of two, which is rather
resulted. coarse. For a 58 55 grid, a length constraint of perhaps eight
Observe that as the number of buffer sites decreases, mamight yield results with the best delay characteristics.
nets fail to meet their length constraint. Most notably, as the The finer-grained tilings give better insight into the quality
number of buffer sites increases, the maximum and average oithe floorplan. A coarser tiling can indicate that the design is

ALPERT et al. A PRACTICAL METHODOLOGY FOR EARLY BUFFER AND WIRE RESOURCE ALLOCATION 581

TABLE 1lI
SUMMARY OF RESULTSWHEN THE NUMBER OF AVAILABLE BUFFERSITES VARIES
| Buffer | Wire Congest | Over- | Buffer Congest. . wire | delay to sink [CPU
circuit . #bufs | #fails
sites | max | avg | flows| max avg length | max | avg | (8)
280 1.00] 0.18 0 1.00 0.89] 251 53| 1715 2093 | 1007 58
apte 700(0.75(0.19 0 1.00 0.71| 486 19| 1848 3023 986| 49
3200(0.62| 0.18 0 1.00 0.16| 505 1] 1685] 1566 | 781 49
600 1.001 0.20 0 1.00 090] 539 98| 3138 3812 | 1402 97
xerox | 1300| 1.00| 0.21 0 1.00 0.81| 1006 471 3307 | 2260| 1018 92
3000 0.60| 0.19 0 1.00 0.41] 1119 41 3054 | 3622 | 1181 99
300 1.00| 0.39 0 1.00 084 252 41| 1822 2588 | 1110 51
hp 600 1.00| 0.41 0 1.00 0.73] 445 24| 1904 | 2108 | 928 55
2350 1.00| 0.36 0 1.00 020 479 2| 1703} 1713 | 752 50
500 1.00| 0.36 0 1.00 0.88| 444 73| 2954 3714 1568 83
ami33 850 1.00| 0.38 0 1.00 085 712 451 3071 | 3509 | 1309 82
2750 1.00| 0.37 0 1.00 0.38] 961 0] 2958 2265] 1050 85
850 1.09| 0.44 7 1.00 0.80| 677 243| 7067 3440 1208 157
ami49] 1650| 1.00] 045 0 1.00 0.68| 1143 | 182 7312 2765 1037| 156
11450 (1.00| 0.43 0 0.86 0.16| 1739 4| 7019| 2547 820| 160
3250 (1.00| 0.27 0 1.00 091 2938 | 77627472 | 4382 | 1266| 635
playout] 6250| 0.97] 0.28 0 1.00 0.83| 5089 | 314129001 | 3575| 1093| 615
27550 0.70| 0.25 0 0.87 0.19| 5076 34126168 [3032 900| 727
TABLE IV
RABID RESULTSWITH VARYING GRID SIZES FORTHREE CBL BENCHMARKS
L grid | Wire Congest | Over- | Buffer Congest. . wire | delay to sink | CPU
circuit] #bufs | #fails
size | max | avg | flows| max avg length | max | avg | (s)
10x 11| 040 0.17 0 0.89 035] 393 1] 1637] 1709 | 821 5
20x22| 046 0.17 0 1.00 0471 510 6| 1775] 1987 830 21
apte | 30x 33| 0.78] 0.16 0 1.00 0.57] 646 9| 1754| 1710| 840| 48
40x44(0.75(0.14 0 1.00 0.53] 602 17| 1785] 1789 | 808 98
50x55| 0.80| 0.17 0 1.00 048] 554 13| 1719] 1901 813| 212
10x 10| 0.73| 0.35 0 0.24 0.10| 1082 31 6799 2919 855 16
20x20| 0.85| 0.36 0 0.47 0.12| 1341 11| 6952 2868 | 828 70
ami49130x 30| 0.92] 0.36 0 0.82 0.15] 1700 11| 6878 | 2449 795| 157
40x40| 1.00] 035 0 1.00 0.15] 1643 5| 6868| 2870 793| 311
50x50| 1.00] 0.35 0 1.00 0.14| 1633 6] 6899| 2331| 784| 568
11x10| 057 0.25 0 0.36 0.14 | 3823 17125771 6621 1004 55
22x20(0.83] 0.26 0 0.86 0.17 | 4719 50126502 3182 923| 257
playout{33x30| 0.73]| 0.26 0 0.87 0.23] 6184 40 {26669 | 3101 | 89%4| 620
44x40(0.76| 0.25 0 1.00 0.21] 5755 41125922 2751 | 8671268
55x50| 1.00| 0.26 0 1.00 0.22| 5847 30126320 2667 8762307

fairly easily routable, but a finer tiling can better highlight arealdence, it is not feasible to simply compare with previously pub-
of potential congestion. Thus, if one wants to use our algorithiished results. We needed to run the code ourselves and imple-
to evaluate the quality of a particular floorplan, a finer-graineahent routines to gather statistics from the data. For this compar-
tiling is likely more useful for wire congestion evaluation. ison, Conget al. [8] supplied us with the source code to their
Finally, we observe that the CPU times roughly increase aafgorithm BBP/FR. Although other buffer-block planning re-
rate slightly higher than linear with the number of tiles. sults exists (e.g., the work of [16] creates more buffer blocks
.] to reduce wire congestion), we believe this comparison is sulffi-
C. Comparing RABID With Buffer-Block Planning cient to show that our proposed methodology can deliver timing
Our final experiments attempt to compare with previous woiolutions that are competitive with the buffer-block planning
on buffer-block planning, yet we are not using buffer blockgnethodology while better managing buffer and wire congestion.

582 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

As in [8], but unlike our previous experiments, we decom- TABLE V

posed multipin net into several two-pin nets. Our results were COMPARISONS OFRABID T0 BBP/FR [8].

generated using randomly distributed buffer sites that altogeth Wi Conse [Over — e [0
occupy less than 2% of the total chip area. Cenal.[8] report circuit | Algorithm ey o L | #buls \MTAR Y T ave | ©
timing results by measuring the number of nets which fail tc TEPER] 2001 0121 231 233 237] 1827] 2026] 721 14
meet their delay constraints. The timing constraint was chost *°| RaABID| 100] 0.13| 0| 417| 033| 2010] 1935| 787| 95
to be between 1.05-1.20 of the optimum achievable delay. V' T BBPFR| 1.IS| 0.10] 14] S08] 557 409 1486] S75| 29
believe this constraint generation is unrealistic since real timin RABID | 0.93| 0.11| 0] 957] 057] 4541] IS31] 643[167

constraints are path-based, and this implies that all constrair | _BBPFR| 250] 016] 107 223 (‘)22 23‘; ;z‘z‘z jgj ;j
are tight, yet potentially satisfiable. In a practical situation, som :};‘;ﬁi ??g 31; 33 e
of the 1.0%:—1.20: timing constraints will be so tight that buffer ami33 ‘ ' . ' - ~

RABID| 069 0.12 0| 1150 0.44] 5232 2256 900| 138
insertion is insufficient to satlsfy timing, e.g., a constraint of TEPTR] 46i] 0341 1054] 862 415] 6787] 2359| 768] 65

0.95z. For these cases, feasible regions are not well define 24 =T 093 0371 o1 13391 0361 7592] 2635| 859 167
and, so, BBP does not have a mechanism to come as close BBP/FR | 009 0.13| 0] 3422| 10.34|25930 | 2727] 880 198
possible to satisfying the constraint (which has value to the " [RasD| 045] 0.13] 0] 3840| 0.4 |27601] 3310| 947] 813
signer). Also, other constraints may be so loose that no buffi | BBPFR| 123] 0.17] 37] 718] 286) 558 1928 763| 87
insertion is required or many detours can be taken to still me RABID| 058| 0.18| 0] 1037] 0.33] 5954] 2095| 807) 208

. . . Y . 25241 2194 655(181
delay constraints. Since RABID and BBP/FR insert buffers 0 s | _BPrAR | 470] 0-39] 3528] 3186] 1640125

H H : . RABID| 0.84| 0.41 0| 4410 0.81]27060| 2343| 700 694
all nets which require them, we use maximum and average si e B 8 1Y B 7y o7y Wy T VR RTor T v R

delay to quantlfy tlmlng performance' he? RABID | 0.82| 0.42 0 2983 0.35]21523 | 3349 | 941| 386
In addition to the previous statistics, we also measured ma o |_BBPIR | 254 03T[1329 40411 47929060 [2726 1093 222
imum tile area percentage (MTAP). A percentage of the are | RABID| 0.60] 032] 0] 4225 044[30723] 2786 1170| 502

of each tile is occupied by buffers; MTAP denotes the max-

imum such percentage over all tiles. We used the same tiling

for RABID (see Table 1) to measure the MTAP for BBP/FROf BBP/FR per se, but rather the block-based methodology in
The minimum wire length is the sum of the minimum possiblehich it is embedded.

wire length routing of all the nets. This enables one to see how

much additional wire length above the minimum was actually V. CONCLUSION

required. .] We have proposed an alternative methodology for buffer and
Table V presents the comparisons with BBP/FR. Neverthgire planning that uses pre-allocated buffer sites that are dis-

less, some differences between the approaches are readily sg@fted throughout the design. This methodology enables one to
« RABID always meets the congestion constraints whil@odel this planning problem via a tile graph and simultaneously
BBP/FR does not. The results presented here even Man both wires and buffers. Our four-stage heuristic includes an
clude a postprocessing step (applied to both RABIEfficient algorithm for length-based buffer insertion and also a
and BBP/FR) which tries to minimize congestion fofechnique for simultaneous optimization of buffer and wire con-
the current buffering solution without increasing wirddestion. Our experimental results assert that this approach can
length. Note that virtually all of the CPU time reporteddenerate effective solutions in a reasonable amount of time.
for BBP/FR is due to this step. The original BBP/FR code Our future work seeks to integrate an industrial tile graph-
runs in 2 s or less for all the test cases. based global router into Stages 1 and 2 of our heuristic. This
« RABID inserts significantly more buffers, due to a tighshould result in both better routing solutions and higher corre-
length constraint and also due to the rerouting to avol@tion with running the complete design flow. Ultimately, our
wire congestion. objective is to use this tool for early and accurate floorplan eval-
Because the RABID methodology invites spreading, théation, which makes strong correlation with the final routing re-
MTAP is significantly less. In the worst case, BBP/FR hasult a necessity.
one tile with 18.2% of its area devoted to buffers. This
percentage climbs to at most 1.1% for our approach. ACKNOWLEDGMENT

* The CPU time for BBP/FR is negligible. Stages 2 and 4 of The authors are extremely grateful to J. Cong, T. Kong, and

RABID require much larger run times, butthey are clearlyy p,, for supplying the BBP/FR code and benchmarks. They

not prohibitive. _ Iso helped with running the codes, answering questions, and
» The delays for RABID are quite comparable to those upplying Fig. 1

BBP/FR despite using a length-based buffer insertion
algorithm and satisfying wire congestion constraints. In
some cases the delays are even better. Delays can some- ' o
times be worse because timing is not directly Optimized [1] C. Albrecht, “Provably good global routing by a new approximation al-

. gorithm for multicommodity flow,” inProc. Int. Symp. Physical Design
and due to wire detours. 2000, pp. 19-25.

- . . [2] C. J. Alpert and A. Devgan, “Wire segmenting for improved buffer in-
Thus, RABID succeeds at avoiding wire congestion and ™" ceyiion "Proc. 34th IEEE/ACM Design Automation Corfp. 588-593,

buffer density where BBP/FR cannot. This is not a shortcoming 1997.

REFERENCES

ALPERT et al. A PRACTICAL METHODOLOGY FOR EARLY BUFFER AND WIRE RESOURCE ALLOCATION 583

(3]

[4]

(5]

(6]
(71

(8]

9]
(20]

(11]

(12]
(23]
(14]
[15]

[16]

(17]

(18]

(19]

(20]

technical program committees for the IEEE/ACM Design Automation Confefjjiii§
ence and International Conference on Computer-Aided Design. He receivet

C. J. Alpert, A. Devgan, and S. T. Quay, “Buffer insertion for noise an
delay optimization,Proc. 35th IEEE/ACM Design Automation Cqgnf.
pp. 362-367, 1998. P
C.J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger, “Prim{= ¥
Dijkstratradeoffs for improved performance-driven routing tree designf =
|EEE Trans. Computer-Aided Desigrol. 14, pp. 890-896, July 1995.
C. Chiang, M. Sarrafzadeh, and C. K. Wong, “A powerful global route
based on steiner min-max trees,”Rnoc. IEEE/ACM Int. Conf. Com-
puter-Aided Design1989, pp. 2-5.

Jiang Hu received the B.S. degree in optical engi-
neering from Zhejiang University, Hangzhou, China,
in 1990, the M.S. degree in physics from the Univer-
sity of Minnesota, Duluth, in 1997, and the Ph.D. de-
gree in electrical engineering from the University of
Minnesota, Minneapolis, in 2001.

He was with IBM Electronics Design Automation,
Austin, TX, from January 2001 to June 2002. Cur-
rently, he is an Assistant Professor in the Department
J. Cong, “Challenges and opportunities for design innovations | of Electrical Engineering, Texas A&M University,
nanometer technologies,” SRC Design Sciences Concept Paper, 1997. College Station. His research interest is on VLSI
——, “An interconnect-centric design flow for nanometer technolophysical design automation, especially on interconnect routing, optimization,
gies,” inProc. Int. Symp. VLSI Technol. Syst. Applica@aipei, Taiwan, and clock network synthesis.

June 1999, pp. 54-57. Dr. Hu received a best paper award at the Design Automation Conference in
J.Cong, T.Kong, and D. Z. Pan, “Buffer block planning for interconnect2001.

driven floorplanning,” inProc. IEEE/ACM Int. Conf. Computer-Aided
Design 1999, pp. 358-363.

——, “Buffer block planning for interconnect planning and prediction,”
|EEE Trans.VLSI Systvol. 9, pp. 928-937, Dec. 2001.

F. F. Dragan, A. B. Kahng, I. Mandoiu, and S. Muddu, “Provably
good global buffering using an available buffer block plan,”Hroc.
IEEE/ACM Int. Conf. Computer-Aided Desijgt000, pp. 104-109.

——, “Provably good global buffering by multiterminal multicom-
modity flow approximation,” inProc. Asia South Pacific Design
Automation Conf.2001, pp. 120-125.

S.-W. Hur, A. Jagannathan, and J. Lillis, “Timing driven maze routing,
in Proc. Int. Symp. Physical Desigh999, pp. 208-213.

J. Lillis, C.-K. Cheng, and T.-T. Y. Lin, “Optimal wire sizing and buffer
insertion for low power and a generalized delay modé&EE J. Solid-
State Circuitsvol. 31, pp. 437—447, Mar. 1996.

R. Nair, “A simple yet effective technique for global wiringlEEE
Trans. Com_puter-Aided D_esigml. CAD-6, pp. 165-172, Feb. 1987. and Computer Engineering at the University of

S. Quay, private communication, 2000. o Minnesota, Minneapolis. He has coauthored two books and coedited one book
P. Sarkar, V. Sundararaman, and C.-K. Koh, “Routability-driver repeatgy ihe areas of timing and layout optimization.

block planning for interconnect-centric floorplanning,” Rroc. Int. Prof. Sapatnekar has been an Associate Editor for the IEEEJACTIONS
Symp. Physical Desu;]ﬂOE)O, pp. 186-191. JON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, IEEE TRANSACTIONS

X. Tang and D. F. Wong, “Planning buffer locations by network flows, oy compuTERAIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,

in Proc. Int. Symp. Physical Desig2000, pp. 180-185. and IEEE RANSACTIONS ON CIRCUITS AND SYSTEMS—PART II: ANALOG

L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree nejyp pigiraL SiGNAL PRoCESSING and has served on the Technical Program
works for minimal elmore delay,” irProc. Int. Symp. Circuits Syst. committee for various conferences, as Technical Program and General Chair
1999* pp. 8_65_868' . . for the Tau workshop, and the International Symposium on Physical Design.
P. Villarrubia, G. Nusbaum, R. Masleid, and P. T. Patel, “IBM RISGg is cyrrently a Distinguished Visitor for the IEEE Computer Society and
chip design methodology,” iRroc. Int. Conf. Computer Desigd989, 5 pjstinguished Lecturer for the IEEE Circuits and Systems Society. He is
pp. 143-147. a recipient of the National Science Foundation Career Award and best paper

H. Zhou, D. F. Wong, I. Liu, and A. Aziz, “Simultaneous routing and,ards at the 1997 and 2001 Design Automation Conferences and the 1998
buffer insertion with restrictions on buffer locations,” Proc. 36th | ternational Conference on Computer Design.

|IEEE/ACM Design Automation Conf.999, pp. 96-99.

Sachin S. Sapatnekar(S'86—M’'93-SM'99-F'03)
received the B.Tech. degree from the Indian Institute
of Technology, Bombay, India, in 1987, the M.S.
degree from Syracuse University, Syracuse, NY, in
1989, and the Ph.D. degree from the University of
lllinois, Urbana—Champaign, in 1992.

From 1992 to 1997, he was an Assistant Professor
in the Department of Electrical and Computer
Engineering, lowa State University, Ames. He is
currently a Professor in the Department of Electrical

Charles J. Alpert (S'92-M'96-SM’'02) received

the B.S. and B.A. degrees from Stanford University,
Stanford, CA, in 1991, and the Ph.D. degree in
computer science from the University of California,

Paul G. Villarrubia received the B.S. degree in elec-
Los Angeles, in 1996.

trical engineering from Louisiana State University,

He currently performs research in the physical de
sign space as a Research Staff Member at the IBI
Austin Research Laboratory, Austin, TX.

Dr. Alpert has served as Technical Program Chai

for the International Symposium on Physical Desigr - ;
in 2003 and the Tau Workshop on Timing Issues i

Baton Rouge, in 1981, and the M.S. degree from the
University of Texas, Austin, in 1988.

He is currently a Senior Technical Staff Member
with the IBM Corporation, Austin, TX, where he
leads the development of placement and timing
closure tools. He has also worked at IBM in the areas
of physical design of microprocessors, physical
design tools development, and tools development
for ASIC timing closure. His interests include

Best Paper Award at the 1994, 1995, and 2001 ACM/IEEE Design AUtOmatig[acement’ Sy|"|thesisY buf‘fering’ signa| integrity’ and extraction.
Conferences and was awarded the Semiconductor Research Corporation’s Makyr, Villarrubia won a best paper award at the 2001 ACM/IEEE Design Au-

boob Khan Mentor Award in 2001.

tomation Conference.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

