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Abstract—As technology scales, interconnect-centric design
flows become imperative for achieving timing closure. Preplan-
ning buffers and wires in the layout is critical for such flows.
Both buffers and wires must be considered simultaneously, since
wire routes determine buffer requirements and buffer locations
constrain the wire routes. In contrast to recently proposed
buffer-block planning approaches, our novel design methodology
distributes a set ofbuffer sitesthroughout the design. This allows
one to use a tile graph to abstract thebuffer planning problem and
simultaneously addresswire planning. We present a four-stage
heuristic called resource allocation for buffer and interconnect
distribution for resource allocation that includes a new, efficient
technique for buffer insertion using a length-based constraint.
Extensive experiments validate the effectiveness of this approach.

Index Terms—Buffer insertion, deep submicron, interconnect
synthesis, layout, physical design, Steiner tree.

I. INTRODUCTION

BUFFER insertion has become a critical step in deep
submicrometer design as interconnect now plays a domi-

nating role in determining system performance. The insertion
of buffers and inverters on signal nets can provide several
advantages, including reducing interconnect delay, restraining
noise, improving the slew rate, and fixing electrical violations
[3], [13]. Current designs easily require thousands of nets to be
buffered, and Cong [6] speculates that close to 800 000 buffers
will be required for designs in 50-nm technology.

Achieving timing closure becomes more difficult when buffer
insertion is deferred to the back end of the design process, and
the buffers must be squeezed into whatever leftover space re-
mains. The problem is particularly acute for custom designs,
where large IP core macros and custom data flow structures are
present, blocking out significant areas from buffering possibili-
ties. Application-specified integrated circuit (ASIC) designs can
also run into similar headaches if they are dense or have locally
dense hot spots.

To manage the large number of buffers and also achieve high
performance on the critical global nets, buffers must be planned
for early in the design so that the rest of the design flow is
aware of the required buffering resources. In addition, design
routability has also become a critical problem; one must make
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Fig. 1. Buffer-block plan on MCNC xerox circuit [9], reproduced here with
permission of the authors. The ten big blocks are functional blocks and the rest
are buffer blocks.

sure that an achievable routing solution exists during the phys-
ical floorplanning stage. Thus, global wiring must be planned
early to minimize routing congestion, hot spots, and crosstalk
problems later on in the flow.

A. Buffer-Block Planning Methodology

In response to the need for an interconnect-centric design
methodology, a new body of research onbuffer-block planning
has recently established itself in the literature [8], [10], [11],
[16], [17]. These works focus on “physical-level interconnect
planning,” as described in [7]. The works of [8], [16], and [17]
all propose the creation of additional buffer blocks to be inserted
into an existing floorplan. These buffer blocks are essentially
top-level macro blocks containing only buffers. Conget al. [8]
proposed to construct these blocks usingfeasible regions. A fea-
sible region is the largest polygon in which a buffer can be in-
serted for a particular net such that the net’s timing constraint
is satisfied. Sarkaret al. [16] added a notion of independence
to the feasible regions in [8] while also trying to relieve routing
congestion during optimization. Tang and Wong [17] proposed
an optimal buffer-block planning algorithm in terms of maxi-
mizing the number of inserted buffers (assuming that one buffer
is sufficient for each net). Finally, Draganet al.[10] presented a
multicommodity flow-based approach to buffering two-pin nets
assuming that a buffer-block plan had already been created. This
approach was extended to multipin nets in [11].

Fig. 1 shows the result of buffer-block planning [8] on the
Microelectronics Center of North Carolina (MCNC) circuit
xerox, where the buffer blocks are indicated by dashes in
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between blocks. Observe that buffers are essentially packed
between larger existing floorplanned blocks. We argue there
are two fundamental problems with the buffer-block planning
approach.

1) Since buffers are used to connect global wires, there will
be considerable contention for routing resources in the
regions between macro blocks. The design may not be
routable due to heavy congestion between blocks.

2) Buffers must be placed in poor locations since better lo-
cations are blocked. Some blocks may even be so large
that routing over the block is infeasible, even if buffers
are inserted immediately before and after the block. For
example, signal integrity could degrade beyond the point
of recovery or wire delay may simply be too high. One
may be able to alleviate the problem by using wider wires
on thick metal, powering up to very large buffers, etc., but
these solutions exacerbate the congestion problem

The flaws are not with buffer-block planningper se; rather, it
is certainly a reasonable method for preplanning buffers within
current design flows. However, buffer-block planning is really
an interconnect-centric idea being applied to a device/logic-cen-
tric flow. Ultimately, this methodology will not be sustainable
as design complexity continues to increase. A different method-
ology is required!

Ideally, buffers should be dispersed with some regularity
throughout the design. Clumping buffers together, e.g., in
buffer blocks, or between abutting macros invites routing
headaches. A more uniform distribution of buffers will also
naturally spread out global wires.There must be a way to allow
buffers to be inserted inside blocks.1

B. Buffer Site Methodology

We propose an alternative methodology. Macro block
designers must allow global buffer and wiring resources to
be interspersed within their designs wherever possible. This
resource allocation need not be uniform; a block with a lower
performance requirement and complexity may be able to afford
to allocate a higher percentage of its resources. A cache or
blocks within a data path may not be able to allocate any
resources. Ideally, as this “hole in a macro” methodology
becomes widespread, even future IP blocks will have some of
their area devoted to buffering resources.

To set aside a buffer resource within a block, the designer can
insert what we call abuffer site, i.e., physical area which can
denote either a buffer, inverter (with a range of power levels), or
even a decoupling capacitor. When a buffer site gets assigned to
a net, a logical gate from the technology is actually specified.
Until this assignment takes place, buffer sites are not connected
to any nets.

Allocating a percentage of a macro block for buffer sites may
be viewed as wasteful; however, if the sites are not used for
buffering, there are other ways to utilize them. In fact, it is de-
sirable not to place cells in a particular block at 100% density
for the following reasons.

1Note that we are referring to buffers for signal nets, not clock buffers. Com-
pared to generic buffers, clock buffers occupy more area, draw more current,
create hot spots, etc., all of which require different constraints and objectives
than proposed in this work.

• Space needs to be allocated for spare circuits to facilitate
metal-only engineering changes (ECOs) late in the design
cycle.

• The design needs to be populated with decoupling capac-
itors to enhance local power supply and signal stability.

• Spreading of the design will help maximize the probability
of successful routing by spreading out areas with signifi-
cant wire congestion.

For these reasons, current IBM ASIC methodology typically
uses a placement density of 70% or less, e.g., in any small region
of the chip area, at least 30% of the design will be empty. Thus,
often the space for buffer sites already exists; it just needs to be
exploited.

Buffer sites can also be a powerful tool for semi-custom de-
signs [19]. For example, a data flow typically routes several
regular signal buses across collections of data flow elements.
These routes should be implemented with straight wires wher-
ever possible. Collectively, the wires occupy a dense portion of
the routing region which severely limits the ability for either de-
tours or other routes in the data path itself. If the data bus nets
require buffering, one would like to have buffer locations avail-
able within the data path routing region to avoid detours. If the
buffers lie outside the routing region, the wires may have to take
large detours to reach the buffers which can significantly hurt the
timing on a part of the design that can ill afford it. If buffer sites
are designed into the original data path layout, it is possible to
add buffers late in the design cycle while maintaining straight
wiring of the data bus nets.

Buffer sites can also be used for a flat design style, e.g., a
sea of buffer sites can be sprinkled throughout the placement.
For hierarchical designs, one can view the buffer sites as flat
to derive a similar sprinkling, but their distribution will likely
be less uniform. Some macro blocks could have 5%–10% of
the area devoted to buffer sites, while a similar block in a dif-
ferent part of the chip may require much less. To help decide
the allocation of buffers sites to macros, one could assume an
infinite number of available buffer sites, run a buffer allocation
tool like resource allocation for buffer and interconnect distri-
bution (RABID), and compute the number of buffers inserted
in each block. Then, this number can be used to help determine
the actual number of buffer sites to allocate within the block.
No matter which design style is used, a resource allocation al-
gorithm can view buffer sites as flat, which enables it to make
assignments to global routes based on buffer site distribution.

Some advantages of this methodology are as follows.

• Routing congestion between blocks can easily be allevi-
ated.

• Buffers do not have to be placed in suboptimal locations
when the optimal location lies inside a block.

• One no longer has to squeeze buffers into tight spaces
between blocks, thereby forcing other cells to be moved
which can cause timing violations and hurt timing closure.

• Slew constraints, which previously could only be satisfied
with thick metal (with wide wires) routing, can now be
satisfied more easily since the space between buffers can
be reduced in the presence of large blocks.
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The main disadvantage of this methodology is that several
tools have to be modified or built from scratch to handle buffer
sites. The data model must recognize a buffer site, the router
must be able to route into a buffer site, the design environment
must allow the user to create and delete buffer sites, etc. Some
tools may be able to piggyback onto support already built in
for ECOs. For example, the placement tool needs to be able to
disperse buffer sites within a design; this task is quite similar
to the dispersing spare logic cells in the placement for future
ECOs. Further, the methodology still must be able to handle
certain custom blocks with highly structured array-type logic
which cannot afford to have any buffer sites inserted. If these
blocks become too large though, they must be either split or
spread out in such a way as to allow buffers inside, even if they
are inserted in a regular structure.

C. Technical Contribution

We propose a new buffer and wire resource allocation for-
mulation. Assuming that locations for buffer sites have already
been chosen, the problem is to assign buffers to global nets
such that each buffer corresponds to an existing buffer site. We
model the problem with a tile graph to manage the complexity
of thousands of buffer sites and to integrate wire congestion
into the problem statement. We propose the following four-stage
heuristic called RABID.

1) Construct low-cost, low-radius Steiner trees for each net.
2) Rip-up and reroute nets to reduce wire congestion.
3) Insert buffers on all nets which require them. This stage

is based on a van Ginneken [18] style dynamic program-
ming algorithm, yet we can find the optimal solution for
a given net more efficiently than [18].

4) Rip-up, reroute, and reinsert buffers on nets to reduce both
wire and buffer congestion.

Unlike the approaches in [8], [10], [16], and [17], our algo-
rithm is designed to handle nets with multiple sinks (as is [11]).

The remainder of the paper is as follows. Section II describes
our problem formulation and modeling assumptions, and Sec-
tion III presents our four-step heuristic. Experiments are pre-
sented in Section IV and we conclude in Section V.

II. PROBLEM FORMULATION

There are two fundamental characteristics of buffer and wire
planning which drive our formulation.

1) Finding the absolute optimal locations for a buffer is not
particularly important. Conget al. [8] showed that one
may be able to move a buffer a considerable distance
from its ideal location while incurring a fairly small delay
penalty. Their concept of feasible regions for buffer inser-
tion is based on the principle that there is a wide range of
reasonably good buffer locations.

2) At the interconnect-centric floorplanning stage, timing
constraints are generally not available since macro block
designs are incomplete and global routing and extraction
have not been performed. Potentially crude timing anal-
ysis may not even be possible when there is too much
incomplete information. Even when possible, the timing

Fig. 2. (a) Set of 68 buffer site locations can be tiled and (b) abstracted to a
total number of buffer sites lying within each tile.

analysis results are often grossly pessimistic because in-
terconnect synthesis has not taken place. At this stage,
one needs to globally insert buffers while tracking wire
congestion before the floorplan can even be evaluated.
For example, in a design with a desired 5-ns clock pe-
riod, say that one floorplan has a worst slack of40 ns
while a different floorplan has a worst slack of43 ns.
The designer cannot determine which floorplan is better
because the slacks for both are so absurdly far from their
targets. Buffer and wire planning must be efficiently per-
formed first, then the design can be timed to provide a
meaningful worst slack timing that the designer can use
for evaluation. We envision performing buffer and wire
planning each time the designer wants to evaluate a floor-
plan.

The first characteristic suggests that one does not need to
worry about exactly where buffer sites are placed. The block
designers should have the freedom to sprinkle buffer sites into
their designs so that performance is not compromised; there just
needs to be a sufficient number of buffer sites somewhere.

The optimization algorithm can view the thousands of buffer
sites within atile graph. Fig. 2(a) shows 68 buffer sites lying
within the region of the chip. A tiling over the chip’s area can
be used to abstract each individual buffer site to a set of buffer
sites lying at the center of each tile [Fig. 2(b)].2After a buffer is
assigned to a particular tile, an actual buffer site can be allocated
as a postprocessing step. The tile graph offers both a complexity
reduction advantage (especially when there are thousands of
buffer sites) and also the ability to manage routing congestion
across tile boundaries. The granularity of the tiling depends on
the desired accuracy/runtime tradeoff and on the current stage
in the design flow.

The second characteristic suggests that timing constraints are
not dependable in the early floorplanning stage. Our formula-
tion relies on a global rule of thumb for the maximum distance
between consecutive buffers. This rule of thumb was also used
for buffer planning by Draganet al. [10]. They note that for a
high-end microprocessor design in 0.25-m CMOS technology,
repeaters are required at intervals of at most 4500m. Such a

2Note that several tiles have zero buffer sites. These might correspond to a
cache, data path, or other critical part of the design for which buffer sites cannot
be inserted. Having some zero buffer site tiles is not prohibitive; too many will
obviously hinder solution quality.
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Fig. 3. Driver with seven sinks, whereby the maximum distance allowed
between gates is three. With this interpretation of the distance rule, the driving
gate must drive 11 units of wirelength.

rule is necessary to ensure that the slew rate is sufficiently sharp
at the input to all gates.3Note that later in the design flow, when
more accurate timing information is available, one can rip up the
buffering solution for a given net and recompute a potentially
better solution via a timing-driven buffering algorithm.

We represent a tiling by a graph where is the set
of tiles, and edge is in if and are neighboring tiles.
Given a tile , let be the number of buffer sites within
the tile. Let be the set of global nets
and let be the maximum permissible number of wires
that can cross between and without causing overflow. If

denotes the number of buffers assigned to, the buffer
congestion for is given by . Similarly, given a global
routing of , if denotes the number of wires which
cross between tilesand , the wire congestion for edge is
given by .

For net , let be the maximum wire length (in units of
tiles) that can be driven by either the driver of or a buffer
inserted on . This interpretation of maximum distance avoids
the scenario that could occur in Fig. 3. The figure shows a driver
with seven sinks whereby the distance between the driver and
each sink is three tile units. Using this interpretation of the dis-
tance constraint results in a legal solution where the source gate
drives 11 tile units of wiring without requiring any buffers. For a
slew-based distance rule, the extra interconnect (and sink load)
may cause weak signals at the sinks. Thus, our rule requires the
total length of interconnect that can be driven by any gate to be
no more than .

A. Problem Formulation

Given a tiling of the chip area , nets
, the number of buffer sites , and tile

length constraints , assign buffers to nets such that the
following apply.

• for all , where is the number of
buffers assigned to tile.

• Each net satisfies its tile length constraint, .4

3A similar maximum distance rule was also used in the design of a recent
high-performance IBM microprocessor with 170 million transistors [15]. A
maximum distance between buffers was derived based on the desired input
slew rate, and this rule was used to guide global buffer insertion. Global timing
constraints were not used, nor were they even available.

4In general, one will use the same number of tilesL for each net. However,
if some nets can be routed on higher metal layers while others cannot, different
nets can have differentL values depending on their layer. Also, a larger value
of L can be used in conjunction with wider wire width assignment.

Fig. 4. Example of spanning tree edge overlap removal.

• There exists a routing after buffering such that for all
, the number of wires crossing fromto is

less than or equal to .
A solution to this problem implies that constraints are

satisfied, though one can also optimize secondary objectives,
e.g., total wirelength, maximum and average wire congestion,
maximum and average buffer congestion, and net delays. Our
heuristic seeks a solution that satisfies the problem formulation
while also trying to optimize these secondary objectives.

Note that the purpose of our formulation is not to find the
final buffering and routing of the design. Rather, it can be used
to estimate needed buffering and routing resources or as a pre-
cursor to timing analysis for more accurate floorplan evaluation.
Once deeper into the physical design flow, nets which generate
suboptimal performance or lie in timing-critical paths should be
re-optimized using more accurate timing constraints and wire
capacitances.

III. RABID H EURISTIC

The purpose of the RABID heuristic is to show how buffer
and wire planning can be integrated into a tile-based global
routing methodology. We follow a traditional rip-up and reroute
type of strategy. RABID proceeds in four stages: i) initial Steiner
tree construction; ii) wire congestion reduction; iii) buffer as-
signment; and iv) final post processing. The primary innovations
are within stages 3 and 4 which handle buffer site assignment.
Stages 1 and 2 deliver an initial congestion-aware global routing
solution as a starting point. One could alternatively begin with
the solution from any global router, e.g., the multicommodity
flow-based approach of [1].

A. Stage 1: Initial Steiner Tree Construction

In this stage, we want a preliminary routing of each net so
that congested regions can be evaluated and reduced in each
stage. As opposed to a pure minimum length construction, the
tree should be timing-driven, yet timing constraints are not nec-
essarily available. Hence, we adopt the Prim–Dijkstra construc-
tion [4] which generates a hybrid between a minimum spanning
tree and shortest path tree. The result is a spanning tree which
trades off radius and wire length.5

Next, each spanning tree is then converted to a Steiner tree via
a greedy overlap removal algorithm that iteratively searches for
the two tree edges with the largest potential wire length overlap.
A Steiner point is introduced to remove the overlap as shown in
Fig. 4. The algorithm terminates when no further overlap re-
moval is possible.

5The tradeoff requires a user parameter between zero and one, where a lower
number emphasizes wirelength, while a higher number emphasizes path length.
Our experiments use a value of 0.4.
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B. Stage 2: Wire Congestion Reduction

The next step is to rip-up-and-reroute to reduce wire conges-
tion. The tile graph is constructed from the existing
Steiner routes, and the congestion of each edgein is com-
puted. Instead of ripping up nets in congested regions, we rip-up
and reroute every net, a technique similar in spirit to Nair’s
method [14]. This approach is less likely to become trapped in
a local minima. The net ordering is first fixed (we sort in order
of smallest to largest delays), and each net is processed in turn
according to the ordering. The advantage is that even nets which
do not violate congestion constraints can be improved to further
reduce congestion so that other nets can be successfully rerouted
in subsequent iterations. The algorithm terminates after either
three complete iterations or holds for all

. From experience, we observe only nominal potential
improvement after the third iteration.

To reroute the net, the entire net is deleted and then rerouted
using an approach similar to [5], as opposed to rerouting a single
edge. The new tree is constructed on the tile graph using the
same Prim–Dijkstra cost function in Stage 1, except that the cost
for each edge is not its Manhattan distance. The routing occurs
across the tile graph using the following congestion-based cost
function:

Cost
if

otherwise
(1)

The cost is the number of wires that will be crossing divided
by the number of wires still available. The purpose of this cost is
to have the penalty become increasingly high as the edge comes
closer to full capacity. We perform a wavefront expansion from
the tile which contains the source, updating the lowest tile cost
with each expansion. When each sink in the net is reached, the
algorithm terminates, and the tree subsequently recovered by
tracing back the edges on the path from each sink to the source.

C. Stage 3: Buffer Assignment

Once a low-congestion routing exists, the next step assigns
buffer sites to each net. We perform this assignment iteratively,
starting with the net with highest delay. Before buffers are as-
signed, we first estimate the probability of a net occupying a tile.
For a net passing through tile , the probability of a buffer
from being inserted onto is defined as . Let be the
sum of these probabilities for tile over all unprocessed nets.
Recall that is the number of buffer sites in and is
the current number of used buffer sites. We define the cost
for using a particular buffer site as

if
otherwise

(2)

Observe the similarity between (2) and (1). Both significantly
increase the penalty as resources become more contentious.

Fig. 5 shows an example of how the buffer cost is computed.
Note that the values do not include the currently processed
net. The cost is computed for each tile, and is included
in the cost for a net if a buffer is inserted at. In the example, if

, the minimum cost solution has buffers in the third and
fifth tiles with cost .

Fig. 5. Example of how buffer costs are computed. For a value ofL = 3, the
optimal solution is shown having a total cost of 1.5.

Fig. 6. Single-sink buffer insertion algorithm.

An optimal solution can be found in linear time in terms of
the number of tiles spanned by the net (assuming thatis con-
stant). The approach uses a van Ginneken [18] style dynamic
programming algorithm, but has lower time complexity because
the number of candidates for each node is, at most,.

We begin with the simple case of a netwith a single source
and sink . Let be the parent node of tilein the route,

and assume that has been computed for all nodes on the
path between and . At each node, the array stores the cost
of the solutions from to . The index of the array determines the
distance downstream fromto the last buffer inserted. Thus, the
array is indexed from 0 to , since cannot be at distance
more than from the last available buffer. The full algorithm
is shown in Fig. 6.

Step 1 initializes the cost array to zero for the sink. The
algorithm then traverses up toward the source, iteratively setting
the values for the cost array. Step 2 computes the values for

given the values for. The value of for
is simply since no buffer is being inserted atfor
this case. If a buffer is to be inserted at , then the cost

is computed by adding the current cost for insertion,
, to the lowest cost seen at. One can recover the

solution by storing at the index in which was used to
generate the solution.

Fig. 7 shows how the cost array is computed for the two-pin
example in Fig. 5 (with ), and the dark lines show how
to trace back the solution. Observe from the table that costs are
shifted down and to the left as one moves from right to left, with
the exception of entries with index zero.

The algorithm is optimal since each possible solution is pre-
served during the execution. One can exploit the fact that the
number of possible candidates at each node is no more than
to give a space and time complexity of , where is the
number of tiles spanned by the net. This is a significant advan-
tage over similar dynamic programming approaches [12], [18],
[20] which have at least time complexity. Of course,
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Fig. 7. Execution of the single source algorithm on the example in Fig. 5. The
optimal solution has cost 1.5; the dark lines show how this cost is obtained.

Fig. 8. For a node with two children, buffers may be used to (a, b) drive both
branches, (b) decouple the left branch, (c) decouple the right branch, or (d)
decouple both branches.

the reason for the reduced time complexity is not a better algo-
rithm; all these algorithms incorporate a similar dynamic pro-
gramming framework. Rather, the complexity advantage is ob-
tained by making different assumptions, such as equally spaced
tiles and a length-based objective, that simplify the problem.

Extending the algorithm to multisink nets is fairly straight-
forward. One still keeps a cost array at each node, but updating
the cost becomes a bit trickier when a node has multiple chil-
dren. Let be the set of children of. We keep an inter-
mediate cost array where to represent the cost
of buffering the next tile, and then we join all the children cost
arrays together into . For example, four of the eight possible
cases for buffering with two children are shown in Fig. 8. Both
(a) and (b) show a buffer driving both branches, (b) shows de-
coupling of the left branch, (c) shows decoupling of the right
branch, and (d) shows decoupling both branches. Observe that
in these cases, we allow multiple buffers to be inserted in the
same tile, as shown in (b) and (d).

The complete algorithm is shown in Fig. 9. The algorithm
flows from the sinks to the source in a similar manner as
the single-sink algorithm in Fig. 7. For readability, we have
broken the pseudocode into four smaller subroutines: Ad-
vanceTile, BufferTile, JoinChildren, and BufferMultiChildren.
AdvanceTile and BufferTile perform the same concept as in
the single-sink algorithm, moving up to the next parent tile
and buffering on that tile. For multisink nets, this buffering is
considered for the decoupling branch, hence, it is performed
for each child of . JoinChildren then merges the intermediate

cost arrays into a single array for tile . Finally, if there
is more than one child, we need to consider additional buffering
to drive multiple branches. The BufferMultiChildren routine
handles the case of Fig. 8(a) and (b).6

6Fig. 9 can handle three children, but it does not allow a buffer to drive two of
the three branches. Handling this case is straightforward but tedious; we omit it
to preserve the readability of the algorithm.

Fig. 9. Algorithm for buffer insertion for multiple sinks.

If the net has sinks, then Step 4 will be executed exactly
times; thus, Step 4 adds additional time com-

plexity above and beyond that of the single-sink algorithm’s
complexity. Consequently, the multisink variation has

time complexity. Typically, one would expect
the second term to dominate, especially when the number of
sinks is small. However, for nets with lots of sinks and with
a large required tile separation, the first term could potentially
dominate.

D. Stage 4: Final Post Processing

The final stage of RABID attempts to reduce buffer con-
gestion, wire congestion, and the number of nets which, up
until now, have failed to meet their length constraint. Using the
same flow as in stage 2, each net is ripped up and rerouted, and
the buffers for the net are removed as well. However, for mul-
tipin nets, the net is ripped up onetwo-pathat a time, where a
two-path is a path in the tree which begins and ends at either a
Steiner node, source, or sink, and contains only vertices of de-
gree two. The two ends of the two-path are then reconnected via
the path that minimizes the sum of wire and buffer congestion
costs [(1) and (2)].7

The minimum cost two-path is computed as follows. Call the
endpoint of the original two-path that is in the same sub-tree as
the source theheadand the other endpoint thetail. The algo-
rithm proceeds bottom-up in a manner similar to the single-sink
buffer insertion algorithm (and also the buffer insertion, maze-
routing algorithms of [12] and [20]). Starting from the tail, each
neighbor of the current minimum-cost tile is visited, and the
costarray is updated. For each element in the cost array, a pointer

7Note that these buffer and wire congestions costs are of the same order of
magnitude, so we simply add their costs. Alternatively, one could use any linear
combination of the two cost functions.
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TABLE I
TEST CIRCUIT STATISTICS AND PARAMETERS FOR THEFIRST SET OF

EXPERIMENTS

is maintained back to the tile which was used to generate that
cost. The algorithm iteratively expands the tile with lowest cost
and updates the costs of neighboring tiles during wavefront ex-
pansion. The cost for the new tile also includes the wire con-
gestion cost of crossing the tile boundary. When the head of the
two-path is reached, the minimum cost solution is recovered by
tracing back out the path to the tail. The buffers for the entire
net are then ripped out and reinserted as in Stage 3.

IV. EXPERIMENTAL RESULTS

We implemented RABID in C++ on an RS6000/595 machine
with 1 GB of memory. We tested our code on ten benchmarks
which we obtained from the authors of [8]. The first six are
from the collaborative benchmarking laboratory (CBL), and the
other four are randomly generated.8 We also embed the designs
in the same 0.18-m technology used in [8]. The statistics of the
benchmarks are summarized in the first five columns of Table I.
The nets and sinks columns present slightly smaller values than
in [8] to reflect the nets that Conget al.did not optimize since
they did not require buffers.

A. General Performance

Our first set of experiments studies the performance of each
of RABID’s four stages. The grid size and number of buffer
sites used are presented in Table I. We chose the grid size to
have 30 tiles on the shorter side of the chip, and then derived the
number of tiles for the longest side, so that each tile was roughly
square. The seventh column gives the area of each tile in square
millimeters. The total number of buffer sites for each circuit
were also chosen arbitrarily. The number was chosen to be large
enough so that buffer congestion is low, but small enough so that
the percent of the total chip area occupied by buffer sites is less
than 2% of the total chip area. From the last column, observe
that the percentage of the chip area is less than 1% for all but
two cases. Except for the last two random circuits, no tile is

8The fifth random benchmark from [8], called pc2, has some internal prob-
lems and is no longer in use.

more than one millimeter long on a side. For each benchmark, a
random nine by nine set of tiles was prohibited from having any
inserted buffer sites to correspond to a large cache-like object.
The buffer sites were randomly distributed among the remaining
tiles.

The floorplans were generated using the buffer-block plan-
ning code supplied by Conget al. [8]. We generated a floorplan
by first running buffer-block planning, then removing the in-
serted buffer blocks. This code performs its initial floorplanning
using a Monte Carlo simulated annealing technique. The results
for each stage and each test case are summarized in Table II. We
present only the cumulative results for the four random circuits.
The statistics presented are:

• the maximum and average wire congestion over all edges
in the tile graph;

• the sum of the wiring overflows, i.e., the sum over all
of , for whenever

;
• the maximum and average buffer density;
• the number of buffers inserted;
• the number of nets for which the tile length constraint was

not satisfied;
• total wirelength in millimeters;
• maximum and average delays in picoseconds to each sink;
• CPU time in seconds.

Note, that no timing constraints are used, so we use average
and maximum source-to-sink delays to give an indication for the
quality of timing.

We make several observations.

• The wire congestion constraint is always satisfied. If one
ignores wire congestion, as is done in Stage 1, then the
maximum wire congestion is typically a factor of two to
three above capacity and there are several hundred over-
flows.

• The algorithm never violates the buffer site constraint, but
typically utilizes at least one tile to full buffer capacity. As
seen from the small average buffer densities in Table II,
the total number of buffer sites chosen is actually quite
small relative to total area. The number of buffers, failures,
and wire length all decline from Stages 3 to 4 (except for
the wire length and the number of buffers for apte), which
shows that our final postprocessing step is quite effective.
The number of nets which fail to meet the length constraint
is typically small, but not zero. These violations are caused
almost exclusively by the existence of the large nine by
nine tiled region with no buffer sites that was inserted into
each design.

• Net delays increase significantly from Stages 1 to 2 during
the congestion avoidance rerouting stage, but the inser-
tion of buffers in Stage 3, reduces delay significantly even
though the buffer insertion algorithm is “delay ignorant.”
The maximum and average delay is always less after Stage
4 than Stage 1, except for the maximum delay of xerox.

• The CPU time is almost exclusively dominated by the two
rerouting stages: 2 and 4. Thus, our buffer insertion algo-
rithm in Stage 3 is efficient in practice.
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TABLE II
STAGE BY STAGE EXPERIMENTAL RESULTS FOR THESIX CBL CIRCUITS. THE FINAL RESULTS ARESHOWN FOR THELAST FOUR RANDOM CIRCUITS

B. Variations

Our next set of experiments examines the behavior of RABID
when the number of available buffer sites varies. We ran our al-
gorithm on each of the six CBL circuits three times using small,
medium, and large numbers of buffer sites that are randomly
distributed (with the blocked nine by nine region). The other
parameters are the same as in the previous set of experiments.
Results are summarized in Table III. The three lines for each cir-
cuit correspond to small, medium, and large numbers of buffer
sites. The number of buffer sites was chosen somewhat arbi-
trarily so that significant differences would result between each
row in the table. For example, if increasing the number of buffer
sites by 50% did not yield much improvement, we would subse-
quently increase that percentage until significant improvement
resulted.

Observe that as the number of buffer sites decreases, more
nets fail to meet their length constraint. Most notably, as the
number of buffer sites increases, the maximum and average net

delays decrease significantly. Having no more than one in every
five buffer sites occupied appears necessary to obtain good so-
lutions.

In our next set of experiments, we keep the number of buffer
sites constant, but vary the size of the grid. The results are sum-
marized in Table IV for a sampling of three of the test cases.
Observe that the maximum wire congestion increases with the
number of tiles. A finer-grained tiling implies tighter wire con-
gestion, e.g., dividing a tile into four equal-sized tiles increases
the number of congestion constraints by a factor of three. The in-
creased wire congestion may cause an increase in the maximum
delay because of long detours, though the average congestion
can stay the same. However, a finer tiling means one can design
a length constraint that is more appropriate, e.g., for a 1011
grid one might need a length constraint of two, which is rather
coarse. For a 50 55 grid, a length constraint of perhaps eight
might yield results with the best delay characteristics.

The finer-grained tilings give better insight into the quality
of the floorplan. A coarser tiling can indicate that the design is
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TABLE III
SUMMARY OF RESULTSWHEN THE NUMBER OF AVAILABLE BUFFERSITES VARIES

TABLE IV
RABID RESULTSWITH VARYING GRID SIZES FORTHREE CBL BENCHMARKS

fairly easily routable, but a finer tiling can better highlight areas
of potential congestion. Thus, if one wants to use our algorithm
to evaluate the quality of a particular floorplan, a finer-grained
tiling is likely more useful for wire congestion evaluation.

Finally, we observe that the CPU times roughly increase at a
rate slightly higher than linear with the number of tiles.

C. Comparing RABID With Buffer-Block Planning

Our final experiments attempt to compare with previous work
on buffer-block planning, yet we are not using buffer blocks.

Hence, it is not feasible to simply compare with previously pub-
lished results. We needed to run the code ourselves and imple-
ment routines to gather statistics from the data. For this compar-
ison, Conget al. [8] supplied us with the source code to their
algorithm BBP/FR. Although other buffer-block planning re-
sults exists (e.g., the work of [16] creates more buffer blocks
to reduce wire congestion), we believe this comparison is suffi-
cient to show that our proposed methodology can deliver timing
solutions that are competitive with the buffer-block planning
methodology while better managing buffer and wire congestion.
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As in [8], but unlike our previous experiments, we decom-
posed multipin net into several two-pin nets. Our results were
generated using randomly distributed buffer sites that altogether
occupy less than 2% of the total chip area. Conget al.[8] report
timing results by measuring the number of nets which fail to
meet their delay constraints. The timing constraint was chosen
to be between 1.05–1.20 of the optimum achievable delay. We
believe this constraint generation is unrealistic since real timing
constraints are path-based, and this implies that all constraints
are tight, yet potentially satisfiable. In a practical situation, some
of the 1.05 –1.20 timing constraints will be so tight that buffer
insertion is insufficient to satisfy timing, e.g., a constraint of
0.95 . For these cases, feasible regions are not well defined
and, so, BBP does not have a mechanism to come as close as
possible to satisfying the constraint (which has value to the de-
signer). Also, other constraints may be so loose that no buffer
insertion is required or many detours can be taken to still meet
delay constraints. Since RABID and BBP/FR insert buffers on
all nets which require them, we use maximum and average sink
delay to quantify timing performance.

In addition to the previous statistics, we also measured max-
imum tile area percentage (MTAP). A percentage of the area
of each tile is occupied by buffers; MTAP denotes the max-
imum such percentage over all tiles. We used the same tiling
for RABID (see Table I) to measure the MTAP for BBP/FR.
The minimum wire length is the sum of the minimum possible
wire length routing of all the nets. This enables one to see how
much additional wire length above the minimum was actually
required.

Table V presents the comparisons with BBP/FR. Neverthe-
less, some differences between the approaches are readily seen.

• RABID always meets the congestion constraints while
BBP/FR does not. The results presented here even in-
clude a postprocessing step (applied to both RABID
and BBP/FR) which tries to minimize congestion for
the current buffering solution without increasing wire
length. Note that virtually all of the CPU time reported
for BBP/FR is due to this step. The original BBP/FR code
runs in 2 s or less for all the test cases.

• RABID inserts significantly more buffers, due to a tight
length constraint and also due to the rerouting to avoid
wire congestion.

• Because the RABID methodology invites spreading, the
MTAP is significantly less. In the worst case, BBP/FR has
one tile with 18.2% of its area devoted to buffers. This
percentage climbs to at most 1.1% for our approach.

• The CPU time for BBP/FR is negligible. Stages 2 and 4 of
RABID require much larger run times, but they are clearly
not prohibitive.

• The delays for RABID are quite comparable to those of
BBP/FR despite using a length-based buffer insertion
algorithm and satisfying wire congestion constraints. In
some cases the delays are even better. Delays can some-
times be worse because timing is not directly optimized
and due to wire detours.

Thus, RABID succeeds at avoiding wire congestion and
buffer density where BBP/FR cannot. This is not a shortcoming

TABLE V
COMPARISONS OFRABID TO BBP/FR [8].

of BBP/FR per se, but rather the block-based methodology in
which it is embedded.

V. CONCLUSION

We have proposed an alternative methodology for buffer and
wire planning that uses pre-allocated buffer sites that are dis-
tributed throughout the design. This methodology enables one to
model this planning problem via a tile graph and simultaneously
plan both wires and buffers. Our four-stage heuristic includes an
efficient algorithm for length-based buffer insertion and also a
technique for simultaneous optimization of buffer and wire con-
gestion. Our experimental results assert that this approach can
generate effective solutions in a reasonable amount of time.

Our future work seeks to integrate an industrial tile graph-
based global router into Stages 1 and 2 of our heuristic. This
should result in both better routing solutions and higher corre-
lation with running the complete design flow. Ultimately, our
objective is to use this tool for early and accurate floorplan eval-
uation, which makes strong correlation with the final routing re-
sult a necessity.
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