IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003 1

On the Verification of Sequential Equivalence

Jie-Hong R. Jiang, and Robert K. Brayton, Fellow, IEEE

Abstract— The state explosion problem limits formal verifica-
tion to small- or medium-sized sequential circuits partly because
BDD sizes heavily depend on the number of variables dealt with.
In the worst case, a BDD size grows exponentially with the
number of variables. Thus reducing this number can possibly
increase the verification capacity. In particular, this paper shows
how sequential equivalence checking can be done in the sum state
space.

Given two finite state machines M; and M, with numbers
of state variables m; and mo respectively, conventional formal
methods verify equivalence by traversing the state space of the
product machine, with m; + my registers. In contrast, this paper
introduces a different possibility, based on partitioning the state
space defined by a multiplexed machine, which can have merely
max{mi, m2} + 1 registers. This substantial reduction in state
variables potentially enables the verification of larger instances.
Experimental results show the approach can verify benchmarks
with up to 312 registers, including all of the control outputs of
microprocessor 8085.

I. INTRODUCTION

EQUENTIAL equivalence checking plays a crucial role in

VLSI design to ensure functional correctness. It has been
greatly advanced since symbolic techniques [4] were used in
formal methods based on state space traversal. However, these
formal methods cannot be scaled as easily with the increasing
complexity of system designs due to the state explosion
problem, which says that the state space grows exponentially
in the number of state variables. Therefore recent research [3],
[11] has focused on reducing the number of state variables
by retiming [13], with the hope that verification can be
conducted on the reduced circuits. Unlike these circuit-based
transformations, this paper reduces the register count in the
verification construction. Moreover, the verification itself is
structure-independent, that is, neither circuit similarities nor
register correspondences [6] are assumed.

In this paper, we reason about sequential equivalence based
on the fact that two finite state machines (FSMs) are equivalent
if and only if their initial states are equivalent. To iden-
tify equivalent states of an FSM, binary decision diagrams
(BDDs) [2] were used in [16], [14], [8] for symbolic exe-
cution. The fixpoint computation in [16], [14] is carried out
on a product machine constructed over two identical copies
of the FSM. As shown in [7], when the product machine
is constructed over two FSMs under comparison, the same
computation can be used for sequential equivalence checking.
In addition to the approach of [16], [14], the computation in
[8] for equivalent state identification is done on the original

Manuscript received September, 2002; revised January, 2003. This work
was supported by the California State Micro Program and their industrial
sponsors, Cadence and Synplicity.

J.-H. Jiang and R. Brayton are with the Department of Electrical Engineer-
ing and Computer Sciences, University of California, Berkeley, CA 94720.

FSM without constructing a product machine. However, an
n-state FSM in [8] is represented by n shared n-terminal
BDDs. This representation may be expensive in practice. In
contrast, we identify equivalent states by applying BDD-based
functional decomposition [12] to keep the computation in the
original FSM without any special representation. Since the
computation is in a single FSM, we introduce the multiplexed
machine to combine two FSMs into one. Thereby we can
transform the sequential equivalence checking problem to the
state equivalence problem of a multiplexed machine.

Our equivalence checking technique avoids state traversal,
by partitioning the state space based on equivalence relations
among states [10]. Rather than reason about the sequential
equivalence in the product state space of two sequential ma-
chines under comparison, we achieve this attempt in the sum
state space. Compared to product machine based verification,
the proposed approach almost halves the number of state
variables. More precisely, checking the equivalence of two
n-input FSMs M; and My with m; and my state variables
respectively, our method can keep the total number of variables
to be at most n +max{m1, ma} + 1 + [logy (min{my,m2} +
1)]. Hence, the sizes of BDDs in our verification technique
could be much smaller than those in product machine based
techniques.

Unlike previous verification techniques of [4] and [7], the
efficiency of our approach depends heavily on the encountered
number of equivalence classes of states. Since each equiv-
alence class is represented by a BDD node, our approach
is limited to instances with less than ~ 10% equivalence
classes per output. Fortunately, it is applicable in most prac-
tical applications. On the other hand, because the number
of equivalence classes in the reachable state subspace is
invariant, our technique tends to be more robust than previous
approaches in verifying different implementations of a design.
For high-speed designs, registers are mostly added to reduce
cycle time not to increase the number of equivalence classes.
(For example, backward retiming cannot increase equivalence
classes.) In such designs, our proposed technique should be
preferable to those of [4] and [7].

The contributions of this paper are as follows. We apply
BDD-based functional decomposition to the identification of
equivalent states. Two important consequences are the elim-
ination of universal and existential quantifications, and the
possible simplification with respect to the reachable state
subspace. To extend the above computation for sequential
equivalence checking, we introduce the multiplexed machine
such that the verification can be done in the sum state space.
In addition, several techniques are proposed to enhance the
computational robustness; several properties are analyzed to
contrast different verification techniques.

The remainder of this paper is organized as follows. Prelimi-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003 2

naries and definitions are given in Section II. After introducing
the technique for equivalent state identification in Section III,
we present our equivalence checking algorithm in Section IV
and analyze its properties in Section V. Experimental results
are then given in Section VI, and conclusions in Section VII.

II. DEFINITIONS, NOTATIONS AND PRELIMINARIES
A. Equivalence Relations and Partitions

An equivalence relation is a binary relation on a set,
S, satisfying reflexive, symmetric and transitive laws and
induces a unique partition m on S. The partition is a set
m = {E1,E,,...} of subsets of S such that

o E; # 0 for all 4;

o E;NE; =0 foralli#j;

. E1UE2U"'=S.

Each E; forms an equivalence class. Two elements in the same
class satisfy the equivalence relation, but elements in different
classes do not. For two equivalence relations R; and Ry with
partitions 7, and 7o respectively, 1 C Ra if and only if 7 is
a refinement of ma, denoted as m; < 7a, i.e. each equivalence
class of 7y is contained in some equivalence class of 7. On
the other hand, the product of two arbitrary partitions, 7; and
T2, denoted 7y -7o, is the partition corresponding to the relation
R; N Rs, i.e. two elements are in the same equivalence class
of m; -y if and only if they are both in one equivalence class
of m; as well as in one of 7.

An FSM! is a six-tuple (S,s?,%,Q,0,w), where S is the
set of states, s! the initial state, 3/ the set of input/output
alphabets, 6 : SxX — S the transition function, and w the
output function. For a Moore machine, w : & — €; for a
Mealy machine, w : SXX — . Given an FSM M, its output
and transition functions define an equivalence relation, denoted
=, and thus induce a partition, denoted 7z, over the state
space of M.

In this paper we concentrate on equivalence relations on a
set of states. Two states s; and s are equivalent, satisfying
$1 =m S2, if and only if by using them as initial states,
no input sequence can result in different output sequences.
To approximate state equivalence, we define a k-equivalence
relation, denoted E’j\,[, and say two states s; and sy are k-
equivalent, satisfying s; =k s,, if and only if they are
indistinguishable under all input sequences with length up to k.
Also say two states (or FSMs) are k-distinguishable if k is the
shortest length of input sequences that differentiate them. We
denote the partition associated with 2%, as 7%, To derive 7
from the approximation, we have 7 = 7%, if 7k, = 7% 1 for
large enough £, that is, a fixpoint has been reached. Similarly,
we define a (k)-equivalence relation, denoted as = Tyo
states s1 and sg satisfy s1 Eﬁ\? s9 if and only if, by using them
as initial states, the outputs at the ki step are equal for an

length-% input sequence. The corresponding partition of EE\Z

is denoted 71'](\1,;). By definition, we can derive the following
lemma.

Lemma 1: For a Moore machine and k > 1,
wf\l,? ={E; | 1,82 € E; iff §(s1,2),0(s2,2) € E; € wf\ﬁ*l),

!"This paper only considers completely specified deterministic FSMs.

for any z € X, for some j}
and
w0 = {E; | 51,80 € E; iff w(s1) = w(s)}.
For a Mealy machine and k£ > 2,
7T1<\l;) = {Ez | 81,82 € E; iff (5(81,.’13'), (5(82,33) S Ej S 7TJ<\I;71),
for any z € X, for some j},
iy ={S}
and
wf\}} ={E; | s1,52 € E; iff w(s1,z) = w(s2,z), Vo € T}.
Proof: The base cases are direct results of the definition.
Now we show the connection between 771(\’/;) and ﬂ%’,;_l). There
exists a length-(k—1) input sequence to distinguish two states
s1 and so at the output of the (k—1)% step if and only if s;
and s, are in different equivalence classes of 751 Therefore
two states, say s3 and s4, cannot be distinguished at the output
of the k" step if and only if their successor states, i.e. §(s3,)
and §(s4,x), are in the same equivalence class of 71'1(571) for
any ¢ € X. [|
The connection between 7}, and 7'['5\.4) is indicated in Propo-
sition 1.
Proposition 1: For an FSM M, two states are in the same
equivalence class defined by 7%, if and only if they are in the

same equivalence class of wf\g), of 7r1<\,1[>, ..., and of w](\i?.

B. Functional Decomposition

In this paper we adopt functional decomposition [17] for
partitioning the state space to identify equivalent states and
to verify sequential equivalence. In functional decomposi-
tion, variables of a Boolean function are divided into two
disjoint subsets, the bound set and the free set. In BDD-
based functional decomposition [12], bound set variables are
ordered above free set ones. A cutset C of the BDD is the
set of (downward) edges which cross the boundary defined
by the bound set and free set variables. A node is called an
equivalence node if there exists an edge, e € C, directed to it.

For a Boolean function f (X, i), we can interpret the spec-
ification of the bound set variables X and free set variables
[i as a partition over the space spanned by X, denoted A.
That is, the set of all paths from the root of a BDD to
an equivalence node forms an equivalence class. Each such
set represents a subspace of A. Two minterms A; and A; in
A are equivalent under arbitrary assignments of the free set
variables, i.e. Vi (f(A1,) = f(X2,), if and only if their
corresponding paths in the BDD lead to the same equivalence
node.

Given a set of Boolean functions {fi,..., fr}, which do
not necessarily have common supports, we can always expand
these to the same Boolean space spanned by the union of
the input variables of all functions. Let the bound set vari-
ables be X. Then the free set variables [i are all variables
excluding those in X. Suppose we want to find the equivalence
classes of the minterms in A, such that two minterms A
and As are equivalent under arbitrary assignments of all other
variables, i.e. Vii,Vi (fi(A1,) = fi(A2,), if and only if
these two minterms are in the same equivalence class. To
represent equivalence classes by a BDD as in the single
function case, we can construct a hyper-function F [9] of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003 3

{f1,- .., fr} by adding [log, k], new free set binary variables,
77, to encode these functions. Assume the overall free set
variables become fi’. Thus two minterms A; and Ay in A have
V' (F(A, fd'") =F(Aa, d") if and only if their corresponding
paths in the BDD of F lead to the same equivalence node.

ITI. IDENTIFICATION OF STATE EQUIVALENCE

To find a minimum state FSM, equivalent to a given one,
equivalent states are identified. Since each state in an equiva-
lence class (of reachable states) can represent the entire class,
the number of states of the minimum state FSM equals the
number of the equivalence classes of the original FSM. This
section proposes a more direct, in the sense that we deal with
equivalence classes instead of equivalence relations, approach
than those of [16], [14] to locate equivalent states. Given an
FSM, we show that BDD-based functional decomposition can
be exploited to extract equivalence classes of states.

Our approach seems conceptually similar to that in [8],
where an FSM with n states is represented by n shared n-
terminal BDDs. However, functional decomposition does not
apply in this representation. As a result, the basic operations
are of fundamental difference. Moreover, since our computa-
tion operates directly on the output and transition functions, it
is representatively more efficient than the previous work.

A. State Equivalence vs. Functional Decomposition

0 .
In the base cases, 77?\/[= 71'1(‘,1) for a Moore machine M

and i, = 71'1%) for a Mealy machine, output function w
plays the central role, as indicated in Lemma 1. Examin-
ing the case for a Moore machine M, we can see that w
serves directly as the characteristic function for 79,. On the
other hand, the characteristic function of W}VI of a Mealy
machine M is not clearly indicated by w. We relate BDD-
based functional decomposition to the computation of this
characteristic function. In general w is composed of a set of
binary variables {wy,ws,...,w}. According to Section II-B,
we have to construct the hyper function F of {w1, w2, ..., wk }.
The supports of F consist of three parts: state variables §,
primary inputs #, and new added variables 7 for encoding
the hyper-function. Let § be the bound set variables and the
rest be the free set. Accordingly, the equivalence nodes of the
BDD of F represent the equivalence classes of 7},. Paths from
the root to an equivalence node are states in a corresponding
equivalence class. At this point we can ignore the functions
represented by these equivalence nodes. That is, we can get rid
of the BDD structures below these nodes. By re-encoding these
nodes using alphabet ¥, (introducing [log, log, |N|] binary
variables suffices to re-express IV equivalence nodes because
[log, log, [N|] variables can generate at least N different
functions, i.e. IV nodes in BDD), we can have a characteristic
function ¢ for 73, of a Mealy machine M, ¢ : S — .
Playing a similar trick, we show how to compute the char-
acteristic function of 7r1<\’,?, k =1 or 2 for a Moore or Mealy
machine respectively. Assume 9 : S — W is the characteristic
function derived from the last iteration (for both types of
machines). Then the composition function % o 4, (d(s, z)),
plays exactly the same role as w in a Mealy machine, from

input:) — characteristic function of 7(*~1,
7 — function to be composed
output: characteristic function of 7 (¥’
begin
01 form hyper-function F of ¢ o7
02 build BDD of F with state variables above others
03 re-encode equivalence nodes and simplify BDD
04 return new characteristic function
end

Fig. 1. Algorithm CompNewPartition: Compute New Partition

which we have shown how to derive a characteristic function
of 7r1<\}1). Consequently, by functional decomposition of the
hyper-function of 1 o §, we have a characteristic function of
7r]<\}f> for Moore and 71'}(\? for Mealy machine M. The algorithm
is summarized in Figure 1. The function call is denoted as
CompNewPFartition. By Lemma 1, we can derive the following
theorem.

Theorem 1: Given the characteristic function of 77%’,}71)
and & : SXX — S as the function to be composed,
CompNewPartition generates the characteristic function of

ﬂﬁ), where k > 1 (> 2) for Moore (Mealy) machine M.

B. Algorithm for Equivalent State Identification

To identify equivalent states, we have to compute ﬂfw until
it equals 7"?\/[_ L. then mp = 7T1k\:/1. Theorem 2 provides three
alternatives to derive mps. Its proof is supported by Lemma 2,
also restated as Lemma 3.

Lemma 2: Consider an FSM with transition function ¢ :
Sx¥ — §. Let m; and w2 be two arbitrary partitions on S.
For s1,s2 € S,
0(s1,z) and 6(s2,x) are in the same equivalence class of 7y
and of my for any z € ¥
if and only if
d(s1,z) and (s,) are in the same equivalence class of 7y -
mo for any z € X.

Proof: Let R; and Ry be corresponding equivalence
relations of 71 and ma respectively.

(—) The condition we have implies {(d(s1,z),d(s2,2))}
C R;, i = 1,2, V. Thus {(6(s1,2),0(s2,2))} C Ry N Rs,
Vz. Since Ry N Ry is the equivalence relation of 7y - o, the
proof follows.

(+) From {(6(s1,z),d(s2,z))} C Ry N Ry, Yz, we obtain
{(8(s1,%),8(s2,7))} C R;, i = 1,2, Vz. That is, §(s1, z) and
d(s2,x) are in the same equivalence class of 71 and of 7 for
any ¢ € X. [|

Lemma 3: For an FSM with transition function §, assume
m and my are two partitions over the state space. Let
Y1, ¥y and 1.0 be the characteristic functions of 7y, 72,
and 71 - mo respectively. For characteristic functions 9] =
CompNewPartition(1, 6), ¥y = CompNewPartition(v2, 9),
and 9} , = CompNewPartition(11.2, 8), their corresponding
partitions satisfy 7] - 75 = 7}.5.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003 4

input: an FSM M = (S,s%,%,Q,6,w)
output: characteristic function of 7z

begin
01 if M is a Moore machine then ¢_ = w
02 else ¢_ := CompNewPartition(identity fn, w)

03 44 := CompNewPartition(®)—, §)
04 while num. equiv. nodes of ¢4 # that of ¢_ do

05 Yo =y
06 Y4 = CompNewPartition(1)+, 6)
07 14 = combine ¢4 and 1)
08 return v
end
Fig. 2. Algorithm IDESI: Identify Equivalent States (Equation 1)

Theorem 2: Given an FSM M, for a positive integer k,
ke = by 'W’X/; ! 1)
nk, -7%; if M is a Moore machine 2)
ak, -mh, if M is a Mealy machine
= 71'](\? -Wﬁ\}f) ---wj\f} 3)

where 7%, = {E; | s1,52 € E; iff 6(s1,) and &(s2,) are
in the same equivalence class of Wﬁ[l for any z € ¥}.
Proof: We prove these equations by the order 3, 2, 1.

Equation 3: By the definition of 7%, states in an equivalence
class are indistinguishable under length-k input sequences.
According to Proposition 1, no outputs at steps from O to
k can distinguish two states if and only if the states lie in the
same equivalence class of 71'1(\?, of 7'['1(\?, ...,and of 71'1(\’;). Thus,
by Lemma 2, the states stay in the same equivalence class of
O)

Equation 2: Following the result of Equation 3, we get
wﬁ[l = 71'1(\2) -71'%) e W](\ffl). Suppose we use the characteris-
tic function of 7y, ! and transition function § as the inputs to
CompNewFartition. By Theorem 1 and Lemma 3, the output
of the algorithm is w]’i,; , that is, the characteristic function of
7r]<\/11> -71'}(5} e WJ(\? for a Moore machine or of Wﬁ) -71'1(\?/}) . -71'1(\,];)
for a Mealy machine. Make a product partition with the initial
partition induced by the outputs. We derive ﬂﬁ,[. (Note that
79, is redundant for a Mealy machine.)

Equation 1: By expressing 7%, and ﬂﬁ,l_ ! in the product
forms of wj(\'}’s as in the proof of Equation 2, the equation
follows.]

Based on Equations 1, 2 and 3 to derive 7y, Figures 2, 3
and 4 sketch three algorithms, denoted as IDESI, IDES2 and
IDES3 respectively. In these pseudo codes, “combine” a set of
characteristic functions means using the procedure in Figure 1
except F is the hyper-function of the set of characteristic
functions.

These algorithms terminate in a finite number of iterations.
IDES]1 and IDES?2 converge because the partitions over finite
states are refined continuously and the number of equivalence
classes grows monotonically. On the other hand, because

775\1,? in general is not a refinement of Wﬁ\lj_n, IDES3 cannot

input: an FSM M = (S,s',%,Q,6,w)
output: characteristic function of mys

begin
01 if M is a Moore machine then ¢! := w
02 else ¢! := CompNewPartition(identity fn, w)
03 o_ =

04 4 = CompNewPartition(yp—, §)
05 while num. equiv. nodes of ¢4 # that of ¢)_ do

06 Yo =y
07 ¥4 = CompNewPartition(y)4,)
08 14 = combine v, and ¢
09 return vy
end
Fig. 3. Algorithm /DES2: Identify Equivalent States (Equation 2)

input: an FSM M = (S,s%,%,Q,6,w)
output: characteristic function of 7y
begin

01 9 := identity function

02 if M is a Moore machine

03 then ¢(® = w
04 1) := CompNewPartition(y)(?, §)
05 else (1) := CompNewPartition(1)'?), w)
06 k:=1
07 while fixpoint not reached do
08 k=k+1
09) .= CompNewPartition(y)*—1, §)
10 return combine {9, i =0,1,...,k—1
end
Fig. 4. Algorithm IDES3: Identify Equivalent States (Equation 3)

simply determine the fixpoint by comparing the numbers
of equivalence nodes in ¢1(\I,;_1> and pr,?. Therefore, it is
more expensive to do fixpoint analysis. In general one should
check whether or not new equivalence classes are created over
previous partitions.

Although Figure 2 and Figure 3 look quite similar, the
major difference is in combining two characteristic functions
in Line 7 and Line 8 respectively. Despite keeping one more
characteristic function, IDES2 could require less memory than
IDES] because 1" has a simpler BDD representation than 4_.
On the other hand, although IDES3 keeps all the characteristic
functions along iterations, it has maximal flexibility to arrange
the combination of them to reduce peak memory consumption.

C. Robust Equivalent State Identification

The limitations of equivalent state identification using BDD-
based functional decomposition result from the explicit rep-
resentation of equivalence classes and the restricted BDD
variable ordering. In this section we propose some possible
techniques to reduce BDD sizes.

Using any underestimated unreachable states as the don’t
care set, we can assign each such unreachable state to any

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003 5

equivalence class of reachable states. This flexibility enables
the simplification of characteristic functions. However, be-
cause these algorithms use the number of equivalence classes
to decide fixpoints, the number of equivalence classes with
solely unreachable states should be kept as a constant during
the iterations. (Note that if unreachable states are not used as
don’t cares, there is no such restriction.) Otherwise, we have to
complicate the fixpoint condition by testing if an equivalence
class is contained in the don’t care set. Claim 1 shows BDD
constrain [5] is a good simplification operator satisfying this
requirement. On the contrary, BDD restrict [5] violates it.
However, a BDD restrict followed by a constrain is a good
operation.

Claim 1: Given a Boolean function f(X, ji) with bound set
and free set variables X and _[i respectively, assume A is the
space spanned by A. Let ¢()) be the characteristic function
of the care set of A. Then constrain(f,c) eliminates all
equivalence nodes whose corresponding equivalence classes
are contained in the don’t care set, and preserves all other
equivalence nodes.

Proof: Since BDD structures below equivalence nodes
are irrelevant, we can think of f to be another function g : A —
N, where N is the set of equivalence nodes. As constrain(g, c)
has its range equal to the image {g()) | ¢(\) = TRUE, VA €
A}, equivalence nodes not in this image disappear from the
range and those in this image remain in the range. (On the
other hand, the restrict operator could increase c to ¢’, ¢ C ¢'.
Although equivalence nodes in the original image are kept,
some with solely unreachable states might exist.)]

To reduce the impact of the restricted BDD variable or-
dering, we can use the following strategy. Within the allowed
threshold of BDD size, find the variable ordering such that the
lowest state variable is as high as possible. Treat this variable
and those above it as bound set variables; all others are the
free set. Then compact the BDD such that every node under
the cutset is an equivalence node. Work on the new smaller
BDD, and apply variable re-ordering to it based on the same
strategy, incrementally throwing away unnecessary variables.
On the other hand, since this ordering restriction emerges only
from functional decomposition, arbitrary ordering can be used
in other BDD manipulations. This restricted ordering is needed
only when counting the number of equivalence classes and in
constraining BDD with respect to the reachable state subspace.

Directly building a single hyper-function of a set of (binary)
functions {f1,..., fr} may be impractical. Fortunately, this
can be avoided by computing equivalence classes incremen-
tally. For instance, first perform functional decomposition on
fi1. For each resultant equivalence class, use it as the care
set and others as the don’t care set. Hence there is a greater
chance to build a hyper-function for the simplified functions
of fa,..., fr. (If it fails, we can deepen the recursion level to
extract more don’t cares.) Conducting functional decomposi-
tion on it, the equivalence classes in the care set are encoded
using new binary functions. In this way, BDD sizes are kept
small. This approach trades time for memory.

We can also explore flexibility to reduce a partition before
using it to compute a new partition. Given two partitions 7
and 7y, we say any 7TI (# 1) satisfying 7TI “ My = My - Mo iS

a reduced partition of w; with respect to my. In particular, a
simpler reduced partition, whose characteristic function has a
smaller BDD size, is of interest. Theorem 3 states the validity
of this flexibility.

Proposition 2: If mq < m. holds for two partitions 7. and
T4, there exists a partition m, such that 7. - 7, = 4.

Lemma 4: Assume partitions 7, 7' and 7. satisfy 7 - 7, =
7' - w.. If any 74 satisfies mg < 7., then - wg = 7' - 7q.

Proof: By mq < 7. and Proposition 2, assume there exist
a partition 7, such that 7, - 7, = w4. For 7 - 7. = @' - ., we
derive m-7, -y =7 - W - Wy, 18 T -Tg =T - T4 []

Assume after certain iterations of refinement, the overall
(product) partition is 7,. Let m, be a new (not overall) partition
after one more iteration, and let 71';; be a reduced partition of
my with respect to any 7, such that 7, < 7. (Let 9, denote
the characteristic function of 7, for any subscript ¢.) We have

Theorem 3: For 1, = CompNewPartition(1)y,) and ¢, =
CompNewPartition(iﬁL, 0), equality 7, - Ty - T, = o - Ty - 7r;
holds.

Proof: Let 14 denote the characteristic function of
Tq + Ty, for any subscripts < and >. In addition, (7)*
is used to denote the partition with characteristic function
CompNewPartition(1, §), for any partition 7 with characteris-
tic function 2.

By the definition of a reduced partition, 7r;5 “ My = Ty * Mg
Since m, < 7, equation 71'; - My = Ty - T, holds according
to Lemma 4. So (w; - To)* = (my - m,)*. From Lemma 3,
we get (m})* - (mo)* = (my)* - (7,)*. Since m, = (})* and
7, = (my)*, then 7., - (m,)* = m, - (m,)*. Also from Theorem 2,
To -y < (m,)*. Hence by Lemma 4, 7, -7y - 7, = o - Ty - 0.

|

In the light of Theorem 3, an algorithm can be implemented
by modifying IDES2 and IDES3 as follows. Keep a set
of characteristic functions to represent the overall partition.
Compute new partitions based only on an essential partition,
which consists of equivalence classes that refine the previous
overall partition. In this manner, the BDD size is kept small
and the iterative computation is sped up.

IV. VERIFICATION OF SEQUENTIAL EQUIVALENCE

The proposed technique can be applied for sequential ver-
ification. The following two propositions form the basis of
our equivalence checking. The first states a property that two
equivalent FSMs must have.

Proposition 3: Given two equivalent FSMs M; and M»
with sets of equivalence classes my;, and mpy, respectively,
assume expunging unreachable states from 7z, and 7wpy, re-
sults in 77?\,11 and 71'?”2 respectively. Then there exists a bijection
f: 71"]’\41 - 7"5\42’ where f reflects the state isomorphism of
M, with Ms.

On the other hand, to show the equivalence between two
FSMs, Proposition 4 gives necessary and sufficient conditions.

Proposition 4: M; and M, with initial states s’i and sg
respectively, are equivalent if and only if there exists a
bijection f : 75\41 — 71'5’\42 (f reflects the state isomorphism
of M, with M), and E; = f(E;) with st € E; € 71"1’\,[1 and
sb € By € 7r|1’\,12.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003 6

Primary
Inputs

Primary
Outputs

(m, - m,) bits
m, bits

i Iy |

Fig. 5. Multiplexed Machine.

Based on Proposition 4, we can extend the identification of
state equivalence to sequential equivalence checking. In order
to pose the problem of verification as the identification of state
equivalence, the multiplexed machine is introduced.

A. The Multiplexed Machine

To check equivalence between two FSMs M; and M, with
my and me registers respectively, assume without loss of
generality mg > my. Their multiplexed machine, denoted
M2, is depicted in Figure 5. The two FSMs share the same
primary inputs. Their corresponding outputs are multiplexed as
a set of global primary outputs. To minimize the state variables
of Mima, for every next state variable of M;, we pair it
arbitrarily with one of M». This pair is then multiplexed before
being fed to a register, whose output is then demultiplexed to
recover the current state variables for M; and Ms. In addition,
one self-looped auxiliary state variable, abbreviated aux, is
added, which controls all multiplexers and demultiplexers as
indicated by the dotted lines in Figure 5. The value of aux
remains the same as its initial value. Let Mjno select M;
and M, when aux has values 0 and 1 respectively. No matter
what the initial value of aux is, the multiplexed machine
functions the same as M; and M, if they are equivalent. In
the verification, we can imagine that aux is in a superposition
status, possessing values 0 and 1 simultaneously. (Note that,
without changing its functionality, the multiplexed machine
can be simplified by omitting the demultiplexers. That is,
replacing each demultiplexer, we directly connect its input to
outputs. Also it is worth mentioning that choosing any subset
of the next state variables of M to be paired is valid. Suppose,
in the extreme case, we choose an empty subset. Then aux and
the multiplexers for outputs are unnecessary. The multiplexed
machine, therefore, degenerates into two separate machines.
The corresponding verification is discussed in Section IV-E.)

B. Algorithm for Sequential Equivalence Checking

Given two FSMs M; and M, with initial states? si and
sb respectively, without loss of generality assume their mul-
tiplexed machine Mix2 selects M; (Msy) while aux equals O
(1). Their equivalence can be verified based on Lemma 5, a
consequence of Proposition 4.

Lemma 5: M, and M, are equivalent if and only if 7z,
has at least one reachable state with aux bit O and at least one
with 1 in every equivalence class containing any reachable
state, and has initial states (s¢ with aux 0 and s with aux 1)
in the same equivalence class.

Proof: Assume f : 71"}\,[1 — 71"1’\,[2 reflects the state
isomorphism between M; and M,. Let E; = f(E;) for
FE, € 7r'1’w1 and Fy € 7r'1’\,[2. Then after adding the aux bit,
original reachable states (including initial states) s1 € Fj
and s» € E> must be within the same equivalence class of
TMyws- 1hus every equivalence class of 7y, containing any
reachable state must have at least one (with aux 0) contributed
from M, and one (with aux 1) from Ms. [|

By iterative refinement of the state space as in the identi-
fication of state equivalence, equivalence classes of states for
Mimo can be derived whenever the fixpoint has been reached.
According to Lemma 5, both conditions are checked. However,
the first condition implies that we need to know reachable
states of both M; and M>. Fortunately, the first condition is
redundant, i.e. as long as the second condition is satisfied, so
is the first. This property is stated in Theorem 4. As a result,
reachability analysis can be completely eliminated.

Theorem 4: M and M, are equivalent if and only if 7z, .,
has initial states, namely s¢ with aux 0 and s} with aux 1,
within the same equivalence class.

Proof: By contradiction, we show that the first condition
in Lemma 5 is redundant. Assume s, ,, has initial states in
the same equivalence class F?, and there exists an equivalence
class E containing reachable states all with aux bits 0 (or
1 does not matter). Therefore, E # E‘. For any reachable
state of E, there must be a reachable state, say s, (with
aux bit 0) that transitions to it. This transition makes s
have no equivalent reachable states from Ms,. Therefore the
equivalence class containing s has all reachable states with aux
bits 0. Continuing this argument, we conclude that E* must
exclude the state, s§ with aux 1. Hence a contradiction arises.

|

Further, rather than checking that the condition of Theo-
rem 4 is satisfied in the overall partition of the state space,
validity can be verified on the new partition at each iteration.
The correctness of this variant is based on Proposition 1. As
the BDD representation of the current partition is obtained, it
is of linear time complexity in the number of state variables to
test if two initial states are within the same equivalence class.
Consequently this checking can be done efficiently in each
iteration. Figure 6 outlines the overall procedure for sequential
equivalence checking.

Remark: In theory k& FSMs can be verified simultaneously
by introducing [log, k] auxiliary state variables to control

2To simplify the discussion, we assume each FSM has a single initial state.
This can be straightforwardly generalized to a set of initial states.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003 7

input: two FSMs under equivalence checking
output: YES if equivalent; NO otherwise
begin

01 build the multiplexed machine M

02 compute the init. partition 7,

03 if init. states NOT in an equiv class of 7%,

04 then return NO
05 while fixpoint not reached do
06 compute 77"
07 refine the overall partition and simplify 737"
08 if init. states NOT in an equiv class of 737"
09 then return NO
10 return YES
end

Fig. 6. Algorithm: Verify Sequential Equivalence

the k-to-1 multiplexers of their corresponding multiplexed
machine.

C. Robust Sequential Equivalence Checking

To make the verification procedure more robust, the tech-
niques and restrictions listed in Section III-C are also applica-
ble here. Instead of repeating them, this section is concerned
with those that are particular to verification.

Verifying each primary output and/or characteristic function
separately could substantially reduce the number of encoun-
tered equivalence classes. The numbers of equivalence classes
induced by individual primary outputs may be exponentially
smaller than those induced by all of the primary outputs. The
correctness of this separation is inferred from Lemma 2. It
is interesting to notice that the cone of inference reduction
has been automatically taken care of due to this separation,
i.e., irrelevant state variables with respect to the considered
primary output disappear.

Although reachability analysis is unnecessary, any under-
estimation of unreachable states of M and/or M, can be
used as a don’t care set to simplify BDD expressions and to
reduce unnecessary state refinements. Theorem 5 shows the
correctness of such simplification and the maximal don’t care
set for the multiplexed machine. However, as mentioned in
Section III-C, the fixpoint condition should be preserved to
ensure the algorithm terminates.

Theorem 5: The equivalence condition of M; and My is
invariant under don’t care simplification by unreachable states
of Mixo, that is, unreachable states of M7 with aux 0 together
with those of M5 with aux 1.

Proof: Because state transition is irrelevant to the sim-
plification of characteristic functions of partitions, the proof
of Theorem 4 still holds.

Assume the sets of reachable (unreachable) states of My
and Ms are Ry (Uy) and Ry (Uz) respectively. Let « be the
auxiliary state variable. Then the reachable states of Mo is
(maAR;)V(aARy). Its complement is —(—aAR;)A—=(aARz)
= (OéVUl)/\(—'CkVUQ) = (Oé/\UQ)V(—'Oé/\Ul)V(Ul/\UQ)
=(aAUs)V (ma AUy). |

Besides don’t care simplification, the partitioned state space
can be reduced further according to the following theorem.

Theorem 6: Let Wﬁ,hm be the partition associated with the
k-equivalence relation of Mjxe. Then equivalence checking
is invariant under the reduction of w]’ﬁ,fmz by collapsing the
set {E € wh; | Vs € E. The aux bit of s is 0.} of
equivalence classes into one equivalence class and collapsing
{E € nk;, .. | Vs € E. The aux bit of s is 1.} into another.

Proof: 1t is clear that My and M, are equivalent only
if the collapsed equivalence classes are unreachable from the
initial states. Also, if the condition holds for all £ > 0, then
M; and M, are equivalent.

Since we collapse the equivalence classes of M; and of M,
separately, states from one machine which have transitions to
these equivalence classes do not have corresponding equivalent
states from the other machine. Besides, as state transition
relations are not affected by the collapsing, the equivalence
relation among other states, which cannot transition to these
equivalence classes, remains intact. Hence the verification is
invariant under this reduction. []

Corollary 1: For two FSMs M; and M, with n; and ns
equivalence classes respectively, the number of equivalence
classes can be kept at most min{ny,n2}+ 1 in our sequential
equivalence checking with the use of the collapsing process in
Theorem 6. Hence the number of variables introduced to gen-
erate equivalence nodes is at most [log, log,(min{nj,na} +
1)]. Assume the n-input FSMs M; and M, have m; and
meg state variables respectively. Then by verifying each output
separately, the total number of variables in our verification is at
most (n+ max{my, ma}+1+ [log, log, (min{ni,ns}+1)])
< (n +max{my,m2} + 1 + [log, (min{my,ms} + 1)]).

In the construction of the multiplexed machine, a multi-
plexer, selecting state variables, pairs a state variable from
M; with any unpaired one from Ms. Since this pairing is
arbitrary (and thus can be adaptively changed on-the-fly),
an optimization problem is to maximize the BDD sharing
between M; and M5, and to simplify the consequent BDD
manipulations. Heuristics can be derived based on the cone of
inference reduction and functional similarity. The former pairs
two state variables which are supports of two similar sets of
primary outputs; the latter pairs two state variables with similar
transition functionalities. In the extreme case, when comparing
two identical copies of an FSM, we can possibly reduce the
BDD such that it is as if these is only one machine.

D. Error Tracing and Shortest Distinguishing Sequence

Given two states s; and so which are k-distinguishable at an
output of an FSM M = (S, s!,%,Q,d,w), this section illus-
trates how to derive a length-k input sequence differentiating
them.

Since s; and so are k-distinguishable, their correspond-
ing BDD paths lead to different equivalence nodes in some
characteristic function at the k%" refinement. Let the functions
represented by these two BDD nodes be f; and f,. (Notice
that, f; and fy should be the functions before re-encoding and
simplification mentioned in Section III-A.) Then any solution,
say =*, to (fi XOR f3) provides the k** distinguishing input

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003 8

vector. On the other hand, two states s{ = d(s1,2*) and
sh = 6(s2,x*) are (k—1)-distinguishable. They result in the
distinguishability of s; and s, at the kt® refinement. Simi-
larly the (k—1)% distinguishing input vector can be obtained.
Repeating this process backward, one can derive a shortest
distinguishing sequence to trace an error.

E. State Space Partitioning on Separate Machines

The multiplexed machine is not the only construction that
extends state equivalence to machine equivalence. To prove
the equivalence of M; and M,, the state variables can be kept
disjoint while the inputs are shared. Thereby their state spaces
are partitioned separately but simultaneously by maintaining
two sets of shared BDDs during functional decomposition.
Again, they are equivalent if and only if their initial states lead
to the same equivalence node when the fixpoint is reached.

In the case of the multiplexed machine, state variables
of M; and M, are merged by multiplexers. As mentioned
in Section IV-C, the register pairing affects the cone of
inference and BDD manipulations. By state space partitioning
on separate machines, the interference among state variables
is removed. However the major drawback is that there is no
BDD sharing between M; and M, above the cutset. Notice
that, although the number of state variables in this case is the
same as for the product machine, the verification is still in the
sum state space.

F. State Space Partitioning on Product Machine

Verification by state space partitioning also works for the
product machine as well. It can be done by slight modifica-
tions of [16], [14], previously known as the backward state
traversal [7]. We refer to it as state space partitioning on the
product machine.

When compared to state space partitioning on the multi-
plexed machine, this approach has more flexibility in BDD
variable ordering. However, this flexibility prevents simplifi-
cation by the restrict or constrain operator with respect to the
reachable states because this might corrupt the represented
equivalence relation.

V. ANALYSIS

This section consists of two parts. First, some verification
properties, independent of the implementation of a design, are
analyzed. Second, we discuss circuit implementation related
effects on the sequential equivalence checking problem.

A. Implementation-Independent Aspects

Given an FSM taking a total of n iterations in state space
partitioning, its partition structure is defined as an ordered

sequence ¢ = (01,09,...,0,), Where o; denotes the accu-
mulated number of equivalence classes at the i*" iteration.
Thus 0; < 0441, fori=1,...,n—1, and 0, = Op41.-

Theorem 7: Any two equivalent FSMs must have the same
partition structure in their reachable state subspace.

Proof: Assume two equivalent FSMs M and M’ have
sets of equivalence classes 7 and 7’ respectively in their reach-
able state subspace. Therefore, according to Proposition 3,
there exists a bijection f : 7 — 7'

Suppose M and M’ have different partition structures. Since
the state space is continuously refined in fixpoint computation,
there must exist [- and k-distinguishable state pairs (si, s2)
and (s, s)) respectively, such that [> k, s; € E; € ,
st € f(B1) € 7', s € Ey € , and sy, € f(E,) € 7'
Let 6 and ¢’ be the transition functions of M and M’ re-
spectively. Then pairs {(s;, s;) | 3z(67 (s,), 6 (s5,2)) =
(s1,82)} must be at least (I—1)-distinguishable and at least
one of them is (I—1)-distinguishable. Similarly, {(s},s}) |
Elx(é’_l(s;,m),&’_l(sg-,x)) = (s],s5)} are at least (k—1)-
distinguishable and at least one of them, say (si.,s}.),
is (k—1)-distinguishable. Let z* be the input such that
(6'(s1,27),6'(s5,2%)) = (8i+,85.). Also let (six,85:) =
(0(s1,2*),0(s2,2*)). Suppose s;+ € E;» € 7 and sj« €
Ej. € m. Then s;. € f(E;+) € ' and s}, € f(E;) € .
Now since (s;,s;+) is at least (I—1)-distinguishable and
(I-1) > (k—1), we are ready to have recursive reasoning for
(8, 85+) and (sj.,s}.). At some point of the recursion, we
will reach the situation that (sj., sj.) can be differentiated by
some output while (s;+,s;+) can not. This violates the base
cases of Lemma 1. Hence M and M' must have the same
partition structure. []

Therefore, partition structures in reachable state subspace
form a signature for equivalent FSMs. This may not be true for
the entire state space. However, even without the knowledge
of state reachability, the following holds.

Theorem 8: Given two FSMs M; and M> converging in
m and n steps respectively in state space partitioning, their
product machine converges in no more than min{m,n} steps
in state space partitioning.

Proof: 1In state space partitioning, the product machine
has state “equivalence relation” =p over (ordered) pairs of
states, (s1, $2) with s; € Sy and s5 € Sy, where Sy and S> are
the sets of states of My and M, respectively. Notice that =p
may not satisfy reflexive and symmetric laws. Nevertheless,
the transitive law holds for the ordered pairs of states. Since the
transitive law is maintained during the fixpoint computation, it
is clear that once one machine converges, so does the product
machine. On the other hand, this state partitioning procedure
does not refine the state subspace {s | s € Sy, Vs2 €
S2, (s,82) € =p, or s € Sy, Vs1 € S1, (s1,8) & =p}.
Hence it could converge in less than min{m,n} steps. u

Theorem 9: Given two FSMs M; and M> converging in
m and n steps respectively in state space partitioning, then
their multiplexed machine converges in exactly max{m,n}
steps in state space partitioning. With the state space reduced
by Theorem 6 in each iteration, the computation converges in
the same step as the state space partitioning on their product
machine.

Proof: The construction of the multiplexed machine is
designed to match corresponding equivalence classes between
M, and Ms. State space partitioning on the combined machine
has no effect on the partition of the state subspace spanned
by any individual FSM. Once each subspace of M; and M>

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003 9

has reached a fixpoint in state partitioning, so has the space
of their combined machine. Therefore the combined machine
converges in exactly max{m,n} steps.

When the state space is reduced by Theorem 6 in each
iteration, the fixpoint computation does not refine the state
subspace spanned by the collapsed equivalence classes. The
state space is partitioned in the same way as that of the
product machine. Hence the multiplexed and product machines
converge in the same step in state space partitioning.]

In contrast, for state traversal of an FSM, although we can
similarly define a traversal structure to be the sequence of
numbers of reached states, we can not use it as a signature.
Moreover, even if the traversal depths for two FSMs are
known, they merely provide a lower bound on the depth of
the product machine. No strong argument like Theorems 8
and 9 is possible.

The following theorem shows the connection between the
number of refinements in state partitioning and the depth of
state traversal.

Theorem 10: Given two k-distinguishable FSMs M; and
M5, both state-traversal and state-partition based approaches
differentiate them at the k*" step.

Proof: Since state traversal on the product machine of
M; and M, implicitly enumerates all possible transitions,
clearly any discrepancy can be observed in the shortest steps.

On the other hand, for state partition, since the initial states
from M; and M, must be k-distinguishable in the combined
machine of M7 and M. The theorem follows. [|

As a consequence,

Corollary 2: Given two FSMs M; and M, let My42 be
their product machines. Assume p is the number of refinements
in state partitioning on M;«2, and ¢ is the depth of state
traversal on Mj x2. Then min{p, ¢} is an upper bound on the
number of iterations required for equivalence checking.

In other words, following Corollary 2, if p > ¢, we can
conclude the equivalence of M; and M, in ¢ refinements
of state partitioning on Miyxo. Similarly, if p < ¢, their
equivalence can be confirmed in p steps of state traversal on
Mixo.

Also, it follows immediately from Theorem 8§ that,

Corollary 3: Given two FSMs, M; and M, converging in
m and n steps respectively in state space partitioning, their
equivalence can be concluded in no more than min{m,n}
steps in state partitioning on their multiplexed machine.

B. Implementation-Dependent Aspects

Retiming [13] is an important technique in sequential circuit
optimization. There are two types of atomic moves in retiming,
namely forward (from inputs to outputs) moves and backward
(from outputs to inputs) moves across functional blocks. Here
we investigate their effects on the number of equivalence
classes in the state space. Suppose an FSM M is retimed
from another FSM M} using only backward moves across a
functional block with function f : Sy — S¢, where Sy and Sy
are the state spaces of My and M respectively. (Equivalently
My is retimed from Mj; using forward moves across the
functional block with function f.)

Proposition 5: Two states s and s; of Mj are equivalent,
i.e. 55 =, Sy, if and only if their corresponding states f(sp)
and f(sy) of My are equivalent, i.e. f(sp) =m, f(s}).

Proposition 6: If sy =y, sp,, then the corresponding states
of sp, s3, f(sp), and f(s;) in the multiplexed machine My
of My and My are in the same equivalence class of M.

Theorem 11: The number of equivalence classes of M} is
not greater than that of Mjy.

Proof: Since f is a total function, i.e. f is well defined
for all states of My, the theorem follows from Proposition 5.
|

Theorem 12: The number of equivalence classes of My is
greater than that of M, if and only if there exists a state s of
Mjy such that f~'(s) =0 and s Znr, f(ss), Vs € Sp.

Proof: The theorem follows from Proposition 5. []

Similar arguments of Theorems 11 and 12 were used in [19]

for the discussion of the validity of retiming.

VI. EXPERIMENTAL RESULTS

Using the VIS [1] environment, we compared three equiva-
lence checking techniques, namely,

STPM - state traversal on the product machine,
SPPM - state partitioning on the product machine, and
SPMM- state partitioning on the multiplexed machine.

The experiments were conducted on a Linux machine with a
Pentium III XEON 700 MHz CPU and 2 Gb of RAM.

For STPM and SPPM the VIS sequential verification com-
mand is used. Dynamic variable reordering is turned on
and the hybrid method [15], considered the state-of-the-art
technique for image computation, is used. For SPMM, variable
reordering is enabled when appropriate.

To demonstrate the relative power of the three techniques,
we first compare a set of benchmark circuits against them-
selves. (Although combinational checking suffices in this
circumstance, we are only interested in sequential methods.) In
general, combinational equivalence checking should be tried in
situations where there is structural similarity. The techniques
of this paper aim at situations where there is no such similarity.
The self-comparison benchmarks are used to compare the
methods on a large set of examples. Care is taken not to exploit
similarity by using a method for pairing state variables which
considers only the cones of inference of the primary outputs.
To further emphasize that no similarity is being exploited, a
second set experiments is done comparing circuits against their
retimed versions.

An argument why self-comparison is sufficient for the
experiments is Proposition 3, which states that two different
implementations, M and M», must have corresponding equiv-
alence classes in the reachable set of states. Thus the reachable
state spaces of Mima, Mix1 and Moxe all have the same
number of equivalence classes. Also even if M; and M> have
incomparable numbers of equivalence classes in the whole
state spaces, by Corollary 1 the number of equivalence classes
encountered by SPMM is at most min{ny,ns} + 1, where n;
is the number of equivalence classes of M;, ¢ = 1,2. Thus
conclusions drawn from self-comparison experiments should
remain valid for general comparisons.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003 10

TABLE I
PROFILES OF BENCHMARK CIRCUITS

| Out [Reg || Reach (Depth) |

| Circuit [In
s1196 14
s298 3
349 9
s400/s444 3
s420.1 18
s499 1
s526/s526n 3
s64d1l 35
s713 35
s953 16
s967 16
s991 65
bigkey 262
clma 382
mméa 7
mm9a 12
mm9b 12
multl6a 17
sbc 40
control 33
IFetchControl2 27
IFetchControl3 27
parsepack 9
parsesys
8085 18
bpb 9
cbp_16_4 17
cbp_32_4 33
key 258
minmax5 8
minmax10 13
tbk-retime 6

14 | 18 2616 (2)
6 | 14 218 (18)
1 | 15 2625 (6)

6 | 21 8865 (150)
T | 16 || 65536 (65535)
2 | 22 22 (21)

6 | 21 8868 (150)
24 | 19 1544 (6)
23 | 19 1544 (6)
23 | 29 504 (10)
23 | 29 549 (10)
17 | 19 524288 (3)
197 | 224 || 1.17e+67 (2)
82 | 33 || 158908 (411)
i | 12 832 (3)

9 | 27 2.25¢+7 (3)

26 225¢+7 (3)

T | 16 65535 (16)
56 | 28 154593 (9)
21 | 35 119 (6)

38 | 59 || 2.50e+8 (27)
38 | 61 || 1.00e+9 (27)
65 | 70 || 3.70e+19 (9)
65 | 312 || 2.21e+48 (103)
27 | 193 N/A

4 | 36 || 6.87e+10 (32)
17 | 16 131072 (1)
33 | 32 4.29¢+9 (1)
193 | 228 N/A

5 | 15 12032 (3)
10 | 30 1.79¢+8 (3)
3 | 49 2048 (3)

Before presenting empirical results in Tables III and IV,
we provide the characteristics of the benchmark circuits in
Tables I and II. Table I gives the profiles of the selected
benchmarks from ISCAS89, LGSYNTH91, TEXAS97, VIS and
TEXAS. Columns 2, 3 and 4 indicate the number of inputs,
outputs and registers respectively. In addition, the number
of reachable states and the corresponding traversal depth are
provided in Column 5. (Here we reset uninitialized state
variables to zero.)

Also the information of equivalence classes is included
in Table II. As mentioned in Section IV-C, we can verify
sequential equivalence by examining each primary output
separately instead of treating them as a whole. The advantage
is that we can reduce the peak memory requirements recording
encountered equivalence classes. To provide strong evidence,
Table II contains two parts of data. The first part, Overall
Fartition, in Columns 2 and 3 shows the number of equiva-
lence classes induced by all primary outputs. The number in

the following parentheses indicates the depth of refinement
in the corresponding fixpoint computation. In contrast, the
second part, Worst Partial Partition, in Columns 4 and 5
lists the largest number of equivalence classes induced by
some primary output. The number in the following parentheses
indicates the maximum depth of refinement among all outputs.
Circuit s991 is an example where separating verification
tasks for each output makes a substantial reduction in the
number of encountered equivalence classes. In the extreme
case, the number of equivalence classes induced by all outputs
can be exponentially (in the number of outputs) larger than
those induced by individual outputs. Usually the separation of
verification tasks lengthens the required refinement. However,
as BDD manipulations could be simplified substantially, the
run time can still be reduced in most cases. Further, within
each part we compare the number (in the column marked
whole) of equivalence classes in the whole state space to the
number (in the column marked reach) of equivalence classes

TABLE II

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003

CHARACTERISTICS OF EQUIVALENCE CLASSES OF BENCHMARK CIRCUITS

Overall Partition Worst Partial Partition
Circuit whole (1fn) | reach (rfn) || whole (rfn) | reach (rfn)
51196 82944 (2) 1509 (2) 96 (3) 56 (3)
s298 8061 (16) 135 (12) 249 (24) 118 (20)
349 18608 (5) 1801 (5) 248 (8) 35 (6)
s400 608448 (93) 8865 (93) || 17174 (183) | 8597 (183)
s420.1 65536 (32768)
s444 608448 (93) 8865 (93) || 17174 (183) | 8597 (183)
s499 4.19e+6 (1) 22 (1) 24 (21) 22 (21)
526 1.43e+6 (119) | 8868 (93) || 43068 (199) | 8597 (183)
s526n 1.43e+6 (119) | 8868 (93) || 43068 (199) | 8597 (183)
s641 294912 (1) 1480 (1) 24750 (8) 1248 (8)
s713 294912 (1) 1480 (1) 24750 (8) 1248 (8)
5953 N/A 504 (2) 42 (10) 35 (10)
5967 N/A 549 (2) 42 (10) 35 (10)
s991 327680 (1) 10 (2)
bigkey N/A 4 (2)
clma N/A N/A 5950 (178)
— 3616 (1) | 712 () 452 (2) 217 (1)
mm9a N/A 522244 (2) | 260617 (1)
mm9b N/A N/A 260617 (1)
multl6a 65536 (16) | 65535 (16) || 65536 (16) | 65535 (16)
sbc N/A N/A 23048 (10)
control N/A | 43 (2) 14 (6) 8 (5)
IF’hC’12 N/A N/A 9434 (37)
IF'hC’13 N/A N/A 8442 (39)
parsepack N/A 18 (9) 10 (9)
parsesys N/A 164 (21) N/A
8085* N/A 309619 (28) | N/A
bpb N/A 512 (3)
cbp_16_4 65536 (1)
cbp_32_4 4.29¢+9 (1)
key N/A 64 (7) N/A
minmax5 30784 (1) 5520 (1) 1924 (2) 965 (2)
minmax10 1.07e+9 (1) N/A 2.09e+6 (2) | 1.04e+6 (1)
tbk-retime 16 (1) 16 (3)

in the reachable subspace. As can be seen, in most instances
this subset is fairly small when compared to the entire space.
Since SPMM directly benefits from these reductions, it can
easily verify some large instances which are unverifiable for
STPM and SPPM as indicated in Tables III and IV, where
the results for SPPM and STPM report the best of verifying
combined outputs and verifying each output separately. From
experience, SPPM has better results in verifying combined
outputs for most circuits while SPMM has the opposite results.
This might be explained by the fact that the performance of
SPPM is not directly related to the encountered number of
equivalence classes while that of SPMM is.

From the experiment in Table III we observe that, for
SPMM, using a monolithic BDD as a characteristic function

suffices for all verifiable benchmarks. The only exception is
sbc, where an array of characteristic functions need to be
maintained. Because using multiple characteristic functions
usually complicates the fixpoint computation, it is in general
more time consuming. Also we find that SPMM takes longer
time than STPM and SPPM for circuits, such as s382,
s420.1, etc., with numerous equivalence classes and deep
refining processes. It is understandable because SPMM enu-
merates each equivalence class in every refining process.

For circuits like s420 . 1, where the depths of traversal and
refinement are both exponential in the size of inputs, none
of the three techniques is competent. However, for s420.1,
since the depth of refinement is half of that of traversal, SPPM
is about twice as fast as STPM. Notice that, as analyzed

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003 12

TABLE III
SEQUENTIAL EQUIVALENCE CHECKING BETWEEN IDENTICAL CIRCUITS

STPM SPPM SPMM
mem time mem time mem time
Circuit (Mb) (sec) (Mb) (sec) (Mb) (sec)
s1196 28.3 2.3 25.1 1.5 12.4 2.1
s298 7.8 0.2 16.4 1.0 8.7 0.9
s349 12.7 1.5 254 1.3 10.8 1.9
s400 12.8 4.9 43.1 4.8 56.6 448.8
s420.1 45.1 669.2 37.9 290.9 62.0 | 2.98e+5
s444 12.7 4.8 42.2 4.5 55.8 438.9
s499 299 157.1 16.5 1.0 8.6 0.2
s526 22.5 7.1 117.0 293.8 50.4 358.2
s526n 16.6 4.4 82.7 150.9 50.4 357.8
s641 11.9 0.7 27.4 0.6 39.5 33
s713 11.8 0.7 27.6 0.6 39.2 6.4
s953 11.3 0.1 27.9 0.8 11.9 1.1
s967 114 0.9 27.5 0.8 10.3 0.5
s991 354 26.4 64.9 11.6 10.7 0.3
bigkey >2G N/A >2G N/A 21.4 1.3
clma 142 134.6 >2G N/A 117 | 4.30e+4
mméa 8.6 0.3 7.7 0.1 15.3 0.9
mm9a 82.1 | 1.24e+5 || 58.9 16.6 244 | 4673.7
mm9b >2G N/A >2G N/A 693 | 3.12¢+4
multléa 8.5 0.2 8.4 0.1 87.8 126.1
sbc >2G N/A >2G N/A 537 | 1.29e+5
control 191 79.4 46.1 7.9 23.3 1.1
IF'hC’12 >2G N/A N/A | >1.0e+6 || 258 | 1.37e+4
IF’hC’13 >2G N/A N/A | >1.0e+6 || 259 | 1.38e+4
parsepack >2G N/A 64.9 110.9 19.0 1.2
parsesys >2G N/A 458 291e+4 102 45.9
8085* >2G N/A >2G N/A 793 | 3.06e+5
bpb >2G N/A 51.7 62.9 46.1 17.2
cbp_16_4 18.0 0.3 18.0 0.3 75.2 70.2
cbp_32_4 25.0 0.8 24.7 0.7 >2G N/A
key >2G N/A >2G N/A 68.5 15.4
minmax5 27.3 0.8 28.1 0.6 26.0 12.2
minmax10 151 1694.9 47.2 2.3 733 | 8.75e+4
tbk-retime || >2G N/A >2G N/A 84.2 112.3

in Section V-A, although the product machine has traversal
depth 65535 (due to self-comparison), we can conclude the
equivalence by traversing states at the 32768%" step even
before the fixpoint is reached.

For cbp and minmax series of circuits, where depths are
shallow, STPM and SPPM performs much better than SPMM,
which needs to take care of numerous equivalence classes as
listed in Table II. On the other hand, for minmax circuits,
as discussed in [7], SPPM has a polynomial complexity in
input sizes while STPM has an exponential one. In comparison,
SPPM is the best choice for these cases.

Circuits key and bigkey are another extreme, which has
a few equivalence classes. SPMM verifies them quite easily

while both STPM and SPPM fail. In general for control logic
SPMM performs much better than the other two. Microproces-
sor 8085 is an example, where SPMM verifies all the outputs
except the sixteen for the address bus. (The results of 8085
in Tables II and IIT exclude these unverifiable outputs.) Other
examples are control, IFetchControl2 and IFetch—
Control3. On the other hand, due to the large number of
outputs in IFetchControl2, IFetchControl3, clma,
sbc, etc., SPMM takes a long time to verify them because it
processes each output once at a time. Fortunately, these tasks
can be parallelly verified to minimize the total completion
time.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003

TABLE IV

SEQUENTIAL EQUIVALENCE CHECKING BETWEEN DIFFERENT IMPLEMENTATIONS OF SAME DESIGN

STPM SPPM SPMM
mem time mem time mem time
Circuit Reg (Mb) | (sec) (Mb) (sec) (Mb) (sec)
s208.1/s208.1l-retime 8/ 16 12.4 0.3 11.8 0.5 8.9 2.3
5298 / s298-retime 14/ 34 12.7 0.3 21.8 1.7 9.6 0.7
s386 / s386-retime 6/ 15 12.6 0.2 13.0 0.3 7.3 0.1
5499 / s499-retime 22/ 41 437 196.9 690 401.3 10.7 1.8
s510/ s510-retime 6/ 34 13.6 0.4 19.5 1.8 12.3 0.4
s526 / sh26-retime 21/ 58 48.3 24.3 237 2012.2 55.4 552.5
s526n/ s526n-retime 21/ 64 48.4 41.5 204 5238.7 53.2 325.9
s526-retime / s526n-retime 58 /1 64 >2G N/A 982 | 1.26e+5 || 54.5 469.3
s641 / s641l-retime 19/ 18 37.5 1.9 41.1 1.9 29.3 9.7
5991/ s991-retime 19/ 42 345 | 2431.9 139 760.8 74.3 134.6
| multl6a/multléa-retime [[16/106 || >2G | N/A || >2G | NA | N/A | >1.0e+6]
| tbk / tbk-retime | 5749 [[56.1] 103 [[701] 792 [462 66 |

In Table IV, the equivalence between a circuit and its
retimed implementation is checked. Retimed circuits were
obtained by using SIS [18], except for TEXAS benchmarks,
s64l-retime and tbk-retime. Other circuits, which are
included Table III but absent from Table IV, either take too
long for SIS to retime, or have incompatible initial states,
created by the retiming. Table IV suggests that SPMM does
not benefit particularly when self-comparison is done. (This
is due to the fact that state variables are paired only by
cone of inference of outputs. Otherwise, corresponding state
variables are avoided to be paired together. Doing so destroys
BDD sharing in the experiments of self-comparison.) This
supports that the results of Table III are relevant for comparing
the three methods. Also observe from Table IV that SPMM
is relatively stable when moving from self-comparison to
comparing against retimed versions. For example, for s526
and s526n, the results in Tables III and IV are similar for
SPMM but STPM and SPPM yield substantial variances. The
stability of SPMM derives from the fact that it depends mainly
on the maximum number of registers in the two designs plus
the number of equivalence classes encountered.

Another view of Tables III and IV is shown in Table V,
where the second and the third columns denote the numbers of
wins in terms of smaller memory and time usage respectively,
and the last gives the number of examples on which the method
failed. This analysis indicates that SPMM is on average more
efficient and more rugged than the other two methods.

TABLE V
OVERALL STATISTICS

| Method || Wins in Memory | Wins in Time | Failed |

STPM 11 12 13
SPPM 7 15 10
SPMM 28 21 2

We did not experiment with the equivalence checking be-
tween inequivalent circuits. However the expectation is that,
according to Theorem 10, all of the three verification tech-
niques can report the non-equivalence in the same iteration,
say in the nt" iteration. To generate a counterexample on the
other hand, both STPM and SPPM have time complexity O(n)
while SPMM has O(n?). This difference results from the fact
that, in SPMM, the input information of the previous iterations
is thrown away when equivalence nodes are re-expressed using
newly introduced variables.

To summarize the results, the major limitation of SPMM
is the encountered number of equivalence classes during
verification. In contrast, STPM and SPPM do not suffer the
same limitation because equivalence classes are not explicitly
represented in the BDDs. For a circuit with a not-so-deep
depth of refinement and a “reasonable” number (< ~106)
of equivalence classes per output, SPMM has a great chance
of verifying it. On the other hand, due to the fact that the
number of equivalence classes in the reachable state subspace
is invariant under different implementations, SPMM tends to
be the most robust verification technique.

VII. CONCLUSIONS

This paper consists of two parts: the identification of equiv-
alent states and the verification of sequential equivalence. We
show that the former can be done efficiently by BDD-based
functional decomposition. By introducing the multiplexed ma-
chine, we can verify sequential equivalence by means of state
partitioning in the sum space, a new possibility to do formal
equivalence checking. In high speed designs, a great portion
of registers are for timing speed-up rather than increasing
the number of equivalence classes of states. In such cases,
state space partitioning would become preferable to state space
traversal.

A major advantage of the new verification technique is
the substantial reduction in the number of state variables.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. , JUNE 2003

Compared to product machine based techniques, our approach
almost halves the number of state variables. Although there
is an intrinsic restriction on the BDD variable ordering, to
overcome it and minimize the BDD sizes, several techniques
are proposed. These make our algorithm even more promising.

ACKNOWLEDGMENTS

The presentation of this paper was greatly strengthened
through anonymous reviewers’ comments.

REFERENCES

[1] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi,
A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo,
S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and T.
Villa, “VIS: A System for Verification and Synthesis,” in Proc. Int’l Conf.
Computer Aided Verification, pp. 428-432, 1996.

[2] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipu-
lation,” IEEE Trans. on Computers, vol. 35, no. 8, pp. 677-691, Aug.
1986.

[3] G. Cabodi, S. Quer, and F. Somenzi, “Optimizing Sequential Verification
by Retiming Transformations,” in Proc. Design Automation Conf., pp.
601-606, 2000.

[4] O. Coudert, C. Berthet, and J. C. Madre, “Verification of Synchronous
Sequential Machines Based on Symbolic Execution,” in Proc. Int’l
Workshop Automatic Verification Methods for Finite State Systems, 1989.

[5] O. Coudert and J. C. Madre, “A Unified Framework for the Formal
Verification of Sequential Circuits,” in Proc. Int’l Conf. Computer-Aided
Design, pp. 126-129, 1990.

[6] C. A.]J. van Eijk, “Sequential Equivalence Checking Based on Structural
Similarities,” IEEE Trans. on Computer-Aided Design, vol. 19, no. 7, pp.
814-819, July 2000.

[7] T. Filkorn, “A Method for Symbolic Verification of Synchronous Cir-
cuits,” in Proc. Int’l Symp. Computer Hardware Description Languages
and their Applications, pp. 249-259, 1991.

[8] J. G. Henriksen, J. Jensen, M. Jorgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm, “Mona: Monadic Second-Order Logic in Practice,”
in Proc. Int’l Workshop Tools and Algorithms for the Construction and
Analysis of Systems, TACAS "95, LNCS 1019, 1996.

[9] J.-H. Jiang, J.-Y. Jou, and J.-D. Huang, “Unified Functional Decompo-
sition via Encoding for FPGA Technology Mapping,” IEEE Trans. on
VLSI, vol. 9, pp. 251-260, April 2001.

[10] Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, 1978.

[11] A. Kuehlmann and J. Baumgartner, “Transformation-Based Verification
Using Generalized Retiming,” in Proc. Int’l Conf. Computer Aided
Verification, pp. 104-117, 2001.

[12] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula, “BDD Based Decompo-
sition of Logic Functions with Application to FPGA Synthesis,” in Proc.
Design Automation Conf., pp. 642-647, 1993.

[13] C. E. Leiserson and J. B. Saxe, “Optimizing Synchronous Systems,”
Journal of VLSI and Computer Systems, vol. 1, no. 1, pp. 41-67, 1983.

[14] B. Lin, H. J. Touati, and A. R. Newton, “Don’t Care Minimization of
Multi-Level Sequential Logic Networks,” in Proc. Int’l Conf. Computer-
Aided Design, pp. 414-417, 1990.

[15] I-H. Moon, J. H. Kukula, K. Ravi, and F. Somenzi, “To Split or
to Conjoin: The Question in Image Computation,” in Proc. Design
Automation Conf., pp. 23-28, 2000.

[16] C. Pixley, “A Theory and Implementation of Sequential Hardware
Equivalence,” IEEE Trans. on Computer-Aided Design, vol. 11, no. 12,
pp. 1469-1478, Dec. 1992.

[17] J. P. Roth and R. M. Karp, “Minimization over Boolean Graphs,” IBM
J. Res. Dev., pp. 227-238, 1962.

[18] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephen, R. Brayton, and A. Sangiovanni-Vincentelli, “SIS: A
System for Sequential Circuit Synthesis,” Tech. Rep. UCB/ERL M92/41,
Univ. California, Berkeley, 1992.

[19] V. Singhal, C. Pixley, R. L. Rudell, and R. K. Brayton, “The Validity
of Retiming Sequential Circuits,” in Proc. Design Automation Conf., pp.
316-321, 1995.

