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Abstract—This paper presents the BLBoA component com- design. One prevailing view is to use C/C++, or a similar
position framework for system-level archlteptural df35|gn. It has general purpose high-level programming language [2], to build
three parts: a loosely-typed component integration language cystom architecture exploration and analysis frameworks. In

(CIL); a set of C++ intellectual property (IP) component libraries;
and a set of split-level interfaces (SLIs) to link the two. A CIL the recent years, there have been several such proposals to

component interface can be mapped to many different C++ help build digital hardware systems. Examples are SystemC
component implementations. A type-inference system maps all [3], [4], SpecC [5], Ocapi [6], and others [7]-[10]. However,
weakly-typed CIL interfaces to strongly typed C++ component design composition is still tedious and reusea hocin
implementations to produce an executable architectural model. the current compile-link-test methodologies. This is because

Thus, this amounts to selecting IP_implementations according ¢4+ is a software implementation language, not hardware or
to a set of connection constraints. The SLIs are used to select, ’

adapt, and validate the implementation types. The advantage SYStEM description language. A major barrier to its adoption
of using the CIL is that the design description sizes are much for system-level design is that hardware designers need to
smaller because the runtime infrastructure automatically selects understand significant software engineering issues related to
the IP and communication implementations. The type inference “components” in software models. Often, such concerns are
facilitates changes by automatically propagating them through g jite orthogonal to hardware system architectures and design

the design structure. We show that the inference problem is NP . . . .
complete and we present a heuristic solution to the problem. issues, thus, actually adding to the time and effort in the system

We bring forth a number of issues related to the automation of design process. For instance, strong typing requirements in
reusable IP composition including type- compatibility checking, C++ place a programming burden on the system architect to
split-programming, and introspective composition environment, ensure that the component models and there interfaces are
and demonstrate their utility through design examples. properly matched. The need to explicitly specify all typing
Index Terms—Hardware/software co-design, system-on-chip, information for components and their connections makes
embedded systems, hardware description language (HDL), mod- changes difficult. This is particularly notable when integrating

eling, simulation, design reuse, interface design. predefined intellectual property (IP) components, where the
availability of different data types for ports may be restricted,
l. INTRODUCTION depending upon how the component has been modeled in

) _ ) _C++. At the same time, there is a definite need to leverage
AISING the abstraction levels at which microelectronigne advantages of programming languages to quickly and
system designs are entered and validated has a dirgg¢urately build executable system models.
impact on the design quality and design time [1]. Consequently,n this context, our goal is to reduce as much as possible the
recent research efforts in the area have been focused ondbgware engineering and C++ programming problems faced
specification methodologies and languages for system-leygl 5 system architect/integrator. To achieve this, a component
composition framework provides reasoning capabilities and
_ _ _ ~ tools that enable a system designer to compose components
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instances and connections. Using the CIL, a system architbesed design in software engineering, design specification
can declare component instances with their interface typasguages and methodologies, and advances in type resolution
partially specified. We call this capability “partial-typing” (orin programming languages. We briefly review these advances.
loose-typing). Component integration can be done with partial
types, but component execution needs full exact types. Thigis Component-Based Design and Reuse
because a CIL design is simulated through an underlying C++A component can be a piece of functionality implemented in
model (Wthh cannot be done without inStantiating the Corre%ftware or as a dedicated piece of silicon hardware or a com-
C++ objects). bination of the two. Components are units of composition and
In the BALBOA runtime environment, a type system autoreyse—be it a function, object, library, or a complete program
matically transforms the abstract CIL specification into a CO[12]. Usually, we can assume that a component will implement
rect C++ implementation. The type system is responsible fgf interface to which another component will be connected.
1) keeping track of the types of all specified components ang, interface is a “contract” between a component and its en-
2) linking partially-typed component interfaces to fully-typeqjironment, a guarantee as a point of access. When establishing
implementations. A type inference along the component Cofonnection, one component assumes that the interface of the
nections in the design architecture is used to determine whigye, component implements the expected guarantees. Compo-
C++ implementation types to assign to which CIL componepn: technology is emphasized as a key element in the develop-
interfaces. . , , , ment of complex software systems [13]. Research in software
Within the composition environment, a split-level 'nterfac%ngineering has demonstrated that the focus of the program-
(SL1) links a weakly typed interface to a strongly typed objeching work is different when building components than when
implementation. The SLI provides the component-level 'mp,l%'uilding architectures [14]. A component-based design (CBD)

menta@ion. of the 'gype system V\_/hiCh in'cludes the.following IrElpproach separates component definition from component com-
formation: 1) CIL interface type; 2) available C++ implement position. CBD is a bottom-up activity of assembling small com-

tions; and 3) valid |ntgrface-to-lmplemen_tatlon mappings With,nents focused on one task into a more complex component
respect to all connections. The SLI provides a reflective lay lith richer functionality. Reuse and parameterization have al-

yvhere all the mterface_ and |rr_1p|eme_ntat|on type mformauo\p/a s been concerns when building components. Inheritance is
is captured and accessible. This type information describes an . . o :
) " used to share interface and behavior definitions, while poly-
implements the component composition rules. The system ar- ", .~ . - .

! . L : morphism is used for defining several behaviors for the same
chitect and the type inference can query this information to un- . . .

X . nterface. However, building architectures is done structurally,

derstand exactly what types are being manipulated. We call this

the introspection capability and it is used by the type inferen rs:gzaigﬁ.t?nﬂa;gﬁ;;drz(;nrged.'r%gsr'mt onlv matching of in-
to produce a valid implementation selection. USapiity| ectu qui y Ing ot |

V%erfaces, but also an ability to compose the functionalities in a

The major contributions of this work are as follows. We ha that v imol s th d lication. The diffi
developed a component composition framework, which allow$ey that correctly implements the end application. 1he difil-
Ity of composition is due to the various ways in which the

a clear separation between component definition and architﬁ,J ) L
ture elaboration. In the BB0OA environment, the level of ab- ocks can be represented, designed, and composed. This is es-

straction is raised because the type dependencies between difiidlly true when considering microelectronic system mod-
ponents are weaker when using the CIL than when using C-&/ng frameworks. The semantics of connections change be-
The type inference lets system architects concentrate on ard¥€en all levels of abstractions. At high levels, the amount of
tectural issues, rather than worrying about matching C++ typ&9mputation encapsulated behind an interface is much greater
This paper is organized as follows. In Section II, we revielf@n at lower levels, but the structural design scope is much
definitions, background, and related work. Section Il describ&§aller. Different levels of abstraction can often be composed
the BALBOA component composition environment, its usaga!'Sing protocol modules. The composability of models can be de-
and implementation. Section IV presents the syntax and usagdy#d long a number of modeling dimensions, which describe
the CIL and the BLBOA interface description language (BIDL).What details are captured, to what level of accuracy, and how
Section V describes the theory and implementation of the tyft€ir modeling semantics are implemented (which syntax/con-
abstraction and inference systems. In Section VI, we show h&! flow) [15].
the CIL is used by a system architect as a front-end language.
present an implementation of a moderately complex design
an adaptive memory platform, called AMRM [11], in the envi- System-level and hardware specification languages are active
ronment and we discuss the results. We conclude in Section ¥teas of research. Most approaches are based on programming
along with the description of the future work. language and raise the level of abstraction above register transfer
level (RTL) into either the architectural and behavioral spaces
design [16]—-[19]. SpecC [5] and SystemC [4] are approaches
that are based on the C/C++ programming languages. One of the
The target of our work is microelectronic systems modelingroblems is that many programming decisions and syntactical
for integrated design implementations. This integration (edetails that have to be addressed in C/C++ are independent of
pecially for single chip implementations) requires completie system architecture model. Hardware designers and system
system-level simulations and verification of the systemsitegrators need not be concerned with inheritance, virtual func-
Accordingly, this work is based on advances in componetibn, genericity, and other tedious C++ specific constructs used

%{feSystem-Level Design and Architectures

Il. DEFINITIONS, BACKGROUND, AND RELATED WORK
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in module definition. Rather they should focus on characterier components definitions. This is the approach used with Sys-
tics specific to hardware such as bit width, propagation delagemC and Ocapi. In these cases, the code for setup and simu-
regularity, etc. lation is interleaved with the code for component definitions,
There has been recent research about using component-bésesl making maintenance and reuse difficult. The second ap-
methodologies for system-level design. The results have shopnoach is to use a graphical capture tool with a notation of blocks
significant reductions in design size and time required for autand arrows (such as UML [26]) as a front end for code gener-
matic communication refinement. Approaches by Cesetrad.  ation. The third approach is to use an architecture description
[20] and by researchers working on the Coral [21] framewoitknguage (ADL) [27], which orthogonolize component defini-
start from a virtual architecture consisting of virtual componetion from system architecture composition [28]. ADLs are often
and virtual connections configured with sets of parameters.d®main-specific languages used to build an abstract model of a
microarchitecture implementation is generated by configuriraystem and analyze it for schedulability, reliability, deadlock de-
the interface logic with respect to the configuration paraméections, etc. For system level-designs, ADLs have long focused
ters. This can be done in two ways. The first one is comparh specialized tasks [29] such as processor descriptions [30].
ison and matching of interface pin properties to find connec- Software implementations in C/C++/Java/Ada can be gener-
tion compatibilities and exact matches. Compatible pins can ed from several ADL models [31]. Code generation is useful
connected with small interface logic like multiplexers, whilecause platform-independent architectural descriptions can be
pins with exact matches can be connected directly. The seceithlyzed and targeted to specific machine. In this kind of ADL,
technique is by channel refinement. A component will refine @mponent composition is usually done statically at the design
read()/write() interface using method calls to communicate witiime through code generation. Examples are Giotto [32] and
a read()/write() interface implementing signal-level activity foPecos [33]. There are other ADLs, such as Weaves [34], that
bus transactions. The interface for the component will stay thg not use code generation, but dynamic composition, where
same, albeit, it will take more cycle to perform a transactiogomponents acquire references to each other at runtime. The
However, the interface will be connected to a bus instead @(ﬂvantage of dynamic composition over static composition is
being connected directly to the recipient of the communicatiofhat the object relationships defined at runtime have weaker de-
This approach is sometimes called “transaction-level modelingéndencies because they can be redirected, altered, and masked
because transactions are decomposed from one event betwBgiamically increasing flexibility and reuse [35].
components to many events on the bus. Both CBD strategieShere is another class of ADLs which are based on XML.
are platform-based design (PBD) approaches [22]. PBD is oftgRese are declarative languages used for data exchange between
defined as the creation of a stable core-based or bus-based afghis The MoML [36] XML dialect is used for describing and
tecture that can be rapidly extended and customized for a raRgsring Ptolemy models. MoML incorporates system-level se-
of applications and quickly delivered to the customer for depantics to capture system architectures as actor topologies, hi-
ployment. This requires a “standard” architecture or protocglarchies and relations. Such ADLs are used by programs be-
to which components are interfaced. PBD provides structuredg;se they are very easy to parse and generate. However, they
pure CBD through architectural constraints on system-on-Chipe hard to read and usually not used by designers, as opposed
(SOC) implementations. In other words, it provides the archiy the other ADLs enumerated above.
Fectural template, and wrappers can be pﬁcked from libraries tnteroperability between design environments using ADLS
implement the necessary protocols to which a component mpgh pe difficult [15] because the ADLs often cover only some
conform. _ specific semantics of the “middleware”—the underlying com-
Another well-known component framework is Ptolemy [23]ytation model. In other words, an ADL that does not express

which is targeted for system simulation and embedded SOfit details of a design can be difficult to interoperate.
ware design. In Ptolemy, components are executed according

to different models of computation. Components with their own
thread of control are called “actors.” In an execution, the acto@s Split-Programming Techniques and Script Languages
interact according to different models of computation (called
“domains”). A model of computation is a collection of rules Scripting is used to assemble components into applications
describing patterns for component executions and communigdere quick prototyping and flexibility are required. Scripting
tions. Examples are data flow graphs, finite state machines, p&gf been used for many years for component integration in com-
nets, etc. Domain-specific “directors” resolve the domain-d@uter-aided design frameworks as a sort of a module intercon-
pendent interactions and coordinate the actors from differgiction language. Script languages encapsulate APIs [37] be-
domains. In Ptolemy, the different models of computation [241ind an interpreted layer to reduce type dependencies. Inthe Tcl
are described using state machine [25]. The compatibility 8€ripting language, variables have loose types because they can
two domains is determined by the output of the composition 8fore any value that can be formatted back and forth to a string.
their state machines. If they are compatible, the output will be aSplit-level programming refers to architectural system
common state machine coordinating both domains. integration and component programming in two different levels
All these approaches use components libraries, but they diffbat are strongly connected by a matching class hierarchy and
in the way the components are assembled. We identified threethods [37]. Split-level programming relieves the system
strategies for component integration. The first one is to corangineers of programming artifacts and software engineering
pose components directly in the programming language usszhcerns specific to component implementation, and lets them
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focus on system architecture. The key is to have the class hi ) Component Integration Environment
archies in multiple programming environments with “hooks’  25em . ' . TR
that enable their combined manipulation [38]. The networ = Interpreter )
S|mulaltor. (NS) system uses a spI|t.—progr_amm|ng model bui <<uses>>
on scripting to create a network simulation environment. | e
NS, there are two layers of programming facilities: one fo (s \-3%; Design }
building network components and the other for composing ar MOde‘
simulating them. C++ is used for defining components the |

. . . . [rols>>
are used in an object Tcl (OTcl)-based scripting language <<uses>> N
build and simulate a network topology model. The C++ classg — .
that implement network components inherit from an OTcl basg%%%%r;enr + C++/BIDL P {DE Simulator ;
class that provides the hooks to be visible in the scripting lay: Libraries
[39]. —

Setting up a scripting environment to manipulate a C++ ob-
ject can be cumbersome. A popular and efficient way to dofilg. 1. BaLBOA environment has two user roles: the system architect and the
is by using a “wrapper generator” such as Swig. The Swig tog{™Ponentlibrary designer.
[40], [41] generates a wrapper around a C++ object to imple-
ments the script commands to instantiate/delete objects, acatissigning an environment that works with such preexisting
attributes, and invoke methods. The procedure is easy and dffiraries, one cannot assume the port types to fall in a lossless
cient and the wrapper is transparent to the script user. Howevserarchy.
in most CBD environments, the components are not simple ob4n BALBOA, design components in the CIL are similar to
jects, but they have complex internal architectures and behaviptslemy actors. However, there are a few important differences.
[42]. Swig provides access to the C++ object, but it is not poFirst, the discrete event computation model of Ptolemy is the
sible to configure and change the wrapper. Furthermore, Swelgsest to the model of computation in whiclBoA design
does not provide explicit support for a type system, runtime typeodels are simulated. SystemC and other C++-library-based
construction, and type introspection. Also, there are a numbembdeling libraries implement the discrete event simulation
limitations when considering subtyping strategies, such as tesemantics, and the components have this simulation kernel
plates, parameterization, and inheritance. In the context of tingegrated into them. It is also possible to replace the prebuilt
BALBOA work, the partial-typing abstraction and type inferencsimulation kernel with implementation of other kernels that

requires access to the wrapper and to a type system. support other models of computation. However, our current
focus is on enabling system designers with SystemC-like
D. Type Systems model integration. Second, our approach to typing is to enable

Most of the current system-level languages are stronghpmposition of existing C++ based IP-libraries, which are
typed, with the exception of the Ptolemy framework which hagplemented with arbitrary type systems of C++ and templated
an elaborate type system [43]. Ptolemy provides polymorpkipes.
actors, whose ports can have polymorphic types, i.e., they can
be parameterized to take different combination of data types. IIl. BALBOA—COMPOSITION ENVIRONMENT
Static type checking can determine the compatibility of a set i i )
of component interconnections. The polymorphism of actors | '€ BALBOA component-based design environment is used
is based on a lossless type hierarchy that forms a lattice. g3 puild _system-leyel models with an archltectural perspectlye.
instance, an integer type can be coerced losslessly into a doudié €nvironment implements a split-programming model with
because double is higher in partial order than integer. TH8 Imperative CIL. _ _ _
means that the value range of a double data type includes thd N€ BALBOA environment is used for the following two dif-
value range of an integer data type. This value range inclusitiient tasksas illustrated in Fig. 1.
property is used to put the data types in a lattice. Over this 1) Architecture CompOSition: The System architect builds
lattice, the static type resolution can be reduced to a solution the system architecture by instantiating, connecting,
of horn-clauses [44]. Thus, it is solved in linear time [43] by a ~ configuring, and establishing relationships between
fixed-point computation, which is a common way of computing components.
type inference [45]. However, in order to be able to solve the 2) Component definition: The library designer defines and
type inference this way, Ptolemy requires the following. First, ~ implements components to be used in the environment.
third-party actors need to conform to the polymorphic actor The design of an architecture is done by a system architect
design principles—they must derive from a Ptolemy class who can focus on module instantiation and interconnection by
be wrapped in another Ptolemy actor. Second, port types ameng the architectural constructs in the CIL. The design of li-
taken from the Ptolemy type library which conform to the typbrary components has to be done by a designer who understands
lattice structure. Unfortunately, for many silicon IP components++. The library designer also needs to export suitable compo-
(including legacy components), there are constraints on thent interface declarations (which may include behavioral in-
availability of specific port types, either due to hardware desidgarface, not discussed in this paper), using a specific interface
constraints or programming limitations. As a result, whedescription language.
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---------- b e o Fig. 4. Generic wrapping dependencies and strategies. (a) Strong compile-

) o . . . time inheritance dependency. (b) Weaker runtime composition dependency with
Fig. 2. Layering in the BLBOA environment: the SLI implements the typing introspection.

abstraction and the type introspection capabilities.
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it is possible to reduce the type dependencies of the strongly
typed compiled C++ layer, through careful type management at

In BALBOA, the languages and the runtime environment atlee wrapper level. The next subsection explains how the usage

layered. Fig. 2 shows the layers; their descriptions is as followsf.an SLI reduces the type dependencies by using delegation.

1) The architecture definition layer is where architectures )
are built using the CIL. Itis an interpreted language bas& TYP€ Dependencies and Interfaces
on OTcl [46] that implements a component model for The type abstraction in BBOA is based on a program-
instantiations, configurations, and connections. At thiming tradeoff between inheritance and aggregation [35]. It
level, the type of a component is abstracted and a tyfecommon to use inheritance to give design components the
management system is used to infer and instantiate tfegjuired interface to be manipulated in an environment. In
exact types required by the simulation model. We refer ®ALBOA, we use aggregation (through the SLIs) because it
this layer as the interpreted or scripting layer. The CIL iweakens the type dependencies between a component and its
described in detail in Section IV. integration environment.

2) The component definition layer is the bottom layer, Letus use an example to explain this. Consider that, if we de-
where C++ components are stored in IP libraries. Class#®e a class nameddder using the SystemcC library, we have
in this layer need not be derived from a specifislBoA  to inherit a class namesc _.module that implements the in-
C++ interface. Ideally, this layer can accommodate angrface to the simulation kernel. This is illustrated in Fig. 3(a)
C++ IP models in a range of libraries without affectingvith an inheritance relationship. The inheritance dependency is
the implementation of the upper layers. This layer is alspecified in the class declaration and is resolved and checked
called the compiled layer. at compile time. When instantiating @&dder to the environ-

3) The intermediate wrapper layer is the link between the ment, the object is alsost _-module because it has both inter-
interpreted and the compiled layer. Each CIL componefaces. This property of inheritance relationships is generically
is shadowed by a C++ compiled object that is containelustrated in Fig. 4(a), where the instance of the wrapper and
and manipulated through an SLI wrapper. The SLI is the instance of the component are the same. The flipside is that
hook class that implements the reflection and the intreéhanging the interface of the wrapper also changes the inter-
spection capabilities [47] of the CIL. face of the component. Now, consider that we want to use this

Reflection is the capability of the SLI to read or write the&SystemCAdder in an OTcl environment. For this, it needs to

attributes, and to invoke the methods of the compiled objeanplement thelTclObject  interface; therefore, we introduce
Introspection is the capability of the CIL language to query thtbe second inheritance dependency in Fig. 3(b).

reflected information of a component and to understand its ownThe aggregation alternative is showed in Fig. 4(b). In this
structure. The information being reflected and introspectedse, the instances of the wrapper and of the component are two
is specified using the BBoA interface definition language different objects with distinct identities. In theaBBoA envi-
(BIDL) compiler. This includes the interface types, methoconment, we adopted this strategy. An example is illustrated in
signatures, as well as behavioral properties which may B&. 3(c), where adder class inherits from the SystemC base
usable by the environment for checking compatibility betweeatlass for the concurrency and hierarchy semantics, and an SLI
components. The BIDL is described in Section IV. inherits from theTclObject  class for architecture composi-

The SLlIs implement the type abstraction and inference tion and component assembly semantics. The SLIis the wrapper

keep the CIL description focused on component instantiationbat aggregates the component and understands its semantics
compositions and connections. Typing abstraction means tfthat it manipulates a SystemC component).

A. Languages and Runtime Layering
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Composition Commands — CIL Commands
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Interpreted OTcl
class with variables
and methods

Type
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Fig. 5. Runtime environment structure. Each component has a SLI wrappe
interpret CIL script commands.

h 4

Unlike other implementations where a component inherits| Type Internal
class interface implementing the wrapper behavior, in our € system compiled L >
vironment, the SLI aggregates the design component. It is ¢ information object C++ Objects
liberately designed to be different from the interface defin Interactions

tion and implementation notions in Java. It often happens the
two components providing the same functionality are impI%Tg_ 6.
mented with different interfaces from different class libraries.
However, we may want to use both components in the envirotn—
ment, for instance, if they provide different abstractions. Reu
by class interface precedes the design of the class, while re
with the composition succeeds the design of the class [35]. In . . : ; . . )

) . o ast compiled simulation. When simulation speed is notanissue,
other words, instead of adapting the IP, it is better to adapt tLe. . o
wrapper using the CIL can be very expressive for validation and debug-

Note that the SLI wrapper must not be confused with a bus 919 The CIL p_rowdes a number of stimuli generator_s, moni-
tors, and assertion constructs that can be used for validation.

a protocol wrapper. These are used for translating or adapting a
protocol into another one. In our case, the focus is on the issugypf
separating the semantics of the environment from the semantics
of the design, and to use the SLI for typing and connectivity !N the BALBOA framework, a component refers to all the

abstraction. Both are related because connectivity abstractighers on the right side of Fig. 2. A CIL component is an
is indeed a part of the process of communication refinemefdTcl class with methods and attributes that are shadowed

which can use bus wrappers. by all the compiled objects inside the shaded box in Fig. 6.

In this case, the goal is to investigate type abstraction apd€ SLI manages the type information and implements the
interoperability by using object composition instead of clad8irospective and reflective capabilities. The type system reifies
inheritance. The delegation provides a mechanism whépgtainformation, thatbeing the C++ type of the internal design
compositional typing issues can be resolved dynamically aRBiect (SystemC) and its nonfunctional properties. The type
automatically by the environment (instead of being resolved &fapter bridge (TAB) is the only object that provides direct

Internal architecture of adBBOA component.

es. The dashed lines in Fig. 5 are an illustration of the con-
rol flow from the discrete event simulator to the components.
o?hing prevents mixing slow interpreted commands with the

Internal Architecture of a Component

compile-time). access to the internal compiled object. The SLI manipulates
the internal object through the TAB interface. Both the SLI and
C. More on the Runtime Structure the TAB will access the type system information. The SLI can

Fig. 5 shows the relations between the interpreter, the SLY\éork W.'th partial type information, while the TAB can only
rk with the exact full type.

and the components at runtime. There are four compiled C . . .

design components: C1, C2, C3, and a compiled discrete even'%‘S described earlller, a CIL m'Ferface fora f:omponent can be
simulation kernel component, e.g., SystemC kernel. Every Comgpped to many d|ﬁerept CHt |mpIemen.t§1t|ons. For each one
ponent has an SLI. Component C2 is composed of compon((a)nlfhese possible mappings, a TAB specific to _each CH+ Wpe
C3, butthe SLIs are not composed. The arrows representthe\’(\e”r]-be created by Fhe BIDL compiler. Th? type inference will
vironment control flow. The full lines are the interpreted contro elect the appropriate TAB from a table in the SLI before the

flow, while the dashed lines are the compiled control flow. USL?_IIocatmn of the internal design object.

ally, the interpreted control flow will be a set of composition
commands that will be forwarded to the SLIs. The compiled
control flow is usually the execution of the simulation. Note In this section, we present the languages used specifically
that the simulation semantics are part of the compiled continlBALBOA. IP components are implemented with C++ and, in
flow, since the simulation kernel interacts directly with comtheory, all C++ classes can be used in the framework. We will
piled components. The simulation semantics are describeddiscuss the two other languages, CIL to assemble system archi-
BIDL and loaded into the CIL type system as a set of componeetture and BIDL to describe component interfaces.

IV. LANGUAGES IN BALBOA
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clockl set NUMBER_OF_PORTS 4X4
"""" Pkt_Switch pkt_switch -number_of_ports \
: : : $SNUMBER_OF_PORTS

pkt_in0 . . . set PACKET_TYPE Pkt
s1 s2 s3 184 085 .sn Signal pkt_in0 -subtypes {$PACKET_TYPE)
v v v Clock clockl -period 75 -duty_cycle 0.5

SERIRLTLE Clock clock2 -period 30 -duty_cycle 0.5
E R . Clock clock3 -period 15 -duty_cycle 0.5

connect pkt_switch.CLK to clock2

clock? A for (set i 0) ($i<$NUMBER_OF_PORTS} {incr i)
T : if {$i>0} {
Sender s$i -id $i
. . ' Signal pkt_in$i
SENEEEEE e connect s$i.CLK to clockl
v y v }
V V V Receiver r$i -id $i
ird xS L Im; Signal pkt_out$i
clock3 : : : connect s$i.pkt_out to pkt_in$i
........ connect r$i.pkt_in to pkt_out$i
connect r$i.CLK to clock3
Fig. 7. Packet Switch CIL Example. connect pkt_switch.in$i to pkt_in$i
connect pkt_switch.out$i to pkt_out$i
}
A. CIL Fig. 8. CIL listing for a four-ports packet switch composition.

The CIL is used to build system architectures by instantiating
and composing components. The CIL uses a type system to abl) Control-flow parameterization for regular structures
stract component types. First, we illustrate how the CILisused ~ The CIL imperative control structures are used to build
with a small example, and then show the abstract syntax for the ~ the system architecture. In this example, the design struc-

language. ture is parametrized with respect to the number of ports.

1) Simple Packet Switch With the ClISystem models built Thefor loop instantiates and connects sender and re-
using programming languages can be parameterized in various ~ceiver components and surrounding signals for every port
ways [48]. However, it is oftead hocand different from de- of the switch.

sign to design. The CIL leverages the parameterization capabili-2) Name expansion for regular structures
ties of programming languages by clearly defining three specific ~ Component names are expanded by the interpreter with
ways to do it. To illustrate this, let us consider the example of  interpreted variable values. Names for signals, senders,
a very simple packet switch system shown in Fig. 7. It consists ~ and receivers are expanded such likgkt _in$i  vari-
of packet senders, receiversr, and a switchpkt _switch . ablei is replaced with the value of the iteration counter
The configurable parameters of the switch are the number of to pkt _inO , pkt _inl , etc.
ports and the type of packets processed. A4 configuration 3) Type inference
is shown in the figure. There is no sender connected to the first ~ Types are assigned to partially specified components. The
port of the switch because we assume another component will components and connections are introspected by the en-
be connected there. vironment and the SLIs selects a full type. In this ex-
Fig. 8 shows the CIL listing for a switch-topology composi- ~ ample, the components will be picked by the environ-
tion. We first start by setting a variable for the number of ports ~ mentto process thekt data type for the switch, signals,
to 4 x 4, and then instantiate the switch component with that ~ senders, and receivers.
parameter. The third line sets a variablePkt for the type of The compactness of the CIL listing is due to the parame-
packets processed and then instantiates a signal with that dehbization capabilities that enable a separation of concerns of
type. The next three lines instantiate clocks for the senders, thipe compatibility from concerns of composition of the archi-
switch, and the receivers. The “for” loop is parameterized to itectural structure. Using control statements and hame comple-
stantiate packet senders and receivers, and connect them tditirecan be useful to complete component type names as well as
input and output ports of the switch. No signals in the descripistance names. Unlike code-generation approaches, it also has
tion have their data type specified. When connected, the sthe advantage of avoiding recompilation cycles when changing
nals’ SLI will pick the appropriate typePkt ) among all pos- parameter values. The same topology can also be built using
sible implementation types in the library. The same processasly C++ with all subtypes and parameters explicitly specified.
done for the packet switch, where, in this case, it will pick th€his yields longer descriptions that are less flexible as parame-
implementation with four ports that processes ¢ packet ters change: 1) may need to be done throughout the design and
format. The types for the senders and receivers will also be @) necessitate recompilation. An XML-based approach would
ferred to transmit and process tBkt types. Itis required that also have yielded a lengthy description.
these types be available in the libraries for the SLI to instantiateThe CIL is like an imperative ADL, where checks are done
them. Because of the regularity of the packet switch structure the composition as the design is constructed. A difference
with respect to the number of ports and their types, the usagem most ADLs is that the CIL describes architectures without
of the CIL provides the following advantages for flexibility andexplicitly enumerating every component, connection, or type in
abstraction. the topology. It is actually very close to a domain-specific lan-
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CIL — Tcl stmts|OTcl stmts|cil_commands

cil_commands — design_database_commands
| type_database_commands
| component_instantiation_commands
| component_query_cmd
| component_subtyping_commands
| port_binding_commands
| pointer_linking_commands

design_database_commands — design.db

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 12, DECEMBER 2003

( query (delayed_cmds|toplevels|env.cmds)

| delayed-cmds (component_instance_name)?

| run.delayed-cmds_for_component (component.instance_name)? )

type_database_commands — type_db
(list_all.possible_types

| type_inference policy (CONTINUOUS|ONCE)?
| internal_obj_allocation policy (LAZY|OPPORTUNISTIC)?)

component_type_name — Component | Signal | Port | Signal | <STRING>

component._instance_name — (component_instance_name.)*<STRING>

component._instantiation_command — component_type_name component.instance_name (parameters)*

component_query_commands —

component_instance_name query (type|compiled._typelkindlattributes|methods|env_cmds)

component_subtyping_commands —
component_instance_name get_subtypes

| component_instance_name set_subtypes (KTYPE>)+
| component.instance_name get_subtype <INTEGER>
| component_instance_name set_subtype <INTEGER> <TYPE>

port_binding_commands — bind port_instance to signal_instance

pointer_linking_.commands — 1ink component_instance_name.pointer_.name to component_instance_name

Fig. 9. Pseudo-BNF grammar of the CIL.

guage for system-level design. This shortens description sizese
and helps the designer manage the complexity of describing
architectures.

2) Abstract Syntax in a Pseudo BNF Forrkig. 9 presents
the abstract syntax of the CIL language. There are seven kindse
of commands in the CIL. Let us enumerate and describe them.
The first one is for the design database that keeps track of the
components in the runtime environment. The second one is for
the type database that is the heart of the type system. The type
database can be queried to list all available types in the system,
and to get/set the type inference options and the internal objecte
allocation policies.

The third kind of command is to instantiate components. Each
component instance has a type name that is not necessarily the
same as the C++ type of the internal object. They may be very
generic types such &ignal , Port , Entity etc. Compo-
nents can be composed using the dot “.” operator. .

The fourth kind of command is used for the introspection
capabilities that are implemented throughuwery method in
the SLI of every component. The environment uses the intro- *
spection capabilities to find the component characteristics, at-
tributes, or methods. Introspecting them further finds out the
architecture and the composition possibilities according to pa-

The exact compiled type of the internal object. This can
be different from the interpreted type because an SLI can
aggregate many different C++ types for the same compo-
nent. This corresponds to the type of the TAB.

The kind of component. This is a characterization of the
SLI orthogonal to its type. This is used as an aspect to
group components that do not share the same component
interface or implementation type. For instanc8&jgnal

kind is used to group different C++ implementations of
signal type under the same “kind.”

The list of all accessible design attributes for the compo-
nentin the interpreted domain. These include aggregation,
associations (pointers), and both interpreted and reflected
variables. Other attributes might be present in the com-
piled domain; however, they are not visible if they are not
reflected.

The list of all design methods and commands that are vis-
ible in the interpreted domain for the component type.
These include both interpreted and reflected methods.
The list of all environment commands that can be
called for that component. These interpreted or reflected
methods have no designh modeling semantics, but only a
meaning for the environment and supporting tools.

rameterizable internal object models. The following informagia that OTcl structures can be introspected byrife com-

tion can be queried:

mands to query a class for its list of instances, an object for its

» The interpreted type of the component- the OTcl type. type, list of attributes, and list of methods.
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BIDL — package_description
package_description — package name { (component_declarations)* }

component_declarations — (component|class) name {
(kind_declaration)?
(subtyping_declaration)?
(subtyping_definition)*
(attribute_declaration)*
(method_declaration)*
(class_for_internal _obj_declaration)* }

kind_declaration — kind name

subtyping_declaration — declare_subtypes { (subtype_type name)+ }

subtyping_definition — define_subtypes { (subtype_value)+ }

attribute_declaration — <TYPE> name

method_declaration — <TYPE> name ((<TYPE> name)* )
class_for_internal_obj_declaration — use_class name for_subtypes { (subtype.value)+ }
subtype_type — component|class|<TYPE>

subtype_value — <TYPE> | <VALUE>

Fig. 10. Pseudo-BNF for an abstract syntax of the BIDL.

The fifth kind of commands is for subtyping. Type parameexpansions, it generates a custom type system extension, spe-
ters is what enables partial typing in the CIL. For example, dfic to every component type. These extensions are generated
Port type can be subtyped withlmol parameter. When all in C++, compiled, and placed into IP component libraries. As
parameters are set, the CIL-to-C++ mapping can be done dhd type theory is developed, the BIDL syntax evolves as well,
validated. Note that “subtyping” here means parameterizatidyut this will be discussed in a future paper.

In CIL, it is possible to list and set all subtypes parameters for Fig. 10 shows the abstract grammar of the BIDL language.
a component. Component declarations can be done either in C++ or by using

The sixth and seventh kind of commands in the CIL are to es-neutral on the component definition language, such as the
tablish connections. Ports and signals can be bound and point@&RBA IDL. Kind, subtypes, attributes, methods, and class
can be linked to objects by thend andlink procedures, re- mappings are declared in the BIDL.
spectively. When using connection commands at the interpreted
layer, type management is done by the SLlIs. For example, when V. TYPE RESOLUTION IN BALBOA
a pointer is set to a component through li/k _to method, ) o )
the runtime environment checks that the target component is’of Simple Parameterization Example: Fast Fourier Transform
the right type for the association. For ports, the runtime endEFT)
ronment will make sure that the transmitted data types are theFig. 11 shows the C++ code for an FFT-class interface, with

same. the real and imaginary inputs and outputs ports, and a type
parameter for the data widths. Fig. 12 shows a diagram of a
B. BIDL sampling system using this FFT module. The connections be-

tween components are abstract, meaning that the user does not
The BIDL is used to describe the interfaces, type, subtypdmve to specify their types. In theaABBOA environment, a de-

parameters, and characteristics of the internal object, and to “signer can query the libraries for available FFT implementation
port it” to the interpreted domain. The BIDL compiler genertypes and choose one. The type inference will propagate the
ates C++ code to create and configure the SLI and type adaptdresen parameter to all components that are connected to the
bridges. The BIDL was first inspired by the CORBA IDL [49]FFT. However, these other components need to have implemen-
and has been extended and customized for the requirementsatibns for the chosen type parameter. If not, the type propaga-
system-level modeling. The BIDL was developed incrementaltion will backtrack and request another different starting param-
as keywords were added to C++ class declarations. For examptey. For instance, the downsampler may not have an implemen-
the component designer can copy the header of a class int@tion available in the library for a specific data width used as
BIDL description, remove the parts that should be hidden fromput to the FFT. In this example, backtracking is not difficult,
the interpreted domain and add keywords for subtyping, kirmlit as the design grows in size, it is better that the system auto-
and available instantiatable subtypes information. The BlDhatically handles this type propagation. In this section, we will
compiler translates and expands the description of componerplain how the CIL uses the type system to abstract C++ im-
types to a format that the interpreter can understand. The Blplementation types. We first consider small examples and then
has a role similar to the CPP preprocessor. Instead of madevelop the type theory along the data type interface dimension.
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template<class DATATYPE TABLE |
class . FFT { TYPE AVAILABILITY TABLE: ALL VALID COMBINATIONS OF TYPE PARAMETER
sc_in_clk CLK; . V/ALUES FOR IMPLEMENTATIONS OF A CIL | NTERFACE
sc_in<bool> data_valid;
sc_in<bool> data_ack; Tni | Ina Out; | Outz
sc_out<bool> data_req;
sc_out<bool> data_ready; float float | float bool
sc_in<DATATYPE> in_real; in8 | int8 | int8 bool
sc_in<DATATYPE> in_imag; intl6 | intl 6 | intl6 bool
sc_out<DATATYPE> out_real; int32 gnt32 }nt32 bool
sc_out<DATATYPE> out_imag; int64 | int64 | int64 bool
}i bool | bool | bool bool

Fig. 11. Interface type declaration code for a FFT C++ component.
a compiled type. In the adder example, at the interpreter level,
all the ports of the adder are of partial “Port” type. Based on
the containment hierarchy and the connections to other compo-
nents, type inference will associate specific C++ data types to
each of the ports.
The following notation is used to illustrate the algorithms for
incremental type inference. L&t be a set of all concrete C++
T et data types, leP be a set of ports, and I&t be a set of signals
oy sub-types part in the design created in the CIL. In the interpreted layer, ports
and signals are abstract types, but in the compiled layer, they
Fig. 12. Sample topology for a sampling and transformation system. The Ffyst be mapped to a concrete typelinEach port or signal

is virtually connected to a sampler and a display. The virtual connection i . . . .
implemented with th&FT C++ class of Fig. 11. i§ associated with a data type via mappingjs, anddt;, such

thatdt,: P — T U {Ll}, anddts;: S — T U {L}. A port
is untyped ifp € P: dt,(p) = L, and a signal is untyped if
s € S:dts(S) = L, whereL denotes the fact that no concrete
type has been specified or inferred yet. When the type inference
Data-type parameterization in C++ is often done usirig done,dt, anddt;, must not map any element tb. If that
templates. In hardware design, this is especially convenientdannot be achieved, the type-inference algorithm must detect
express designs with various data widths. On compilation,aad report this condition, and if possible back track to search
template type is turned into a concrete C++ type by parameter a new solution.
passing. This is useful in instantiating components whose2) Components:in the CIL, a component has a set of
interface and internal data types can be changed dependogts denoted by ports) = p.,,pess---,Pe, € P, where
on the design requirements. For instance, we may have rais the number of ports. Componeatis said to be “poly-
adder with various implementations in the libraries. It can hawveorphic,” if there are many compiled versionscofvith ports
implementations for integers, float, double, 4, 8, and 16 lof different types. The functionlt, has a limited choice in
vectors and so on. When building architectural models, speciéissigningp,, , pc,, - - - , P, 10 the available compiled types.
port types is a function of the architecture which may changgne can view this as a choice of assignment to a vector of ports
as the design evolves. Ideally, one would like to instantiat®., , p, .- .-, p., >, from one of the possible rows from a type
the component without specifying all the type parameterayailability table of ordered rows, C T'x T'x T x --- x T,
and resolve the detailed implementations automatically. Feach row corresponding to a compiled versiorcofhe rows
example, the system designer might just want to instantiate @nthe table are filled through the BIDL description. Signals
adder, without specifying the input or output types. are used to link ports and are parameterized by the data type
The library component designer must specify what differettiey carry. A signal must be assigned the same data type as the
C++ implementation types are available for this interfageorts it is connected to. Hence, signals are constraints in the
through a BIDL description. In the case of an adder, he/spert assignment problem.
must specify that it has been implemented for float, 8, 16, and3) Simple Matching ExampleLet us consider the simple
32 bit integers and so on. This information exported througtdder example with 4 portsin,,in,, as input ports and
BIDL is stored in the SLIs. The introspection facility can let theut, outs as output ports. The availability of library imple-
system architect know what type parameter values are availatvlentation of the adder is illustrated in the type availability
for a component instance. The architect may or may not chodable of Table I. The table list all available combination of type
values at instantiation. When the designer chooses to instantjgaeameter values, each row corresponding to a specific C++
a component without specifying the types for each port, we sagplementation type.
that the component is partially-typed. Let us consider the following scenario. An adder is declared
1) Split-Typing: In the BALBOA environment, a partial type in the CIL layer without any port types, theh, (p) is unde-
is also viewed as “split type” because it is managed through tfieed for all portsp. As types are propagated through the de-
SLI. A component has one type at the interpretive layer and csign, it turns out thaitn, gets instantiated to bool. Now, the type
have multiple possible implementation types at the compiledanagement system will immediately recognize that all imple-
level. In other words, a component has an interpreted type améntation in the table have this parameter value, so no con-

Display

Source %ﬁL% Downsampler

B. Data-Type Matching Problem
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clusion is available. Let us assume next that gets typed to D. Heuristics for BLBOAType Inference
int1¢. The SLI can now match the roin;, ing, outy,outs) =
(intyg, int16,1int16, bool). Then, it will be inferred thain, and
out; should also be of typiit;¢. At this point, any signal that is
connected tén, andout; will have the type propagated to the
asintqg. This means thaﬂtp(lnl) B int167dtp(in2) = intqg,
anddtp(outl) = intlﬁ).

There are multiple ways of solving these problems, including
dynamic programming, local search [51], etc. A sequence of
natural join operations may take a long time, since the different
mTCs have different sizes. The order in which the joins are com-

puted can be optimized using dynamic programming; hence, we

will follow that approach. However, since we build models in-

crementally, when a new componentis added and connected, the
) . ) . new required join may not be in the order that the dynamic pro-

Given a design with a sdt of ports, a sets of signals, and gramming would have yielded. In the current implementation
the partition of P into k disjoint sets, wheré is the number ¢ the BaiBOA environment, the runtime type inference mech-
of components and the partition ¢t is disjoint because, as 5nism may be summarized as follows. We first verify compat-
components do not share ports, the type inference problggfiiv of types when connections are set between two compo-
is as follows. For each componen with its port vector nenis. \We join the type availability tables of both components,
ey s Pes - -+ 5 Pe,,>» ASSIGN @ row from its type availability tablergnaming the connected ports to the same name if necessary. If
T, such that if there is a signal € .S, which connects & port {he join returns empty, the components are not compatible: if
Pe; In component to another porp,; of a component, then it is not empty, the system will remember the result. Since the
the type assigned tp., and topy;, must be the same. Thisg) | gjiocates the component, it can decide to delay the alloca-
restriction makes the problem complex, and we show here thaf, ynil the type parameterization is resolved. Now, consid-
the problem is NP complete. . _ ering this join result as the type availability table for this pair of

Theorem 5.1:The BaLBOA type inference problem is NP compnonents, we then select a new component that is connected

Complete.. _ _ o to one of these, and apply the procedure.
Proof: Given a type assignment for all the ports, itis €asy |t the result of the final join is empty, the architecture de-

to check in polynomial time that the assignments in the tyR&iheq in the CIL cannot be instantiated with the available im-
tables are correct, and the ports. connectgd via signals haveﬁré‘?nentations. If it is singleton, then we have found a unique
same type. Hence, the problem is clearly in NP. combination of type parameters that can be instantiated. If the

For the NP-hardness proof, we reduce the problem g isin yields multiple rows, we have to choose a type param-
one-in-three monotone 3SAT [50], to theBBOA type-infer- oo combination from the final table.

ence problem. 3SAT is the following problem. Given a Bet Fig. 13 shows a simplified version of the type-inference

of Boolean variables and a collection of disjunctive clausgs, istic TheCheckTypindheuristic chooses two components

overU, such that each clause is a disjunction of exactly thrgga e connected, both with small type availability table sizes.
literals, find if there is a truth assignment of the variable&’in It does a join locally between the two components to assess
such that all of the clauses are satisfied. One-in-three :SSAT,di]%‘t the types are compatible. While the designer is using

a special case of 3SAT problem, where the truth assignmenttl% CIL, this join is used to propagate type parameters as the

U has the restriction that if; andz; are two literals appearing 5 chjtecture is built. All connection information is passed to the
in the same clause, then both cannot be assigned the truth v%-

C. Formulation of the BLBOAType Inference Problem

¢ it has the furth _ lﬁ‘f’procedure a€’nx, which is used to decide which columns
of one. Monotone one-in-three 3SAT, has the further restricti the tables to run the join on.

that.no neggted literal appears in any Of the clauses. In the current implementation, the runtime environment does
Given an instance of monotone one-in-three 3SAT, for eagly; 1y iid the join tables explicitly, but walks the architectural

clauser, which has three literals..,, zc, , zc,, ON€ can create a g . oh and builds the join tables implicitly in the SLIs. In this

tableT:, with exactly three rowg(1,0,0), {0,1,0), 0,0, 1)}. case, the runtime environment does an incremental version of

G|ven_the set 0; vr:ector Of,va”ables.“ﬁqﬁq 1 Tezs Tegs ﬁne_fh:;\]s this procedure by remembering all the intermediate join results
to assign one of the rows in talife with the restriction thatif the through the SLlIs. In future works, we will study optimizations of

variable that appears as, In c also appears in another clause this procedure, including caching joins, incremental joins, etc.
asz,,, then the choice of the rows froi} and7; must be such

that the assigned truth values are the same foandz,, . This

is a version of the BLBOA type-inference problem and, hence, VI. | MPLEMENTATION AND RESULTS
it is at least as hard as the monotone one-in-three 3SAT, which
is known to be NP complete [50]. This section shows the usage of the CIL for a moderately

Given that the problem is NP complete, we use heuristics tomplex real design example. The AMRM is an adaptive cache
solve the problem. Moreover, the problem is solved incremememory system [11] that can have its configuration changed dy-
tally because components are added or deleted in the CIL—ttamically. For instance, associativity and line size can be con-
type assignments keep changing. The heuristic implementedigured by special processor instructions. The hardware part of
the BaLBOA type-inference uses a delaying mechanism whidhe design is a regular cache subsystem with a modified con-
delays the type instantiation and allocation of components uritibller for cache adaptation.
all type parameters associated with a component are resolved:ig. 14 shows the outline of the procedure we followed for
The resolution is done on-the-fly, as components are added, tgoeponent integration and communication refinement. At each
parameters get propagated to partial types. step, we refined both the component and the connector, but we
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/* Type Inference Heuristic: Propagates Type Parameters to Components in an Architecture */
CheckTyping(A, C,Cnx): A,
Input: Untyped architecture A, of component C, and connections Cnz
Output: Typed architecture A;
Intermediate:  Open:Set, Done:Set
1 for all (¢;, ¢;) € C
2 join_result = RunNaturalJoin (c;, ¢, Cnx)
3 if (join_result == empty)
4: Backtrack(c;, c;)
S: else
6: Put (c;, ¢;) in Done;
7 Put all components that are connected to ¢; and c¢; in Open;
8: for all ¢ in Open {
9: Add all components connected to ¢y, that are not already in Done to Open;

10: join_result = RunNaturalJoin(join_result, c;, Cnx);
11: if (Join_result == empty)

12: Backtrack(join_result, ci)

13: Move ¢, from Open to Done;

14: } /* end for */

15: } 7* end else */

16:  } /* end for all */
17:  if join_result has a singleton row,

18: Compiled model can be allocated;
19:  if join_result has multiple rows
20: Designer needs to chose one row.

Fig. 13. Simplified type inference heuristics implemented in theE®A runtime environment.

Component Abstract D—D this pointer implement message passing in a sequential model.
Integration Association In the class diagram of Fig. 15(a8}lemory_Base is the base
class for theCache andMemory classes. Th&lemory_Base
Communication hasread andwrite virtual methods that are implemented in
Refinement Method D—)>D the Cache andMemory classes to implement the component
behaviors. Th€ache class has an association (pointer) named

Queue D%DPD lower _memory that is used to navigate to the lower level of
memory. For example, on an L1 cache read miss, the L1 cache
signal [gj will use this association to call read method of L2 cache. The

block diagram in Fig. 15(d) shows how thdeeier _memory
Fig. 14. AMRM models in different levels of abstraction for the componeniassociations implement the control flow between the two levels
and connectors. of cache and the main memory. The procedure listed in Fig. 17

. . sets the association pointers between two caches. It is an OTcl
encapsulated the ch{:mges behlndaCILlnterfa_ce. Each box "®Rthod of theCache Citrl component that sets its own
resents a memory hierarchy Ieyel, encapsulating the contro Sinter (by$self ) to the lower memory level.
and the memory array, and the line between the two boxes repre-
sents a connection between the levels. At the top most level, we
assume that there is a connection between the memory levelsthuSecond Refinement
there are no assumptions on its type or implementation. Com- ] ]
munication refinement yields several versions of the componentn the second refinement, we change the pointer for two
and the connector. Fig. 15 shows both the UML class diagrafi4eues: one for the requests and one for the answers. The class
and the block diagrams for the component integration and ti@gram on Fig. 15(b) illustrates this change. The refinement
communication refinements. also introduces concurrency with the addition of a reactive

The script listed in Fig. 16 shows the CIL file used at all reProcess namegroc to the Cache and Memory classes.
finement levels: we start by instantiating two cache componeritBese processes are triggered by eventslock input ports
named_.1 andL2, and a memory component namidém The and transitively call theead() andwrite()  methods. The
last lines invoke method calls to the interface of the compones&ipt on Fig. 18 lists the procedure to connect two caches
to establish the connections. These methods are reimplemerttggkther with queues as link objects. The first lines instantiate
as the abstract connection is refined. the queues. The data types of the queues will be set according
to the types of the association pointers to which they are
connected. The other lines establish the associations between

In the first refinement, the connector is a pointer referring tilne caches and the queues. Fig. 15(e) shows the architectural
the lower level of memory hierarchy. Method invocations alongew, where each cache level is separated by two queues.

A. First Refinement
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<<abstract>>
Memory_Base

read()
write()

lower | memory

1
Cache |

| Memory I

L1

L2

MEM

(d)
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1 <<abstract>>
Memory_Base
|_requests : cbckjnpoﬂ
|_answers 2 <<abstract>> Mem_Bus U_reqalnrl)ort ]
: Memory_Base o u_mode: Inpo
- < req.sgqal u_address: Inport
Queue 2 mod?.SQnal u_din: Inport
read() addr: Signal u_dout: Outport
ite) | T din: Signal u_ack: Outport
write() dout: Signal | ]
u_requests ack: Signal 1
u_answers
2 ’_ <<active>> -
2 - - Cache <<active>>
<<active>> <<active>> Memory
Cache Memory ] |_req: Outport 0
. roc
proc() proc() |_mode: Outport p
|_addr: Outport
|_din: Inport
|_dout: Outport
(b) |_ack: Inport (C)
proc()

(e)

: l(izrfkel:;jects ----- Bus ;
EZ‘ link objects
—
[ ]
[
MEM

()

Fig.15. AMRM componentintegration models with communication refinement: the upper row is for the class diagrams, and the lower row is for tirelaogresp
block diagrams: (a) and (d) pointer connectors, (b) and (e) queue connectors, and (c) and (f) signal connectors.

Fig. 16.

# Load the AMRM component library
load ./libamrm.so

# Component instantiations

Cache L1
Cache L2
Memory Mem

# Procedure calls to connect components

Ll connect_cache2cache L2
L1 connect_cache2mem

Top-level architecture file for the AMRM structure.

Cache_Ctrl instproc connect_cache2cache { 1_c } {
link ${self}.lower_memory to S$1l_c

}

Fig. 17. Connection procedure.

Cache_Ctrl instproc connect_cache2cache {level2} {

# Queue instantiations

Queue 1${level2}_req
Queue 1l${levell2}_ans

# Connect qgueues to the upper cache
link cache_1${self}.1l_requests to 1${level2}_req

link cache_1${self}.1l_answers

}

Fig. 18. Refined connection procedure.

to 1${level2}_ans

C. Third Refinement

The lowest level of abstraction in our AMRM models uses
signal communications. Fig. 15(c) shows the class diagram for
this model. The behaviors of the queues are still in the design,
but is refined through ports beginning by “I" for the lower
memory, and by “u” for the upper memory. These ports are
bound to theMemBus link class, which encapsulates all signal
objects. Fig. 15(f) shows the block diagram with the memory
hierarchy and the buses. The script in Fig. 19 lists the procedure
to connect two caches through a bus. We now usebthé
command for the port object instead of ik  command for
pointers. The third line instantiates a cache bus nached’ he
remainder of the listing individually connect the ports of the
upper and the lower cache to the bus signals.

D. Code Generation Ratios and Discussion

Table Il shows the design statistics of the file sizes and code-
generation ratios for the various AMRM implementations. As
we refine the models, the script sizes grow larger, but not the
number of C++ classes (except for the queue data type class in
the second refinement). This is because the granularity of the
communications gets smaller and there are more connections to
be established.
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Cache_Ctrl instproc connect_cache2cache {L_Cache}
{

# instantiate a cache bus

Cache_Bus cb

# connect bus signals to upper cache

there are several technical challenges that must be overcome.
The chief among them are ensuring inherent composability
and reuse of SOC components. The problem extends beyond
large scale program constructions in software engineering,

bind ${self}.l_req to ${cb}.req . K ) .
bind ${self).l_mode to ${cb}.mode where several advances in architectural modeling and design
bind ${self}.1l addr to ${cb}.addr environments have occurred. The challenge is due to the
oind 222}8&22‘? i, diversity of the computation models, levels of abstractions
bind ${self}.l_din to ${cb}.dout used, and the notion of correctness applicable to SOC com-

, ponents. Advances in the understanding of cosimulation and
# connect bus signals to lower cache

bind ${L_Cache}.u req to ${cb}.regq models of computation are important aspects of the problem
bind ${L_Cache}.u_mode to ${cb}.mode that have been addressed well. Challenges remain in aspects
bind ${L_Cache}.u_addr to ${cb}.addr . .

bind $(L Cache).u din to ${cb}.din related to encapsulation and reusability of components. The
bind ${L_Cache).u_ack to ${cb}.ack BALBOA framework addresses this aspect of the problem by
bind ${L_Cache}.u_dout to ${cb}.dout

deconstructing the task of component creation from component
composition. Our approach is a bottom-up approach of SOC
construction using reusable IP. The underlying programming
and automatic wrapper generation capabilities are built upon
software engineering techniques, namely, reflection and intro-
spection of the components and composition by delegation.
The focus of our ongoing effort is to understand and develop
techniques to raise the level of abstraction used in interface

}
Fig. 19. Refinement with signal connectors.
TABLE I

DESIGN STATISTICS OF AMRM M ODELS. CODE GENERATION
RATIO AT HIGHER ABSTRACTIONS

Level of CIL C++/CIL | BIDL | IP vs. Generated L. . . .
Abstraction | # lines ratio # lines Ct++ lines composition and exploit to the system-level verification oppor-

Methods <30 | 81230 60 812/809 tunities present in such an approach. For example, in the type
@1:D) a1.01) inference arena, the data-type matching is just a starting point.

Queues <40 | 1512/40 84 151271002 \v. a behavioral ' being develoned to check
37:1) (1.51) Currently, a behavioral type system is being developed to chec

Signals < 150 | 14377150 87 14377880 the functional validity of composition of virtual components.
(10:1) (1.63)
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