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Abstract—This paper presents the BALBOA component com-
position framework for system-level architectural design. It has
three parts: a loosely-typed component integration language
(CIL); a set of C++ intellectual property (IP) component libraries;
and a set of split-level interfaces (SLIs) to link the two. A CIL
component interface can be mapped to many different C++
component implementations. A type-inference system maps all
weakly-typed CIL interfaces to strongly typed C++ component
implementations to produce an executable architectural model.
Thus, this amounts to selecting IP implementations according
to a set of connection constraints. The SLIs are used to select,
adapt, and validate the implementation types. The advantage
of using the CIL is that the design description sizes are much
smaller because the runtime infrastructure automatically selects
the IP and communication implementations. The type inference
facilitates changes by automatically propagating them through
the design structure. We show that the inference problem is NP
complete and we present a heuristic solution to the problem.
We bring forth a number of issues related to the automation of
reusable IP composition including type- compatibility checking,
split-programming, and introspective composition environment,
and demonstrate their utility through design examples.

Index Terms—Hardware/software co-design, system-on-chip,
embedded systems, hardware description language (HDL), mod-
eling, simulation, design reuse, interface design.

I. INTRODUCTION

RAISING the abstraction levels at which microelectronic
system designs are entered and validated has a direct

impact on the design quality and design time [1]. Consequently,
recent research efforts in the area have been focused on the
specification methodologies and languages for system-level
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design. One prevailing view is to use C/C++, or a similar
general purpose high-level programming language [2], to build
custom architecture exploration and analysis frameworks. In
the recent years, there have been several such proposals to
help build digital hardware systems. Examples are SystemC
[3], [4], SpecC [5], Ocapi [6], and others [7]–[10]. However,
design composition is still tedious and reuse isad hoc in
the current compile-link-test methodologies. This is because
C/C++ is a software implementation language, not hardware or
system description language. A major barrier to its adoption
for system-level design is that hardware designers need to
understand significant software engineering issues related to
“components” in software models. Often, such concerns are
quite orthogonal to hardware system architectures and design
issues, thus, actually adding to the time and effort in the system
design process. For instance, strong typing requirements in
C++ place a programming burden on the system architect to
ensure that the component models and there interfaces are
properly matched. The need to explicitly specify all typing
information for components and their connections makes
changes difficult. This is particularly notable when integrating
predefined intellectual property (IP) components, where the
availability of different data types for ports may be restricted,
depending upon how the component has been modeled in
C++. At the same time, there is a definite need to leverage
the advantages of programming languages to quickly and
accurately build executable system models.

In this context, our goal is to reduce as much as possible the
software engineering and C++ programming problems faced
by a system architect/integrator. To achieve this, a component
composition framework provides reasoning capabilities and
tools that enable a system designer to compose components
into a specific application. These capabilities include selection
and connection of the correct components, automated creation
of correct interfaces, simulation of the composed design,
testing and validation for behavioral correctness and equiv-
alence checks. We built a system-level design environment
called BALBOA which is a prototype component composition
framework based on C++ class libraries approaches. BALBOA

is used at the architectural level to design, evaluate and test
functionality and performance. We use C++ for IP component
definition, but we introduce a component integration language
(CIL) for efficient architectural design. The CIL is a script-like
language used to manipulate and assemble C++ objects
incrementally and run simulations quickly without having
to go through tedious recompilations cycles. CIL constructs
provide an abstraction over C++ because they reduce the
amount of typing information required to declare component
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instances and connections. Using the CIL, a system architect
can declare component instances with their interface types
partially specified. We call this capability “partial-typing” (or
loose-typing). Component integration can be done with partial
types, but component execution needs full exact types. This is
because a CIL design is simulated through an underlying C++
model (which cannot be done without instantiating the correct
C++ objects).

In the BALBOA runtime environment, a type system auto-
matically transforms the abstract CIL specification into a cor-
rect C++ implementation. The type system is responsible for
1) keeping track of the types of all specified components and
2) linking partially-typed component interfaces to fully-typed
implementations. A type inference along the component con-
nections in the design architecture is used to determine which
C++ implementation types to assign to which CIL component
interfaces.

Within the composition environment, a split-level interface
(SLI) links a weakly typed interface to a strongly typed object
implementation. The SLI provides the component-level imple-
mentation of the type system which includes the following in-
formation: 1) CIL interface type; 2) available C++ implementa-
tions; and 3) valid interface-to-implementation mappings with
respect to all connections. The SLI provides a reflective layer,
where all the interface- and implementation-type information
is captured and accessible. This type information describes and
implements the component composition rules. The system ar-
chitect and the type inference can query this information to un-
derstand exactly what types are being manipulated. We call this
the introspection capability and it is used by the type inference
to produce a valid implementation selection.

The major contributions of this work are as follows. We have
developed a component composition framework, which allows
a clear separation between component definition and architec-
ture elaboration. In the BALBOA environment, the level of ab-
straction is raised because the type dependencies between com-
ponents are weaker when using the CIL than when using C++.
The type inference lets system architects concentrate on archi-
tectural issues, rather than worrying about matching C++ types.

This paper is organized as follows. In Section II, we review
definitions, background, and related work. Section III describes
the BALBOA component composition environment, its usage,
and implementation. Section IV presents the syntax and usage of
the CIL and the BALBOA interface description language (BIDL).
Section V describes the theory and implementation of the type
abstraction and inference systems. In Section VI, we show how
the CIL is used by a system architect as a front-end language. We
present an implementation of a moderately complex design of
an adaptive memory platform, called AMRM [11], in the envi-
ronment and we discuss the results. We conclude in Section VII
along with the description of the future work.

II. DEFINITIONS, BACKGROUND, AND RELATED WORK

The target of our work is microelectronic systems modeling
for integrated design implementations. This integration (es-
pecially for single chip implementations) requires complete
system-level simulations and verification of the systems.
Accordingly, this work is based on advances in component

based design in software engineering, design specification
languages and methodologies, and advances in type resolution
in programming languages. We briefly review these advances.

A. Component-Based Design and Reuse

A component can be a piece of functionality implemented in
software or as a dedicated piece of silicon hardware or a com-
bination of the two. Components are units of composition and
reuse—be it a function, object, library, or a complete program
[12]. Usually, we can assume that a component will implement
an interface to which another component will be connected.
An interface is a “contract” between a component and its en-
vironment, a guarantee as a point of access. When establishing
a connection, one component assumes that the interface of the
other component implements the expected guarantees. Compo-
nent technology is emphasized as a key element in the develop-
ment of complex software systems [13]. Research in software
engineering has demonstrated that the focus of the program-
ming work is different when building components than when
building architectures [14]. A component-based design (CBD)
approach separates component definition from component com-
position. CBD is a bottom-up activity of assembling small com-
ponents focused on one task into a more complex component
with richer functionality. Reuse and parameterization have al-
ways been concerns when building components. Inheritance is
used to share interface and behavior definitions, while poly-
morphism is used for defining several behaviors for the same
interface. However, building architectures is done structurally,
through instantiations and connections.

Reusability in architectures requires not only matching of in-
terfaces, but also an ability to compose the functionalities in a
way that correctly implements the end application. The diffi-
culty of composition is due to the various ways in which the
blocks can be represented, designed, and composed. This is es-
pecially true when considering microelectronic system mod-
eling frameworks. The semantics of connections change be-
tween all levels of abstractions. At high levels, the amount of
computation encapsulated behind an interface is much greater
than at lower levels, but the structural design scope is much
smaller. Different levels of abstraction can often be composed
using protocol modules. The composability of models can be de-
fined along a number of modeling dimensions, which describe
what details are captured, to what level of accuracy, and how
their modeling semantics are implemented (which syntax/con-
trol flow) [15].

B. System-Level Design and Architectures

System-level and hardware specification languages are active
areas of research. Most approaches are based on programming
language and raise the level of abstraction above register transfer
level (RTL) into either the architectural and behavioral spaces
design [16]–[19]. SpecC [5] and SystemC [4] are approaches
that are based on the C/C++ programming languages. One of the
problems is that many programming decisions and syntactical
details that have to be addressed in C/C++ are independent of
the system architecture model. Hardware designers and system
integrators need not be concerned with inheritance, virtual func-
tion, genericity, and other tedious C++ specific constructs used
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in module definition. Rather they should focus on characteris-
tics specific to hardware such as bit width, propagation delays,
regularity, etc.

There has been recent research about using component-based
methodologies for system-level design. The results have shown
significant reductions in design size and time required for auto-
matic communication refinement. Approaches by Cesarioet al.
[20] and by researchers working on the Coral [21] framework
start from a virtual architecture consisting of virtual component
and virtual connections configured with sets of parameters. A
microarchitecture implementation is generated by configuring
the interface logic with respect to the configuration parame-
ters. This can be done in two ways. The first one is compar-
ison and matching of interface pin properties to find connec-
tion compatibilities and exact matches. Compatible pins can be
connected with small interface logic like multiplexers, while
pins with exact matches can be connected directly. The second
technique is by channel refinement. A component will refine a
read()/write() interface using method calls to communicate with
a read()/write() interface implementing signal-level activity for
bus transactions. The interface for the component will stay the
same, albeit, it will take more cycle to perform a transaction.
However, the interface will be connected to a bus instead of
being connected directly to the recipient of the communication.
This approach is sometimes called “transaction-level modeling”
because transactions are decomposed from one event between
components to many events on the bus. Both CBD strategies
are platform-based design (PBD) approaches [22]. PBD is often
defined as the creation of a stable core-based or bus-based archi-
tecture that can be rapidly extended and customized for a range
of applications and quickly delivered to the customer for de-
ployment. This requires a “standard” architecture or protocol
to which components are interfaced. PBD provides structure to
pure CBD through architectural constraints on system-on-chip
(SOC) implementations. In other words, it provides the archi-
tectural template, and wrappers can be picked from libraries to
implement the necessary protocols to which a component must
conform.

Another well-known component framework is Ptolemy [23],
which is targeted for system simulation and embedded soft-
ware design. In Ptolemy, components are executed according
to different models of computation. Components with their own
thread of control are called “actors.” In an execution, the actors
interact according to different models of computation (called
“domains”). A model of computation is a collection of rules
describing patterns for component executions and communica-
tions. Examples are data flow graphs, finite state machines, petri
nets, etc. Domain-specific “directors” resolve the domain-de-
pendent interactions and coordinate the actors from different
domains. In Ptolemy, the different models of computation [24]
are described using state machine [25]. The compatibility of
two domains is determined by the output of the composition of
their state machines. If they are compatible, the output will be a
common state machine coordinating both domains.

All these approaches use components libraries, but they differ
in the way the components are assembled. We identified three
strategies for component integration. The first one is to com-
pose components directly in the programming language used

for components definitions. This is the approach used with Sys-
temC and Ocapi. In these cases, the code for setup and simu-
lation is interleaved with the code for component definitions,
thus making maintenance and reuse difficult. The second ap-
proach is to use a graphical capture tool with a notation of blocks
and arrows (such as UML [26]) as a front end for code gener-
ation. The third approach is to use an architecture description
language (ADL) [27], which orthogonolize component defini-
tion from system architecture composition [28]. ADLs are often
domain-specific languages used to build an abstract model of a
system and analyze it for schedulability, reliability, deadlock de-
tections, etc. For system level-designs, ADLs have long focused
on specialized tasks [29] such as processor descriptions [30].

Software implementations in C/C++/Java/Ada can be gener-
ated from several ADL models [31]. Code generation is useful
because platform-independent architectural descriptions can be
analyzed and targeted to specific machine. In this kind of ADL,
component composition is usually done statically at the design
time through code generation. Examples are Giotto [32] and
Pecos [33]. There are other ADLs, such as Weaves [34], that
do not use code generation, but dynamic composition, where
components acquire references to each other at runtime. The
advantage of dynamic composition over static composition is
that the object relationships defined at runtime have weaker de-
pendencies because they can be redirected, altered, and masked
dynamically increasing flexibility and reuse [35].

There is another class of ADLs which are based on XML.
These are declarative languages used for data exchange between
tools. The MoML [36] XML dialect is used for describing and
storing Ptolemy models. MoML incorporates system-level se-
mantics to capture system architectures as actor topologies, hi-
erarchies and relations. Such ADLs are used by programs be-
cause they are very easy to parse and generate. However, they
are hard to read and usually not used by designers, as opposed
to the other ADLs enumerated above.

Interoperability between design environments using ADLs
can be difficult [15] because the ADLs often cover only some
specific semantics of the “middleware”—the underlying com-
putation model. In other words, an ADL that does not express
all details of a design can be difficult to interoperate.

C. Split-Programming Techniques and Script Languages

Scripting is used to assemble components into applications
where quick prototyping and flexibility are required. Scripting
has been used for many years for component integration in com-
puter-aided design frameworks as a sort of a module intercon-
nection language. Script languages encapsulate APIs [37] be-
hind an interpreted layer to reduce type dependencies. In the Tcl
scripting language, variables have loose types because they can
store any value that can be formatted back and forth to a string.

Split-level programming refers to architectural system
integration and component programming in two different levels
that are strongly connected by a matching class hierarchy and
methods [37]. Split-level programming relieves the system
engineers of programming artifacts and software engineering
concerns specific to component implementation, and lets them
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focus on system architecture. The key is to have the class hier-
archies in multiple programming environments with “hooks”
that enable their combined manipulation [38]. The network
simulator (NS) system uses a split-programming model built
on scripting to create a network simulation environment. In
NS, there are two layers of programming facilities: one for
building network components and the other for composing and
simulating them. C++ is used for defining components that
are used in an object Tcl (OTcl)-based scripting language to
build and simulate a network topology model. The C++ classes
that implement network components inherit from an OTcl base
class that provides the hooks to be visible in the scripting layer
[39].

Setting up a scripting environment to manipulate a C++ ob-
ject can be cumbersome. A popular and efficient way to do it
is by using a “wrapper generator” such as Swig. The Swig tool
[40], [41] generates a wrapper around a C++ object to imple-
ments the script commands to instantiate/delete objects, access
attributes, and invoke methods. The procedure is easy and effi-
cient and the wrapper is transparent to the script user. However,
in most CBD environments, the components are not simple ob-
jects, but they have complex internal architectures and behaviors
[42]. Swig provides access to the C++ object, but it is not pos-
sible to configure and change the wrapper. Furthermore, Swig
does not provide explicit support for a type system, runtime type
construction, and type introspection. Also, there are a number of
limitations when considering subtyping strategies, such as tem-
plates, parameterization, and inheritance. In the context of the
BALBOA work, the partial-typing abstraction and type inference
requires access to the wrapper and to a type system.

D. Type Systems

Most of the current system-level languages are strongly
typed, with the exception of the Ptolemy framework which has
an elaborate type system [43]. Ptolemy provides polymorphic
actors, whose ports can have polymorphic types, i.e., they can
be parameterized to take different combination of data types.
Static type checking can determine the compatibility of a set
of component interconnections. The polymorphism of actors
is based on a lossless type hierarchy that forms a lattice. For
instance, an integer type can be coerced losslessly into a double
because double is higher in partial order than integer. This
means that the value range of a double data type includes the
value range of an integer data type. This value range inclusion
property is used to put the data types in a lattice. Over this
lattice, the static type resolution can be reduced to a solution
of horn-clauses [44]. Thus, it is solved in linear time [43] by a
fixed-point computation, which is a common way of computing
type inference [45]. However, in order to be able to solve the
type inference this way, Ptolemy requires the following. First,
third-party actors need to conform to the polymorphic actor
design principles—they must derive from a Ptolemy class or
be wrapped in another Ptolemy actor. Second, port types are
taken from the Ptolemy type library which conform to the type
lattice structure. Unfortunately, for many silicon IP components
(including legacy components), there are constraints on the
availability of specific port types, either due to hardware design
constraints or programming limitations. As a result, when

Fig. 1. BALBOA environment has two user roles: the system architect and the
component library designer.

designing an environment that works with such preexisting
libraries, one cannot assume the port types to fall in a lossless
hierarchy.

In BALBOA, design components in the CIL are similar to
Ptolemy actors. However, there are a few important differences.
First, the discrete event computation model of Ptolemy is the
closest to the model of computation in which BALBOA design
models are simulated. SystemC and other C++-library-based
modeling libraries implement the discrete event simulation
semantics, and the components have this simulation kernel
integrated into them. It is also possible to replace the prebuilt
simulation kernel with implementation of other kernels that
support other models of computation. However, our current
focus is on enabling system designers with SystemC-like
model integration. Second, our approach to typing is to enable
composition of existing C++ based IP-libraries, which are
implemented with arbitrary type systems of C++ and templated
types.

III. B ALBOA—COMPOSITIONENVIRONMENT

The BALBOA component-based design environment is used
to build system-level models with an architectural perspective.
The environment implements a split-programming model with
an imperative CIL.

The BALBOA environment is used for the following two dif-
ferent tasks,as illustrated in Fig. 1.

1) Architecture composition: The system architect builds
the system architecture by instantiating, connecting,
configuring, and establishing relationships between
components.

2) Component definition: The library designer defines and
implements components to be used in the environment.

The design of an architecture is done by a system architect
who can focus on module instantiation and interconnection by
using the architectural constructs in the CIL. The design of li-
brary components has to be done by a designer who understands
C++. The library designer also needs to export suitable compo-
nent interface declarations (which may include behavioral in-
terface, not discussed in this paper), using a specific interface
description language.
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Fig. 2. Layering in the BALBOA environment: the SLI implements the typing
abstraction and the type introspection capabilities.

A. Languages and Runtime Layering

In BALBOA, the languages and the runtime environment are
layered. Fig. 2 shows the layers; their descriptions is as follows.

1) The architecture definition layer is where architectures
are built using the CIL. It is an interpreted language based
on OTcl [46] that implements a component model for
instantiations, configurations, and connections. At this
level, the type of a component is abstracted and a type
management system is used to infer and instantiate the
exact types required by the simulation model. We refer to
this layer as the interpreted or scripting layer. The CIL is
described in detail in Section IV.

2) The component definition layer is the bottom layer,
where C++ components are stored in IP libraries. Classes
in this layer need not be derived from a specific BALBOA

C++ interface. Ideally, this layer can accommodate any
C++ IP models in a range of libraries without affecting
the implementation of the upper layers. This layer is also
called the compiled layer.

3) The intermediate wrapper layer is the link between the
interpreted and the compiled layer. Each CIL component
is shadowed by a C++ compiled object that is contained
and manipulated through an SLI wrapper. The SLI is the
hook class that implements the reflection and the intro-
spection capabilities [47] of the CIL.

Reflection is the capability of the SLI to read or write the
attributes, and to invoke the methods of the compiled object.
Introspection is the capability of the CIL language to query the
reflected information of a component and to understand its own
structure. The information being reflected and introspected
is specified using the BALBOA interface definition language
(BIDL) compiler. This includes the interface types, method
signatures, as well as behavioral properties which may be
usable by the environment for checking compatibility between
components. The BIDL is described in Section IV.

The SLIs implement the type abstraction and inference to
keep the CIL description focused on component instantiations,
compositions and connections. Typing abstraction means that

(a) (b) (c)

Fig. 3. How to implement necessary system and environment interfaces
in C++: (a) hierarchy and concurrency system semantics in SystemC by
inheritance; (b) add OTcl composition and manipulation by using multiple
inheritance; and (c) separate system from environment semantics through
dynamic composition.

(a) (b)

Fig. 4. Generic wrapping dependencies and strategies. (a) Strong compile-
time inheritance dependency. (b) Weaker runtime composition dependency with
introspection.

it is possible to reduce the type dependencies of the strongly
typed compiled C++ layer, through careful type management at
the wrapper level. The next subsection explains how the usage
of an SLI reduces the type dependencies by using delegation.

B. Type Dependencies and Interfaces

The type abstraction in BALBOA is based on a program-
ming tradeoff between inheritance and aggregation [35]. It
is common to use inheritance to give design components the
required interface to be manipulated in an environment. In
BALBOA, we use aggregation (through the SLIs) because it
weakens the type dependencies between a component and its
integration environment.

Let us use an example to explain this. Consider that, if we de-
fine a class namedAdder using the SystemC library, we have
to inherit a class namedsc module that implements the in-
terface to the simulation kernel. This is illustrated in Fig. 3(a)
with an inheritance relationship. The inheritance dependency is
specified in the class declaration and is resolved and checked
at compile time. When instantiating anAdder to the environ-
ment, the object is also asc module because it has both inter-
faces. This property of inheritance relationships is generically
illustrated in Fig. 4(a), where the instance of the wrapper and
the instance of the component are the same. The flipside is that
changing the interface of the wrapper also changes the inter-
face of the component. Now, consider that we want to use this
SystemCAdder in an OTcl environment. For this, it needs to
implement theTclObject interface; therefore, we introduce
the second inheritance dependency in Fig. 3(b).

The aggregation alternative is showed in Fig. 4(b). In this
case, the instances of the wrapper and of the component are two
different objects with distinct identities. In the BALBOA envi-
ronment, we adopted this strategy. An example is illustrated in
Fig. 3(c), where anAdder class inherits from the SystemC base
class for the concurrency and hierarchy semantics, and an SLI
inherits from theTclObject class for architecture composi-
tion and component assembly semantics. The SLI is the wrapper
that aggregates the component and understands its semantics
(that it manipulates a SystemC component).
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Fig. 5. Runtime environment structure. Each component has a SLI wrapper to
interpret CIL script commands.

Unlike other implementations where a component inherits a
class interface implementing the wrapper behavior, in our en-
vironment, the SLI aggregates the design component. It is de-
liberately designed to be different from the interface defini-
tion and implementation notions in Java. It often happens that
two components providing the same functionality are imple-
mented with different interfaces from different class libraries.
However, we may want to use both components in the environ-
ment, for instance, if they provide different abstractions. Reuse
by class interface precedes the design of the class, while reuse
with the composition succeeds the design of the class [35]. In
other words, instead of adapting the IP, it is better to adapt the
wrapper.

Note that the SLI wrapper must not be confused with a bus or
a protocol wrapper. These are used for translating or adapting a
protocol into another one. In our case, the focus is on the issue of
separating the semantics of the environment from the semantics
of the design, and to use the SLI for typing and connectivity
abstraction. Both are related because connectivity abstraction
is indeed a part of the process of communication refinement,
which can use bus wrappers.

In this case, the goal is to investigate type abstraction and
interoperability by using object composition instead of class
inheritance. The delegation provides a mechanism where
compositional typing issues can be resolved dynamically and
automatically by the environment (instead of being resolved at
compile-time).

C. More on the Runtime Structure

Fig. 5 shows the relations between the interpreter, the SLIs,
and the components at runtime. There are four compiled C++
design components: C1, C2, C3, and a compiled discrete event
simulation kernel component, e.g., SystemC kernel. Every com-
ponent has an SLI. Component C2 is composed of component
C3, but the SLIs are not composed. The arrows represent the en-
vironment control flow. The full lines are the interpreted control
flow, while the dashed lines are the compiled control flow. Usu-
ally, the interpreted control flow will be a set of composition
commands that will be forwarded to the SLIs. The compiled
control flow is usually the execution of the simulation. Note
that the simulation semantics are part of the compiled control
flow, since the simulation kernel interacts directly with com-
piled components. The simulation semantics are described in
BIDL and loaded into the CIL type system as a set of component

Fig. 6. Internal architecture of a BALBOA component.

types. The dashed lines in Fig. 5 are an illustration of the con-
trol flow from the discrete event simulator to the components.
Nothing prevents mixing slow interpreted commands with the
fast compiled simulation. When simulation speed is not an issue,
using the CIL can be very expressive for validation and debug-
ging. The CIL provides a number of stimuli generators, moni-
tors, and assertion constructs that can be used for validation.

D. Internal Architecture of a Component

In the BALBOA framework, a component refers to all the
layers on the right side of Fig. 2. A CIL component is an
OTcl class with methods and attributes that are shadowed
by all the compiled objects inside the shaded box in Fig. 6.
The SLI manages the type information and implements the
introspective and reflective capabilities. The type system reifies
meta information, that being the C++ type of the internal design
object (SystemC) and its nonfunctional properties. The type
adapter bridge (TAB) is the only object that provides direct
access to the internal compiled object. The SLI manipulates
the internal object through the TAB interface. Both the SLI and
the TAB will access the type system information. The SLI can
work with partial type information, while the TAB can only
work with the exact full type.

As described earlier, a CIL interface for a component can be
mapped to many different C++ implementations. For each one
of these possible mappings, a TAB specific to each C++ type
will be created by the BIDL compiler. The type inference will
select the appropriate TAB from a table in the SLI before the
allocation of the internal design object.

IV. L ANGUAGES IN BALBOA

In this section, we present the languages used specifically
in BALBOA. IP components are implemented with C++ and, in
theory, all C++ classes can be used in the framework. We will
discuss the two other languages, CIL to assemble system archi-
tecture and BIDL to describe component interfaces.
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Fig. 7. Packet Switch CIL Example.

A. CIL

The CIL is used to build system architectures by instantiating
and composing components. The CIL uses a type system to ab-
stract component types. First, we illustrate how the CIL is used
with a small example, and then show the abstract syntax for the
language.

1) Simple Packet Switch With the CIL:System models built
using programming languages can be parameterized in various
ways [48]. However, it is oftenad hocand different from de-
sign to design. The CIL leverages the parameterization capabili-
ties of programming languages by clearly defining three specific
ways to do it. To illustrate this, let us consider the example of
a very simple packet switch system shown in Fig. 7. It consists
of packet senders, receivers , and a switchpkt switch .
The configurable parameters of the switch are the number of
ports and the type of packets processed. A 44 configuration
is shown in the figure. There is no sender connected to the first
port of the switch because we assume another component will
be connected there.

Fig. 8 shows the CIL listing for a switch-topology composi-
tion. We first start by setting a variable for the number of ports
to , and then instantiate the switch component with that
parameter. The third line sets a variable toPkt for the type of
packets processed and then instantiates a signal with that sub-
type. The next three lines instantiate clocks for the senders, the
switch, and the receivers. The “for” loop is parameterized to in-
stantiate packet senders and receivers, and connect them to the
input and output ports of the switch. No signals in the descrip-
tion have their data type specified. When connected, the sig-
nals’ SLI will pick the appropriate type (Pkt ) among all pos-
sible implementation types in the library. The same process is
done for the packet switch, where, in this case, it will pick the
implementation with four ports that processes thePkt packet
format. The types for the senders and receivers will also be in-
ferred to transmit and process thePkt types. It is required that
these types be available in the libraries for the SLI to instantiate
them. Because of the regularity of the packet switch structure
with respect to the number of ports and their types, the usage
of the CIL provides the following advantages for flexibility and
abstraction.

Fig. 8. CIL listing for a four-ports packet switch composition.

1) Control-flow parameterization for regular structures:
The CIL imperative control structures are used to build
the system architecture. In this example, the design struc-
ture is parametrized with respect to the number of ports.
The for loop instantiates and connects sender and re-
ceiver components and surrounding signals for every port
of the switch.

2) Name expansion for regular structures:
Component names are expanded by the interpreter with
interpreted variable values. Names for signals, senders,
and receivers are expanded such like inpkt in$i vari-
able is replaced with the value of the iteration counter
to pkt in0 , pkt in1 , etc.

3) Type inference:
Types are assigned to partially specified components. The
components and connections are introspected by the en-
vironment and the SLIs selects a full type. In this ex-
ample, the components will be picked by the environ-
ment to process thePkt data type for the switch, signals,
senders, and receivers.

The compactness of the CIL listing is due to the parame-
terization capabilities that enable a separation of concerns of
type compatibility from concerns of composition of the archi-
tectural structure. Using control statements and name comple-
tion can be useful to complete component type names as well as
instance names. Unlike code-generation approaches, it also has
the advantage of avoiding recompilation cycles when changing
parameter values. The same topology can also be built using
only C++ with all subtypes and parameters explicitly specified.
This yields longer descriptions that are less flexible as parame-
ters change: 1) may need to be done throughout the design and
2) necessitate recompilation. An XML-based approach would
also have yielded a lengthy description.

The CIL is like an imperative ADL, where checks are done
on the composition as the design is constructed. A difference
from most ADLs is that the CIL describes architectures without
explicitly enumerating every component, connection, or type in
the topology. It is actually very close to a domain-specific lan-
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Fig. 9. Pseudo-BNF grammar of the CIL.

guage for system-level design. This shortens description sizes
and helps the designer manage the complexity of describing
architectures.

2) Abstract Syntax in a Pseudo BNF Form:Fig. 9 presents
the abstract syntax of the CIL language. There are seven kinds
of commands in the CIL. Let us enumerate and describe them.
The first one is for the design database that keeps track of the
components in the runtime environment. The second one is for
the type database that is the heart of the type system. The type
database can be queried to list all available types in the system,
and to get/set the type inference options and the internal object
allocation policies.

The third kind of command is to instantiate components. Each
component instance has a type name that is not necessarily the
same as the C++ type of the internal object. They may be very
generic types such asSignal , Port , Entity etc. Compo-
nents can be composed using the dot “.” operator.

The fourth kind of command is used for the introspection
capabilities that are implemented through aquery method in
the SLI of every component. The environment uses the intro-
spection capabilities to find the component characteristics, at-
tributes, or methods. Introspecting them further finds out the
architecture and the composition possibilities according to pa-
rameterizable internal object models. The following informa-
tion can be queried:

• The interpreted type of the component- the OTcl type.

• The exact compiled type of the internal object. This can
be different from the interpreted type because an SLI can
aggregate many different C++ types for the same compo-
nent. This corresponds to the type of the TAB.

• The kind of component. This is a characterization of the
SLI orthogonal to its type. This is used as an aspect to
group components that do not share the same component
interface or implementation type. For instance, aSignal
kind is used to group different C++ implementations of
signal type under the same “kind.”

• The list of all accessible design attributes for the compo-
nent in the interpreted domain. These include aggregation,
associations (pointers), and both interpreted and reflected
variables. Other attributes might be present in the com-
piled domain; however, they are not visible if they are not
reflected.

• The list of all design methods and commands that are vis-
ible in the interpreted domain for the component type.
These include both interpreted and reflected methods.

• The list of all environment commands that can be
called for that component. These interpreted or reflected
methods have no design modeling semantics, but only a
meaning for the environment and supporting tools.

Note that OTcl structures can be introspected by theinfo com-
mands to query a class for its list of instances, an object for its
type, list of attributes, and list of methods.
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Fig. 10. Pseudo-BNF for an abstract syntax of the BIDL.

The fifth kind of commands is for subtyping. Type parame-
ters is what enables partial typing in the CIL. For example, a
Port type can be subtyped with abool parameter. When all
parameters are set, the CIL-to-C++ mapping can be done and
validated. Note that “subtyping” here means parameterization.
In CIL, it is possible to list and set all subtypes parameters for
a component.

The sixth and seventh kind of commands in the CIL are to es-
tablish connections. Ports and signals can be bound and pointers
can be linked to objects by thebind andlink procedures, re-
spectively. When using connection commands at the interpreted
layer, type management is done by the SLIs. For example, when
a pointer is set to a component through thelink to method,
the runtime environment checks that the target component is of
the right type for the association. For ports, the runtime envi-
ronment will make sure that the transmitted data types are the
same.

B. BIDL

The BIDL is used to describe the interfaces, type, subtypes,
parameters, and characteristics of the internal object, and to “ex-
port it” to the interpreted domain. The BIDL compiler gener-
ates C++ code to create and configure the SLI and type adapters
bridges. The BIDL was first inspired by the CORBA IDL [49]
and has been extended and customized for the requirements of
system-level modeling. The BIDL was developed incrementally
as keywords were added to C++ class declarations. For example,
the component designer can copy the header of a class into a
BIDL description, remove the parts that should be hidden from
the interpreted domain and add keywords for subtyping, kind
and available instantiatable subtypes information. The BIDL
compiler translates and expands the description of component
types to a format that the interpreter can understand. The BIDL
has a role similar to the CPP preprocessor. Instead of macro

expansions, it generates a custom type system extension, spe-
cific to every component type. These extensions are generated
in C++, compiled, and placed into IP component libraries. As
the type theory is developed, the BIDL syntax evolves as well,
but this will be discussed in a future paper.

Fig. 10 shows the abstract grammar of the BIDL language.
Component declarations can be done either in C++ or by using
a neutral on the component definition language, such as the
CORBA IDL. Kind, subtypes, attributes, methods, and class
mappings are declared in the BIDL.

V. TYPE RESOLUTION IN BALBOA

A. Simple Parameterization Example: Fast Fourier Transform
(FFT)

Fig. 11 shows the C++ code for an FFT-class interface, with
the real and imaginary inputs and outputs ports, and a type
parameter for the data widths. Fig. 12 shows a diagram of a
sampling system using this FFT module. The connections be-
tween components are abstract, meaning that the user does not
have to specify their types. In the BALBOA environment, a de-
signer can query the libraries for available FFT implementation
types and choose one. The type inference will propagate the
chosen parameter to all components that are connected to the
FFT. However, these other components need to have implemen-
tations for the chosen type parameter. If not, the type propaga-
tion will backtrack and request another different starting param-
eter. For instance, the downsampler may not have an implemen-
tation available in the library for a specific data width used as
input to the FFT. In this example, backtracking is not difficult,
but as the design grows in size, it is better that the system auto-
matically handles this type propagation. In this section, we will
explain how the CIL uses the type system to abstract C++ im-
plementation types. We first consider small examples and then
develop the type theory along the data type interface dimension.
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Fig. 11. Interface type declaration code for a FFT C++ component.

Fig. 12. Sample topology for a sampling and transformation system. The FFT
is virtually connected to a sampler and a display. The virtual connection is
implemented with theFFT C++ class of Fig. 11.

B. Data-Type Matching Problem

Data-type parameterization in C++ is often done using
templates. In hardware design, this is especially convenient to
express designs with various data widths. On compilation, a
template type is turned into a concrete C++ type by parameter
passing. This is useful in instantiating components whose
interface and internal data types can be changed depending
on the design requirements. For instance, we may have an
adder with various implementations in the libraries. It can have
implementations for integers, float, double, 4, 8, and 16 bit
vectors and so on. When building architectural models, specific
port types is a function of the architecture which may change
as the design evolves. Ideally, one would like to instantiate
the component without specifying all the type parameters,
and resolve the detailed implementations automatically. For
example, the system designer might just want to instantiate an
adder, without specifying the input or output types.

The library component designer must specify what different
C++ implementation types are available for this interface
through a BIDL description. In the case of an adder, he/she
must specify that it has been implemented for float, 8, 16, and
32 bit integers and so on. This information exported through
BIDL is stored in the SLIs. The introspection facility can let the
system architect know what type parameter values are available
for a component instance. The architect may or may not choose
values at instantiation. When the designer chooses to instantiate
a component without specifying the types for each port, we say
that the component is partially-typed.

1) Split-Typing: In the BALBOA environment, a partial type
is also viewed as “split type” because it is managed through the
SLI. A component has one type at the interpretive layer and can
have multiple possible implementation types at the compiled
level. In other words, a component has an interpreted type and

TABLE I
TYPE AVAILABILITY TABLE: ALL VALID COMBINATIONS OF TYPE PARAMETER

VALUES FORIMPLEMENTATIONS OF A CIL INTERFACE

a compiled type. In the adder example, at the interpreter level,
all the ports of the adder are of partial “Port” type. Based on
the containment hierarchy and the connections to other compo-
nents, type inference will associate specific C++ data types to
each of the ports.

The following notation is used to illustrate the algorithms for
incremental type inference. Let be a set of all concrete C++
data types, let be a set of ports, and let be a set of signals
in the design created in the CIL. In the interpreted layer, ports
and signals are abstract types, but in the compiled layer, they
must be mapped to a concrete type in. Each port or signal
is associated with a data type via mappings, and , such
that , and . A port
is untyped if , and a signal is untyped if

, where denotes the fact that no concrete
type has been specified or inferred yet. When the type inference
is done, and must not map any element to. If that
cannot be achieved, the type-inference algorithm must detect
and report this condition, and if possible back track to search
for a new solution.

2) Components:In the CIL, a component has a set of
ports denoted by ports , where

is the number of ports. Componentis said to be “poly-
morphic,” if there are many compiled versions ofwith ports
of different types. The function has a limited choice in
assigning to the available compiled types.
One can view this as a choice of assignment to a vector of ports

, from one of the possible rows from a type
availability table of ordered rows ,
each row corresponding to a compiled version of. The rows
of the table are filled through the BIDL description. Signals
are used to link ports and are parameterized by the data type
they carry. A signal must be assigned the same data type as the
ports it is connected to. Hence, signals are constraints in the
port assignment problem.

3) Simple Matching Example:Let us consider the simple
adder example with 4 ports, , as input ports and

as output ports. The availability of library imple-
mentation of the adder is illustrated in the type availability
table of Table I. The table list all available combination of type
parameter values, each row corresponding to a specific C++
implementation type.

Let us consider the following scenario. An adder is declared
in the CIL layer without any port types, then is unde-
fined for all ports . As types are propagated through the de-
sign, it turns out that gets instantiated to bool. Now, the type
management system will immediately recognize that all imple-
mentation in the table have this parameter value, so no con-
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clusion is available. Let us assume next that gets typed to
. The SLI can now match the row:

. Then, it will be inferred that and
should also be of type . At this point, any signal that is

connected to and will have the type propagated to them
as . This means that ,
and .

C. Formulation of the BALBOAType Inference Problem

Given a design with a set of ports, a set of signals, and
the partition of into disjoint sets, where is the number
of components and the partition of is disjoint because, as
components do not share ports, the type inference problem
is as follows. For each component, with its port vector

, assign a row from its type availability table
, such that if there is a signal , which connects a port
in component to another port of a component , then

the type assigned to and to must be the same. This
restriction makes the problem complex, and we show here that
the problem is NP complete.

Theorem 5.1:The BALBOA type inference problem is NP
Complete.

Proof: Given a type assignment for all the ports, it is easy
to check in polynomial time that the assignments in the type
tables are correct, and the ports connected via signals have the
same type. Hence, the problem is clearly in NP.

For the NP-hardness proof, we reduce the problem of
one-in-three monotone 3SAT [50], to the BALBOA type-infer-
ence problem. 3SAT is the following problem. Given a set
of Boolean variables and a collection of disjunctive clauses
over , such that each clause is a disjunction of exactly three
literals, find if there is a truth assignment of the variables in,
such that all of the clauses are satisfied. One-in-three 3SAT, is
a special case of 3SAT problem, where the truth assignment of

has the restriction that if and are two literals appearing
in the same clause, then both cannot be assigned the truth value
of one. Monotone one-in-three 3SAT, has the further restriction
that no negated literal appears in any of the clauses.

Given an instance of monotone one-in-three 3SAT, for each
clause , which has three literals , one can create a
table , with exactly three rows .
Given the set of vector of variables in , one has
to assign one of the rows in tablewith the restriction that if the
variable that appears as in also appears in another clause
as , then the choice of the rows from and must be such
that the assigned truth values are the same forand . This
is a version of the BALBOA type-inference problem and, hence,
it is at least as hard as the monotone one-in-three 3SAT, which
is known to be NP complete [50].

Given that the problem is NP complete, we use heuristics to
solve the problem. Moreover, the problem is solved incremen-
tally because components are added or deleted in the CIL—the
type assignments keep changing. The heuristic implemented in
the BALBOA type-inference uses a delaying mechanism which
delays the type instantiation and allocation of components until
all type parameters associated with a component are resolved.
The resolution is done on-the-fly, as components are added, type
parameters get propagated to partial types.

D. Heuristics for BALBOAType Inference

There are multiple ways of solving these problems, including
dynamic programming, local search [51], etc. A sequence of
natural join operations may take a long time, since the different

s have different sizes. The order in which the joins are com-
puted can be optimized using dynamic programming; hence, we
will follow that approach. However, since we build models in-
crementally, when a new component is added and connected, the
new required join may not be in the order that the dynamic pro-
gramming would have yielded. In the current implementation
of the BALBOA environment, the runtime type inference mech-
anism may be summarized as follows. We first verify compat-
ibility of types when connections are set between two compo-
nents. We join the type availability tables of both components,
renaming the connected ports to the same name if necessary. If
the join returns empty, the components are not compatible; if
it is not empty, the system will remember the result. Since the
SLI allocates the component, it can decide to delay the alloca-
tion until the type parameterization is resolved. Now, consid-
ering this join result as the type availability table for this pair of
components, we then select a new component that is connected
to one of these, and apply the procedure.

If the result of the final join is empty, the architecture de-
scribed in the CIL cannot be instantiated with the available im-
plementations. If it is singleton, then we have found a unique
combination of type parameters that can be instantiated. If the
final join yields multiple rows, we have to choose a type param-
eter combination from the final table.

Fig. 13 shows a simplified version of the type-inference
heuristic. TheCheckTypingheuristic chooses two components
that are connected, both with small type availability table sizes.
It does a join locally between the two components to assess
that the types are compatible. While the designer is using
the CIL, this join is used to propagate type parameters as the
architecture is built. All connection information is passed to the
join procedure as , which is used to decide which columns
of the tables to run the join on.

In the current implementation, the runtime environment does
not build the join tables explicitly, but walks the architectural
graph and builds the join tables implicitly in the SLIs. In this
case, the runtime environment does an incremental version of
this procedure by remembering all the intermediate join results
through the SLIs. In future works, we will study optimizations of
this procedure, including caching joins, incremental joins, etc.

VI. I MPLEMENTATION AND RESULTS

This section shows the usage of the CIL for a moderately
complex real design example. The AMRM is an adaptive cache
memory system [11] that can have its configuration changed dy-
namically. For instance, associativity and line size can be con-
figured by special processor instructions. The hardware part of
the design is a regular cache subsystem with a modified con-
troller for cache adaptation.

Fig. 14 shows the outline of the procedure we followed for
component integration and communication refinement. At each
step, we refined both the component and the connector, but we
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Fig. 13. Simplified type inference heuristics implemented in the BALBOA runtime environment.

Fig. 14. AMRM models in different levels of abstraction for the components
and connectors.

encapsulated the changes behind a CIL interface. Each box rep-
resents a memory hierarchy level, encapsulating the controller
and the memory array, and the line between the two boxes repre-
sents a connection between the levels. At the top most level, we
assume that there is a connection between the memory levels but
there are no assumptions on its type or implementation. Com-
munication refinement yields several versions of the component
and the connector. Fig. 15 shows both the UML class diagrams
and the block diagrams for the component integration and the
communication refinements.

The script listed in Fig. 16 shows the CIL file used at all re-
finement levels: we start by instantiating two cache components
namedL1 andL2 , and a memory component namedMem. The
last lines invoke method calls to the interface of the components
to establish the connections. These methods are reimplemented
as the abstract connection is refined.

A. First Refinement

In the first refinement, the connector is a pointer referring to
the lower level of memory hierarchy. Method invocations along

this pointer implement message passing in a sequential model.
In the class diagram of Fig. 15(a),Memory Base is the base
class for theCache andMemory classes. TheMemory Base
hasread andwrite virtual methods that are implemented in
theCache andMemory classes to implement the component
behaviors. TheCache class has an association (pointer) named
lower memory that is used to navigate to the lower level of
memory. For example, on an L1 cache read miss, the L1 cache
will use this association to call read method of L2 cache. The
block diagram in Fig. 15(d) shows how theselower memory
associations implement the control flow between the two levels
of cache and the main memory. The procedure listed in Fig. 17
sets the association pointers between two caches. It is an OTcl
method of theCache Ctrl component that sets its own
pointer (by$self ) to the lower memory level.

B. Second Refinement

In the second refinement, we change the pointer for two
queues: one for the requests and one for the answers. The class
diagram on Fig. 15(b) illustrates this change. The refinement
also introduces concurrency with the addition of a reactive
process namedproc to the Cache and Memory classes.
These processes are triggered by events onclock input ports
and transitively call theread() andwrite() methods. The
script on Fig. 18 lists the procedure to connect two caches
together with queues as link objects. The first lines instantiate
the queues. The data types of the queues will be set according
to the types of the association pointers to which they are
connected. The other lines establish the associations between
the caches and the queues. Fig. 15(e) shows the architectural
view, where each cache level is separated by two queues.
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Fig. 15. AMRM component integration models with communication refinement: the upper row is for the class diagrams, and the lower row is for the corresponding
block diagrams: (a) and (d) pointer connectors, (b) and (e) queue connectors, and (c) and (f) signal connectors.

Fig. 16. Top-level architecture file for the AMRM structure.

Fig. 17. Connection procedure.

Fig. 18. Refined connection procedure.

C. Third Refinement

The lowest level of abstraction in our AMRM models uses
signal communications. Fig. 15(c) shows the class diagram for
this model. The behaviors of the queues are still in the design,
but is refined through ports beginning by “l” for the lower
memory, and by “u” for the upper memory. These ports are
bound to theMemBus link class, which encapsulates all signal
objects. Fig. 15(f) shows the block diagram with the memory
hierarchy and the buses. The script in Fig. 19 lists the procedure
to connect two caches through a bus. We now use thebind
command for the port object instead of thelink command for
pointers. The third line instantiates a cache bus namedcb . The
remainder of the listing individually connect the ports of the
upper and the lower cache to the bus signals.

D. Code Generation Ratios and Discussion

Table II shows the design statistics of the file sizes and code-
generation ratios for the various AMRM implementations. As
we refine the models, the script sizes grow larger, but not the
number of C++ classes (except for the queue data type class in
the second refinement). This is because the granularity of the
communications gets smaller and there are more connections to
be established.
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Fig. 19. Refinement with signal connectors.

TABLE II
DESIGN STATISTICS OF AMRM M ODELS: CODE GENERATION

RATIO AT HIGHER ABSTRACTIONS

The programming efforts to write BIDL files in the exper-
imentations were nonintrusive and of low effort. We used the
parts of the header of the classes we wanted visible to the in-
terpreter and we added characterizations as behavioral or struc-
tural components. The ratio of the IP versus generated code sizes
shown is increasing as the abstraction is lowered. However, the
size of the BIDL file and the generated code does not grow lin-
early with the size of the IP code. The environment does not
take design decisions for the designer in the communication re-
finement, except for the type propagation. Work is in progress
to investigate what ratios of code generation are obtained in dif-
ferent design contexts, and to minimize the size of the SLIs.

The CIL provides a high-level view focused on the compo-
nents and the connectors. Parameterization with control flow,
name concatenation, and type inference parameterization with
no recompilation are definite advantages over using only C++.
The AMRM design example shows a refinement using the com-
ponent modeling capabilities of the CIL extended with connec-
tion-method customizations. A future enhancement will be to
isolate the connector from the connection method, so that the
type inference can choose a connector according to the set of
communication patterns.

VII. CLOSING REMARKS AND FUTURE WORK

Component composition frameworks represent an exciting
development in the area of high-level modeling for system-level
design. A successful adoption of those frameworks is likely
to have a direct impact on the successful management of
complexity of the new generations of SOC designs. However,

there are several technical challenges that must be overcome.
The chief among them are ensuring inherent composability
and reuse of SOC components. The problem extends beyond
large scale program constructions in software engineering,
where several advances in architectural modeling and design
environments have occurred. The challenge is due to the
diversity of the computation models, levels of abstractions
used, and the notion of correctness applicable to SOC com-
ponents. Advances in the understanding of cosimulation and
models of computation are important aspects of the problem
that have been addressed well. Challenges remain in aspects
related to encapsulation and reusability of components. The
BALBOA framework addresses this aspect of the problem by
deconstructing the task of component creation from component
composition. Our approach is a bottom-up approach of SOC
construction using reusable IP. The underlying programming
and automatic wrapper generation capabilities are built upon
software engineering techniques, namely, reflection and intro-
spection of the components and composition by delegation.
The focus of our ongoing effort is to understand and develop
techniques to raise the level of abstraction used in interface
composition and exploit to the system-level verification oppor-
tunities present in such an approach. For example, in the type
inference arena, the data-type matching is just a starting point.
Currently, a behavioral type system is being developed to check
the functional validity of composition of virtual components.
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