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Efficient Approximation of Symbolic Expressions
for Analog Behavioral Modeling and Analysis

Sheldon X.-D. Tan, Member, IEEE, C.-J. Richard Shi, Senior Member, IEEE

Abstract— Efficient algorithms are presented to generate ap-
proximate expressions for transfer functions and characteristics
of large linear analog circuits. The algorithms are based on a
compact determinant decision diagram (DDD) representation of
exact transfer functions and characteristics. Several theoretical
properties of DDDs are characterized, and three algorithms,
namely, based on dynamic programming, based on consecutive
k-shortest path based, and based on incremental k-shortest path,
are presented in this paper. We show theoretically that all three
algorithms have time complexity linearly proportional to |DDD|,
the number of vertices of a DDD, and that the incremental k-
shortest path based algorithm is fastest and the most flexible
one. Experimental results confirm that the proposed algorithms
are the most efficient ones reported so far, and are capable of
generating thousands of dominant terms for typical analog blocks
in CPU seconds on a modern computer workstation.

Index Terms— analog symbolic analysis, circuit simulation,
determinant decision diagrams, matrix determinant, behavioral
modeling

I. INTRODUCTION

As more custom very large scale integrated (VLSI) circuit
designs become system-on-a-chip (SoC) designs, efficient im-
plementations of analog/radio frequency (RF) building blocks
in SoC systems become increasingly important. But design
automation techniques for analog circuits are significantly
lagging behind their counterparts for digital circuits. One
of the challenging problems in analog design is that analog
circuits typically have many characteristics, and they depend
in a very complicated way on circuit, layout process and
environment parameters.

In this paper, we consider the problem of generating sim-
ple yet accurate symbolic representation of circuit transfer
function and characteristics in terms of circuit parameters for
linear(ized) analog integrated circuits. It is well known that
circuit transfer function and characteristics are dominated by a
small number of product terms called significant or dominant.
For instance, Fig. 1 shows a CMOS two-stage opamp circuit.
The simplified MOS small-signal model is shown in Fig. 2.
If we ignore cbg , csb and gmb (as they are typically small
compared to other parameters) in the MOS model and treat
the M5 as an ideal current source and M7 as a resistor, the
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exact transfer function from input vin2 to vout (vin1 is shunted
to ground), as shown in Appendix , contains 16 product terms
in the numerator and 60 terms in the denominator. We can
see that each coefficient expression of sk is dominated by a
few product terms. For example, for the coefficient of s1 in the
denominator, the first product term amounts to 86% of the total
magnitude of the coefficient and the first two terms amount to
97% of the total magnitude. If these errors are acceptable, the
remaining terms can be neglected. With 5% error, the transfer
function can be simplified as shown in Eq. (1).

H(s) =
vout

vin2

=
gm2gm6 + s1(gm2CC)

( 1

ro2
+ 1

ro4
)( 1

ro6
+ 1

ro7
) − s1(gm6CC)+

s2(cdb2 + cdb4 + cgs6 + CL)CC

(1)

Notice that the symbolic approximation are typically carried
out around some nominal numerical values (points) of the
devices involved, the generated model will approximate actual
devices well when the sized device parameters are close to the
nominal values used for model generation. However, when
using a staged optimization approach, the nominal points will
move and model will be updated adaptively. As a result, the
optimized devices will be very close to the nominal points
of the model generated in the final stage (as the model is re-
centered after every stage). Such nominal point approximation
strategy used in this work is also adopted by most of symbolic
approximation methods [1]–[7]. During the approximation, we
monitor both magnitudes and phases of the transfer functions
until errors are within the user-specified error bounds for the
frequency range.

Vin1 Vin2

Cl

Cc

Vbias

Vout

M5

M3 M4 M6

M7

M2M1

VSS

VDD

Fig. 1. A simplified two-stage CMOS opamp [8].

As illustrated in [9], simple yet accurate symbolic ex-
pressions can be interpretable by analog designers to gain
insight into the circuit behavior, performance and stability,
and are important for many applications in circuit design
such as transistor sizing and optimization, topology selection,
sensitivity analysis, behavioral modeling, fault simulation,0000–0000/00$00.00 c© 2004 IEEE
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Fig. 2. MOSFET small signal model.

testability analysis and yield enhancement [10]. Efficient sym-
bolic techniques for linear(ized) analog circuit analysis are the
basis of distortion analysis of weakly nonlinear circuits [11],
[12], symbolic modeling of time-varying systems such as
mixers [13].

Previous attempts to generate interpretable expressions use
various symbolic analysis methods to generate sum-of-product
representations for network functions. This area has been stud-
ied extensively in 1960s-1980s [14]. The resulting approaches,
however, are only feasible for very small circuits, since the
number of expanded product terms grows exponentially with
the size of a circuit, and the resulting expressions are no
longer interpretable by analog designers. Recently, various
approximation schemes have been developed. Approximation
after generation is reliable but it requires the expansion of
product terms first [6], [9], [15]. Some improvements based
on nested expressions have been proposed [16], [17]. But
they generally suffer symbolic term-cancellation and align-
term problems. Approximation during generation extracts only
significant product terms [2], [5], [7]. It is very fast, but
has two major deficiencies: First, if accurate expressions are
needed, the complexity of the approach becomes exponential.
Second, it works only for transfer functions. Other small-
signal characteristics such as sensitivities, symbolic poles and
zeros, cannot be extracted in general. At the same time, several
approximation before generation techniques [7], [18] were pro-
posed in which the complexity of a circuit is simplified before
symbolic analysis methods are applied. Recently, a signal-
flow graph based approximation before generation method was
proposed [19] and demonstrated successfully to symbolic pole
and zero generation. Symbolic analysis based on the concept
of signal paths in control theory was employed for pole and
zero location analysis [3], [20].

In this paper, we present efficient algorithms of generat-
ing dominant terms for deriving interpretable symbolic ex-
pressions based on a compact determinant decision diagram
(DDD) representation of circuit transfer functions [21], [22].
We show that dominant term generation can be performed
elegantly by DDD graph manipulations. Since we start with
exact symbolic expressions in DDD representations, our new
approximation methods feature both the reliability in the
approximation-after-generation methods and the capability in
approximation-before/after-generation for analyzing large ana-
log circuits. Experimental results show that our algorithms
outperform the best dominant term generation method reported
so far [4], [23].

Some preliminary results of this paper were presented

in [24], [25]. This paper is organized as follows. Section II
reviews the concepts of DDDs and s-expanded DDDs. Sec-
tion III presents a dynamic programming based term gener-
ation algorithm based on the work of [4], [23]. Section IV
describes the consecutive k-shortest path generation algorithm.
Section V presents the most efficient algorithms based on in-
cremental k-shortest paths. Experimental results are presented
in Section VI. Section VII concludes the paper.

II. DDDS AND s-EXPANDED COEFFICIENT DDDS

In this section, we provide a brief overview of the notion
of determinant decision diagrams [21]. We review how a
multiple-root DDD can be used to represent the symbolic
coefficients of an s polynomial [22].

Determinant Decision Diagrams [21] are compact and
canonical graph-based representation of determinants. The
concept is best illustrated using a simple RC filter circuit
shown in Fig. 3. Its system equations can be written as

1 R2 R3

C2 C3R1 C1

2 3

I

Fig. 3. An example circuit.
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We view each entry in the circuit matrix as one distinct
symbol, and rewrite its system determinant in the left-hand
side of Fig. 4. Then its DDD representation is shown in the
right-hand side.

A    B    0

C   D    E

0    F    G

0 edge

1 0

1 edge

+

+

+

-

+

+

-

A

B

CD

F

E

G

Fig. 4. A matrix determinant and its DDD representation.

A DDD is a signed, rooted, ordered, directed acyclic graph
with two terminal vertices, namely the 0-terminal vertex
and the 1-terminal vertex. Each non-terminal DDD vertex is
labeled by a symbol in the determinant denoted by ai (A to
G in Fig. 4), and a positive or negative sign denoted by s(ai).
It originates two outgoing edges, called 1-edge and 0-edge.
Each vertex ai represents a symbolic expression D(ai) defined
recursively as follows: D(ai) = ai s(ai) Dai

+ Dai
, where

Dai
and Dai

represent, respectively, the symbolic expressions
of the vertices pointed by the 1-edge and 0-edge of ai. The 1-
terminal vertex represents expression 1, whereas the 0-terminal
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vertex represents expression 0. For example, vertex E in Fig. 4
represents expression E, and vertex F represents expression
−EF , and vertex D represents expression DG−FE. We also
say that a DDD vertex D represents an expression defined by
the DDD subgraph rooted at D.

A 1-path in a DDD corresponds a product term in the
original DDD, which is defined as a path from the root vertex
(A in our example) to the 1-terminal including all symbolic
symbols and signs of the vertices that originate all the 1-edges
along the 1-path. In our example, there exist three 1-paths
representing three product terms: ADG, −AFE and −CBG.
The root vertex represents the sum of these product terms.
Size of a DDD is the number of DDD vertices, denoted by
|DDD|.

DDD graph is also an ordered graph like Binary Decision
Diagrams (BDDs). This implies that the order of each symbol
in any 1-path from (root vertex to 1-terminal) is fixed with
respect to other symbols. The ordering used in our example
is A > C > B > D > F > E > G. Notice that the size
of a DDD depends on the size of a circuit in a complicated
way. Both circuit topology and vertex ordering have huge
impacts on the DDD sizes. Given the best vertex ordering,
if the underlying circuit is a ladder circuit, |DDD| is a linear
function of the sizes of the circuit. For general circuits, the
size of DDD graph may grow exponentially in the worse
case. But like BDDs, with proper vertex ordering, the DDD
representations are very compact for many real circuits [21],
[22].

Given a symbolic matrix where each entry is a distinct
symbol, and a fixed order of each label appears in the DDD
starting from its root. Then the expansion of matrix can be
carried out with respect to a non-zero element:

det(A) = ar,c(−1)r+cdet(Aar,c
) + det(Aar,c

). (2)

A DDD vertex pointed by 0-edge, which comes from vertex
ar,c, represents a determinant obtained by setting ar,c = 0
and is denoted as det(Aar,c

). The corresponding portion of
the DDD graph for one-step determinant expansion of Eq. (2)
is shown in Fig. 5.

Fig. 5. A determinant expansion and its DDD representation.

It can be seen that the multiplication operation is represented
by a 1-edge and the addition operation is represented by a 0-
edge. The sign of each vertex is the sign used when the vertex
is used to develop the determinant. If a DDD is constructed
by using Laplace development, all the DDD vertices linked by
0-edges will have the same row index or column index. If the
vertex ordering that we use to develop a determinant is fixed,

there exists a unique DDD representation of the determinant
for that vertex ordering. This is the DDD canonical property.

To exploit the DDD to derive circuit characteristics, we
need to directly represent circuit parameters not matrix entries.
To this end, s-expanded DDDs are introduced [22]. Consider
again the circuit in Fig. 3 and its system determinant. Let
us introduce a unique symbol for each circuit parameter in
its admittance form. Specifically, we introduce a = 1

R1

,
b = f = 1

R2

, d = e = − 1

R2

g = k = 1

R3

, i = j = − 1

R3

,
C1 = c, h = C2, l = C3. Then the circuit matrix can be
rewritten as

[

a + b + cs d 0
e f + g + hs i
0 j k + ls

]

The original 3 product terms will be expanded to 23 product
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Fig. 6. An s-expanded DDD.

terms in different powers of s. We can represent these product
terms nicely using a slight extension of the original DDD, as
shown in Fig. 6. This DDD has exactly the same properties as
the original DDD except that there are four roots representing
coefficients of s0, s1, s2, s3. Each DDD root represents a
symbolic expression of a coefficient in the corresponding s

polynomial. Each such DDD is called a coefficient DDD, and
the resulting DDD is a multiple-root DDD. The original DDD
in which s is contained in some vertices is called complex
DDD. The s-expanded DDD can be constructed from the
complex DDD in linear time in the size of the original complex
DDD [22], [26].

Before we generate the dominant terms, one problem we
need to consider is symbolic cancellation. Symbolic canceling
terms arise from the use of the MNA formulation in analog
circuits. For instance, consider the s-expanded DDD in Fig. 6.
Since g = k = 1

R3

and i = j = − 1

R3

, term agks0 cancels term
−ajis0 in the coefficient DDD of s0. Our experiments show
that 70-90% terms are canceling terms. Clearly it is inefficient
to generate the 70%-90% terms that will not show up in the
final expressions.

For this example the resulting cancellation-free DDD is
shown in Fig. 7.
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Fig. 7. The cancellation-free multi-root DDD.

III. DYNAMIC PROGRAMMING BASED GENERATION OF

DOMINANT TERMS

In this section, we present a dynamic programming (DP)
based algorithm for generating dominant terms using DDDs.
The original idea of using dynamic programming was pro-
posed by Verhaegen and Gielen [4], [23], but was implemented
based on non-canonical DDD graphs with node duplication.
Our implementation is based on canonical DDD graphs with-
out dynamic removal of canceling terms, and therefore is faster
than the one in [4], [23].

To derive the DP algorithm, we characterize here some
theoretical properties of DDDs. First, we note that the vertex
ordering heuristic used to construct DDDs is based on Laplace
expansion of a circuit matrix along the row or column [21].
We also know from the canonical property of DDD that the
structure of a DDD is unique under a fixed vertex order,
i.e., independent of how it is constructed. We thus have the
following lemma.

Lemma 1: All 0-edge linked vertices come from either the
same row or the same column of the original circuit matrix.
Proof: We know that a complex DDD is constructed by
using Laplace development. To ease our proof, we repeat the
determinant expansion rule (2) in the following:

det(A) = ar,c(−1)r+cdet(Aar,c
) + det(Aar,c

).

In a DDD graph, the addition relationship between cofactor
ar,c(−1)r+cdet(Aar,c

) and remainder det(Aar,c
) is repre-

sented by a 0-edge between two DDD vertices representing
the two expressions as shown in Fig. 5. Since all the ar,c are
selected from a row or a column by Laplace development rule,
so all the 0-edge linked DDD vertices will have the same row
index or column index. Further the row or column must exist
in the remainder det(Aar,c

).
With Lemma 1 as the basis, we can show the following

main result.
Theorem 1: The incoming edges of a non-terminal vertex

in a complex DDD or native s-expanded DDD are either all
0-edges or all 1-edges.

Proof: Suppose there exists a DDD vertex Y that has
an incoming 0-edge from DDD vertex X , and an incoming
1-edge from vertex C as shown in Fig. 8(a). The DDD
subgraph rooted at Y therefore represents a remainder by the
development of X . According to the determinant development

Y

C

X=0

Z

CX

Y

X

Z

(a) (b)

Fig. 8. A DDD vertex with both incoming 1-edge and 0-edge

rule (2), the 0-edge between X and Y means that both the row
and column of X exist in the remainder represented by Y

(actually, X and Y are in the same row or column according
to Lemma 1). Also the element of X in the remainder Y will
become zero as shown in Fig. 8(b).

On the other hand, Y and C are not in the same row and
column as Y is obtained by Laplace development with respect
to C. Since element X is zero, X will appear before C with
a 0-edge in the path (or there could be a number of elements
in between linked with 0-edges; as they must come from the
same row or column). Let the first non 0-edge linked vertex to
be Z (Z can be C). The fact that Z is 1-edge linked implies the
minor after Z is developed will not have the row and column
of Z. As a result, X would have been crossed out since it is
in the same row or column as Z. This contrasts with the fact
that X appears in the remainder Y .

This lemma also holds for native s-expanded DDDs by
noticing that 0-edges between DDD vertices may also rep-
resent the relationship among the different symbolic circuit
parameters in a non-zero element in a determinant. Native here
means that the s-expanded DDDs are obtained from complex
DDDs without any structure modification.

Now we are ready to describe a DDD-based DP algorithm
for generating k dominant terms. From Lemma 1 and The-
orem 1, we know that we only need to calculate dominant
terms for 1-edge pointed DDD vertices. Let D be a 1-edge
pointed vertex. We use D.counter to keep track of the number
of dominant terms generated for the vertex D (D is included
in the terms). We use an ordered array, denoted as D.term-
list, to keep track of those generated dominant terms in
the minor represented by D, where D.term-list[1], D.term-
list[2],... represents the largest term (first dominant term),
the second largest term (second dominant term). D.counter
is initially set to 1 for all 1-edge pointed vertices, and can be
increased up to k.

As shown in pseudo code in Fig. 9, to find the k dom-
inant terms at a 1-edge pointed vertex D, we first check
if such k terms already exist in the term-list in GETK-
DOMITERMS(D, k). If they do not exist, they will be gen-
erated by invoking COMPUTEKDOMINANTTERM(D, k). In
COMPUTEKDOMINANTTERM(D, k), the largest term is com-
puted and stored in the term-list of D by visiting all the 0-edge
linked DDD vertices. Each time a dominant term is computed,
the corresponding vertex V.counter will be increased by 1.
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GETKDOMITERMS(D, k)
1 if ( D = 1)
2 return 1
3 if ( D = 0 )
4 return NULL
5 else if ( D.term-list[k] exists )
6 return D.term-list[k]
7 else
8 COMPUTEKDOMINANTTERMS(D, k)
9 return D.term-list[k]
COMPUTEKDOMINANTTERMS(D, k)
01 if ( D = 1)
02 return 1
03 while (D.term-list[k] not exists) do
04 for each 0-edge linked vertex V starting with D do
05 if ( V = 1 and V.counter > 1)
06 continue
07 term = GETKDOMITERMS(V.child1, V.counter)
08 if ( term exists)
09 nterm = UPDATETERM(term, V )
10 tvalue = COMPUTETERMVALUE(nerm)
11 if (tvalue is the largest)
12 new largest term = nterm

13 vertex need update = V

14 if (new largest term exists)
15 D.term-list.push(new largest term)
16 vertex need update.counter++
17 else
18 break
19 return

Fig. 9. Dynamic programming based dominant term generation algorithm.

UPDATETERM() adds a vertex (its symbol) into a term repre-
sented by a DDD tree. COMPUTETERMVALUE() computes the
numerical value of a given term. We use V.child1 to represent
the vertex pointed to by the 1-edge originating from vertex V .

Let n be the number of vertices in a path from 1-terminal
to the root vertex, i.e. the depth of the DDD graph. Let each
circuit node be connected by at most m devices. Then each
matrix entry can be a sum of at most m individual elements.
The algorithm takes linear time in terms of the size of a
DDD, if UPDATETERM() and COMPUTETERMVALUE() are
implemented to use constant time each time when a vertex
is added to a term. This can be accomplished by using
memory caching. After obtaining the first dominant term,
the next dominant can be found in O(n) time assuming the
UPDATETERM() and COMPUTETERMVALUE() take constant
time and the number of 0-edge linked vertices is bounded by
m and m � n (due to line 04 in Fig. 9). But m depends on the
circuit topologies and may become comparable to n for some
strongly connected circuit structures and the time complexity
of the DP algorithm will become O(n2) in this case.

We note that cancellation-free s-expanded DDDs do not
satisfy Theorem 1. For example, Fig. 7 shows the cancellation-
free s-expanded DDD of the s-expanded DDD in Fig. 6,
vertex g in the coefficient of s1 has both incoming 1-edge

and incoming 0-edge. Verhaegen and Gielen [4], [23] resolved
this problem by duplicating vertex g. Their approach, however,
would destroy the DDD canonical property, a property that
enables many efficient DDD-based graph manipulations. In
this paper, we apply the proposed DP based term generation
approach on the s-expanded DDDs before de-cancellation.

IV. CONSECUTIVE K-SHORTEST PATH ALGORITHM FOR

GENERATION OF DOMINANT TERMS

We proposed an efficient algorithm for finding k dominant
terms in [27]. The algorithm does not require DDDs to be
native or to satisfy aforementioned graph theoretical property
(Theorem 1), and thus can be applicable to any DDD graph.
To differentiate this algorithm from the one presented in
Section V, we refer to this algorithm as consecutive k-shortest
path (SP) algorithm.

The SP algorithm is based on the observation that the most
significant term in coefficient DDDs can be transformed into
the shortest path in edge-weighted DDD graphs by introducing
the following edge weight in a DDD:

• 0-edge costs 0
• 1-edge costs −log|ai|, and |ai| denotes the numerical

value of the DDD vertex ai that originates the corre-
sponding 1-edge.

The weight of a path in a coefficient DDD is defined to be the
total weights of the edges along the path from the root to the
1-terminal. As a result, given a path, say abcdef , their path
weight is

−(log|a| + log|b|+ log|c| + log|d| + log|e|+ log|f |). (3)

If |abcdef | is the value of the largest term, value of
−log|abcdef | will be the smallest, which actually is (3).

The shortest (weighted) path in a coefficient DDD, which
is a DAG (direct acyclic graph), can be found by depth-first
search in time O(V + E), where V is the number of DDD
vertices and E is number of edges [28]. So it is O(V ) in
DDDs. Once we find the shortest path from a DDD, we can
subtract it from the DDD using SUBTRACT() operation [21],
and then we can find the next shortest path in the resulting
DDD.

DDD function SUBTRACT() is the key operation in our
SP algorithm. The pseudo code of SUBTRACT() operation is
shown in Fig. 10.

Where, function GETVERTEX(top, child1.child0) is to gen-
erate a vertex for a symbol top and two subgraphs child1
(pointed by 1-edge) and child0 (pointed by 0-edge) [21].

Let n be the number of vertices in a path from 1-terminal
to the root vertex, i.e. the depth of the DDD graph, given the
fact that D is a DDD graph and P is a path in the DDD form,
then we have the following theorem:

Theorem 2: The number of new DDD vertices created in
function SUBTRACT(D, P ) is bounded by n and the time
complexity of the function is O(n).
Proof: As we know that DDD graph D contains path P . As
P is a single-path DDD graph, P.child0 is always 0-terminal.
So lines 5 and SUBTRACT(D.child0, P.child0) in line 6 will
immediately return D and D.child0 respectively (actually,
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SUBTRACT(D,P )
1 if (D = 0) return 0
2 if (P = 0) return D
3 if (D = P ) return 0
4 if (D.top > P.top)

return GETVERTEX(D.top,
P.child1,SUBTRACT(D.child0, P ))

5 if (D.top < P.top) return SUBTRACT(D,P.child0)
6 if (D.top = P.top)

return GETVERTEX(D.top,
SUBTRACT(D.chinld1, P.child1),
SUBTRACT(D.child0, P.child0))

Fig. 10. Implementation of SUBTRACT() for symbolic analysis and applica-
tions.

line 5 will never be reached if D contains path P ). As a
result, we will descend one level down in graph D each time
depending on which line we choose to go for lines 4 and 6.
In fact, function SUBTRACT(D, P ) actually will traverse the
embedded path P in D until it hits a common subgraph in both
D and P as indicated in line 3. After this, m−1 new vertices
will be created on its way back to the new root vertex, m is
the number of vertices visited in D in the whole operation and
m < n. If the common subgraph is 1-terminal, then m = n.

We then have following results:
Theorem 3: The time complexity of the SP algorithm for

finding k shortest paths is

O(k|DDD| + n
k(k − 1))

2
), (4)

where n is the depth of the DDD graph.
Proof: According to Theorem 2, the number of new DDD
vertices created in SUBTRACT() operation is bounded by n

and the time complexity of the function is O(n). Therefore, we
can find the k shortest paths in time O(k|DDD|+n(

∑k−1

i=1
i)),

which actually is Eq.(4).

V. INCREMENTAL K-SHORTEST PATH ALGORITHM FOR

GENERATION OF DOMINANT TERMS

In this section, we introduce a more efficient term generation
algorithm based on our previous work in [27]. The new
algorithm is still based on the shortest path concept. But unlike
the consecutive k-shortest path method, the new algorithm
does not need to visit every vertex in a DDD graph to find
the dominant term as required by the shortest path search
algorithm [28] after every vertex has been visited once (i.e.
after the first dominant term is found). The new algorithm is
based on the observation that not all the vertices are needed
to be visited, after the DDD graph is modified due to the
subtraction of a dominant term from the graph. We show that
only the newly added DDD vertices are needed to be relaxed
and the number of newly added DDD vertices is bounded by
the depth of a DDD graph.

In the sequel, we first introduce the concept of reverse DDD
graphs. As shown in Fig. 4, a DDD graph is a direct graph with
two terminal vertices and one root vertex. Remember that the
1-path in a DDD graph is defined from the root vertex to the
1-terminal. Now we define a new type of DDD graphs, called

reverse DDD graphs where all the edges have their directions
reversed and the root of the new graph are 1-terminal and 0-
terminal vertices and new terminal vertex becomes the root
vertex of the original DDD graph. The reverse DDD graph
for the DDD graph in Fig. 4 is shown in Fig. 11. For the
clarification, the root vertex and terminal vertices are still
referred to as those in the original DDD graphs.

0 edge

1 0

1 edge

+

+ −

+

+

−

A

B

CD

F

E

G

Fig. 11. A reverse DDD.

With the concept of the reverse DDD graph, we further
define 1-path and path weight in a reverse DDD graph.

Definition 1: A 1-path in a reverse DDD is defined as a
path from the 1-terminal to root vertex (A in our example)
including all symbolic symbols and signs of the vertices that
the 1-edges point to along the 1-path.

Definition 2: The weight of a path in a DDD is defined
to be the total weights of the edges along the path where
each 0-edge costs 0 and each 1-edge costs −log|ai|, and |ai|
denotes the numerical value of the DDD vertex ai that the
corresponding 1-edge points to.
We then have the following result.

Lemma 2: The most significant product (dominant) term in
a symbolic determinant D corresponds to the minimum cost
(shortest) path in the corresponding reverse DDD between the
1-terminal and the root vertex.

The shortest path in a reverse s-expanded DDD, which is
still a DAG and thus, can be found in O(|DDD|) time as the
normal DDD graph does.

Following the same strategy in [27], after we find the
shortest path from a DDD, we can subtract it from the DDD
using SUBTRACT() DDD operation, and then we can find the
next shortest path in the resulting DDD. We have the following
result:

Lemma 3: In a reverse DDD graph, after all the vertices
have been visited (after finding the first shortest path), the
next shortest path can be found by only visiting newly added
vertices created by the subtraction operation.
Proof: The proof of Lemma 3 lies in the canonical nature of
DDD graphs. A new DDD vertex is generated if and only if
the subgraph rooted at the new vertex is a new and unique
subgraph for the existing DDD graph. In other words, there
do not exist two identical subgraphs in a DDD graph due to
the canonical nature of DDD graphs. On the other hand, if an
existing DDD vertex becomes part of the new DDD graph, its
corresponding subgraphs will remain the same. As a result, the
shortest path from 1-terminal to all vertices in the subgraph
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will remain the same. Hence, it is sufficient to visit the newly
added vertices to find the shortest paths from 1-terminal to
those vertices. The root vertex of the new DDD graph is one
of those newly added vertices.

Fig. 12 illustrates the incremental k-shortest path algorithm.
The figure in the left-hand side shows consecutive k-shortest
path algorithm to find the shortest path. Every time when a new
DDD graph is created which is rooted at D′, we have to visit
the whole graph to find the shortest path. The figure shown
in the right-hand side is the new incremental k-shortest path
algorithm where we only need to visit all the newly created
DDD nodes (in the upper left triangle) to be able to find the
shortest path. As shortest paths are found from the source to
all the nodes in a graph, the shortest paths, shown in dashed
lines, in the existing subgraphs can be reused in the new DDD
graph.

0

D

(b)

D’D’

0

D

(a)

1 1

Fig. 12. Incremental k-shortest path algorithm.

It turns out that finding the shortest path from 1-terminal to
the new vertices can be done very efficiently when those new
vertices get created. The shortest path searching can virtually
take no time during the subtraction operation. Suppose that
every vertex in reverse DDD graph D has a shortest path from
1-terminal to it (be visited once). Then the new algorithm for
searching the next dominant term is given in Fig. 13.

In GETNEXTSHORTESTPATH(D), EXTRACTPATH(D) ob-
tains the found shortest path from D and returns the path in
a single DDD graph form. This is done by simply travers-
ing from the root vertex to 1-terminal. Each vertex will
remember its immediate parent who is on the shortest path
to the vertex in a fully relaxed graph (relaxation concept
will be explained soon). Once the shortest path is found,
we subtract it from the existing DDD graph and relax the
newly created DDD vertices (line 15-17) at same time to find
the shortest paths from 1-terminal to those vertices, which is
performed in the modified function SUBTRACT(D, P ), now
called SUBTRACTANDRELAX(D, P ).

In function SUBTRACTANDRELAX(D, P ), RELAX(P , Q)
performs the relaxation operation, an operation that checks if
a path from a vertex’s parent is the shortest path seen so far
and remember the parent if it is, for vertices P and Q where
P is the immediate parent of Q in the reverse DDD graph.
The relaxation operation is shown in Fig. 14. Here, d(x) is
the shortest path value see so far for vertex x; w(P, Q) is
the weight of the edge from P to Q, which actually is the
circuit parameter value that Q represents in the reverse DDD
graph. Line parent(Q) = P remembers the parent of Q in the

GETNEXTSHORTESTPATH(D)
1 if (D = 0)
2 return 0
3 P = EXTRACTPATH(D)
4 if (P exists and P not equal to 1)
5 D = SUBTRACTANDRELAX(D,P )
6 return P

SUBTRACTANDRELAXW(D,P )
01 if (D = 0)
02 return 0
03 if (P = 0)
04 return D
05 if (D = P )
06 return 0
07 if (D.top > P.top)
08 V = GETVERTEX(D.top, D.child1,

SUBTRACTANDRELAX(D.child0,P ))
09 if (D.top < P.top)
10 V = SUBTRACTANDRELAX(D,P.child0)
11 if (D.top = P.top)
12 T1 = SUBTRACTANDRELAX(D.child1,P.child1))
13 T0 = SUBTRACTANDRELAX(D.child0,P.child0)
14 V = GETVERTEX(D.top, T1, T0)
15 if (V not equal to D)
16 RELAX(V.child1, V )
17 RELAX(V.child0, V )
18 return V

Fig. 13. Incremental k-shortest path based dominant term generation
algorithm.

RELAX(P , Q)
1 if d(Q) > d(P ) + w(P, Q)
2 d(Q) = d(P ) + w(P, Q)
3 parent(Q) = P

Fig. 14. THE RELAX() operation.

shortest path from the 1-terminal to Q. In the reverse DDD
graph, each vertex has only two incoming edges (from its two
children in the normal DDD graph), so the relaxation with its
two parents in lines 16 and 17 are sufficient for the relaxation
of vertex V . Moreover, the relaxation for V happens after all
its parents have been relaxed due to the DFS-type traversal in
SUBTRACTANDRELAX(). This is consistent with the ordering
requirement of the shortest path search algorithm. Therefore by
repeatedly invoking function GETNEXTSHORTESTPATH(D),
we can find all the dominant terms in a decreasing order. We
have following result for incremental k-SP based algorithm:

Theorem 4: The time complexity of the incremental k-SP
algorithm for finding k shortest paths is

O(|DDD| + n(k − 1)), (5)

where n is the depth of the DDD graph.
Proof: The RELAX() operation shown in Fig. 14 takes constant
time to finish. As a result, the time complexity of the opera-
tion SUBTRACTANDRELAX() will still be O(n) according to
Theorem 2. After finding the first shortest path, which takes
O(|DDD|) to finish, the algorithm will take O(n) to find each
shortest path. Therefore, it takes O(n(k − 1)) to find the rest
of k−1 shortest paths and the total time complexity of finding
the k shortest paths becomes O(|DDD| + n(k − 1)).

Notice that both DP based algorithm and incremental k-SP
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based algorithm have time complexity O(|DDD|) to find a
dominant term, where |DDD| is the size of a DDD graph.
After the first dominant term, however, both algorithms show
better time complexities for generating next dominant terms,
that is O(n). But in contrast to DP based algorithm, the actual
running time of the incremental k-SP based algorithm does not
depend on the topology of a circuit.

Notice that the new incremental k-shortest path generation
algorithm can be performed on any DDD graph, including
cancellation-free s-expanded DDD. We note that the variant
of DDD used by Verhaegen and Gielen in [4], [23] does not
satisfy the canonical property due to vertex duplication. As a
result, except for the first shortest path, remaining dominant
paths cannot easily be generated by using the shortest path
algorithm as the found shortest path is hard to be subtracted
(if possible at all) as most DDD graph operations are not valid
for a non-canonical DDD graph.

Following the same strategy in [5], our approach also
handles numerical cancellation. Since numerical canceling
terms are extracted one after another, they can be eliminated
by examining two consecutive terms.

VI. EXPERIMENTAL RESULTS

The proposed three algorithms have been implemented and
tested on a number of practical analog circuits. For each
circuit, DC analysis is first carried out using SPICE and our
program reads in small-signal element values from the SPICE
output. The algorithms described in [21], [22] are used to
construct complex DDDs and s-expanded DDDs.

First we apply the proposed dominant term generation algo-
rithms to derive interpretable symbolic expressions for transfer
functions and poles from simple two-stage CMOS Opamp
circuit shown in Fig. 1. The exact transfer function generated
by our program is shown in Appendix . In the approximation
process, we monitor both the magnitude and phase of the
simplified expressions to control the accumulated error within
a given frequency range. Before we generate dominant terms,
we first simplify DDD graphs by device removal and node
contraction on the complex DDD representation [24], [27],
which will remove many insignificant terms and result in
smaller complex DDDs.

For TwoStage, the simplified voltage gain for TwoStage
given by our program is shown in Eq. (1). Table I shows the
exact values of three zeros and three poles.

TABLE I

POLES AND ZEROS FOR OPAMP TwoStage.

poles −1.68 ∗ 107 −8.80 ∗ 105 −373.74

zeros 3.18 ∗ 109 −1.68 ∗ 107 1.11 ∗ 107

Since three poles are far away from each other, the pole
splitting method can be used to find their symbolic expres-
sions. For instance, the resulting expression of the first pole
based on DDD manipulations is as follows:

−
1

( 1

ro2
+ 1

ro4
)( 1

ro6
+ 1

ro7
)gm6CC

= −373.74.

This agrees with the exact first pole described in Table I.

We then compare three dominant term generation algorithms
– the consecutive k-shortest path based algorithm, dynamic
shortest path based algorithm as well as the incremental k-
shortest path based algorithm.

Table II summarizes the comparison results in terms of
CPU time and memory usage for the three algorithms. A
total of 10000 dominant terms are generated for a number
of test circuits ranging from more regularly structured ladder
circuits to less regularly structured such as Cascode and
µA741 amplifiers. In Table II, columns 1, 2 and 3 list for each
circuit, respectively, its name Circuit, the number of nodes
#nodes, and the number of nonzero elements #nonzero in its
circuit MNA matrix. Columns 4 to 7 show, respectively, the
CPU time and memory usage, for generating 10000 dominant
terms by the DP based algorithm, Dynamic Programming,
by the consecutive k-SP based algorithm, k-Shortest Path,
respectively. The last column gives the CPU time of Incr k-
Shortest Path. The memory usage for incremental k-shortest
path is the same as consecutive k-SP algorithm for each circuit.

From Table II, we see that the incremental k-SP based
algorithm consistently outperforms the DP based algorithm
for all the circuits in both CPU time and memory usage. The
difference becomes even more significant for circuits with
regular structures like ladder circuits. Notice that for ladder
circuits, m ≤ 3. So n � m is satisfied for large ladder
circuits and the DP based algorithm is linear also after the first
dominant term is found. For less regularly structured circuits
like µA741, the incremental k-SP based method also shows
impressive improvements over the DP based algorithm.

As we know that for both DP based algorithm and incre-
mental k-SP based algorithm, the actual time to generate a
new path is close to O(n), where n is the size of the circuit
or the depth of DDD graphs. But for the consecutive k-SP
based algorithm, we have to visit all the vertices every time to
generate a new path. Such difference is clearly demonstrated
for circuits Cascode and µA741 where the sizes of DDDs are
significantly larger than the sizes of the circuits. So the CPU
time for the consecutive k-SP based algorithm is longer than
that of two other algorithms.

Note that the CPU time of generating dominant terms by
the shortest path depends on the sizes of s-expanded DDDs.
As a result, ladder circuits should have shown a much better
performance than less structured circuits like opamp circuits
as DDD representations for ladder circuit are optimal. But as
more terms are subtracted from the s-expanded DDDs, the
sizes of resulting s-expanded DDDs will increase as a certain
amount of sharing is destroyed. (According to Theorem 2,
maximum n nodes may be added to the resulting DDD
graphs after one SUBTRACTANDRELAX() operation, n is the
size of the circuit or #nodes). Such increase of DDD sizes
will become significant for ladder circuits as ladder circuits
have the maximum sharing (optimal representations) at the
beginning. Therefore, the CPU time for some large ladder
circuits is comparable to that of some small opamp circuits.
But for the incremental k-shortest path algorithm, after the first
dominant term, the CPU time for generating a new dominant
term is O(n). So the CPU time is asymptotically proportional
to the #nodes as shown in the Table II.
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TABLE II

COMPARISON OF SHORTEST-PATH AND DYNAMIC-PROGRAMMING BASED ALGORITHMS.

Circuit #nodes #nonzero Dynamic
Programming

k-Shortest Path Incr k-Shortest

CPU
time
(sec.)

Memory
use (kb)

CPU
time
(sec.)

Memory
Use (kb)

Path

rclad10 8 31 17.3 9560 14.8 4048 5.1
rclad21 22 64 105.1 21816 21.5 3976 15.4
rclad60 61 181 133.8 51784 101.0 5432 80.3

rclad100 101 301 369.6 73832 172.8 10568 132.9
rclad150 151 451 912.2 253072 281.7 23280 248.3
rclad200 201 601 1630.9 365264 387.3 39616 320.0
rclad250 251 751 2431.3 481688 493.8 60160 426.4
rclad300 301 901 3388.4 602360 598.0 85088 557.4
rctreeA 40 119 41.4 38840 45.6 12880 41.0
rctreeB 53 158 132.9 41472 60.4 14304 57.2
Cascode 14 76 21.3 34880 620.1 28696 15.3
µA741 23 90 50.6 78024 1412.2 69184 21.0
bigtst 32 112 91.7 40808 144.1 12496 32.7

Fig. 15 shows the CPU time for different ladder circuits. The
CPU time increases almost linearly with the size of a ladder
circuit for all three algorithms. Both the SP-based algorithms
consistently outperforms DP based algorithm in terms of CPU
time. The reason is that sizes of DDDs for representing ladder
circuits grow linearly with the sizes of the ladder circuits, that
is n [21], so the time complexities of all three algorithms,
O(|DDD|), become O(n). But the DP based algorithm need
to take extra efforts to loop through all 0-linked vertices to
compute the dominant terms and restore them at each 1-edged
pointed vertex. Those extra efforts will become significantly
when the graph become very deep as with the higher order
ladder circuits.

dynamic programming      
shortest path            
incremental shortest path
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Comparison in CPU time for term generation algorithms

Fig. 15. CPU time vs number of ladder sections.

Fig. 16 shows the memory usage for different ladder
circuits. The memory usage of DP based method increases
linearly with the sizes of ladder circuits, while the consecutive
k-SP and incremental k-SP algorithms take much smaller
amount of memory for the same set of ladder circuits. The
DP based method will use more memory when more terms
are generated as more memory will be used for caching the
generated terms at each 1-edge pointed DDD vertex.

dynamic programming
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Fig. 16. Memory use vs number of ladder sections.

VII. CONCLUSIONS

Efficient algorithms were proposed to generate dominant
terms for ac characteristics of large linear analog circuits.
The new algorithms are based on a DDD graph-based com-
pact and canonical representation of symbolic expressions.
We formulate the dominant term generation problem as the
one of searching for the k shortest paths in DDD graphs.
Theoretically we showed that dynamic programming based
dominant term generation method is restricted to certain DDD
graphs. Practically, we proposed a incremental k-shortest
search algorithm, which can be applied to any DDD graphs,
based on the canonical property of DDD graphs. Experimental
results indicate that the proposed incremental k-shortest path
algorithm outperform the best known algorithm based on the
dynamic programming [4], [23] in terms of CPU time and
memory usage.

APPENDIX

Exact transfer function of two-stage CMOS opamp in
Fig. 1 The numerical value at the end of each line is the
magnitude of the coefficient of sk, k = 1...n if the line starts
with sk or the magnitude of the product term in the same line
otherwise. All the products in each coefficient are sorted with
respect to their numerical magnitudes.
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numerator:
(-) * [
sˆ0(-2.128e-14
+ (gm2) (gm3) (gm6) ,-2.1e-14
+ (gm2) (1/ro1+ro3) (gm6) ,-2.8e-16
) +
sˆ1(1.03464e-22
+ (gm2) (gm3) (-cc) ,3e-22
+ (gm2) (cgd1+cdb1+cgs3+cdb3+cgs4) (gm6) ,-2.002e-22
+ (gm2) (1/ro1+ro3) (-cc) ,4e-24
+ (gm2) (cgd4) (gm6) ,-1.4e-24
+ (-cgd2) (gm3) (gm6) ,1.05e-24
+ (-cgd2) (1/ro1+ro3) (gm6) ,1.4e-26
) +
sˆ2(2.87488e-30
+ (gm2) (cgd1+cdb1+cgs3+cdb3+cgs4) (-cc) ,2.86e-30
+ (gm2) (cgd4) (-cc) ,2e-32
+ (-cgd2) (gm3) (-cc) ,-1.5e-32
+ (-cgd2) (cgd1+cdb1+cgs3+cdb3+cgs4) (gm6) ,1.001e-32
+ (-cgd2) (1/ro1+ro3) (-cc) ,-2e-34
+ (-cgd2) (cgd4) (gm6) ,7e-35
) +
sˆ3(-1.44e-40
+ (-cgd2) (cgd1+cdb1+cgs3+cdb3+cgs4) (-cc) ,-1.43e-40
+ (-cgd2) (cgd4) (-cc) ,-1e-42
) +
number of terms:16
]
-----------------------------
denominator:
(+) * [
sˆ0(2.61578e-18
+ (gm3) (1/ro2+ro4) (1/ro6+ro7) ,2.58136e-18
+ (1/ro1+ro3) (1/ro2+ro4) (1/ro6+ro7) ,3.44182e-20
) +
sˆ1(1.21479e-21
- (gm3) (gm6) (-cc) ,1.05e-21
+ (gm3) (cdb2+cdb4+cgs6+cl) (1/ro6+ro7) ,1.32837e-22
- (1/ro1+ro3) (gm6) (-cc) ,1.4e-23
+ (gm3) (cc) (1/ro6+ro7) ,1.29068e-23
+ (gm3) (1/ro2+ro4) (cc) ,3e-24
+ (1/ro1+ro3) (cdb2+cdb4+cgs6+cl) (1/ro6+ro7) ,1.77116e-24
+ (1/ro1+ro3) (cc) (1/ro6+ro7) ,1.72091e-25
+ (1/ro1+ro3) (1/ro2+ro4) (cc) ,4e-26
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (1/ro2+ro4) (1/ro6+ro7) ,2.4609e-26
- (gm4) (-cgd4) (1/ro6+ro7) ,1.29068e-26
+ (gm3) (cgd4) (1/ro6+ro7) ,1.29068e-26
+ (gm3) (cgd2) (1/ro6+ro7) ,1.29068e-26
+ (gm3) (1/ro2+ro4) (cdb6) ,3e-27
+ (1/ro1+ro3) (cgd4) (1/ro6+ro7) ,1.72091e-28
+ (1/ro1+ro3) (cgd2) (1/ro6+ro7) ,1.72091e-28
+ (cgd4) (1/ro2+ro4) (1/ro6+ro7) ,1.72091e-28
+ (1/ro1+ro3) (1/ro2+ro4) (cdb6) ,4e-29
) +
sˆ2(1.68164e-28
+ (gm3) (cdb2+cdb4+cgs6+cl) (cc) ,1.5438e-28
- (cgd1+cdb1+cgs3+cdb3+cgs4) (gm6) (-cc) ,1.001e-29
+ (1/ro1+ro3) (cdb2+cdb4+cgs6+cl) (cc) ,2.0584e-30
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (cdb2+cdb4+cgs6+cl) (1/ro6+ro7) ,1.26638e-30
+ (gm3) (cdb2+cdb4+cgs6+cl) (cdb6) ,1.5438e-31
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (cc) (1/ro6+ro7) ,1.23045e-31
- (cgd4) (gm6) (-cc) ,7e-32
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (1/ro2+ro4) (cc) ,2.86e-32
+ (gm4) (-cgd4) (cc) ,1.5e-32
+ (gm3) (cgd4) (cc) ,1.5e-32
+ (gm3) (cgd2) (cc) ,1.5e-32
+ (gm3) (cc) (cdb6) ,1.5e-32
+ (cgd4) (cdb2+cdb4+cgs6+cl) (1/ro6+ro7) ,8.8558e-33
+ (1/ro1+ro3) (cdb2+cdb4+cgs6+cl) (cdb6) ,2.0584e-33
+ (cgd4) (cc) (1/ro6+ro7) ,8.60455e-34
+ (1/ro1+ro3) (cgd4) (cc) ,2e-34
+ (1/ro1+ro3) (cgd2) (cc) ,2e-34
+ (cgd4) (1/ro2+ro4) (cc) ,2e-34
+ (1/ro1+ro3) (cc) (cdb6) ,2e-34
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (cgd4) (1/ro6+ro7) ,1.23045e-34
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (cgd2) (1/ro6+ro7) ,1.23045e-34
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (1/ro2+ro4) (cdb6) ,2.86e-35
+ (gm4) (-cgd4) (cdb6) ,1.5e-35
+ (gm3) (cgd4) (cdb6) ,1.5e-35
+ (gm3) (cgd2) (cdb6) ,1.5e-35
+ (cgd4) (cgd2) (1/ro6+ro7) ,8.60455e-37
+ (1/ro1+ro3) (cgd4) (cdb6) ,2e-37
+ (1/ro1+ro3) (cgd2) (cdb6) ,2e-37
+ (cgd4) (1/ro2+ro4) (cdb6) ,2e-37
) +
sˆ3(1.48396e-36
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (cdb2+cdb4+cgs6+cl) (cc) ,1.47176e-36
+ (cgd4) (cdb2+cdb4+cgs6+cl) (cc) ,1.0292e-38
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (cdb2+cdb4+cgs6+cl) (cdb6) ,1.47176e-39
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (cc) (cdb6) ,1.43e-40
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (cgd4) (cc) ,1.43e-40
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (cgd2) (cc) ,1.43e-40
+ (cgd4) (cdb2+cdb4+cgs6+cl) (cdb6) ,1.0292e-41
+ (cgd4) (cc) (cdb6) ,1e-42
+ (cgd4) (cgd2) (cc) ,1e-42
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (cgd4) (cdb6) ,1.43e-43
+ (cgd1+cdb1+cgs3+cdb3+cgs4) (cgd2) (cdb6) ,1.43e-43
+ (cgd4) (cgd2) (cdb6) ,1e-45
) +
number of terms:60
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