JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

Logic of Constraints: A Quantitative Performance
and Functional Constraint Formalism

Xi Chen, Harry Hsieh, Felice Balarin, and Yosinori Watanabe

Abstract— In the era of billion-transistor design, it is critical
to establish effective verification methodologies from the system
level all the way down to the implementations. In this paper, we
introduce Logic of Constraints (LOC), a logic that is particularly
suited to express quantitative performance constraints as well as
functional constraints. We analyze the expressiveness of LOC and
show that it is important and different from Linear Temporal
Logic (LTL), on which traditional hardware assertion languages
(e.g. PSL and OpenVera) are based. We propose an automatic
simulation trace checking/runtime monitoring methodology that
can be used to verify system designs very efficiently. Since a
subset of LOC is decidable, we also discuss the formal verification
approach for LOC formulas. Through several industrial case
studies, we demonstrate the usefulness of the LOC formalism
and the corresponding simulation and verification approach at
the higher, transaction level of abstraction.

Index Terms— Performance constraint, Trace analysis, Logic
of Constraints, Simulation checker.

I. INTRODUCTION AND RELATED WORK

HE increasing complexity of embedded systems to-

day demands more sophisticated design and verification
methodologies. Systems are becoming more integrated as more
and more functionality and features are required for the prod-
uct to succeed in the market. Embedded system architectures
likewise have become more heterogeneous as it is becoming
more economically feasible to have various computational
resources (e.g. microprocessor, digital signal processor, recon-
figurable logic) all utilized on a single chip. Designing at the
Register Transfer Level (RTL) [1] or sequential C-code level
is no longer efficient. More than ever, design and verification
methodologies at higher levels of abstraction are required to
minimize the design cost of an electronic product. The speci-
fication of the function and the architecture should be done at
a high level of abstraction, and the design procedures should
refine the abstract function, refine the abstract architecture,
and map the function onto the architecture through automatic
tools or manual means with tool support [2], [3]. High level
design procedures allow designers to tailor their architectures
to the functions at hand, or to modify their functions to suit
the available architectures (see Figure 1).

To make the practice of designing from high level system
specification a reality, verification methods must accompany
every step in the design flow. Specification at the system level
makes formal verification possible [4]. Designers can prove
a property of a specification by writing down the property

Xi Chen and Harry Hsieh are with University of California, Riverside.
{xichen, harry}@cs.ucr.edu

Felice Balarin and Yosinori Watanabe are with Cadence Berkeley Labora-
tories. {felice, watanabe}@cadence.com

System Architecture

System Function
(Platform)

.

Mapping

Functions on Architecture
(Implementation)

Fig. 1. System Design Methodology.

they want to check in some logic (e.g. Linear Temporal
Logic (LTL) [5]) and use a formal verification tool (e.g. the
model checker SMV [6] and SPIN [7]) to run the verification.
Formal verification checks the entire state space of a design
to verify some specified property without any uncertainty.
As the designs are refined, however, the complexity can
quickly overwhelm the automatic tools, and simulation be-
comes the primary means for verification. The confidence
of a simulation verification mainly depends on the design
of test cases. Designers can insert embedded assertions into
their HDL (Hardware Description Language) descriptions to
help uncover bugs of the designs during simulation. Today’s
embedded assertion languages capture those simple logics as
language/platform specific library blocks. A set of extended
temporal logic is then used to operate on those blocks for
expressing more complex assertions. Examples of assertion
languages include PSL [8], SystemVerilog Assertions [9] and
OpenVera [10].

We believe that the hardware assertion languages are not
natural to express more abstract properties such as transaction
level properties, where only the events observable from the
system and their annotations are considered. Nor are they
convenient to directly express performance constraints that are
quantitative in nature (e.g. latency, throughput). To this end, we
propose a constraint formalism: Logic of Constraints (LOC). *
LOC is particularly suited for specification and simulation
analysis of performance constraints at the transaction level,
as will be shown later in this paper. A constraint formalism
is not meaningful unless there exists a clear and efficient
path to verification. We propose an efficient simulation-based

Preliminary studies of Logic of Constraints have been presented in [11],
[12], and [13].

JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

approach for analyzing LOC formulas. C++ trace checkers
are automatically generated from LOC formulas. The check-
ers analyze the simulation traces and report any constraint
violations. In most cases, the traces are scanned only once
and memory usage is very low. The automatic checker gen-
eration is parameterized, so it can be customized for fast
analysis for specific verification environments (e.g. memory
limitation). The choice of C++ for the checkers is a matter of
convenience. It allows us to tightly integrate the checkers with
the SystemC [14] simulator for runtime monitoring. No major
difficulty exists to generate checkers in HDLs for integration
with hardware simulators, or in Java for concurrent execution
with the software simulators. To illustrate the concept and
demonstrate the usefulness of our approaches, we conduct two
separate case studies: a high level description of a Picture-In-
Picture (PIP) design [15] and an RTL level design of a Finite
Impulse Response (FIR) filter.

A simulation-based approach can only disprove the LOC
formula (if a violation is found), but it cannot prove it con-
clusively. However, for small but important designs or library
modules that will be instantiated many times across different
designs, it may be feasible to formally prove the desired
properties. Formal verification is more expensive though the
designers can be more confident about the result. It should
be used only for small but important design modules (e.g.
Task Transaction Level (TTL) [16] channel in Section VI-A),
possibly in concert with simulation verification of the entire
system. An exact verification algorithm exists for a broad class
of LOC formulas [17]. However, due to the high complexity
of this algorithm, we provide an alternative in this paper. We
propose a formal verification approach where LOC formulas
are translated into verification models in Promela (SPIN’s
input language [7]) and LTL formulas. This approach is
complete for a restricted subset of LOC. It can also be applied
to a wider subset, but results might then be inconclusive, i.e.
the verification is only partial. We illustrate the concept and
demonstrate the usefulness of our approach through a case
study on the formal verification of the TTL channel library
module used in the PIP design.

While similar in spirit to the hardware embedded assertion
languages, our LOC formalism provides a unique combination
of at least three fundamental aspects. First, LOC is designed
for specifying all quantitative performance and functional
constraints, not just functional ones. This means that one can
easily specify requirements on timing or power consumption
of the systems being designed, in addition to those on the
functional correctness. Second, LOC can specify some proper-
ties that cannot be expressed with existing hardware assertion
languages, as shown in Section I1I-B. Third, system level
functional and performance constraints written in LOC can be
automatically and efficiently synthesized into static checkers,
runtime monitors, or formal verification modules.

A. Related Work

Constraint definition is central to many methodologies.
A general approach is taken by the Rosetta [18] language:
different domains of computation are described declaratively

and constraints can be expressed as predicates on some defined
quantities. Constraints are then applied by combining the dif-
ferent domains. In our work, we restrict the scope of constraint
definition in favor of a representation that is more natural to
the designer and that is more computationally tractable.

Object Constraint Language (OCL) [19], part of the Uni-
fied Modeling Language (UML), takes a more restricted
approach. OCL supports invariants, pre- and post-conditions,
and guards, applied to classes, operations of classes, and
states, respectively. Another related proposal is the Design
Constraints Description Language (DCDL) [20] sponsored
by Accellera, which is intended mostly for low-level (i.e.
chip-level) constraints like clock slew, operating voltages and
port capacitances. In both of these approaches, constraints
are specified for a collection of entities that represent a
system (classes and their operations and states in case of
OCL, and physical objects in case of DCDL). This facilitates
specifying constraints associated with the system as a whole,
e.g. area, yield, testability, time to market. In contrast, we
focus on specifying constraints for particular executions of the
system, like response time, energy consumption and memory
usage. OCL also supports this, to some extent, through pre-
conditions, post-conditions, and guards. However, while these
constructs naturally express constraints on a single transition,
our approach makes it easy to express constraints that span
several transitions. In fact, in our approach, it is easy to specify
properties for which it is impossible to bound in advance the
number of transitions needed to check them.

Many constraint formalisms have been proposed that are at
most as expressive as w-regular languages (and in some case
strictly less expressive). An incomplete list includes S1S [21],
LTL [5], PSL [8], HAAD [22], and many variants of finite-
state automata on infinite words, e.g. [23], [24]. MONA [25],
on the other hand, is based on regular languages and finite-
state automata on finite words. We believe that LOC is a good
complement to all these approach, as there are certain natural
properties (e.g. data consistency in Section Ill) that are not
w-regular, but can be expressed and verified (both formally
and by simulation) using LOC.

Real-Time Logic (RTL) [26] is a formalism for expressing
timing properties in real-time systems. With RTL, the proper-
ties are specified by means of timing relations on occurrences
of events. RTL was primarily intended for formal reasoning,
while LOC is more biased toward simulation monitoring. For
example, RTL allows any number of index and time variables
which can be arbitrarily quantified. This makes it very unsuit-
able for verification by simulation. In contrast, LOC allows
only one index variable and no time variables or quantification.
We made this choice precisely for the purpose of efficient
simulation monitoring. Also, arithmetic in RTL is limited to
Presburger arithmetic (i.e. linear inequalities), to ease formal
reasoning, while LOC allows more complex expressions, be-
cause they can be handled quite easily in simulation. This
separation of purposes is not total. When we consider a subset
of LOC suitable for formal verification, we restrict LOC to
Presburger arithmetic. Similarly, Mok and Liu have proposed
a subset of RTL suitable for simulation monitoring [27], [28],
and that subset indeed resembles LOC. However, they have not

JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

proposed any automatic formal verification technique for that
subset. A subset of LOC suitable for formal verification can
be seen as a generalization of the subset of RTL suitable for
simulation monitoring, as it allows specification of properties
related to annotations other than time. In fact, data consistency,
one of the properties that distinguish LOC from formalisms
based on w-regular languages, also distinguishes it from RTL,
as it does not involve time at all.

The rest of the paper is organized as follows. In the next sec-
tion, we introduce the quantitative constraint formalism, Logic
of Constraints (LOC) and its typical usage. In Section IlII,
we discuss the expressiveness of LOC, and show that LOC
can be used to express important constraints that cannot be
expressed with LTL for the specification of system designs. In
Section 1V, we present the methodology for building a trace
checker or runtime monitor from any given LOC formula. We
demonstrate the usefulness and efficiency of the approach with
two case studies in Section V. In Section VI, we discuss the
formal verification approach for LOC formulas. We present
a verification example and show how the approach works
on checking important library modules. In Section VII, we
summarize the contributions of the paper and provide several
future research directions. Finally, in Appendix I, we present
the formal syntax and semantics of LOC.

Il. LoGIC OF CONSTRAINTS

In this section, we introduce our quantitative constraint
formalism, Logic of Constraints (LOC). The constraint specifi-
cation formalism is compatible with a wide range of functional
specification formalisms that describe a system as a network
of components communicating through fixed interconnections.
The observed behavior of the system is usually characterized
by sequences of values observed at the interconnections. LOC
is a formalism designed to reason about traces from the
execution of a system. It consists of all the terms and operators
allowed in sentential logic, with additions that make it possible
to specify system level quantitative functional and performance
constraints without compromising the ease of analysis.

LOC can be used to specify very common and useful real-
time performance constraints:

o rate, e.g. “Display’s are produced every 10 time units”:
t(Display[i + 1]) — t(Display[i]) = 10 , 1)

« latency, e.g. “Display is generated no more than 25 time
units after Stimuli”:

t(Displayl[i]) — t(Stimuli[i]) < 25 , (2

o jitter, e.g. “every Display is no more than 4 time units
away from the corresponding tick of the real-time clock
with period 10”:

| t(Displayli]) — (i +1)%10 | <4, (3)

« throughput, e.g. “at least 100 Display events will be
produced in any period of 1001 time units™;

t(Display[i + 100]) — t(Display[i]) < 1001 , (4)

« burstiness, e.g. “no more than 1000 Display events will
arrive in any period of 9999 time units”:

t(Display[i + 1000]) — ¢t(Display[i]) > 9999 . (5)

In addition, LOC can also be used to specify quantitative
functional constraints such as the data consistency, e.g. “the
input data should be the same as the output data”:

data(input[i]) = data(output[i]) . (6)

It should be emphasized that time is only one of the possible
annotations. Any value that may be associated with an event
(e.g. power, area, data value) can be used as an annotation. In
the case of concurrent events, the values of time annotation
should be the same. The indices of instances of the same event
denote the strict order as they appear in the execution trace.
There is no implied relationship between instances of different
events. LOC can be used to express relationship between the
annotations of the different instances of the same event (e.g.
rate), or instances of different events (e.g. latency).

The latency constraint above is truly a latency constraint
only if the Stimuli and Display are kept synchronized.
Generally, we will need an additional annotation that denotes
which instance of Display is “caused” by which instance of
the Stimuli. If the cause annotation is available, the latency
constraint can be more accurately written as:

t(Displayli]) — t(Stimuli[cause(Display[i])]) <25 , (7)

and such an LOC formula can easily be analyzed through the
simulation checker presented in Section IV. However, it is the
responsibility of the designer, the program, or the simulator to
generate such an annotation.

A. LOC syntax and semantics

Here we give an informal overview of LOC syntax and
semantics. Full details are given in Appendix I. The basic
blocks of LOC formulas are terms, which can be either:

« constants, or

« integer variable ¢ (the only index variable that can appear
in an LOC formula), or

« expressions of the form a(e[n]), where a is an annotation
name, e is an event name, and index expression n is an
integer-valued term, or

« combination of simpler terms using usual arithmetic
operators.

We interpret a(e[n]) as the value of annotation a of the n-th
occurrence of event e. All other terms are interpreted naturally.
Terms can be combined using relational operators to create
atomic LOC formulas. Finally, LOC formulas are standard
Boolean expressions over atomic formulas.

LOC formulas may contain only one index variable, namely
. Having only one index variable may seem very restrictive,
but so far we have not found a natural constraint that required
more than one. In effect, the ability of defining annotations
allows one to specify formulas that otherwise require more
than one index variable. On the other hand, having only one
index variable enables efficient simulation monitoring.

JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

Models of LOC formulas contain a sequence of occurrences
for each event name in the formula. We call such structures
annotated behaviors. Each occurrence may be annotated with
some annotation, but we do not require each annotation ap-
pearing in the formula to be defined. This feature is important
for our design methodology, where performance requirements
are specified early in the process, even though they can be
evaluated much later, when many implementation details are
set.

Given an annotated behavior, we evaluate the formula for
each value of index variable 4. This is done in quite a standard
fashion, except that we need to consider the fact that some
terms may not be defined (either because there are only finitely
many occurrences of an event, or because an annotation is
not defined for an existing event occurrence). To deal with
this, we introduce the third logical value undef. In general,
all operators (including Boolean) return undef if one of their
operands are undef. The only exceptions are conjunction with
false (which is false), and disjunction with true (which is
true). Finally, we say that the annotated behavior satisfies the
formula if it does not evaluate to false for any value of i.

I1l. EXPRESSIVENESS OF LOC

In this section, we discuss the expressiveness property
of LOC especially in its relationship with the well known
Linear Temporal Logic (LTL). It should be noted that LTL
is defined on the state transition level where any change at the
system state is accounted for, while LOC works on a higher
abstraction level, in which only the events observable from
the system and their annotations are considered. This apparent
difference, however, is just a technicality, because it is not
difficult to hide state transitions so that LTL and LOC are
defined over the same kind of objects.

A. Linear Temporal Logic

Linear Temporal Logic (LTL) is defined over executions
of a system, i.e. linear sequences of state transitions. LTL
formulas are constructed using terms, i.e. Boolean expressions
on variables or system states, classical Boolean operators such
as - (not), v (or), A (and), — (imply), and the linear temporal
operators G (always), F (eventually), X (next) and U (strong
until). For example, G(A) is true if A is true for any state,
F(A) is true if A eventually becomes true in a future state,
X(A) is true if A is true in the following state, and A UB is
true if B eventually becomes true in a future state and A is
true from the current state to that future state.

It has been proven that LTL formulas can be translated to
equivalent Buchi automata [29]. Based on this theory, formal
techniques like model checking are developed and utilized for
verification of both digital designs (e.g. FormalCheck [30])
and software protocols(e.g. Spin [7]). LTL is also used as the
basis for the formal property specification for simulation-based
assertion verification [10], [31], which is important to assure
the integration and correctness of reusable IP (Intellectual
Property) blocks.

B. LOC v.s. LTL

Through several examples and claims, we will conclude that
LOC and LTL are incomparable and have different domains
of expressiveness.

Claim 1: There are LOC formulas that can be expressed
with LTL.

Since both LOC and LTL contain basic Boolean expres-
sions, a subset of LOC constraints that specify simple global
Boolean conditions can be expressed in LTL also. For exam-
ple, the constraint, “the annotation data of the event Display
is always greater than 100", is expressed in LOC as:

data(Display[i]) > 100 . 8)

If we use a variable Display_data to store the value of data
in the design, and use a flag Display_occur to indicate that
an instance of the event Display occurs, this constraint can be
easily expressed in LTL as:

G (Display_-occur => (Display_-data > 100)) . (9)

Claim 2: There are LOC formulas that cannot be expressed
with LTL.

Many quantitative constraints that can be easily expressed
by LOC are not suitable for LTL. Specifically, when more than
one events need to be compared in the same constraint (e.g.
the latency constraint), LTL is not expressive enough to be
used. For example, the data consistency constraint:

data(input[i]) = data(output[i]) . (10)

requires comparing each instance of output with the instance
of input with the same instance index. After the n-th input
occurs, it is unknown when the n-th output will occur, i.e.
the number of input instances that may occur before the
n-th instance of output is arbitrarily large. Therefore, this
constraint cannot be modeled by a finite-state system, and it
is impossible to express it using any formalism based on w-
regular languages, such as LTL or PSL.

It is interesting to note that there are simple LOC formulas
that cannot be expressed by LTL even though they are w-
regular. For example, the property “the value of event A on
every even occurrence is 17, can be expressed by LOC formula
data(A[2i]) = 1, as well as with a simple two-state automaton,
but it is well known that it cannot be expressed by LTL [32].

To show that some LTL formulas cannot be expressed
in LOC, we first recall that any property can be expressed
as a conjunction of a safety and a liveness property. Safety
properties are those which can always be shown violated by a
finite trace. For example, any execution that does not satisfy
the property “the value of A is never 1” must have a finite
prefix which ends with the value of A being 1. On the other
hand, liveness properties can never be violated by a finite
trace. For example, the property “for every request there is
a response” can never be violated by a finite trace because
there is always a chance that a response may come some time
in the future. 2

Claim 3: LOC can express only safety properties.

2To disprove a liveness property, we need to show that the system can enter
an infinite cycle in which there are unfulfilled requests.

JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

Indeed, if a trace does not satisfy an LOC formula, then
there must exist an ¢ for which the formula is false. We can
evaluate all index expressions for that value of <. Since there
can only be finitely many of these expressions, there must
exist some point in the execution such that, for that particular
1, the formula does not refer to any event occurrence beyond
that point. Clearly, the execution prefix up to that point is
sufficient to disprove the property.

On the other hand, LTL is capable of expressing some live-
ness properties, for example GF (A), i.e. “A occurs infinitely
often”.

Conclusion: From claims (2) and (3), we can conclude that
LOC and LTL are incomparable.

Generally, LOC is designed for the specification of quanti-
tative performance and functional constraints at the transaction
level where system events and their annotations are considered.
Because of the use of index variable i, LOC is beyond the
finite automata domain. On the other hand, LTL is suitable for
the specification of functional constraints, and can effectively
express the temporal patterns for system state transitions. Be-
cause of this difference, LOC can express important properties
that cannot be expressed with LTL, on which the traditional
property specification languages are based.

In fact, we have shown that LOC is incomparable with
any formalism capable of expressing w-regular properties.
From the theoretical point of view, it may be interesting to
establish whether LOC can express all regular properties, i.e.
whether LOC is more expressive than WS1S. However, for
the methodology we propose here, that question is hardly
relevant, because we propose LOC as a complement to and
not a replacement for existing property languages capable of
expressing regular properties.

1V. SIMULATION BASED TRACE ANALYSIS APPROACH
FOR LOC FORMULAS

In this section, we present a simulation-based trace anal-
ysis approach, and show that LOC constraints can be easily
analyzed in an assertion-based simulation verification envi-
ronment. The methodology for simulation-based verification
with an automatically generated LOC checker is illustrated in
Figure 2. From the specification of LOC formulas and trace
formats, an automatic checker generator is used to generate a
C++ source of the checker. The source code is compiled into
an executable that takes in simulation traces and reports any
constraint violation.

An example of the definition file for the LOC formulas and
trace formats is shown in Figure 3. Each LOC formula is
preceded by a label and followed by the format for extracting
event names and their annotations out of the simulation traces.
The format described in the figure is written to work with
the trace shown in Figure 7. It specifically looks for a line
that starts with a string which ends in a “:”, followed by an
integer, a string pattern “at time”, then followed by a floating
point number. The string is taken as an event name, and each
such a line describes a particular instance of that event. The
integer is taken as the value of that instance, and the floating
point is taken as its “t” annotation. Which instance of an event

LOC formula

Automatic
Checker Generation

C++ Source of the Checker

Executable Checker
)

——

Evaluation Report

Simulation Trace Format

Simulation Traces

Fig. 2. Trace Analysis Methodology.

a line is describing is naturally determined by the number
of lines that precede it and match the same event name. For
example, the n-th line matching the pattern with event name
“Display” describes the n-th event instance of “Display”. Any
line that does not match this format will be ignored. Multiple
formulas may be checked at the same time with possibly
different extraction formats.

The automatic checker generator parses the definition file
to generate a C++ source for the checker in a straightforward
manner, setting up the queue data structures for storing the
annotations and translating the formula into C++ code. The
detail of the algorithm inside the checker will be explained
later in this section.

To help the designer find the point of error easily, the
error report includes the value of index ¢ which violates the
constraint and the value of each annotation in the formula.
Figure 4 shows the case where latency between the 23rd event
instance of Display and 23rd event instance of Stimuli violate
the given formula. The checker is designed to keep checking
and reporting any violation until stopped by the user or if
the trace terminates. We will discuss the LOC checker in
three aspects: the algorithm of the LOC checking, the runtime
monitoring, and how to deal with memory limitation.

[LOC: rate]
formula: t(Display[i + 1] — t(Display[i]) == 10
annotation: event value t
trace: "%s : %d at time %f"

[LOC: latency]
formula: t(Display[i])-t(Stimuli[i]) <= 25
annotation: event value t
trace: "%s : %d at time %f"

Fig. 3. Definition of LOC formulas and Trace Formats.

JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

username@chimera$ checker latency.trace
Reading from trace file "latency.trace" ...

Formula t(Display[i]) — t(Stimuli[i]) <= 25 is violated
at trace line# 278: Display : -6 at time 87

where i = 23

t (Display[i]) = 87

t (Stimuli[i]) = 60

Fig. 4. Example of Error Report.

A. The LOC Checker

The algorithm of LOC checking progresses based on the
index variable 7. Each LOC formula instance is checked
sequentially with the value of i being 1, 2, ... etc. A formula
instance is a formula with ¢ evaluated to some fixed positive
integer value, e.g. Display[30] — Display[29] = 10 is the
29th instance of the formula (1). Starting with ¢ equal to 1,
the LOC checker scans the trace sequentially. If any relevant
data is read in, the checker stores it into a queue and checks
the formula in the following manner:

check_formula {
while (can evaluate instance i) {
eval uate formul a i nstance i;
i ++;
menory recycling;
}
}

The time complexity of the algorithm is linear in the size
of the trace since evaluating a particular Boolean expression
takes constant time. The memory usage, however, may become
prohibitively high if we try to keep the entire trace in the
queue for analysis. As the trace file is scanned in, the checker
attempts to store only the useful annotations, and in addition,
evaluate as many formula instances as possible and remove
from the memory parts of the annotations that are no longer
needed (memory recycling).

For many LOC formulas (e.g. constraints (1), (3) - (5) in
Section I1), the algorithm uses a fixed amount of memory
no matter how long the traces are (see Table 1).3 Memory
efficiency of the algorithm comes from being able to free
stored annotations as their associated formula instances are
evaluated. This ability is directly related to the choice made in
designing LOC. From the LOC formula, we can conservatively
identify what annotation data will not be useful anymore once
all the formula instances with indices less than a certain
number are all evaluated. For example, consider an LOC

formula:
t(Display[i + 10]) — t(Stimuli[i + 5]) < 300 (12)

and let the current value of i be 100. Because the value
of ¢ increases monotonically, we know that event Display’s

3The verification of the constraint (2) may also have constant memory usage
if the given trace has a certain regular structure.

annotation ¢ with index less than 111 and event Stimuli’s
annotation ¢ with index less than 106 will not be useful in the
future and their memory space can be released safely. Each
time the LOC formula is evaluated with a new value of 4,
the memory recycling procedure is invoked, which ensures
minimum memory usage.

As described in Section |1, the LOC semantics allows us to
evaluate an LOC formula even if some of its expressions are
not defined. When an annotation with a particular index value
is not yet available from the trace, or when the index has an
invalid value (e.g. negative value), the Boolean expression that
contains this annotation is evaluated to undef. The entire LOC
formula could then be evaluated according to the standard
three-value logic [33] evaluation. For example, given the
following LOC formula:

t(Afi +10]) > 100 Vv #(BJ[i —5]) <300 , (12)

let the current value of ¢ be 10. If we know, from the trace,
that the value of ¢(A[20]) is 200, the formula can already
be evaluated to be true even if the value of ¢(B[5]) is still
not available at this point in the simulation (trace). Thus the
LOC formula instances can be evaluated as soon as possible,
which further minimizes the memory usage. Also, if we let
the current value of ¢ be 4, -1 is then an invalid index for
annotation ¢ of event B. The expression ¢(B[—1]) < 300 is
evaluated to undef and the whole formula can be evaluated to
true if the evaluation of ¢t(A[14]) > 100 is true, and undef
otherwise.

B. Runtime Monitoring

The static trace checking technique, as described above,
assumes that a simulation trace is first generated and the
subsequent LOC checking parses the trace and looks for
constraint violation. How the trace is generated is immaterial
as long as the format is correctly specified in the definition file.
The trace file for a realistic design, however, can frequently
occupy several gigabytes of disk space. It may be desirable to
compile the checker as a runtime monitor to run concurrently
with the simulator through a Unix pipe. Alternatively, the
checker can be compiled into the compiled-code simulator
for higher efficiency and tighter integration. As an example
of such tight integration, the checker generator has been
extended to generate LOC checkers as SystemC modules [14].
During the simulation, other SystemC modules (representing
the design) can pass the events and annotations directly to
the monitor modules through channels. A case study of this
approach is reported in section V-B. Runtime monitoring is
more efficient than static checking, but then obviously the
simulation need to be repeated if some new formula need to
be checked later. Furthermore, the trace is no longer kept so
any debugging has to rely solely on the error report.

C. Dealing with Memory Limitation

Despite the memory efficiency for most LOC formulas,
some LOC formulas may require high memory usage that
the verification environment cannot support. To deal with
the case of preset memory limitation, another extension has

JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

PIP [USRCONTROL }

dJ37199NC

,{TS_D EMUX]_,[PES_PA RSER

Fig. 5. Picture-In-Picture Design.

been added to the checker generator. Generally, the checker
tries to read the trace and store the annotations only once.
However, if the preset memory limit has been reached, it
stops storing the annotation and instead, scans the rest of the
trace looking for needed events and annotations for evaluating
the current formula instance (with the current value of).
After freeing some memory space, the algorithm resumes
storing annotations and reading the trace again from the same
location. The analysis time can certainly be impacted (see
the case study in Section V-B) and may no longer be of
linear complexity. However, the verification can continue and
the constraint violations can be checked under the memory
limitation of the verification environment.

V. CASE STUDIES

We apply our LOC-based simulation verification method-
ologies to two design examples. The first is a system level
design for set-top video processing, Picture-In-Picture (PIP),
which is originally specified with YAPI [34]. PIP is partially
respecified and simulated with Metropolis environment [3].
The other one is an RTL model of a Finite Impulse Response
(FIR) filter written in SystemC and is actually part of the
standard SystemC distribution. We use the generated trace
checkers to verify a wide variety of functional and perfor-
mance constraints.

A. Picture-In-Picture

Figure 5 shows the PIP design. TS_.DEMUX demultiplexes
the single input transport stream (TS) into multiple pack-
etized elementary streams (PES). PES_PARSER parses the
packetized elementary streams to obtain MPEG video streams.
Under the control of the user (USRCONTROL), decoded
video streams can either be resized (through RESIZE) or
directly feed to JUGGLER that combines the images to
produce the picture-in-picture videos. The entire description
consists of approximately 19,000 lines of Metropolis [3] and
YAPI code. With the sample input stream we used, it produced
120,000 lines of output representing header information for the
processed frames.

In the transaction-level design of PIP, where time is still
not available, we can check both functional and performance
constraints with proper annotations output from the simulation.
In the component RESIZE of PIP, the images processed are in
interlaced format with alternating fields of all odd lines, then

WINDOW_DATA_OUT 23483 87000

WINDOW win_params_update X_begin: 12y _begin: 6
RESIZE field_start field_count: 2 size: 6720
WINDOW win_params _update x_begin: 12y_begin: 6
USRCONTROL write pixels_out: 144

RESIZE field_start field_count: 3 size: 10368
USRCONTROL write lines_out: 64
THSRC_CTL_OUT finfo_write value: 12876

RESIZE field_start field_count: 4 size: 14016

Fig. 6. PIP Simulation Trace.

all even. The image size should only change after a complete
frame, each of which has 2 fields, is produced. Therefore, the
field sizes of paired even and odd fields should be the same.
This property can be expressed as an LOC formula:

size(field_start[2i + 2]) — size(field_start[2i + 1]) =

size(field_start[2i + 1]) — size(field _start[2i]) (13)
where field_start is an event at which RESIZE starts to output
a new image field. The annotation size is the cumulative
number of pixels processed by RESIZE. Figure 6 shows
snapshots of the PIP trace. The generation of the checker for
this LOC formula and the actual checking on the simulation
trace take less than 1 minute of CPU time.

Another functional property we are interested in is that the
number of the fields the RESIZE component reads in should be
equal to the number of fields it produces. Two local counters,
one at RESIZE’s input part and one at its output part, provide
these annotations. After a piece of video is processed, these
two counters need to be compared to see if the property holds.
The LOC used to check this property is:

field_ent(infi)) = field_cnt(out[i]) . (14)
The events in and out are generated by the input and output
parts of RESIZE respectively whenever they finish processing
a whole piece of video. The annotation field_cnt represents
the number of fields processed by the input and output parts
of RESIZE. The generation of the checker for this formula
and the actual trace checking take less than 1 minute of CPU
time.

We can also check performance properties such as latency.
The latency issue in RESIZE relates to the timely response to
user size specification. Since PIP is specified at the behavior
level, no detail timing information is available. We therefore
specify a bound (e.g. 5) on the number of fields processed
between reading a new size specification (read_size) and the
actual change in output image size (change_size):

field_cnt(change_size[i]) — field_cnt(read _size[i]) <5 ,
(15)

JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

where read_size is generated whenever RESIZE reads a new
size specification from USRCONTROL, and change_size is
generated whenever the size of the output image is actually
changed. The annotation field_cnt is the value of a global
counter that is incremented by one whenever RESIZE pro-
cesses a new image field. The generation of the checker for
this LOC formula and the actual trace checking also take less
than 1 minute of CPU time.

B. FIR filter

While the PIP example illustrate the power of LOC in
dealing with transaction level functional and performance
properties, we use the FIR example to show how LOC can
be used to efficiently check real time performance properties.
Figure 7 shows a 16-tap FIR filter which reads in samples
when the input is valid and writes out the result when output
is ready. The filter design is divided into a control FSM and
a data path. The test bench feeds sampled data of arbitrary
length and the output is displayed with the simulator.

Stimuli : 0 at time 9
FIR Display : 0 at time 13
ESM Stimuli : 1 at time 19
Stimuli > Display Display : -6 at time 23
Stimuli : 2 at time 29
Display : —16 at time 33

Fig. 7. FIR Design and Simulation Trace.

We use our automatic trace checker generator to verify the
properties specified in constraints (1) - (5) (of Section II).
The same trace files are used for all the analyses and each
constraint is checked one at a time. The time and maximum
memory usage are shown in Table I. We can see that the
time required for analysis grows linearly with the size of the
trace file, and the maximum memory requirement is formula
dependent, but stays fairly constant. Using LOC for common
real-time constraint verification is indeed very efficient.

TABLE |
COSTS OF CHECKING CONSTRAINTS(1)-(5) ON FIR
Lines of Trace | 10° 10% 107 108
Time(s) 1 8 89 794
c1 Memory | 28B 28B 28B 28B
Time(s) 1 12 120 1229
c2 Memory | 28B 28B 28B 28B
3 Time(s) 1 7 80 799
Memory | 24B 24B 24B 24B
c Time(s) 1 7 77 803
4 Memory | 0.4KB 0.4KB 0.4KB 0.4KB
Time(s) 1 7 79 810
©5 Memory | 4KB 4KB 4KB 4KB

Given the large file size, runtime monitoring (see Sec-
tion 1V-B) may reduce the total verification time (simulation
and checking) since no trace file needs to be actually gen-
erated. For the latency constraint (the formula (2)), we im-
plement the checker as a SystemC module and the simulation

trace is no longer written to a file but passed to the monitoring
module directly. Table Il lists CPU times used for simulation,
trace checking and simulation with runtime monitoring for
the formula (2) on the traces with different lengths. For the
trace size of 100 million lines, the static checking approach
requires 1404 seconds of simulation time and 1229 seconds of
checking time for a total of 2633 seconds. Runtime monitoring
technique requires only 1420 seconds for both simulation and
monitoring. If the simulation trace is really long (e.g. hundreds
of gigabytes), the runtime monitoring can significantly save
CPU time compared to the off-line trace checking.

TABLE Il
TIME USAGE OF SIMULATION AND CHECKING FOR CONSTRAINT (2) ON
FIR
Lines of Trace 10° 108 107 10%
Simulation w/o Monitoring (s) | 1 14 148 1404
Static Trace Checking Only (s) | 1 12 120 1229
Simulation w/ Monitoring (s) 2 14 145 1420

We also verify constraint (7) to illustrate verification with
memory limitation since this constraint is particularly expen-
sive in terms of memory usage. Table 1l shows that the
simulation time grows linearly with the size of the trace
file. However, due to the use of an annotation in an index
expression, memory can no longer be recycled and we see that
it also grows linearly with the size of the trace file. Indeed,
since we will not know what annotation will be needed in
the future, we can never remove any information from the
queue. If the memory is a limiting factor in the simulation
environment, the analysis speed must be sacrificed to allow
the verification to continue, as discussed in Section 1V-C.
The result is shown in Table Il where the memory usage
is limited to 50KB. We see that the analysis takes more
time when the memory limit has been reached. Information
about trace pattern can be used to dramatically reduce the
running time under memory constraints. Aggressive memory
minimization techniques and data structures can also be used
to further reduce time and memory requirements. For most
LOC formulas and simulation traces, however, the memory
space can be recycled and the memory requirements are small.

TABLE Il
COSTS OF CHECKING CONSTRAINT (7) ON FIR

Lines of Trace (x10%) 2 3 4 5

Unlimited Time(s) <l <1 <1 1
Memory Mem(KB) | 40 60 80 100
Mem Limit Time(s) <1l 61 656 1869
(50KB) Mem(KB) | 40 50 50 50

VI. FORMAL VERIFICATION OF LOC FORMULAS

Although our trace analysis enables efficient verification of
LOC formulas in a simulation environment, formal verification
may still be valuable and sometimes even necessary. We
propose to apply formal verification to small designs that are
re-used many times, such as library modules. Because they
are small, formal verification is practically possible. On the

JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

other hand, they are intended to be used in many environment,
some of which will be designed long after the module itself
is designed and verified. Therefore, it is hard to imagine
all simulation scenarios that need to be verified. It is better
to characterize the modules with a set of properties that it
satisfies. This will not only increase the confidence in the
correctness, but these properties can be used as a precise
specification of a design’s behavior as well. The lack of such
a specification is a major source of design errors, because
informal specifications of library modules are often ambiguous
and misunderstood.

Unfortunately, it is undecidable whether a system satisfies
an LOC formula, even if some strong restrictions are placed
on the system specification and the formula [17]. On the
positive side, for a significant subset of LOC, it is possible to
decide whether a finite-state system satisfies an LOC formula.
The decision procedure is based on constructing a formula
of Presburger arithmetic that is satisfied if and only if the
formula is violated by some behavior of the system. The LOC
subset that can be verified in this way includes all properties
described in Section 1, except latency property (7).

Manipulating Presburger formulas is very expensive in
practice, so we propose an alternative formal verification
approach based on existing finite-state model checking tools.
Our approach represents a complete verification procedure for
a subset of LOC that defines w-regular properties. We have
shown in [17] that rate (1), throughput (4), and burstiness
constraints (5) belong to this subset, but other properties in
Section 11 do not. The proposed approach may still be applied
to these properties, but the procedure is incomplete in this
case, because it can terminate with an inconclusive result.

The simulation approach described in Section 1V suggests
our formal verification approach. A trace checker can be
interpreted as an automaton accepting executions. We could
thus use existing model-checking tools to verify that each
execution of the system is accepted by the trace checker. In
the example shown in this paper, the translation was manual.
However, there is no technical difficulty in automatically
generating such descriptions in a language understood by a
model checking tool through modifying our trace checker
generator.

The only significant difference between a simulation trace
checker and an automaton description suitable for model
checking is that former can rely on dynamic memory allo-
cation to store trace data that may be needed, while the latter
must have all memory statically allocated. Unfortunately, as
we have shown in Section Ill, for some LOC formula it is
not possible to determine memory requirement a priori. Our
approach is to fix the memory size anyway, and designate
special states where checking the formula would require allo-
cating additional memory, but none is available. Such a state
may or may not be reached during the reachability analysis.
If it is, the result of the formula verification is inconclusive.
More precisely, the formal verification can have one of three
outcomes:

« a counter-example is found showing that the system does

not satisfy the property,

« the property is satisfied, all reachable state are searched

without finding a counter-example, or reaching a state
where memory is exhausted,

« inconclusive, analysis finds no counter-examples, but
states where memory is exhausted are reachable.

For example, the latency constraint:

t(Display[i]) — t(Stimulifi]) < 25 (16)

cannot be modeled by any finite automata because there
can be arbitrarily many occurrences of Stimuli before z-th
occurrence of Display (intuitively, we assume that Display|x]
always occurs after Stimuli[z]). However, if we limit the
number of stored time stamps of Stimuli to, say, 50, then
we can simultaneously check the following two properties:

P1: There are never more than 50 occurrences of Stimuli
between i-th occurrences of Stimuli and Display.
P2: If P1 holds, then (16) holds.

Obviously, if P1 and P2 both hold then so does (16), and if
P2 is false, so is (16). However, if P2 holds, but P1 does not,
the result is inconclusive.

To specify P1 and P2, assume that the trace checker keeps
51 most recent time stamps for Stimuli and Display in
arrays Display_t and Stimuli_t such that z-th time stamp is
stored at position (z mod 51) of the array. Also assume that
variable Display_i and Stimuli_i (which take values from 0
to 50) keep the index of the most recent time stamps in the
arrays. Finally, assume that binary variables Display_occur
and Stimuli_occur are true when Display and Stimuli oc-
cur, respectively, and that integer variable diff counts the
difference between the numbers of occurrences of the Stimuli
and Display events, i.e. it is initialized to 0, incremented on
each Stimuli_occur, and decremented on each Display_occur.
Then, P1 can be specified with the following state predicate:

diff <51 . (17)
Constraint (16) can be expressed as follows:
Display_occur = Display_t[Display_i]
— Stimuli_t[Display_i] < 25 , (18)
and finally P2 can be expressed as follows:
Assumption (17) = Formula (18) . (19)

In the following sub-section, we use our formal verification
technique to verify the data consistency constraint of the
TTL channel, which is a library module used in our previous
PIP example, and show how the formal verification approach
works on checking important library modules.

A. Formal Verification for TTL Channel

Y-chart Application Programming Interface (YAPI) is a
model of computation for designing signal processing sys-
tems [34]. It is basically a Kahn process network [35],
extended with the ability to non-deterministically select an
input port to consume and an output port to produce. A YAPI
channel models an unbounded First-In-First-Out (FIFO) buffer.
Asynchronously, a writer process writes data into one end of
the channel and a reader process reads data from the other

JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

YAPI Channel

Y apiChannel

RdWrThreshold

Fig. 8. YAPI Channel and TTL Channel.

end of the channel. A design methodology based on YAPI
was proposed in [15]. It includes refinement of the YAPI
channel into a lower-level abstraction called Task Transaction
Level (TTL) [16]. The refinement is shown in Figure 8. In our
previous PIP example, the TTL channel is instantiated many
times and used to interconnect the various components of the
design.

At the TTL level, the channel is modeled with a bounded
FIFO buffer. The mutual exclusion and boundary checking
of the bounded FIFO buffer is guaranteed by a central pro-
tocol. As Figure 8 shows, the TTL channel has a bounded
FIFO(BoundedFifo) whose size is set at design time, and a
control medium(RdWrThreshold) which implements a protocol
to guarantee correctly writing to and reading from the FIFO
buffer. We use a writer process (DataGen) to write a series
of data into the channel and a reader process (Sum) to read
the data from it. To verify the correctness of the refinement,
we focus on the verification of the TTL channel, which is
normally a library module that needs to be frequently reused.

When the writer DataGen writes a data into the TTL
channel, it produces an event of prepared; when the reader
Sum reads a data from the channel, it produces an event of
processed. \We use the annotation data to represent the value
of data written into or read from the channel. An important
property that can be expressed with LOC is data consistency
of the TTL channel, i.e. the input data of the TTL channel
should be read from the channel in exactly the same order
without a loss. The data consistency constraint is defined as:

data(prepared[i]) = data(processed|[i]) . (20)

The TTL channel shown in Figure 8 is initially specified
in Metropolis Meta-Model (MMM) [3]. From the MMM
specification of the TTL channel design, we use the Metropolis
backend tool to generate a corresponding Promela (SPIN’s
modeling language) description [7], which can be verified by
the model checker SPIN for a particular LTL formula. The
TTL channel design has 634 lines of MMM source code and
2049 lines of Promela code after translation.

From the discussion above, we know that the data con-
sistency constraint (20) of the TTL channel cannot be ex-
pressed by LTL directly. Therefore, we have to assume that,

10

“after the x-th write by DataGen, at most 31 writes can be
done before the x-th read by Sum”. 4 Then we use arrays
prepared _data[32] and processed _data[32] to store the recent
32 pieces of data written by DataGen and read by Sum
respectively. We also use variables prepared _i and processed_i
(which take values of 0 to 31) to keep the index of the
most recent data in the arrays, and variable diff to keep the
difference between the numbers of write and read events. The
assumption is written in LTL as:

Q(diff <32) ,

and it is verified to hold by SPIN. The data consistency
constraint is written in LTL as:

(21)

G(processed _occur => prepared_data[processed_i]
(22)

= processed_data[processed_i]) .

Because processed[x] always follows prepared[z], the data
consistency only needs to be checked when an instance of
processed is occurring. The formula:

Assumption (21) = Constraint (22) (23)

is also verified to hold by SPIN.

With the bitstate technique [36], SPIN verifies the for-
mulas (21) and (23) using about 1.5 hours and 3 hours of
CPU time respectively on our 1.5GHz Athlon machine with
1GByte of memory. And all the other relevant verification
parameters are listed in Table IV. From this case study
(compared to the case studies in Section V), we can clearly
see the tradeoff between the simulation trace checking and the
formal verification. The simulation trace checking is usually
much more efficient in terms of memory and CPU time usage,
but its verification results totally depend on the design of test
cases for simulation. On the other hand, the formal verification
is more expensive but the results are largely independent of
test cases. Therefore, it should be used for small but important
design modules like the TTL channel.

TABLE IV
SUMMARY OF FORMAL VERIFICATION FOR THE FORMULAS (21)

AND (23)

LTL Formula (21) (23)

Depth reached 51257 57221

States stored (x 10%) 2.2431 2.3156

State transitions (x 10%) | 2.85523 3.09726

Total memory (MB) 735.098 819.517

CPU time 1h37m55s | 3h03m18s

Hash factor 4.78686 4.63699

VIlI. CONCLUSIONS

In this paper, we discuss the verification aspects of the
quantitative constraint formalism, Logic of Constraints. We
compare LOC with LTL, find that LOC has a different domain
of expressiveness than LTL, and conclude that LOC can
express important properties that cannot be expressed by LTL.
We propose two feasible verification approaches, simulation

4This assumption is derived from the actual buffer size of the TTL channel.

JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

trace analysis and model checking. We also present a set
of case studies on these approaches to demonstrate their
usefulness and effectiveness.

We are currently working on a few future enhancements
and novel applications. One such application we are consid-
ering is to integrate the LOC monitor with a simulator that
is capable of non-deterministic simulation, non-determinism
being crucial for design at high levels of abstraction. We
will use the checker to check for constraint violations, and
once a violation is found, the simulation could roll back
and look for another non-determinism resolution that does
not violate the constraint. In addition, to help the designer
easily produce traces for constraint checking, we plan to
develop embedded code blocks for trace generation in the
form of libraries, similar to embedded constraint languages.
We also plan to re-target the backend checker generation
for different development environments (e.g. SystemVerilog,
Verilog, VHDL) to allow tight integration of monitors for those
environments as well.

ACKNOWLEDGMENT

We want to acknowledge team members of the Metropolis
project led by Prof. Sangiovanni-Vincentelli from University
of California at Berkeley. The work presented here has been
done within the framework of the Metropolis project, and it has
benefited greatly from many discussions with team members.

APPENDIX |
FORMAL LOC SYNTAX AND SEMANTICS

A. Representing System Behaviors

We use the term behavior to denote the sequence of inputs
and outputs that a system exhibits when excited by the input
sequence. In general, we want to consider both finite and
infinite sequences, as well as hybrids where some inputs or
outputs appear infinitely many times, and some appear only
finitely many times. Formally, let E be a set of event names®
and for each e € E let V(e) be its value domain. Then, a
behavior 3 is a partial function from E x Z to |J .V (e)
such that:

(1) B(e,n) € V(e) foreach e € E, and each positive integer
n for which S(e,n) is defined,

(2) if B(e,n) is not defined for some e € E and positive
integer n, then B(e,m) is not defined for any m > n.

(3) B(e,n) is not defined for any e € E and any n < 0. ©

If n is the largest integer for which B(e,n) is defined, then
we say that there are n instances of e in 8. We also say for
all positive integers k£ < n that (e, k) is the value of the k-th
instance of e in 3.

A system is specified by a set of event names, their value
domains and a set of behaviors. In a typical system, event

5In this paper, we assume that E is finite. However, the approach presented
here could easily be extended to arbitrary sets of event names. This extension
would allow us to consider networks with dynamic process and interconnec-
tion creation.

6Clearly, we could have defined 3 as a partial function on positive integers,
but this definition happens to be more convenient when we define the
semantics.

1

names may represent interconnections, e.g. wires in a hardware
system, or mailboxes in a software system. The behavior of the
system is then characterized by sequences of values observed
on the wires, or sequences of messages to mailboxes.

Behaviors, by themselves, are not sufficient to evaluate
performance constraints that may involve quantities like timing
or power of the system. For this, we need additional infor-
mation regarding performance measures. We represent this
information as annotations to behaviors. Formally, given an
arbitrary set T, an annotation of behavior 5 of type T is a
partial function f from E xZ to T, such that f(e,n) is defined
if and only if B(e,n) is. We refer to f as a T-valued annotation
of 3. Similarly to events, if f is a T'-valued annotation, then we
say that 7" is the value domain of f. An annotated behavior is a
pair (3, A) where 3 is a behavior and A is a set of annotations
of 8.

In this paper we show a few uses of annotations, but make
no proposal for their specification. We assume that they are
part of the functional specification, and thus specified with the
same language as the functional specification. In a way, they
are an extension of an already common design practice, where
comments and assertions are placed in the code to ease design
understanding and debugging.

Annotated behaviors are structures for which we want to
state constraints. In other words, annotated behaviors are
models of LOC formulas.

B. LOC Syntax

LOC formulas are defined relative to a multi-sorted algebra
(A,0,R), where A is a set of sets (sorts), O is a set
of operators, and R is a set of relations on sets in A.
More precisely, elements of O are functions of the form
Ty x -+ x T, = Tpy1, Where n is a natural number, and
Ty,...,Th+1 are (not necessarily distinct) elements of A. If
o € O is such a function, then we say that o is n-ary and
T, +1-valued. Similarly, an n-ary relation in R is a function
of the form Ty x - - - x T, + {true, false}. We require that A
contains at least the set of integers, and the value domains of
all event names and annotations appearing in the formula. For
example, if A contains integers and reals, O could contain
standard addition and multiplication, and R could contain
usual relational operators (=, <,>,...).

The basic building blocks of LOC formulas are terms. We
distinguish terms by their value domains:

1 is an integer-valued term,

« for each value domain ' € A, and each c € T, c is a
T'-valued term,

o if 7 is an integer-valued term, e € E is an event name,
and f is a T-valued annotation, then val(e[7]) is a V(e)-
valued term, and f(e[r]) is a T-valued term,

o if 0 € O is a T-valued n-ary operator, and 7, ...,7,

are appropriately valued terms, then o(r1,...,7,) is a

T'-valued term.

We say that 7 in a term of the form val(e[7]) or f(e[r]) is an
index expression.
Terms are used to build LOC formulas in the standard way:

JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

o if € R is an n-ary relation, and 7,...,7, are
appropriately valued terms, then r(7q,...,7,) isan LOC
formula,

o if ¢ and ¢ are LOC formulas, so are ¢, ¢ A1, and ¢V .

For example, if a and b are names of integer-valued events,
and f and g are integer-valued annotations, then the set of
LOC formulas includes the following:

val(ali]) =5 A val(afi +1]) = 5
flali +4]) + f(b[g(alz])]) <20
val(@[i) =0 v f(bi]) =0 .

When reading these formulas, it is helpful to think of ¢ as being
universally quantified, as clarified in the LOC semantics next.

C. LOC Semantics

We first define the value of formulas and terms with respect
to an annotated behavior and a value of the variable . We use
a special symbol undef to denote that the value of a term or a
formula is not defined, and assume that undef is distinct from
any element of any sort in A. We use V7, ,,[a], where a is
a term or a formula, to denote the value of « evaluated at the
annotated behavior (3, A) and the value n of variable 7. If «
is a T-valued term, then V7, ,[a], is in T'U {undef }, and
if a is a formula, then V(; ,) [a]] is in {true, false, undef}.
Note that this implies that%r some k-ary T-valued operator o,
the formula o(74, ..., %) can take value undef, while o itself
cannot, because it is T-valued. There is no contradiction here,
only a slight abuse of notation, as we use the same symbol o
to represent both the operator and its name appearing in LOC
formulas. This ambiguity in the meaning of o, can always
be easily resolved from the context in which o appears. Also
note that we do not make a requirement that all annotations
appearing in the formula must be defined in A. For such
undefined annotations, we use value undef. The value of an
LOC formula is defined recursively as follows:

e VI plil=n,

* V(5 4)lc] = c for each element ¢ of each value domain

« for each event name e and each integer-valued term T,

Vi lval(elr])] =
undef if V5 4)[7] = undef,

or B(e, Vip,4)[]) is not defined

Ble,Viz a)Ir]) otherwise,

« for each annotation f, each event name e, and each
integer-valued term T, Vib,4) [f(e[D] =
undef if f&A,
or V("ﬂ’.A) [val(e[7])] = undef,
f(e, Vs 4)lr]) otherwise,

o for each k-ary operator o, using v; to denote V{j ,, [75]

for each j = 1,....,19, V(’E,A)ﬂo(n,...,m)]] =
undef if v; = undef for some j,
o(vy,...,vg) oOtherwise,

12

for each k-ary relation r, using v; to denote Vi, 4 [7;]

foreach j =1,...,k, V&A)[r(n,...,rk)]] =

undef if v; = undef for some j,
r(vi,...,v;) Otherwise,

B true if Vip, 4[] = false,

Vis, 4 [¢] = < false if Vis,a) [¢] = true,

undef otherwise,

r

true if Vi 4)[0] = true,
fmd Vs, [¥] = true,
Vis,a) [pAY] =< false if Vis, a) [¢] = false,
or V(”ﬁ’A) [+] = false,
| undef otherwise,
(true if Vig,a)[9] = true,
or Vig,a)[¥] = true,
Vis,a) [¢V] =< false if Vi, a) [¢] = false,
and Vig,a) [] = false,
| undef otherwise.

We say that an annotated behavior (3, A) satisfies a formula

6, it Vs p[4]

[1]
[2]

[3]

(4]

[5]
6]
[]
¢

[10]
[11]

[12]

[13]

[14]
[15]

[16]

= false does not hold for any integer n.

REFERENCES
J. P. Hayes, Computer Architecture and Organization. McGraw-Hill,
1988.
K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli, “System level design: orthogonalization of concerns and
platform-based design”, |EEE Transactions on Computer-Aided Design,
vol. 19, no. 12, pp. 1523-1543, Dec. 2000.
F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli,
M. Sgroi, and Y. Watanabe, “Modeling and designing heterogeneous
systems”, Technical Report 2001/01 Cadence Berkeley Laboratories,
Nov. 2001.
X. Chen, F. Chen, H. Hsieh, F. Balarin, and Y. Watanabe, “Formal verifi-
cation of embedded system designs at multiple levels of abstraction”, in
Proceedings of International Workshop on High Level Design Validation
and Test, Oct. 2002, pp. 125-130.
A. Pnueli, “The temporal logic of programs”, in Proceedings of the 18 t*
|EEE Symposium on Foundation of Computer Science, 1977, pp. 46-57.
K. McMillan, Symbolic Model Checking. Kluwer Academic Publishers,
1993.
G. J. Holzmann, “The model checker SPIN”, IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp. 279-295, May 1997.
http://www.eda.org/vfv, 2003.
http://www.eda.org/sv-ac, 2003.
OpenVera assertions white paper, Synopsys, Inc, 2002.
F. Balarin, Y. Watanabe, J. Burch, L. Lavagno, R. Passerone, and
A. Sangiovanni-Vincentelli, “Constraints specification at higher levels of
abstraction”, in Proceedings of International Workshop on High Level
Design Validation and Test, Nov. 2001.
X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe, "Automatic trace
analysis for logic of constraints”, in Proceedings of the 40" Design
Automation Conference, June 2003.
X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe, “Verifying LOC based
functional and performance constraints”, in Proceedings of International
Workshop on High Level Design Validation and Test, Nov. 2003.
http://www.systemc.org, 2003.
J. Brunel, E. A. de Kock, W. M. Kruijtzer, H. J. H. N. Kenter, and
W. J. M. Smits, “Communication refinement in video systems on chip”,
in Proceedings of the 7" International Workshop on Hardware/Software
Codesign, 1999, pp. 142-146.
0. Gangwal, A. Nieuwland, and P. Lippens, “A scalable and flexible data
synchronization scheme for embedded hw-sw shared-memory systems”,
in Proceedings of International Symposium on System Synthesis, Oct.
2001.

JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

[17]
(18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

(36]

X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe, “Logic of constraints: A
quantitative performance and functional constraint formalism”, Technical
Report UCR-CS-04-87, University of California at Riverside, 2004.

P. Alexander, C. Kong, and D. Barton, “Rosetta Usage Guide”, available
at http://www.sldl.org, 2001.

Object constraint language specification. http://www. omg.org, 1997.
Quick reference guide for the design constraints description language.
http://www.eda.org/dcwg, 2000.

J. R. Buchi, “On a decision method in restricted second order arith-
metic”, in Proceedings of International Congress on Logic, Methodology
and Philosophy of Science. Standford University Press, 1960, pp. 1-11.
E. Cerny, B. Berkane, P. Girodias, and K. Khordoc, Hierarchical
Annotated Action Diagrams. An Interface-Oriented Specifi cation and
Verifi cation Method. Kluwer Academic Publishers, 1998.

B. Alpern and F. Schneider, “Verifying temporal properties without tem-
poral logic”, ACM Transactions on Programming Languages, vol. 11,
no. 1, pp. 147-167, Jan. 1989.

Z. Har’El and R. P. Kurshan, “Software for analysis of coordination”, in
Proceedings of the International Conference on System Science, 1988,
pp. 382-385.

J. Henriksen, J. Jensen, M. Jagrgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm, “Mona: Monadic second-order logic in practice”, in
Proceedings of Tools and Algorithms for the Construction and Analysis
of Systems, First International Workshop, TACAS' 95, LNCS 1019, 1995.
F. Jahanian and A. K. Mok, “Safety analysis of timing properties in
real-time systems”, |EEE Transactions on Software Engineering, pp.
890-904, 1986.

A. Mok and G. Liu, “Early detection of timing constraint violation at
runtime”, in Proceedings of |EEE Real-Time Systems Symposium, Dec.
1997, pp. 176-186.

A. Mok and G. Liu, “Efficient run-time monitoring of timing con-
straints”, in Proceedings of Real-Time Technology and Applications
Symposium, June 1997, pp. 252-262.

M. Y. Vardi, “An automata-theoretic approach to linear temporal logic”,
Logics for Concurrency. Sructure versus Automata, LNCS Vol 1043,
Soringer-Verlag, pp. 238-266, 1996.
http://www.cadence.com/products/formalcheck.html, 2003.

C. Eisner and D. Fisman, Sugar 2.0 proposal presented to the accellera
formal verification technical committee, Mar. 2002.

P. Wolper, “Temporal logic can be more expressive”, Information and
Control, no. 56, pp. 72-99, 1983.

E. J. McCluskey, Logic Design Principles. Prentice Hall, 1986.

E. d. Kock, G. Essink, W. Smits, P. v. d. Wolf, J. Brunel, W. Kruijtzer,
P. Lieverse, and K. Vissers, “Yapi: application modeling for signal
processing systems”, in Proceedings of the 37t" Design Automation
Conference, June 2000.

G. Kahn, “The semantics of a simple language for parallel program-
ming”, in Proceedings of IFIP Congress. North Holland Publishing
Company, 1974, pp. 471-475.

G. J. Holzmann, "An analysis of bitstate hashing”, Formal Methods in
Systems Design, vol. 13, no. 3, pp. 289-307, Nov. 1998.

13

Xi Chen received the B.E. degree in computer
science and engineering from Zhejiang University
in 2000, the M.S. degree in computer science from
University of California at Riverside in 2002 and
is currently a Ph.D. candidate in computer science
from University of California at Riverside. His re-
search interests include verification of embedded
system designs, system-level design methodologies,
and distributed computing.

Harry C. Hsieh received the B.S. degree from
the University of Wisconsin-Madison in 1988, the
M.S. degree from Stanford University in 1991, and
the Ph.D. degree from the University of California
at Berkeley in 2000. During 1991-1993, he was a
member of technical staff at Mainline Systems Lab
of Hewlett Packard. He also worked as a researcher
at Cadence Berkeley Laboratories in 2000. He joined
the faculty of computer science and engineering
department at University of California - Riverside in
2001. He has been actively involved as a researcher

and teacher in the area of design technology, especially for methodology,
synthesis, and verification of VLSI and embedded systems. He has co-
authored two books and numerous journal, workshop, and conference papers

in that area.

Dr. Hsieh has served on many review boards and program committees. He
recently served on the organizing committee for International Conference on
Hardware/Software Codesign and System Synthesis, 2003 and 2004, as well
as Design Automation and Test in Europe, 2004.

i

Felice Balarin received his Ph.D. degree in electrical
engineering and computer science from the Univer-
sity of California at Berkeley in 1994. Since then, he
has been a research scientist at the Cadence Berkeley
Labs. His research is focused on development and
application of formal methods to design, verification,
specification, and analysis of embedded systems
implemented both by hardware and software. He is
the author of numerous papers, and co-author of two
books on these topics.

Yosinori Watanabe received the B.Eng. degree from
Waseda University in 1988 and the Ph.D. degree
from University of California at Berkeley in 1994,
respectively. In 1994, he joined Digital Equipment
Corporation. He was a member of the design team
for the ALPHA microprocessor while being also
engaged in logic synthesis for high performance
microprocessors. Since 1997, he has been with Ca-
dence Laboratories, where he has been involved in
a research project for developing a design environ-
ment and methodologies for embedded systems. Dr.

Watanabe received the IEEE CAS Outstanding Young Author Award and
IEEE CAS Best Paper Award on Transactions of CAD in 1995 and 1998,

respectively.

