
948 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 6, JUNE 2005

Combinational Automatic Test Pattern Generation
for Acyclic Sequential Circuits

Yong Chang Kim, Vishwani D. Agrawal, and Kewal K. Saluja

Abstract—It is known that the complexity of automatic test pattern gen-
eration (ATPG) for acyclic sequential circuits is similar to that of combina-
tional ATPG. The general problem, however, requires time-frame expan-
sion and multiple-fault detection and hence does not allow the use of avail-
able combinational ATPG programs. The first contribution of this work is
a combinational single-fault ATPG method for the most general class of
acyclic sequential circuits. Without inserting any real hardware, we create
a functionally equivalent “balanced” ATPG model of the circuit in which all
reconverging paths have the same sequential depth. Some primary inputs
and gates are duplicated in this model, which is converted into a combina-
tional circuit by shorting all flip-flops. A test vector obtained by a combi-
national ATPG program for a fault in this combinational circuit is trans-
formed into a test sequence to detect a corresponding fault in the original
sequential circuit. A combinational ATPG program finds tests for all but a
small set of faults that must be explicitly detected as multiple-faults. Those
are modeled for ATPG using the second contribution of this work, which is
a generalized method to model any given multiple stuck-at fault as a single
stuck-at fault. The procedure requires insertion of at most + 3 mod-
eling gates for a fault of multiplicity . We show that the modeled circuit
is functionally equivalent to the original circuit and the targeted multiple
fault is equivalent to the modeled single stuck-at fault. Benchmark results
show at least an order of magnitude saving in the ATPG CPU time by the
new combinational method over sequential ATPG.

Index Terms—Acyclic sequential circuit, automatic test pattern genera-
tion (ATPG), balanced model, combinational test generation, design for test
(DFT), partial scan, test.

I. INTRODUCTION

For combinational circuits, algorithms and programs exist that pro-
vide acceptable fault coverages with 100% fault efficiency. The same
performance has not been possible for sequential automatic test pattern
generation (ATPG). This is the main reason for the widespread accep-
tance of the full-scan design [8]. However, concerns about the full-scan
overheads of area, delay and test time have motivated designers and re-
searchers to explore partial-scan techniques [1].

Early attempts at purely combinational ATPG-based partial scan
design produced overheads that were often close to those of full-scan
[2]. A low overhead partial-scan technique, in which scan flip-flops
(FFs) break feedback paths, was proposed by Cheng and Agrawal [5],
and Kunzmann and Wunderlich [25]. The resulting acyclic sequential
circuit is guaranteed to be initializable and has a well-defined sequen-
tial depth that bounds the complexity of sequential ATPG [4]. Using an
analysis by Miczo [26], showing that the ATPG complexity of acyclic
circuits is similar to combinational circuit, a combinational ATPG
method for a single output circuit was proposed by Kunzmann and
Wunderlich [25]. Inoue et al. [18], [19] give a constructive definition

Manuscript received August 28, 2003; revised December 8, 2003 and July
2, 2004. This work was supported in part by the National Science Foundation
under Grant MIP9714034. This paper was recommended by Associate Editor
N. K. Jha.

Y. C. Kim is with the Department of Electrical and Computer Engineering,
Air Force Institute of Technology, Wright Patterson AFB, OH 45433 USA
(e-mail: yong.kim@afit.edu).

V. D. Agrawal is with the Department of Electrical and Computer Engi-
neering, Auburn University, Auburn, AL 36849 USA (e-mail: vagrawal@
eng.auburn.edu).

K. K. Saluja is with the Department of Electrical and Computer Engi-
neering, University of Wisconsin, Madison, WI 53706 USA (e-mail: saluja@
engr.wisc.edu).

Digital Object Identifier 10.1109/TCAD.2005.847894

Fig. 1. Multioutput acyclic circuit.

of a balanced register transfer level (RTL) model for multiple output
acyclic sequential circuits called the time expansion model (TEM).
The TEM is nonunique and hence can be nonoptimal. The literature
does not give an algorithm to derive an optimal TEM. Being at RTL,
it cannot guarantee a 100% fault efficiency for gate-level faults.
The focus of our paper is efficient derivation of tests for general

acyclic sequential circuits using any conventional single-fault com-
binational ATPG program. Starting with the ideas of Miczo [26] and
Gupta et al. [11], [13], we develop a combinational model suitable for
combinational test generation.We can then detect all testable faults and
identify all untestable faults [22]–[24] for acyclic sequential circuits
using combinational ATPG. The application domain of this paper is
fully synchronous and acyclic circuits. The paper makes two important
contributions: 1) a combinational test generation method for acyclic se-
quential circuits in Section III and 2) a generalized single fault model
for multiple faults in Section IV.

II. CIRCUIT SUBCLASSES AND ATPG METHODS

A clocked synchronous circuit is called acyclic if the FFs form no
cycle. An acyclic circuit is known to be initializable and the test se-
quence length of any detectable single fault has an upper bound dseq+
1, where dseq is the sequential depth, defined as the maximum number
of FFs on the longest path between primary inputs (PIs) and primary
outputs (POs) in the circuit [4]. Fig. 1 shows a multioutput acyclic cir-
cuit example used in the subsequent discussion.
Miczo [26] gives an analysis of acyclic circuits and shows that the

test generation problem for acyclic sequential circuit is similar to the
combinational ATPG. Following up on the idea, Min and Rogers [27]
obtained a simple combinational ATPG model in which all FFs are
shorted during test generation. A test vector repeated dseq times detects
the fault in the sequential circuit. This procedure, however, leavesmany
faults undetected and one needs a sequential ATPG to achieve 100%
fault efficiency.
Miczo [26], Kunzmann and Wunderlich [25], and Inoue et al. [18],

[19] point out that an exact combinational ATPGmodel need not dupli-
cate the entire combinational logic dseq times. Although these methods
define the required structure for combinational test generation, no im-
plementable algorithms for generating such models are provided. An-
other remaining problem is that the detection of a single fault in the
original circuit requires detecting multiple faults in the logic that is
duplicated.
Gupta et al. [11], [13] defined a subclass of acyclic sequential circuits

called “balanced” that avoided the test generation for multiple faults.
In a balanced (BAL) circuit, all signal paths between any pair of nodes
(PIs, POs, FFs, or gates) have the same number of FFs. Shorting FFs in
a balanced circuit generates a combinational model in which all single
faults of the original circuit are mapped as single faults. This model can
produce tests for all detectable faults. Any acyclic circuit can be con-
verted into a balanced circuit by test-mode isolation of a selected set of

0278-0070/$20.00 © 2005 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 6, JUNE 2005 949

Fig. 2. Balanced (BAL) partial-scan circuit for the acyclic circuit of Fig. 1.

FFs via a partial scan. For example, the circuit of Fig. 1 has fanouts at
PIB and at the output of FF2 that reconverge with different numbers of
FFs (unbalanced depths). When FF2 and FF3 are scanned, the circuit
is balanced and its balanced model is shown in Fig. 2. Note that using
functional information, it may be possible to obtain a combinational
model of a sequential circuit without balancing the circuit, such as in
the case of switched balanced model [12], in which the circuit is bal-
anced except for fanouts of known multiplexers, or sequential circuit
with feedback loops [7], [14], [24].

Fujiwara et al. [9], [10], [16], [17], [31] introduced another subclass
of acyclic circuits called internally balanced (IB) circuits. In an IB cir-
cuit, all node-pairs, except those involving a primary input, are bal-
anced. This requires a lower partial-scan overhead than a balanced cir-
cuit. A combinational model is generated by replacing FFs with wires
or buffers and the PIs with unbalances are split as additional PIs. Tests
are generated for this model using combinational ATPG. Each com-
binational vector is converted into a test sequence of length dseq + 1.
The bits from a split PI are appropriately placed in the sequence for
application to the corresponding original PI. The bits of unsplit PIs are
simply duplicated in each vector. An IB circuit model of the circuit of
Fig. 1 is obtained by scanning FF3, splitting unbalanced fanouts PI B,
then shorting the remaining FFs.

In order to compact test sequences, Balakrishnan and Chakradhar [3]
proposed the strongly balanced (SB) subclass that is a more restrictive
structure than the balanced circuit. A strongly balanced circuit is bal-
anced and, in addition, requires that all paths between a node and all
PIs have the same sequential depth. The additional constraint allows
the combinational vectors to be pipelined. The test sequence is gen-
erated by concatenating combinational vectors and repeating only the
last vector dseq times. The strongly balanced structure uses a combi-
national ATPG to derive tests that are significantly more compact than
those for either the internally balanced or the balanced circuit, but more
FFs than the other two subclasses may be scanned to make the circuit
strongly balanced. For the example circuit of Fig. 1, we scan three FFs,
FF1, FF2, and FF3, to make it strongly balanced (SB).

In the full-scan method [8], all FFs in the circuit are scanned to make
the circuit combinational.

Starting from a general sequential circuit, we can obtain five
subclasses of acyclic circuits by progressively scanning more FFs.
Associated with each subclass there is a combinational ATPG
method. Fig. 3 shows the set relationships: Combinational (Cmb:) �
strongly balanced (SB) � balanced (BAL) � internally balanced
(IB) � acyclic sequential (Acy:) � sequential circuits.

III. NEW COMBINATIONAL ATPG METHOD

Using the idea that the circuit should be balanced [13] for combina-
tional ATPG to be effective, we create a balanced ATPG model (BAM)
for any given acyclic circuit. All unbalanced fanouts, i.e., fanouts re-
converging with different sequential depths, are moved toward primary
inputs using a retiming-like transformation. Such fanouts can supply

Fig. 3. Subclasses of sequential circuits.

different values to branches in different time frames. Unbalanced PI
fanouts are split as additional primary inputs and all FFs are replaced
with buffers to produce a combinational ATPG (C-ATPG) circuit. A
combinational test vector for a fault in the C-ATPG circuit is gener-
ated using a combinational ATPG program and converted into a vector
sequence that detects the corresponding fault in the original acyclic se-
quential circuit. Using a fault-mapping algorithm, we classify the unde-
tected faults in this model as either untestable or multiply-testable. The
latter, typically consisting of less than 5% of all faults, are modeled as
special single faults in the C-ATPG circuit. Our test generation method
has two steps, balanced ATPG model generation and test generation.

A. BAM Generation

In a sequential circuit, unbalanced paths often carry signals to a re-
convergent gate. These signals originate at PIs in different time frames.
In order to allow combinational ATPG the choice of assigning different
values to a signal in different time frames an unbalanced fanout signal
should be duplicated. Algorithm 1 generates a combinational ATPG
(C-ATPG) circuit.
In Algorithm 1, our goal is to assign a unique weight to each node

with respect to each output, where a node is PI, gate, FF, or PO. The
weight of a node g is written as w(g). A weight of PO is defined as the
maximum sequential depth of the PO from all PIs. However, weight of
a non-PO node is defined based on whether the node is FF or not and
the weight of its fanout nodes. Due to reconvergent fanouts, a unique
weight assignment may not be possible without creating a copy of a
node if the node has reconvergent fanouts, in which case, the algorithm
will make a copy of such a node, as needed, to allow unique weight
assignment. For the original node and copied node(s), we assign a per-
manent tag number called the difference in depth (DID). We use the
notation DID(g) to denote the DID of a node g. By default, the DID
of a node that has never been duplicated is 0. If weights of the fanout
nodes are the same with respect to a PO, a node is balanced with re-
spect to that PO.When each node in the circuit is balanced with respect
to all POs, the circuit is balanced and can be converted to balanced
ATPG model. BAM provides separate origins for unbalanced recon-
vergent paths. After BAM is generated, we obtain the C-ATPG circuit
by replacing FFs in BAM with buffers. The algorithm below contains
the exact and formal details of these concepts.
Algorithm 1: Generate a C-ATPG Circuit:
Assign weights to POs: In a single PI-to-PO pass, assign weights to

all PO nodes.
BAM generation: Determine node weights separately with respect

to each PO. We proceed from a PO toward PIs assigning weights to
nodes as discussed in the two cases given below. The weight assigned
to a balanced node is the weight of its fanouts reachable from the PO
being considered. The weight of a combinational node is the same as

950 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 6, JUNE 2005

that of a fanout node, and for an FF node, it is one less than that of
the fanout node. For each PO, we recursively determine weights of
all reachable nodes while eliminating any unbalances. Two cases can
occur as a non-PO node gi is repeatedly processed:

Case 1) Node gi either has a single fanout node gj with assigned
weightw(gj), or has multiple fanout nodes, all of which have the same
weight w(gj). Then, w(gi) = w(gj), if gi is a combinational gate or
PI, or w(gi) = w(gj) � 1, if gi is a FF.

Case 2) Node gi has fanouts to multiple nodes gq; 1 < q � n.
Suppose there arem;m � n, distinctly different weights among these
n nodes.

Step 1) Grouping fanout weights: Divide n fanouts into m

groups in the ascending order of weights, w1; w2; . . . ;
wm, where w1 is smallest among allm fanout weights.

Step 2) Duplication: If node gi has never been duplicated, then
gi is duplicated asm nodes, gi1 through gim, each of the
same type (i.e., PI, gate, or FF) as gi. If gi is a PI, then
duplication createsm � 1 new PIs. Otherwise, inputs to
the duplicated nodes are supplied by adding m � 1 new
fanouts to each fanin node of gi. DID of a node gik is
determined as DID(gik) = DID(gi) + wk � w1, for
k = 1; 2; . . . ;m. If node gi has been duplicated while
balancing previous POs, make a copy of node gi if there is
no copy of gi already havingDID = DID(gi)+wk�w1,
for k = 2; 3; . . . ;m. If node gi is duplicated l times,
where l � m and gi is not a PI node, add l � 1 new
fanouts to each fanin node of gi. Each duplicated node is
tagged with appropriate DID.

Step 3) Spltting of fanout: Split and move the fanouts ofm� 1
groups corresponding to weights w2; w3; . . . ; wm from
gi to gik , where DID(gik) = DID(gi) + wk � w1 and
k = 2; 3; . . . ;m.

Time Frame assignment: Each PI node is assigned a number called
a time frame (TF). TF initially equals the weight of the PI obtained
during balancing with respect to the first PO. While balancing with
respect to a subsequent PO, TF equals the weight of the PI plus an
offset q, where q can be obtained from another PI with known DID and
TF by subtracting its weight from the TF.

Elimination of FFs (C-ATPG circuit generation): Once all POs
are processed, the model is balanced and is converted to a combina-
tional ATPG (C-ATPG) circuit for test generation by replacing FFswith
buffers.

In Algorithm 1, the recursion over POs leaves each PI with a unique
weight with respect to each PO and a single unique DID with respect
to all POs. Case 1 determines the weight of a node with balanced
fanouts and Case 2 handles nodes with unbalanced fanouts. For an un-
balanced node, the duplicate and split (DAS) procedure moves unbal-
anced fanouts one level backward (toward PIs). Successive applications
of DAS eventually move all unbalances to PIs, whose splitting creates
a perfectly balanced structure.

In general, the above procedure splits a PI of the sequential circuit
into multiple PIs in the balanced model. Although in the worst case, a
gate, FF, or PI can be duplicated up to dmax times, a typical node in
a real circuit is copied only a couple of times on average. For test se-
quentialization, we assign an integer time-frame tag (TF) to each PI of
balanced model. This tag identifies the time frame in which the PI sup-
plies the input value to the circuit. The TF is permanent and is assigned
when a weight is assigned to a PI for the first time during the balancing
procedure. We use weights assigned to PIs while balancing the first PO
as TFs, then use normalized weights for subsequent TF assignments as
follows: For a PI A with unassigned TF, TF(A) = w(A), while bal-
ancing the first PO, or TF(A) = W (A) + PIO�set while balancing
a subsequent PO, where PIO�set = TF(B)� w(B) for another PI B

Fig. 4. Assigning weights to primary outputs (POs).

Fig. 5. Conflicting weight assignment on FF2.

with known TF and w(B) for a subsequent PO. In general, TF equals
the weight assigned to a PI. However, in some special cases, we may
need to compute and use an offset value, obtained from a PI with the
assigned TF and weight with respect to the PO being balanced. In other
words, TF is equal to the weight of PI when we balance the first PO,
or the weight of PI plus the normalizing offset while balancing subse-
quent POs.
Let us generate the BAM for the circuit in Fig. 1. First, we assign the

weights to PO nodes,X and Y as shown in Fig. 4. The sequential depth
of a node is defined as themaximumnumber of sequential elements that
appear on any path from its fanins to any reachable PIs. For example,
FF1 has only one fanin and its sequential depth is 0. Gate 5 has only
one fanin and its fanin node is a FF. Thus, we assign 1, the sequential
depth of its fanin node, FF2, plus 1. Similarly, gate 4 has two fanins and
they have sequential depths of 0 and 1. Since we take the maximum of
0 and 1, we assign 1 as its sequential depth. The depths of all nodes in
the circuit can be assigned in linear time, O(n), where n is the number
of nodes in the circuit. The weight of a PO node is the sequential depth
of the PO so we assign w(X) = 2 and w(Y) = 2 (shown in boldface
in Fig. 4). This completes the first item of Algorithm 1.
We start generating the BAM using the PO weights. According to

the algorithm, we balance the circuit with respect to one PO at a time.
First, we balance the circuit with respect to POX . We start withX and
recursively assign weights to its fanin nodes. The weight of a node is
defined as its fanout node’s weight if it is not a FF, or fanout node’s
weight minus 1 if the node is a FF. Since gate 7 is the only fanin of
X and it is not a FF, we assign 2 as its weight, (w(7) = w(X) =
2). We then assign weights to nodes FF3, 5 and 6. As highlighted by
shading in Fig. 5, there is a conflict in weight assignment of FF2 while
balancing the circuit with respect to PO X . Weights on two fanout
nodes of FF2 are w(5) = 1 and w(6) = 2. Using Algorithm 1, we
first place them into two groups, corresponding to weights 1 and 2,
respectively, as f5g and f6g. Then, we duplicate the node FF2 and
split the fanout as illustrated in Fig. 6(a). Since no copy of FF2 has been
made before, DID(FF2) = 0 and we assign DID = 0 to the original
node and DID = 0 + w(6) � w(5) = 1 to the copied node. Using

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 6, JUNE 2005 951

Fig. 6. Duplicate and split (DAS) operations. (a) DAS operation on FF2.
(b) DAS operation on Gate 1, PI A, and PI B.

Fig. 7. Balancing with respect to PO Y.

Case 2 of Algorithm 1, the weight of node FF2DID=0 is w(5)�1 = 0
and weight of FF2DID=1 is w(6)� 1 = 1. We recursively assign the
weights to the fanin nodes of FF2 and its copy. Fig. 6(b) shows the result
of applying DAS to node 1 and PIsA andB to complete the balancing
with respect to X . As we complete the balancing with respect to the
first PO, we have assigned weights to all PIs as their TFs.

Next, to balance the circuit with respect to Y , we assign a weight of
1 to node 6; w(6) = w(FF4)�1 = 1. Similarly, weights are assigned
to all of its fanin nodes without any conflict as shown in Fig. 7. All PIs
have been assigned TFs from balancing previous PO and they are not
changed even though they have an offset of 1 with respect to Y .

Fig. 8. C-ATPG circuit for the circuit of Fig. 1.

The use of DAS provides separate signal paths in the combinational
model so that the copies of a signal may assume different values in dif-
ferent time frames. The recursive DAS transformation may create a cir-
cuit with new PIs having specific weights. When all nodes are balanced
with respect to both POs, X and Y , we replace all FFs with buffers to
obtain a C-ATPG circuit as shown in Fig. 8.
Regardless of the order in which POs are balanced, only one unique

balanced model will be generated. However, depending on the order
of the POs during balancing, the TF labels in the balanced model may
differ by a constant offset. This is due to the fact that TFs are normalized
with respect to the first PO. If the circuit of Fig. 1 was balanced with
respect to PO Y first, and then X , the resultant C-ATPG circuit will
have exactly the same structure; only the (TF) labels at PIs will differ
by a constant offset �1.

B. Test Generation

If the DAS transformation has created more than one copy of the
fault site in the BAM, then all copied lines and the original line are the
sites of simultaneously occurring faults in the BAMmodeled as a set of
multiple faults, otherwise a fault has a single fault mapping. If there is a
test for a mapped single fault in the BAM, then the corresponding fault
will be detected in the sequential circuit by the sequentialized test. Oth-
erwise, the fault is undetectable. Similarly, if there is a test for amapped
multiple fault in the BAM, then the corresponding fault is detectable in
the sequential circuit. Otherwise, the fault is undetectable. This follows
from the fact that Algorithm 1, which splits the fault site, preserves the
circuit output function. Therefore, the original circuit with a single fault
and the BAMwith the mapped multiple fault are functionally identical.
This implies that the single fault is equivalent to the mapped multiple
fault [4]. As a consequence, the fault masking that is sometimes pos-
sible among the components of a multiple fault [4] cannot occur when
the single fault in the original circuit is detectable.
Combinational tests generated for BAM must be sequentialized for

application to the original sequential circuit. Let dmax denote the max-
imum sequential depth of the original sequential circuit. As explained
earlier, the weights assigned to PIs in the BAM are called time frames
(TFs). TFs determine the time sequence of signal values at the PI. For
example, there are three copies of the PI B of the circuit of Fig. 1 with
TF = 0; 1, and 2 as shown in Fig. 8, and they represent the PI in time
frame 0, 1, and 2, respectively. Using the TF on each PI, we can convert
a combinational test vector of BAM to a sequential test. Each combina-
tional vector produces a sequence of vectors of length up to dmax + 1.
In general, the vector sequence length can be less than dmax+1, since
we only need to propagate the effect of the fault to an observable PO.
We transform each combinational test vector generated for BAM to a
vector sequence for the original circuit as follows:
Algorithm 2: Test-Transformation: Suppose that the BAMhas k+1

copies of a PI nodeAwith TFs of ft0; t1; . . . ; tkg; k � dmax, sorted in
ascending order, and the values on these k+1 copies in a combinational

952 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 6, JUNE 2005

Fig. 9. Test generation with C-ATPG and sequential fault simulation.

test derived for BAM are fv0; v1; . . . ; vkg. The value of the PIA in the
tith vector of the sequence is vi. If some value tj ; 0 � j � k does not
occur among the TFs of A, then the value of the previous time frame
is assigned to the PI A in the tj th vector. Leading vectors with all Xs
are deleted, but the total length of the vectors must be dmax + 1 to
guarantee the detection of the fault.

Fig. 9 shows a flowchart of our test generationmethod. First, we gen-
erate BAM. Using a C-ATPG, we generate a test for a single fault in
BAM. We then sequentialize the combinational test and fault-simulate
the original acyclic circuit using a sequential circuit fault simulator. All
detected faults are dropped from the undetected fault list. We repeat the
test generation, test sequentialization, and fault simulation steps until
there is nomore undetected single fault. If there are any undetectedmul-
tiple faults, we generate a test for each multiple fault using the multiple
fault model [22], [24]. Following our previous work [22], [24], Ichi-
hara and Inoue [15] proposed amethod of modelingmultiple faults by a
single fault so that a single-faultC-ATPGcanbeused for test generation.
Their model is similar to the one proposed earlier [22]. Both methods
used added logic. The method of [15] requires additional ground and
Vcc signals, whereas that of [22] adds extra PI(s) on which single faults
are inserted to model multiple faults. We have also proposed a more
elegant solution to this problem in [24], which is suitable for general
multiple fault modeling and is described in the following section.

IV. GENERALIZED MODEL FOR MULTIPLE FAULTS

Fig. 10(a) shows four lines with inputs a; b; c; and e, and the respec-
tive outputs A;B;C; and E. A multiple stuck-at fault here consists of
the first two lines stuck-at-1 and the others stuck-at-0. A multiple-fault
involving any set of lines and any arbitrary fault conditions can be mod-
eled in a similarmanner.Wewill use themultiple stuck-at fault example
of Fig. 10(a) for explaining the modeling method.

The model in Fig. 10(b) contains a single stuck-at fault. It consists
of two types of gates [24].

1) In-line gates:A two-input gate is inserted in each faulty line.
The controlling input signal state for this gate is the same as
the value at which the line is stuck. Thus, an AND (OR) gate is
inserted in a line that is stuck-at-0 (1).When the fault on a line
is not activated, the in-line gate forces the correct value on it.

Fig. 10. Model for a multiple stuck-at fault. (a) A multiple stuck-at fault.
(b) An equivalent single stuck-at fault. (c) An alternate implementation.

2) Fault gate: This is an n input AND gate that feeds all in-line
gates either directly if the in-line gate is OR type, or through
an inverter if it is AND type. The inputs to the fault gate are
derived directly from all s-a-1 lines and via inversions from
all s-a-0 lines. A single s-a-1 fault is modeled at the output of
this gate. Thus, whenever one ormore faults are activated, the
single fault in Fig. 10(b) is activated as �D. We use the sym-
bolsD and �D to represent the state of a line affected by fault.
D(�D) means that the fault-free (faulty) value is 1 (0) and
faulty (fault-free) value is 0 (1) [4]. As a result, in-line gates
inject �D on all lines on which s-a-1 faults are activated and
D on lines on which s-a-0 faults are activated. A nine-valued
algebra [28] may be required for proper test generation if the
circuit was sequential.

We validate the model using the example of Fig. 10. The model
would be correct if two conditions hold.

1) Condition 1: Circuit equivalence. Fault-free output func-
tions must be identical for the original circuit and the model.
For Fig. 10(b), we have:A = a+ab�c�e = a; B = b+ab�c�e =
b; C = c(ab�c�e) = c(�a+ �b+ c+ e) = c+ c(�a +�b+ e) =
c; E = e(ab�c�e) = e(�a+�b+ c+e) = e+e(�a+�b+ c) = e,
which are same for the fault-free circuit in Fig. 10(a).

2) Condition 2: Fault equivalence. For the single s-a-1 fault
in Fig. 10(b) to be equivalent to the multiple stuck-at fault
in Fig. 10(a), each of the four faulty functions should be
identical [4]. Faulty functions for multiple-fault (mf) in
Fig. 10(a) and those for single-fault (sf) in Fig. 10(b) are:
Amf = 1;Asf = a + 1 = 1; Bmf = 1;Bsf = b + 1 =
1; Cmf = 0;Csf = c:0 = 0; Emf = 0;Esf = e:0 = 0.
Thus, fault equivalence is established.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 6, JUNE 2005 953

Fig. 11. C-ATPG circuit with a multiple fault. (a) A combinational model with multiple faultsA andA . (b) A combinational model with the equivalent
single fault M s-a-1.

Although this validation is carried out for a specific example, it is
done without any assumptions. Hence, we regard the model to be valid
for a multiple fault in any combinational circuit and involving any ar-
bitrary set of single stuck-at faults.

A multiple stuck-at fault of multiplicity n can be modeled as a single
stuck-at fault by using at most n+3 gates. Let us assume that out of n
faults, there are (n�k) s-a-1 and k s-a-0 faults, wheren � k. Fig. 10(c)
shows an alternative implementation using only n+3 additional gates.
These includen two-input in-line gates, one (n�k+1)-input fault AND
gate, one k-input NOR gate, and one inverter. When all n-component
stuck-at faults are of the same type, as is the case in our application,
then only n + 1 gates will be required.

Fig. 11(a) shows the C-ATPG circuit for the circuit of Fig. 1. The
input A stuck-at-1 fault in Fig. 1 appears as a multiple-fault in the
C-ATPG circuit in Fig. 11(a). Using the proposed multiple fault mod-
eling method, we add three gates to model the multiple fault ATF = 0
s-a-1 andATF = 1 s-a-1 by a single stuck-at faultM s-a-1 as shown in
Fig. 11(b). As a result, a conventional C-ATPG can be used to generate
the test for the multiple fault.

Fig. 9 shows a test generation method using a sequential fault sim-
ulator. With the use of the multiple fault model, the sequential fault
simulator is not required and fault simulation is possible using the
combinational fault simulator. First, we generate BAM and add logic
to model all multiple faults as single faults. Using a combinational
ATPG, we generate a test for a mapped fault in BAM. We then sim-

ulate mapped faults for the generated combinational test applied to
the C-ATPG circuit using a combinational fault simulator. All detected
faults are dropped from the undetected fault list. We repeat the test gen-
eration, test sequentialization, and fault simulation steps until there is
no more undetected fault.

V. EXPERIMENTAL RESULTS

The proposed combinational model is applicable to all classes of
acyclic sequential circuits. If the given circuit is not acyclic, a partial-
scan procedure [1], [5] can be used to make it acyclic. In this section,
we consider those ISCAS ’89 benchmark circuits that are either acyclic
or have at least one FF remaining after making them acyclic via partial
scan.
We have implemented the algorithms presented in this paper in a C

language program. In our program, a weighted directed acyclic graph
(DAG) is generated for the circuit and then Algorithm 1 is applied.
The vertices of the DAG are PIs, gates, and POs. An arc between a
vertex-pair represents a signal flow path and the integer weight of the
arc equals the number of FFs on the path.
Table I shows statistics for applicable ISCAS ’89 benchmark cir-

cuits for our method. Three columns under “Flip-flops (FFs),” namely
“Total,” “Scan,” and “Scan (%),” give the total number of FFs, the
number of scan FFs used to make the circuit acyclic, and the percentage
of scan FFs, respectively. The column “Max. Depth” shows the max-

954 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 6, JUNE 2005

TABLE I
CIRCUIT STATISTICS

imum sequential depth of the acyclic circuits after removing the scan
FFs. The last three columns give the numbers of PIs, POs, and gates
after converting each scan FF to a PI-PO pair. On average, about 53%
of FFs are scanned to make the circuit acyclic.

The C-ATPG model has overhead associated with it as it increases
the size of the circuit for which the test generation should be performed.
Table II shows detailed statistics for generated models of ISCAS ’89
benchmark circuits. The second and third column of this table give
numbers of PIs and gates in the C-ATPG circuits. The numbers of
POs of C-ATPG circuits are identical to those of the corresponding
acyclic sequential circuits since we do not duplicate POs. The next two
columns show ratios of PIs and gates for the C-ATPG circuit over the
acyclic sequential circuit. The C-ATPG circuits have about 166%more
PIs (2.66 in ratio) and 59% more gates (1.59 in ratio) over the acyclic
sequential circuits. Another useful measure is comparing the number of
nodes, where nodes are PIs, gates, and POs. The next, three columns
under “No. of nodes (PIs+gates+POs)” give the number of nodes of
acyclic sequential circuits (Acy.), C-ATPG circuits (C-ATPG), and the
ratio of nodes (ratio). The C-ATPG circuit has about 97% (1.97 in ratio)
modeling overhead on an average compared to the acyclic sequential
circuit.

The next three columns under “No. of Faults” show the numbers of
total faults (Total), singly-mapped faults (Single) and multiply-mapped
faults (Mult.) in the C-ATPG model. The column under “Avg. Multi.”
shows the averagemultiplicity of multiply mapped faults in each circuit
and “% ofMF” shows the percent ofmultiply-mapped faults out of total
faults.We note that themultiplicity of these faults is highly correlated to
the maximum depth of the circuit. If the maximum depth of the circuit
is large, averagemultiplicity of the fault is also large. On average, about
25% of faults are multiply mapped.

The balanced ATPGmodel requires the single-to-multiple fault map-
ping because of the splitting of signals. These multiple faults corre-
spond to faults at the same site in the original circuit at different time-
frames. Only in cases where such multiple faults mask each other is
a multiple fault model required for test generation. When the C-TPG
program is not equipped with multiple fault detection capability, we
found that a single fault assumption still produces tests for most faults.
However, we can easily model the multiple faults with a simple modi-
fication as described in Section IV. In general, the test generation time
for such multiply-mapped faults is similar to that of single faults.

As shown in Table II, approximately 25% of faults are multiply-
mapped faults and we need to handle them correctly. If we were
to add the logic to model all the multiply-mapped faults as single

faults in the C-ATPG circuits, the average model overhead is 220%
and as high as 699% for one benchmark circuit [21]. In spite of the
added model overhead, the C-ATPG method can speed up the test
generation 6.3 times on an average over the conventional sequential
test generation approach for ISCAS ’89 benchmark circuits [21]. For
the experiment, the GENTEST [6] ATPG is used for sequential test
generation on sequential circuits and the TetraMax [30] is used for
combinational test generation on C-ATPG circuits on a 440-MHz
Sun Ultra 10 workstation with 512 MB of memory. Performance of
another sequential ATPG, HITEC [29], was found to be similar and
within �10% of GENTEST. Better improvement is possible and one
of the methods is described below.
The purpose of our C-ATPG method is to reduce test generation

time using a more efficient combinational ATPG. We employ a two-
pass strategy first using the C-ATPG circuit without multiply-mapped
faults and then using a modified C-ATPG circuit with selected mul-
tiply-mapped faults modeled as single faults. As shown in Fig. 9, we
first target singly-mapped faults. Then, we simulate all faults. Since
fault simulation is fairly efficient for both combinational and sequen-
tial circuits, we can either simulate the acyclic sequential circuit on
a sequential fault simulator or simulate the combinational ATPG cir-
cuit with added logic for all multiple faults using a combinational fault
simulator. After dropping all detected single and multiple faults, we
can model only those multiple faults that are not detected by the test
vectors of single faults. Even though this method has the disadvantage
of reading and preprocessing two different circuit descriptions, total
ATPG times were significantly faster than modeling all multiple faults
as single faults.
Table III shows the results of the above experiment using TetraMax

and GENTEST. The two columns under “TG stat.” show the fault
coverages (FC) and fault efficiencies (FE) for both combinational
and sequential methods. Next, the three columns under “Combina-
tional ATPG” show the combinational ATPG CPU times for C-ATPG
circuits. Column “SF ATPG (s)” shows the ATPG time in sec-
onds for unmodified C-ATPG circuits to target all singly-mapped
faults. During fault simulation, all detected multiply-mapped faults
are dropped from the fault list. Then, we modify the C-ATPG cir-
cuit so that all undetected multiply-mapped faults are modeled as
single faults. The column “MF ATPG (s)” shows the ATPG time
in seconds for targeting the remaining undetected multiple faults.
The next column under “Total ATPG (s)” shows the test generation
time in seconds obtained as the sum SF ATPG +MF ATPG . The
sequentialized vector length “(Seq. VL)” and the percentage of mul-
tiple faults “% of MF” that required single-fault modeling appear in
the next two columns. Then, follow two columns under “Sequential
ATPG” that give the total ATPG CPU time in seconds (Total ATPG
(s)) and sequential vector length (Seq. VL) of sequential ATPG.
No efforts were made to compact the vector lengths, which can be
reduced via various combinational and sequential compaction algo-
rithms and methods.
In all cases, the combinational ATPGmethod yielded equal or better

fault coverages (FC) and fault efficiencies (FE). The combinational
ATPG method gave a higher fault efficiency for s9234, as two aborted
faults during sequential ATPG were also detected. Higher fault cov-
erage (one more fault detected) was obtained for s38584 in less time
than the sequential ATPG.
The last column “Seq/Comb ATPG time ratio” shows the ratio of

total ATPG time of sequential ATPG over that of the combinational
ATPG method. This is the speed up of the new combinational ATPG
approach over the conventional sequential ATPG method, which, on
average, is 17.4 times. In comparing the results from two different
ATPG programs, we must make sure that we choose the right parame-
ters and results for comparison. Some ATPGs may spend more time in

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 6, JUNE 2005 955

TABLE II
STATISTICS FOR C-ATPG CIRCUITS OF PARTIAL-SCAN ISCAS’89 CIRCUITS

TABLE III
TEST GENERATION RESULTS

“learning” for faster test generation, while others may spend less time
in learning and may be penalized in test generation time. To be fair, we
report the total ATPG time, which includes time required for reading
netlists, design rule checking, learning, test generation, and fault simu-
lation. Although not reported here when several sequential ATPG pro-
grams, such as GENTEST [6], HITEC [29], and FASTEST [20], were
used on both acyclic sequential circuits and C-ATPG circuits, our new
combinational method produced equal or better coverages with an av-
erage 40% less CPU time [21] despite the increased PIs and gates in
the C-ATPG circuits.

VI. CONCLUSION

The new test generation method using a combinational model for a
general acyclic sequential circuit requires only a combinational ATPG
to achieve equal or better fault coverage and fault efficiency than a con-
ventional sequential ATPG. Our test generation method is based on
transforming the unbalanced acyclic sequential circuit to a combina-
tional model by moving all unbalanced fanouts to PIs and then adding
new PIs. Added PIs allow combinational model to create nonrepeated

vectors to detect a fault in the original acyclic sequential circuit. Be-
cause a combinational model is used to generate tests and the test gen-
eration time spent on detectable as well as untestable faults is signifi-
cantly lower, we can expect a 100% fault efficiency. However, a draw-
back of the the proposed method is that the increases in the number
of PIs and gates in the test generation model may increase the learning
time, which in ternmay negate the benefits of faster test generationwith
100% fault efficiency. Thus, the advantage should be weighed against
the increased size of the C-ATPG circuit that the test generation pro-
gram must deal with.
The multiple-fault model we present allows the C-ATPG circuit to

be used with any C-ATPG. Our motivation is to make the C-ATPG
method applicable using the available single-fault ATPG tools. Ex-
tremely efficient single-fault ATPG programs are commercially avail-
able [30] for which increases in the number of gates do not present any
difficulty. We believe this will lead to future research on novel design
and test methods. Several other applications of the multiple fault map-
ping technique, such as, diagnosis, circuit optimization, and detection
of bridging and multiple faults, have been discussed in our recent work
[21], [24].

956 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 6, JUNE 2005

ACKNOWLEDGMENT

The authors thank A. Balakrishnan for supplying the MFVS for sev-
eral ISCAS’89 circuits. The views expressed in this paper are those of
the authors and do not reflect the official policy of or position of the
U.S. Air Force, the Department of Defense, or the U.S. Government.

REFERENCES

[1] “Special issue on partial scan methods,” J. Electronic Testing: Theory
and Applic., vol. 7, no. 1/2, Aug./Oct. 1995.

[2] V. D. Agrawal, K.-T. Cheng, D. D. Johnson, and T. Lin, “Designing
circuits with partial scan,” IEEE Design Test Comput., vol. 6, no. 2, pp.
8–15, Apr. 1988.

[3] A. Balakrishnan and S. T. Chakradhar, “Sequential circuits with combi-
national test generation complexity,” in Proc. 9th Int. Conf. VLSI Design,
Jan. 1996, pp. 111–117.

[4] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing
for Digital, Memory & Mixed-Signal VLSI Circuits. Norwell, MA:
Kluwer, 2000.

[5] K.-T. Cheng and V. D. Agrawal, “A partial scan method for sequen-
tial circuits with feedback,” IEEE Trans. Comput., vol. 39, no. 4, pp.
544–548, Apr. 1990.

[6] W. T. Cheng and T. J. Chakraborty, “GENTEST: An automatic test gen-
eration system for sequential circuits,” Computer, vol. 22, no. 4, pp.
43–49, Apr. 1989.

[7] D. L. Dietmeyer, Logic Design of Digital Systems, 3rd ed. Boston,
MA: Allyn and Bacon, 1988.

[8] E. B. Eichelberger, E. Lindbloom, J. A. Waicukauski, and T. W.
Williams, Structured Logic Testing. Englewood Cliffs, NJ: Pren-
tice-Hall, 1991.

[9] H. Fujiwara, “A new class of sequential circuits with combinational
test generation complexity,” IEEE Trans. Comput., vol. 49, no. 9, pp.
895–905, Sep. 2000.

[10] , “A new definition and a new class of sequential circuits with com-
binational test generation complexity,” in Proc. Int. Conf. VLSI Design,
Jan. 2000, pp. 288–293.

[11] R. Gupta and M. A. Breuer, “Testability properties of acyclic structures
and applications to partial scan design,” in Proc. IEEE VLSI Test Symp.,
Apr. 1992, pp. 49–54.

[12] , “Partial scan design of register-transfer level circuits,” J. Electron.
Testing: Theory Applicat., vol. 7, no. 1/2, pp. 25–46, 1995.

[13] R. Gupta, R. Gupta, and M. A. Breuer, “The BALLAST methodology
for structured partial scan design,” IEEE Trans. Comput., vol. 39, no. 4,
pp. 538–548, Apr. 1990.

[14] D. A. Huffman, “Combinational circuits with feedback,” in Recent De-
velopments in Switching Theory, A. Mukhopadhyay, Ed. New York:
Academic, 1971.

[15] H. Ichihara and T. Inoue, “Test generation for acyclic sequential circuits
with single stuck-at fault combinational ATPG,” in Proc. Design, Au-
tomation, Test Eur. Conf. Exhib., Mar. 2003, pp. 1180–1181.

[16] M. Inoue, E. Gizdarski, and H. Fujiwara, “Theorems for separable pri-
mary input faults in internally balanced structures,” Inform. Sci., no. ,
pp. 1–5, Mar. 2000.

[17] , “Sequential circuits with combinational test generation com-
plexity under single-fault assumption,” J. Electron. Testing: Theory
Applicat., vol. 18, no. 1, pp. 55–62, 2002.

[18] T. Inoue, D. K. Das, T. Mihara, and H. Fujiwara, “Test generation for
acyclic sequential circuits with hold registers,” in Proc. Int. Conf. Com-
puter-Aided Design, Nov. 2000, pp. 550–556.

[19] T. Inoue, T. Hosokawa, T. Mihara, and H. Fujiwara, “An optimal time
expansion model based on combinational ATPG for RT level circuits,”
in Proc. 7th Asian Test Symp., Sep. 1998, pp. 190–197.

[20] T. P. Kelsey, K. K. Saluja, and S. Y. Lee, “An efficient algorithm for
sequential circuit test generation,” IEEE Trans. Comput., vol. 42, no.
11, pp. 1361–1371, Nov. 1993.

[21] Y. C. Kim, “Combinational test generation for sequential circuits,” Ph.D.
dissertation, Dept. Elect. Comput. Eng., Univ.Wisconsin,Madison, Dec.
2002.

[22] Y. C. Kim, V. D. Agrawal, and K. K. Saluja, “Combinational test gener-
ation for acyclic sequential circuits using a balanced ATPG model,” in
Proc. 14th Int. Conf. VLSI Design, Jan. 2001, pp. 143–148.

[23] , “Combinational test generation for various classes of acyclic se-
quential circuits,” in Proc. Int. Test Conf., Oct. 2001, pp. 1078–1087.

[24] , “Multiple faults: Modeling, simulation, and test,” in Proc. 15th
Int. Conf. VLSI Design, Jan. 2002, pp. 592–597.

[25] A. Kunzmann and H. J. Wunderlich, “An analytical approach to the par-
tial scan problem,” J. Electron. Testing: Theory Applicat., vol. 1, no. 2,
pp. 163–174, 1990.

[26] A. Miczo, Digital Logic Testing and Simulation. New York: Harper &
Row, 1990.

[27] H. B. Min and W. A. Rog, “A test methodology for finite state machines
using partial scan design,” J. Electron. Testing: Theory Applicat., vol. 3,
no. 2, pp. 127–138, 1992.

[28] P. Muth, “A nine-valued circuit model for test generation,” IEEE Trans.
Comput., vol. C-25, no. 6, pp. 630–636, Jun. 1976.

[29] T. Niermann and J. H. Patel, “HITEC: A test generation package for
sequential circuits,” in Proc. Eur. Test Conf., Feb. 1991, pp. 214–218.

[30] Synopsys, Inc., TetraMAXATPGUser Guide, Nov. 2000. v2000.11 edi-
tion, Doc. Order No. 37043-000 TBD.

[31] T. Takasaki, T. Inoue, and H. Fujiwara, “Partial scan design methods
based on internally balanced structure,” in Proc. Asia South Pacific De-
sign Automation Conf., Feb. 1998, pp. 211–216.

Dynamically Partitioned Test Scheduling With Adaptive
TAM Configuration for Power-Constrained SoC Testing

Dan Zhao and Shambhu Upadhyaya

Abstract—Given a system-on-chip with a set of cores and a set of test re-
sources, and the constraints on the total power consumption during test
and the maximum width on the top-level test access mechanism (TAM),
it is required to optimize overall testing time of the system. To solve this
problem, we first generate a power-constrained test compatibility graph
and then construct a set of power-constrained concurrent test sets (PCTSs)
to facilitate concurrent testing. We then handle the constrained scheduling
by adaptively assigning the cores in parallel to the TAMs with variable
width and efficiently utilizing the TAM bandwidth such that the tests in
the same PCTS have their lengths close to each other. We concurrently
schedule the test sets by dynamically partitioning and allocating the tests,
and consequently constructing and updating a set of dynamically parti-
tioned PCTSs. This reduces the test cost in terms of overall test time. Sim-
ulation study shows the productivity gained by using our integrated sched-
uling approach.

Index Terms—Adaptive test access mechanism (TAM) configuration,
dynamic test partitioning, power constraint, system-on-chip (SoC) test,
test compatibility.

I. INTRODUCTION

Systems-on-chip (SoCs) are designed by integrating intellectual
property (IP) cores onto a single chip. As cores are deeply embedded
in the SoC, direct access to the cores is usually impossible. Thus,
an efficient test access architecture is needed to access the cores,
which includes three major components, test source and sink, test

Manuscript received December 12, 2003; revised March 22, 2004 and
June 21, 2004. This work was supported in part by a NYSTAR grant from
the Microelectronics Design Center, University of Rochester. A preliminary
version of this paper was presented at the IEEE VLSI Test Symposium, Napa
Valley, CA, April 2003. This paper was recommended by Associate Editor
K. Chakrabarty.

D. Zhao is with the Center for Advanced Computer Studies, Uni-
versity of Louisiana, Lafayette, LA 70504-4330 USA (e-mail: dzhao@
cacs.louisiana.edu).

S. Upadhyaya is with the Department of Computer Science and Engineering,
State University of New York, Buffalo, NY 14260-2000 USA.

Digital Object Identifier 10.1109/TCAD.2005.847893

0278-0070/$20.00 © 2005 IEEE

