7 Universit
Qf Gl asgoxz

Norman, G. Parker, P., Kwiatkowska, M. and Shukla, S. (2005) Evaluating
the reliability of NAND multiplexing with PRISM. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 24 (10). 1629 -
1637 . ISSN 0278-0070.

http://eprints.gla.ac.uk/40149/

Deposited on: 6 October 2010

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/40149/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

be obtained directly. The proposed approach is applicable to different
process technologies. Another important advantage is that the mul-
tiplexer delay can be improved by suitably selecting the multiplexer
architecture and the switch size in each stage simultaneously.

ACKNOWLEDGMENT

The authors would like to thank Prof. T. Westerlund of Abo
Akademi University for his constructive suggestions about solving the
MINLP problems. The anonymous referees are also appreciated for
their valuable comments.

REFERENCES

[1] M.-B. Lin, “On the design of fast large fan-in CMOS multiplexers,” I[EEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 19, no. 8, pp. 963—
967, Aug. 2000.

[2] M. Alioto and G. Palumbo, “Optimized design of high fan-in multiplexers
using switches with driving capability,” in Proc. 8th IEEE Int. Conf. Elec-
tronics, Circuits and Systems (ICECS), St. Julians, Malta, 2001, pp. 737-
740.

[3] M. Alioto, G. Di Cataldo, and G. Palumbo, “Optimized design of high
fan-in multiplexers using tri-state buffers,” IEEE Trans. Circuits Syst. I,
Fundam. Theory Appl., vol. 49, no. 10, pp. 1500—1505, Oct. 2002.

[4] M. Ketkar, K. Kasamsetty, and S. Sapatnekar, “Convex delay models for
transistor sizing,” in Proc. 37th Design Automation Conf. (DAC), Los
Angeles, CA, 2000, pp. 655-660.

[5] K. Kasamsetty, M. Ketkar, and S. Sapatnekar, “A new class of convex
functions for delay modeling and its application to the transistor sizing
problem,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 19,
pp. 779-788, Jul. 2000.

[6] R. T. Howe and C. G. Sodini, Microelectronics: An Integrated Approach.
Englewood Cliffs, NJ: Prentice-Hall, 1997.

[7] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New
York: Wiley, 1997.
[8] J. Rabaey, Digital Integrated Circuits (A Design Perspective). Engle-

wood Cliffs, NJ: Prentice-Hall, 1996.
[9] S.Kangand Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and

Design. New York: McGraw-Hill, 1996.

[10] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A System
Perspective, 2nd ed. Reading, MA: Addison-Wesley, 1993.

[11] K. Holmstrom and A. Goran, User’s Guide for Tomlab v4.0.5. San
Diego, CA: Tomlab Optimization Inc., Feb. 28, 2003.

[12] K. Holmstrom, A. Goran, and M. Edvall, TOMLAB/MINOS User’s Guide.
San Diego, CA: Tomlab Optimization Inc., May 4, 2004.

[13] B. A. Murtagh and M. A. Saunders, MINOS 5.5 User’s Guide, Dept. Op-
erations Res., Stanford Univ., Stanford, CA, Rep. SOL 83-20R (Revised
Jul. 1998)

[14] A. Brooke, D. Kendrick, A. Meeraus, R. Raman, and R. E. Rosenthal,
GAMS: A User’s Guide. Washington, DC: GAMS Develop. Corp., 1998.

[15] GAMS/SBB Solver Manual, GAMS Develop. Corp., Washington, DC,
Apr. 30, 2002.

[16] GAMS/BARON Solver Manual, GAMS Develop. Corp., Washington, DC,
Nov. 25, 2003.

[17] N. V. Sahinidis, BARON: Branch and Reduce Optimization Navigator,
User’s Manual. Urbana—Champaign, IL: Dept. Chem. Eng., Univ. Illi-
nois Urbana—Champaign, 2000.

1629

Evaluating the Reliability of NAND
Multiplexing With PRISM

Gethin Norman, David Parker, Marta Kwiatkowska,
and Sandeep Shukla

Abstract—Probabilistic-model checking is a formal verification tech-
nique for analyzing the reliability and performance of systems exhibiting
stochastic behavior. In this paper, we demonstrate the applicability of this
approach and, in particular, the probabilistic-model-checking tool PRISM
to the evaluation of reliability and redundancy of defect-tolerant systems
in the field of computer-aided design. We illustrate the technique with an
example due to von Neumann, namely NAND multiplexing. We show how,
having constructed a model of a defect-tolerant system incorporating prob-
abilistic assumptions about its defects, it is straightforward to compute
a range of reliability measures and investigate how they are affected by
slight variations in the behavior of the system. This allows a designer to
evaluate, for example, the tradeoff between redundancy and reliability in
the design. We also highlight errors in analytically computed reliability
bounds, recently published for the same case study.

Index Terms—Defect-tolerant architectures, multiplexing, probabilistic-
model checking, reliability.

I. INTRODUCTION

Probabilistic-model checking is a formal verification technique,
which has already been successfully used to analyze the performance
and reliability of a wide range of real-life systems, including dynamic
power-management schemes [1], embedded systems [2], computer
networks, queueing systems, and manufacturing processes. It has also
been used to study “quality of service” properties of real-time prob-
abilistic communication protocols, such as IEEE 1394 FireWire [3],
IEEE 802.3 CSMA/CD [4], Zeroconf [5], IEEE 802.11 wireless local
area networks [6], and Bluetooth [7], and to verify both probabilistic
security protocols (e.g., [8]) and randomized distributed algorithms
(e.g., [9D).

In this paper we present results that demonstrate the advan-
tages of using probabilistic-model checking and, in particular, the
probabilistic-model-checking tool PRISM [10], to model and analyze
defect-tolerant systems. We have chosen to investigate the reliability
of NAND multiplexing [11], but this approach can be applied to other
defect-tolerant systems such as R-fold Modular Redundancy [11]
and Reconfiguration [12], [13]. This work differs from the standard
approaches in the literature to analyzing multiplexing in that we
evaluate the reliability of specific cases as opposed to considering the
general framework, and hence are not necessarily restricted by the
analytical bounds of reliability of, for example, von Neumann [11] and
Pippenger [14].

Our results demonstrate that, by applying probabilistic-model
checking, it is straightforward to investigate the effect on reliability
of slight variations in the behavior of the system’s components, for
example the change in reliability as the probability of gate failure

Manuscript received February 2, 2004; revised July 15, 2004. This work was
supported by NSF grants CCR-0098335 and CCR-0340740, EPSRC grants
GR/N22960 and GR/S11107, FORWARD, SRC, and DARPA/ITO supported
PADS project under the PAC/C program. This paper was recommended by
Associate Editor J. H. Kukula.

G. Norman, D. Parker, and M. Kwiatkowska are with the School of Computer
Science, University of Birmingham, Birmingham, B15 2TT, U.K.

S. Shukla is with the Bradley School of Electrical and Computer Engineer-
ing, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
USA.

Digital Object Identifier 10.1109/TCAD.2005.852033

0278-0070/$20.00 © 2005 IEEE

1630

varies. In addition, the construction of a formal specification of a
NAND multiplexing system, a step required in the probabilistic-model-
checking approach, enabled us to find a flaw in the analytical approach
of Han and Jonker [15]. We must note here that the flaw in the
analysis in [15] does not invalidate their results on the suitability of
NAND multiplexing, but does change the characteristic curves pre-
sented slightly. However, we use the error to illustrate that analytical
modeling for such a complex combinatorial system with probabilistic
quantification is error prone, and hence automating the construction of
the probabilistic model and its analysis is desirable to obtain accurate
results. Furthermore, using PRISM, we show that this flaw can lead to
both an under- and overapproximation of reliability.

In the next section, we introduce the basic concepts of NAND
multiplexing, probabilistic-model checking and the PRISM tool. In
Section III, we describe how we use the PRISM framework to model
NAND multiplexing. Section IV reports on the results obtained for this
case study and Section V concludes the paper.

II. BACKGROUND

A. NAND Multiplexing

In 1952, von Neumann studied the problem of performing reliable
computations with unreliable devices (due to the unreliable valve-
based computers in use at that time), introducing a redundancy tech-
nique called multiplexing [11]. Today, such methods are again gaining
significance, for example in the field of nanotechnology, where manu-
facturing devices at an extremely small scale suffers from unavoidable
problems of defects in their components.

The basic technique of multiplexing is to replace a single processing
unit by a multiplexing unit, which has N copies of every input and
output of the original unit. The multiplexing unit, using multiple
instances of the original unit, processes the IV inputs in parallel, giving
N outputs, which represent the output of the original processing unit.
If the inputs and devices are reliable, then each element of the output
set should be identical and equal to the output of the corresponding
processing unit. However, in the case where there are errors, either in
the inputs or in the processing devices, the outputs will not all take the
same value. Instead, after defining some critical level A € (0, 0.5), the
output of the multiplexing unit is considered to be stimulated (taking
logical value true or “17”) if at least (1 — A) - N of the outputs are
stimulated, and is said to be nonstimulated if no more than A - N lines
are stimulated. In cases where the number of stimulated outputs does
not meet either of these criteria, i.e., the number of stimulated outputs
is in the interval (A - N, (1 — A) - N), the output is undecided, and a
malfunction occurs.

The design of a multiplexing unit consists of two stages: the
executive stage and the restorative stage. The executive stage carries
out the basic function of the unit to be replaced, while the restorative
stage is used to reduce the degradation in the executive stage caused
by errors in the inputs and faulty devices.

The specific instance of NAND multiplexing, i.e., when the original
processing unit is a NAND gate, is illustrated in Fig. 1. In this case,
the executive stage consists of N copies of a NAND gate and a unit U,
which perform a random permutation of the input signals, that is, each
signal of the first input bundle (X)) is randomly paired with a signal
from the second input bundle (Y') to form an input pair for one of
the copies of the NAND gate. Also shown in Fig. 1 is the restorative
stage, which is derived using the same technique as the executive
stage, duplicating the outputs of the executive stage to use as its inputs.
Note that applying this approach only once will invert the result, and
therefore two steps are required. To give a more effective restoration
mechanism the restorative stage can be iterated [11]. A more detailed
description of NAND multiplexing can be found in [15].

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

A<D D+—
v r—THud rud T2
D D D —
executive stage - restoratigstage
Fig. 1. NAND multiplexing unit.

In [11], von Neumann concluded that, for extremely large N, the
number of stimulated outputs of the executive stage is a stochastic
variable, approximately normally distributed, and he gave an upper
bound of 0.0107 for the probability of gate failure that can be tolerated
given the value of A equal to 0.07, which is most favorable to
restoration. Recently, it was shown that, if each NAND gate fails
independently, the tolerable threshold probability of each gate will
be 0.08856 [16]. However, this particular result is independent of
the NAND multiplexing construction, applying to general Boolean
functions. It is shown in [15] that, for smaller IV, the number of outputs
of the executive stage is theoretically a binomial distribution. The
authors then go on to demonstrate how additional restorative stages
improve fault tolerance and that the error distribution of the system
evolves as a stochastic homogeneous Markov chain.

B. Probabilistic-Model Checking and PRISM

Probabilistic-model checking is a formal verification technique for
analyzing reliability and performance measures of systems exhibiting
randomized behavior. For example, using this approach, one can estab-
lish properties such as “shutdown eventually occurs with probability
at most 0.01,” and “with probability 0.95 or greater, the process will
successfully complete within 200 steps and without requiring any
repairs.”

The process of probabilistic-model checking involves construction
of a formal model of the real-life system that is to be analyzed. This
is usually a labeled state transition system enriched with probabilistic
information, which represents all the possible configurations that the
system can be in and all the transitions that can occur between them.
Three types of probabilistic models commonly used are discrete-time
Markov chains (DTMCs), continuous-time Markov chains (CTMCs),
and Markov decision processes (MDPs). The models used in this
paper are DTMCs, which comprise a set of states S and a transition
probability matrix P : S x S — [0, 1] such that), _ P(s,s') =1
for all s € S. Each element P(s,s’) of the transition probability
matrix gives the probability of making a transition from state s to
state s’.

Properties of probabilistic models to be analyzed are specified
formally. Traditionally, in the model-checking paradigm, this is done
using temporal logic, which provides a concise and unambiguous
specification. For DTMCs and MDPs, an appropriate logic is prob-
abilistic computation tree logic (PCTL) [17], and for CTMCs, the
logic continuous stochastic logic (CSL) [18], [19] is often used. Since
we focus on DTMCs, we write properties in PCTL. Some example
specifications in this logic are as follows.

1) P<0.01[0 shutdown]—"“shutdown eventually occurs with prob-
ability at most 0.01.”

2) Pso.95[-repair U0 complete]—“with probability 0.95 or
greater, the process will successfully complete within 200 steps
and without requiring any repairs.”

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

The labels such as shutdown and repair are atomic propositions,
which are assigned to states of the model at the time of its construction.
The use of probability bounds (< 0.01,> 0.95) ensures that the
properties above constitute questions that can be verified either to
be true or false, as is traditionally the case in formal verification. In
practice, though, it is often more useful to request the actual values by
writing for example

1) P—-[0 shutdown]—“what is the probability that the system
shuts down?”

A probabilistic-model checker applies algorithmic techniques to con-
struct and analyze a probabilistic model and determine whether the
given specifications are satisfied. We use the probabilistic-model
checker PRISM [10], [20] developed at the University of Birming-
ham. This provides support for the three types of models (DTMCs,
MDPs, and CTMCs) and the two logics (PCTL and CSL) described
above. Probabilistic models are specified in the high-level PRISM
modeling language, a variant of Reactive Modules [21], which is based
on guarded commands. More details on this language are given in
Section ITI-A.

For the specific scenario of verifying DTMCs against PCTL spec-
ifications, as is the case in this paper, probabilistic-model checking
constitutes a combination of graph-based analysis and solving linear
equation systems. In PRISM, the latter is performed using iterative
numerical solution techniques, for example Jacobi and Gauss-Seidel
(see, e.g., [22]). Furthermore, for both types of analyses, PRISM
incorporates sophisticated symbolic implementation techniques, using
binary decision diagrams and related data structures [23], [24]. The
principal advantage of these methods is that that they allow efficient
compact storage and efficient manipulation of extremely large prob-
abilistic models, by exploiting high-level regularity from the PRISM
language description.

For a detailed overview of probabilistic-model checking, see for
example [25]. For more information about the PRISM tool and the
range of case studies to which it has been applied, see the tool web-
site [20].

III. NAND MULTIPLEXING AND PRISM

In this section, we explain how probabilistic-model checking, and in
particular PRISM, can be used to model and analyze the performance
of von Neumann’s NAND multiplexing system. We have chosen the
NAND multiplexing system as it is a typical example of a fault-tolerant
architecture from the literature. Note, however, that it is straightfor-
ward to construct models where the NAND gates have different faults
(in our analysis we restricted our attention to von Neumann faults,
where the output of a gate is inverted with a given probability) or to
consider different architectures for reliable computing with unreliable
devices, for example R-fold modular redundancy, Cascaded Triple
Modular redundancy, and Reconfiguration [26].

We obtain results that not only uncover a bug in the previous
computations of [15], based on analytical methods, but also reveal
an interesting trend as the probability of gate failure varies. More
precisely, our results show that, for large probabilities of gate failure,
increasing the number of restorative stages decreases reliability, while,
for small probabilities of gate failure, it has the opposite effect.
This demonstrates that, with our framework, we cannot only quickly
evaluate these measures, but can also easily find counterintuitive
phenomena.

It is important to note that the results presented here differ from
the theoretical results, which give a lower bound of the failure rates
required for correctness (for example [11], [14]), since our results
are with respect to a multiplexing system with a fixed configuration.

1631

The advantage of this approach is that we obtain exact values for the
configuration under study. The disadvantage is that the results do not
mechanically carry over to the performance of an architecture with a
different configuration. However, one can simply construct a PRISM
model for the different configuration and then rerun experiments on
this model. For example, as shown in Section IV, we have consid-
ered configurations with varying gate-failure probabilities and varying
numbers of restorative stages.

A. Model Construction

In this section we explain our PRISM model. We first note that it was
during this phase that we noticed the error made by [15] in modeling
the random permutation made by the unit U. In the analysis technique
of [15], the random permutation made by U is instead modeled by a
random choice with replacement. More precisely, in the approach of
[15], if in the previous stage there are k stimulated outputs, then after
passing through the unit U the probability that any one of the resulting
inputs of the current stage is stimulated is k/N.

To illustrate the difference that this modeling error can cause to the
behavior of the system, consider the case when k outputs from the
previous stage are stimulated for some 0 < £ < N. In the approach
used by [15], the probability, in the current stage after passing through
the unit U, of all inputs being stimulated is (k/N)®, and of no inputs
being stimulated is ((N — k)/N)¥. On the other hand, since there are
k stimulated outputs to begin with, if we suppose that the unit U does
in fact perform a random permutation, then there will be k of the inputs
stimulated, and hence the probability of either all or none of the inputs
are stimulated is 0.

As our analysis will demonstrate, these two approaches to modeling
the unit U can lead to different conclusions about the reliability of the
system under study. We will also illustrate however, that, as the bundle
size increases, the results obtained by these modeling approaches
converge. In fact, if the bundle sizes were infinite, then the models
of U would be equivalent.

Note that, unlike in the case when the unit U is modeled as a
random choice with replacement, when (correctly) modeling U as
a random permutation the inputs of each of the NAND gates in a
stage are dependent on one another; for example, if one NAND has
a stimulated input, then the probability of another having the same
input stimulated decreases. Therefore, in this scenario, it is not as
straightforward to calculate the reliability of a NAND multiplexing unit
by means of analytical techniques as, for example, in [15]. However, as
far as a probabilistic-model checker is concerned, there is no difference
between the two approaches; the only requirement is that the user
correctly specifies the behavior of the unit U.

We now explain the main steps in the construction of our PRISM
model of a NAND multiplexing system. The basic components of
PRISM’s input language are modules and variables. A system is de-
scribed as the parallel composition of a number of interacting modules.
Each module contains a number of variables that represent its state. Its
behavior is given by a set of guarded commands of the form

[] (guard) — (command);

The guard is a predicate over the variables of the system and the
command describes a transition that the module can make if the guard
is true (using primed variables to denote the next values of variables).
If a transition is probabilistic, then the command is specified as

(update) + --- + (prob) :

(prob) : (update)

See Fig. 2 for examples of this notation.

1632

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

const int N=20; // number of inputs in each bundle

const int M=3; // number of restorative stages equals (M —1)/2
const double p.,..=0.01; // probability gate has von Neumann error

const double p;,,=0.9; // probability an input is stimulated

module multiplex_system

w @ [1..M] init 1; // current stage (initially 1 - start with first stage)
¢ : [0..N] init N; // counter: number of gates to perform in current stage (initially N - no gates performed yet)

V)

: [0..3] init 0; // local state (initially 0 - ready to choose inputs to first stage)

ng : [0..N]; // number of stimulated X inputs (value not instantiated initially)

ny @ [0..N]; // number of stimulated Y inputs (value not instantiated initially)

z : [0..1]; // value of current X input (value not instantiated initially)

y : [0..1]; // value of current Y input (value not instantiated initially)

z : [0..N] init O; // number of stimulated outputs (initially 0 - no ouputs determined)

// move to next NAND gate of current stage
[(s=0) A (c>0) — (s'=1);

/] move onto next stage (copy output to inputs, update the stage and reset other variables)
[(s=0) A (c=0) A (u<M) — (s'=1) A (n,'=2) A (ny/=2) A (2'=0) A (v'=u+1) A ('=N);

// initial choice of x and y: random choice

[(s=1) A (u=1) = pin + (2 =1) A ('=2) + (1—pin) : (

=0) A (5'=2);

’
[(s=2) A(u=1) — pin : (y'=1)A(s'=3) + (1=pin) : (y'=0) A (s'=3);
// select x performed by U: random permutation (randomly pick inputs from those available)
[(s=1) A(u>1) — ny/c:(z'=1) A(s'=2) A (ne'=n.—1) // select stimulated input
+(c—ny)/c: (2'=0) A (s'=2); // select non-stimulated input
// select y performed by U: random permutation (randomly pick inputs from those available)
[(s=2) A(u>1) — n,/c:(y'=1) A(s'=3) A (n,/=n,—1) // select stimulated input
+(c—ny)/c: (y'=0) A (s'=3); // select non-stimulated input

/] NAND gate (update number of simulated outputs)

[(s=3) = ({=pew): (2'=z4+Ux Ay)) A (s'=0) A ('=c—1) // gate behaves correct
+ Pere 1 (/=24 (xAY)) A (s'=0) A ('=c—1); // gate suffers von Neumann error

endmodule

Fig. 2. PRISM description of a NAND multiplexing unit.

The first approach was to directly model the system as given in
Fig. 1: for each stage construct a PRISM module for each of the N
NAND gates in the stage, and then combine these modules through
synchronous parallel composition. However, this leads to the well-
known state space explosion problem, where the size of the proba-
bilistic model constructed grows to an unfeasible level. For example,
in the case when the input—output (I/O) bundle size equals 20, model-
ing the executive stage of the NAND multiplexing unit required more
than 104 states.

An important observation, which allowed us to overcome this prob-
lem, was that the actual value of each input and output is not important:
instead one needs only to store the total number of stimulated (and
nonstimulated) inputs and outputs. This observation is a result of the
following two facts:

1) Since each unit U performs a random permutation, the output
of a unit U depends only on the number of stimulated (and
nonstimulated) inputs in the bundle that U takes as input, and
not on the actual values of each input in the bundle.

2) Reliability concerns only the number of stimulated (and non-
stimulated) outputs in the final bundle.

Taking this approach, we replace, in each stage, the set of N NAND
gates working in parallel with N NAND gates working in sequence
and keep track of the number of stimulated outputs generated by these
gates. Furthermore, one can apply the same methodology to the stages
of the system, i.e., reuse the same module for each stage after recording
the number of stimulated outputs from the previous stage. This allows

us to fold space into time, or in other words reuse the same gate/stage
over time, rather than modeling explicit redundancy over space. Note
that taking this approach does not influence the performance of the
system since each NAND gate works independently, and the probability
of each NAND gate failing is also independent.

Following these observations, the PRISM description of the NAND
multiplexing system, for the case when the bundle size equals 20, is
given in Fig. 2. In this model we have assumed that the inputs X
and Y are identically distributed (each having probability 0.9 of being
stimulated), and the NAND gates suffer from a von Neumann fault
(inverted output) with probability 0.01. We use the variable u to record
the current stage and the variable ¢ to keep track of the number of
gates that still need to be performed in the current stage. The variable
s represents the current step in the process of completing a stage. The
actions performed in each step are detailed in the comments (prefixed
“/”) included in Fig. 2. For example, consider the second guarded
command in the model description. This command corresponds to the
case where all the gates have been completed in the current stage (¢ =
0) but there remain stages to perform (u < M). In this command,
we proceed to the next stage (v’ = u + 1), reset the number of gates
that need to be performed to N (¢’ = N) and move onto the next
step (i.e., the variable s changes from O to 1). The remaining updates
correspond to the fact that the outputs of the “old” stage become the
inputs of the “new” stage and the outputs of the “new” stage are as yet
uncomputed.

This model is a DTMC and has 78 311 states. In the case when the
bundle size is 40 (the constant IV is set equal to 40), the number of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

1633

0.5 = 0.5 0.5
—— gate failure rate 0.1 —e— gate failure rate 0.1 —e— gate failure rate 0.1
—— gate fa?lure rate 0.04 —— gate failure rate 0.04 —— gate failure rate 0.04
0.4 —— gate failure rate 0.02 0.4 —a— gate failure rate 0.02 04 —— gate failure rate 0.02
- —e— gate failure rate 0.0001 . —— gate failure rate 0.0001 o —— gate failure rate 0.0001
=03 = =
5 = 0.3 = 0.3
© © ©
802 £ 801
gl & 0.2 & 0.2
0.1 0.1 0.1
0 L G Be00005500000000000000000000080060000 Y
0 5 10 15 20 0 10 20 30 40 0 40 60
Number of Stimulated Outputs Number of Stimulated Outputs Number of Stimulated Outputs
(a) (b) ©
Fig. 3. Output distribution of NAND multiplexing unit with one restorative stage under different gate failure rates and I/O bundle sizes. (a) I/O bundle size

equals 20; (b) I/O bundle size equals 40; (c) I/O bundle size equals 60.

states equals 1004821, and when the bundle size is 60 the model
has 4717531 states. Note that, in the executive stage, a random
permutation of the inputs cannot be performed as we only know the
probability of each individual input being stimulated. However, for a
given distribution over the initial inputs, one can easily modify the
PRISM model so that the system performs a random permutation of the
initial inputs. To change the number of restorative stages, bundle size,
input probabilities, or probability of the NAND gates failing requires
only modification of the constants given at the start of the description.
Furthermore, since PRISM can also represent nondeterministic behav-
ior, one can set upper and lower bounds on the probability of gate
failure and then obtain (best and worst case) reliability characteristics
for the system under these bounds. Lastly we note that, to model
the units U performing a random permutation with replacement (as
in [15]), the only modifications that need to be made are to the
probabilities with which the variables x and y are set (when the local
state s equals 1 and 2, respectively).

IV. EXPERIMENTAL RESULTS

In this section we study the performance of NAND multiplexing
systems when the I/O bundles are of size 20, 40, and 60. In all the
experiments, we assume that the inputs X and Y are identical (this is
often true in circuits containing similar devices) and that initially 90%
of the inputs are stimulated (correct). We suppose that the gate failure
in each NAND is a von Neumann fault, i.e., when a gate fails, the value
of its output is inverted.

The properties we consider are the probability of there being k
stimulated outputs (which, in terms of the PRISM model presented
in Fig. 2, corresponds to verifying the PCTL formula P_-[{ (z =
kANu=MAc= NJ]),fork=0,...,N where N is the system’s [/O
bundle size. By performing this analysis we have in fact computed the
output distribution of the system, and hence any measure of reliability
can be calculated from these results. Note that PRISM can be used
directly for computing these measures of reliability, for example, “the
probability of errors being less than K %,” and “the expected number
of incorrect outputs of the system.”

All experiments were run on a PC running Linux, with a 1400-MHz
processor and 512 MB of RAM, using PRISM’s hybrid engine [23]. In
the case where the bundle size equals 20 (number of states: 78311
states), PRISM requires 1.37 s to construct the model and 3.29 s
to calculate the probability of there being zero stimulated outputs.
When the bundle size is 40 and 60 (number of states: 1004 821 and
4717 531, respectively), model construction requires 5.42 and 11.7 s,
while calculating the probability of there being zero stimulated outputs
requires 28.4 and 48.7 s, respectively. Further details relating to the

construction and verification statistics are available from the PRISM
web page [20].

Our analysis of the reliability of the NAND multiplexing system
using probabilistic-model checking concentrates on the effects of the
failure probabilities of the NAND gates and of the number of restorative
stages. Recall that, to change either of these in the PRISM language
description of the system (see Fig. 2), one needs only to change the
parameter p.,, or the parameter M . The results we present show:

1) the shape of the output distribution as the probability of gate
failure varies (Fig. 3);

2) for different probabilities of gate failure, the resulting change
in shape of the output distribution when additional restorative
stages are added (Fig. 4);

3) an analysis of reliability, in terms of the probability that at most
10% of the outputs are incorrect, as the probability of gate failure
varies (Fig. 5);

4) how, in the case when the probability of gate failure is very
small, the reliability can be improved by increasing the number
of restorative stages (Fig. 5);

5) by comparing the probability that at most 10% of the outputs are
incorrect and the expected percentage of incorrect outputs for
different numbers of restorative stages, the maximum probability
of gate failure allowed for the system to function reliably (Figs. 6
and 7).

Where appropriate, we also compare these results with those obtained
when the random permutation performed by the unit U is replaced
by a random choice with replacement as used by [15]. The results
corresponding to this case are referenced “UR.”

A. Basic System Reliability

Initially, we consider a basic version of the NAND multiplexing
system, as shown in Fig. 1 (i.e., with a single restorative stage), where
the I/0 bundle size equals 20, 40, and 60. We first investigate the effect
that changing the failure probabilities of the NAND gates has on the
reliability of the system. In Fig. 3 we present the output distribution
of the system in the cases when the probability of gate failure equals
0.1, 0.04, 0.02, and 0.0001. Note that the system is supposed to model
a correctly functioning NAND gate and we assume that the inputs are
correct when stimulated. Hence, the less outputs that are stimulated,
the greater the reliability of the system.

As can be seen in Fig. 3, when the probability of gate failure is
0.0001 (one sees a similar pattern whenever the probability of gate
failure is very small or even 0) there is a sharp oscillation in the
distribution, with the probabilities for even numbers of stimulated out-
puts being higher. This phenomenon is due to the random permutation

1634

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

0.5 -
—e— gate failure rate 0.1
—=— gate failure rate 0.04
0.4 —a— gate failure rate 0.02
o —o— gate failure rate 0.0001
=03
Keo)
(3]
Ke)
20.2
o
0.1
G0 5 10 15 20
Number of Stimulated Outputs
(a)

0.5 -
—— gate failure rate 0.1
—=— gate failure rate 0.04
0.4 —— gate failure rate 0.02
- —o— gate failure rate 0.0001
=03
QO
(]
QO
202
o
0.1
0
0 10 20 30 40
Number of Stimulated Outputs
(b)

0.5

o o
w N

o
N

Probability

—o

gate failure rate 0.1
gate failure rate 0.04
gate failure rate 0.02
gate failure rate 0.0001

e
—a

—

40

Number of Stimulated Outputs
(©

60

Fig. 4. Output distributions of NAND multiplexing unit with four restorative stages under different gate failure rates and I/O bundle sizes. (a) I/O bundle size
equals 20; (b) I/O bundle size equals 40; (c) I/0 bundle size equals 60.

N
I
I
Iy
I
|
l
!
\
#
I
I
!
E
i
i
|
|
i
i

X
o ==
=
R

< 0.8 ENRN
= N
3)
3 0.6 —*— U: 7 restorative stages [=~ ~~. W

S A
5 -~=- UR: 7 restorative stages) \‘\
= —e— {J: 5 restorative stages W
L‘E 047 . UR: 5 restorative stages ‘\\
g —=— U: 2 restorative stages !
= 0.2 —* - UR: 2restorative stages
g —— U: 1 restorative stage
Q ---- UR: 1 restorative stage
2 9
o 8 -7 -6 -5 -4 -3 -2 -1

Error of Individual NAND (10%)
(a)
Fig. 5.

-

-

o
e

o
=)

<
IS

o
[N

U: 7 stages A
- UR: 7 stages S
U: 5 stages \

- UR: & stages \
U: 2 stages Y

- UR: 2 stages o\
U: 1 stages \

- UR: 1 stages

Probability of Error Less Than 10%

|
OOO

7 6 5 4 -3 -2
Error of Individual NAND (10%)

(b)

—_

o e e
EN o) ey

o
[N}

Probability of Error Less Than 10%

U. 7 restorative stages ~
- UR: 7 restorative stages O

U: 5 restorative stages \
- UR: 5 restorative stages \
U: 2 restorative stages %
- UR: 2 restorative stages N
U: 1 restorative stage
- UR: 1 restorative stage

|
ooO

7 % 5 -4 -3 -2
Error of Individual NAND (10%)

(©)

-1

Probability that at most 10% of the outputs of the overall system are incorrect for different I/O bundle sizes. (a) I/O bundle size equals 20; (b) I/O bundle
size equals 40; (c) I/O bundle size equals 60.

o
o

g
o

o
Y

°
[}

[=)

- UR: failure 0.01
U: failure 0.01
- UR: failure 0.02
U: failure 0.02
- UR: failure 0.03
U: failure 0.03
- UR: failure 0.04
U: failure 0.04

——x- -3

Probability of Error Less Than 10%

2 4 6 8 10
Number of Restorative Stages

(a)

12

- UR: failure 0.01
U: failure 0.01 |
- UR: failure 0.02
U: failure 0.02
- UR: failure 0.03
U: failure 0.03
- UR: failure 0.04
U: failure 0.04

—d

Probability of Error Less Than 10%

2 3 4 5 6 7
Number of Restorative Stages

(b)

o
o

o
[N}

Probability of Error Less Than 10%

°
o

o
IS

- UR: failure 0.01
U: failure 0.01 ==
- UR: failure 0.02
U: failure 0.02

- UR: failure 0.03
U: failure 0.03

- UR: failure 0.04
U: failure 0.04 | __

2 3 4 5 6 7
Number of Restorative Stages

(©)

Fig. 6. Probability that at most 10% of the outputs of the overall system are incorrect for different I/O bundle sizes (large probability of failure). (a) I/O bundle
size equals 20; (b) I/O bundle size equals 40; (c) I/O bundle size equals 60.

performed by the second unit U of the restorative stage and the fact
that, because the probability of gate failure is very low, the probability
of any input to this second unit being nonstimulated is very low. More
precisely, supposing that k£ (where k is small) inputs to the second
unit of the restorative stage are nonstimulated, then, when this unit
performs the random permutation, there is a very high probability that
no nonstimulated inputs are paired together (because k is small), and
hence there is a very high probability that there are 2 - k stimulated
outputs (since the probability of any gate functioning incorrectly is

very small).

Using these output distributions, in Fig. 5 (one restorative stage),
we have plotted the probability that less than 10% of the outputs are
incorrect against the probability of gate failure. We also plot the same
results for the case where the behavior of the unit U is replaced with a
random choice with replacement (denoted “UR”).

As expected, the output distributions given in Fig. 3 and the results
presented in Fig. 5 show that, as the probability of gate failure
decreases, the reliability of the multiplexing system increases, i.e., the
chance of the system returning incorrect results diminishes. Further-

more, Fig. 5 demonstrates that increasing the bundle size leads to a

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

1635

2 2 2

3 > >

g £ =

=] = . ! ! 3 30

33 -7 O 30 _ o ---- UR: failure 0.04

5 : Lo 5 ---- UR: failure 0.04 k3] —— U failure 0.04

© 25 ---- UR: failure 0.04 25 —— U: failure 0.04 £25 —~- UR: failure 0.03

g 1= U: failure 0.04 et 3 -+ UR: failure 0.03 8 —e U failure 0.03

£20f 5-f -+ URfailure 0.03 |.--=--*""F €20 | —=— U:failure0.03 | _ __ £20 - UR: failure 0.02

5 .| ™ U:failure 0.03 %S = -+~ UR: failure 0.02 k] B — U failure 0.02 [°C

@ 15] 3 - UR:failure 002 | . | @15/ =, | —— U: failure 0.02 & 150 i | -~ UR: failure 0.01

a o | == U:failure 0.02 [- o-+-- s . -»- UR:failure 0.01 [2°""""1 & = U: failure 0.01

< b 3] -~-- UR: failure 0.01 c s U: failure 0.01 G 10 . -

o 10 " o 10]

IS4 U: failure 0.01 O N, - - P o

[0} . = W — X = e = (0] (O]

o 5 o 5 =l o 5

o - S 3

L o £ 0

[[

g 3 5 7 o 11 13 89 2 3 4 5 6 7 2 2 3 4 5 6 7

b Number of Restorative Stages 5 Number of Restorative Stages & Number of Restorative Stages
(a) (b) (©)

Fig. 7. Expected percentage of incorrect outputs of the overall system for different I/O bundle sizes (large probability of failure). (a) I/O bundle size equals 20;

(b) I/0 bundle size equals 40; (c) I/O bundle size equals 60.

decrease in the probability of error, i.e., an increase in the reliability of
the system, and that the rate of increase decreases as the bundle size
increases (compare the difference between the results for bundle sizes
of 20 and 40 with those for sizes of 40 and 60).

Considering the results given in Fig. 5 (one restorative stage) for
the case when the behavior of the unit U is replaced with a random
choice with replacement (denoted “UR”), we see that this leads to an
overapproximation of the reliability of the multiplexing system: the
chance of correct outputs is higher than when the unit U is modeled
correctly. As mentioned in Section III-A, the difference between the
results obtained with the two approaches decreases as the bundle size
increases. Note that, as our later results will demonstrate, modeling U
in this way does not always result in upper bounds on the reliability of
the system.

B. Adding Restorative Stages

Next, we investigate the change in reliability of a NAND multi-
plexing system as the number of multiplexing stages increases, i.e.,
when additional restorative units are added to the system. In Fig. 4
we present the output distribution of the system with four restorative
stages. The gate failure probabilities are as in Fig. 3. To improve
readability, the y-axes in these graphs have been truncated, which has
removed the probability of zero outputs being stimulated when the
gate failure rate is 0.0001. This value is approximately 0.969 when
the bundle size equals 20, 0.981 when the bundle size is 40, and 0.981
when the bundle size is 60.

Comparing these output distributions with those presented in Fig. 3,
we see that, when the NAND gate failure probability is sufficiently
small (e.g., 0.0001), adding additional stages results in a much more
reliable system (the probability of any outputs being stimulated is
very small). On the other hand, in the cases when the probability
of gate failure is sufficiently large, adding additional stages does not
increase reliability and, in fact, can actually decrease the reliability
of the system (compare the distributions when the failure probability
equals 0.1 for each bundle size).

1) Small Probabilities of Gate Failure: To emphasize the first
observation in the previous paragraph, in Fig. 5, which shows the
probability that at most 10% of the outputs of the overall system are
incorrect (stimulated) against the failure probability of the gates, we
have also plotted results as the number of restorative stages varies
between 2 and 7.

These results again demonstrate that, for small probabilities of
gate failure, increasing the number of stages can greatly enhance the

reliability of the system. However, the results also show that the rate
of increase in reliability decreases as more restorative stages are added
to the system. Moreover, there is a limit to the reliability that can be
gained by adding additional stages: compare, for example the plots
presented in Fig. 5 when the number of restorative stages equals 5
and 7. We should also mention that this result corresponds to the
observation made in [15] that, as the number of stages increases, the
output distribution of the system will eventually become stable and
independent of the number of stages.

In Fig. 5, we have also included the statistics obtained when the unit
U performs a random choice with replacement instead of a random
permutation. In this case, unlike in the case of one restorative stage
(discussed previously), the approach can now give either an over- or
an underapproximation of reliability.

2) Large Probabilities of Gate Failure: We now consider in more
detail the case when the probability of gate failure of the NAND gates
becomes too large for the multiplexing system to function reliably. In
Fig. 6 we have plotted the probability that system error is less than
10% against the number of restorative stages, for the cases when the
failure rate of the NAND gates is between 0.04 and 0.01. In Fig. 7, we
have plotted the expected percentage of incorrect inputs for the same
configurations.

As can be seen from the results, especially in Fig. 7(a), when the
bundle size equals 20 and the probability of gate failure equals 0.04,
even increasing the number of restorative stages cannot make the
computation reliable. In fact, in this case, if one keeps increasing the
number of stages, the system’s reliability will actually start to decrease.
This anomalous behavior can be understood as follows: when the
failure rate is 0.04 (or higher), each restorative stage is sufficiently
affected by the probability of gate failure as to actually increase the
error, and hence increasing the number of stages in this case makes the
system more unreliable.

From these results, we therefore conclude that, in the case of a
bundle size equal to 20, if the gate failure probability of the gates is
greater than or equal to 0.04, then the system cannot be made reliable.
On the other hand, in the case where the failure probability is 0.01, for
certain criteria of reliability, the results demonstrate that the system
can be made reliable once a sufficient number of restorative stages
have been added.

When the bundle size equals 40 or 60, the results presented in
Figs. 6(b), (c) and 7(b), (c) show that, if the gate failure probability
is 0.04, then adding even large numbers of restorative stages has little
effect on the reliability. However, when the gate failure probability
equals 0.01 (and for certain criteria, when it equals 0.02), the system

1636

can be considered as reliable once a sufficient number of restorative
stages have been added.

It is important to note that there is a difference between the bounds
on the probability of gate failure required here for reliable computation
and the theoretical bounds presented in the literature. This difference
is to be expected: in this paper we evaluate the performance of
the system under a fixed configuration (bundle size and number of
restorative stages), whereas the bounds presented in the literature
correspond to the scenario where the bundle size or number of restora-
tive stages can be increased arbitrarily in order to achieve a reliable
system.

In Figs. 6 and 7, statistics for the case where the unit U performs
a random choice with replacement (denoted ‘UR’) are again included.
These results show that using random choice with replacement can
lead to very different results. For example, in Fig. 7(a), for a gate
failure probability equal to 0.03, when the unit U is modeled by a
random choice with replacement, adding additional restorative stages
decreases reliability, whereas if U is modeled (correctly) as a random
permutation, this actually increases reliability. Furthermore, if we
consider the results presented in Fig. 6(b), (c), when the probability
of gate failure equals 0.01 or 0.02 and the number of stages is small,
modeling U as a random choice with replacement leads one to assume
that the system is more reliable than it actually is. However, as the
number of restorative stages increases, the converse holds: one would
believe the system to be less reliable than it actually is.

V. CONCLUSION AND FUTURE WORK

In this work, we have demonstrated how probabilistic-model check-
ing can be used for an evaluation of the redundancy and reliability
tradeoff for defect-tolerant systems. In particular, we have shown how,
for a given probability of gate failure (or bound on the probability of
gate failure), probabilistic-model checking can find the minimum level
of redundancy (I/0 bundle size and, in the case of multiplexing units,
the number of restorative stages) that enables reliable computation.

We have reported on the results obtained for a NAND multiplexing
system and investigated the performance of the system as the error
rate of the individual NAND gates and the number of stages vary. The
first step in this approach involved constructing a system model in
PRISM’s model description language, and we described an approach
used to allow for the analysis of large configurations. In the analysis
using PRISM, we were able to compute the exact output distribution
of the system, and hence construct a complete picture of the reliability
of the system under study for a range of bundle sizes, restorative
stages, and gate failure rates. Note that the results included here are
only a representative selection to demonstrate the applicability of this
approach.

We chose to analyze von Neumann’s NAND multiplexing approach
since it is a canonical example used in the literature, and it therefore
enabled us to compare the techniques and results with those of
others. One can argue that the amount of redundancy in the NAND
multiplexing technique would need to be extremely high to be of use
for realistic designs. Nonetheless, this remains a good example for
the demonstration of our approach. Furthermore, our methodology is
not limited to this particular redundancy architecture, but is equally
applicable to alternative fault-tolerant architectures.

In conclusion, this paper shows how the probabilistic-model check-
ing framework offers a complementary approach to the theoretical
results present in the literature. More precisely, our analysis technique
based on probabilistic-model checking allows us to obtain sharp
bounds and study probabilistic anomalies for a fixed architecture that
is relevant in practice, as opposed to establishing general bounds that
are independent of the configuration.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

REFERENCES

[1] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta,
“Formal analysis and validation of continuous time Markov chain
based system level power management strategies,” in Proc. 7th Annu.
IEEE Int. Workshop High Level Design Validation and Test (HLDVT),
W. Rosenstiel, Ed. Cannes, France: IEEE Computer Society Press, 2002,
pp. 45-50.

M. Kwiatkowska, G. Norman, and D. Parker, “Controller dependability

analysis by probabilistic model checking,” in Proc. 11th IFAC Symp.

Information Control Problems in Manufacturing (INCOM), Salvador da

Bahia, Brazil, 2004.

M. Kwiatkowska, G. Norman, and J. Sproston, “Probabilistic model

checking of deadline properties in the IEEE 1394 firewire root contention

protocol,” Form. Asp. Comput., vol. 14, no. 3, pp. 295-318, 2003.

M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang, “Symbolic

model checking for probabilistic timed automata,” in Joint Conf. Formal

Modelling and Analysis Timed Systems (FORMATS) and Formal Tech-

niques Real-Time and Fault Tolerant Systems (FTRTFT), Y. Lakhnech

and S. Yovine, Eds. Grenoble, France: Springer Verlag, 2004, vol. 3253,

ser. Lecture Notes in Computer Science, pp. 293-308.

M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston, “Performance

analysis of probabilistic timed automata using digital clocks,” in Proc.

Formal Modeling and Analysis Timed Systems (FORMATS), K. Larsen

and P. Niebert, Eds. Marseille, France: Springer-Verlag, 2003, vol. 2791,

ser. LNCS, pp. 105-120.

[6] M. Kwiatkowska, G. Norman, and J. Sproston, “Probabilistic model

checking of the IEEE 802.11 wireless local area network protocol,”

in Proc. 2nd Joint Int. Workshop Process Algebra and Probabilistic

Methods, Performance Modeling and Verification (PAPM/PROBMIV),

Denmark, H. Hermanns and R. Segala, Eds. Copenhagen, Denmark:

Springer, 2002, vol. 2399, ser. LNCS, pp. 169-187.

M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker, “A formal

analysis of Bluetooth device discovery,” in Proc. Ist Int. Symp. Lever-

aging Applications Formal Methods (ISOLA), Paphos, Cyprus 2004, to be
published.

[8] V. Shmatikov, “Probabilistic model checking of an anonymity system,”
J. Comput. Secur., vol. 12, no. 3/4, pp. 355-377, 2004.

[9] M. Kwiatkowska and G. Norman, “Verifying randomized Byzantine
agreement,” in Proc. Formal Techniques Networked and Distributed Sys-
tems (FORTE), D. Peled and M. Vardi, Eds. Houston, TX: Springer,
2002, vol. 2529, ser. LNCS, pp. 194-209.

[10] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 2.0: A tool for
probabilistic model checking,” in Proc. Ist Int. Conf. Quantitative Eval-
uation Systems (QEST). Enschede, The Netherlands: IEEE Computer
Society Press, 2004, pp. 322-323.

[11] J. von Neumann, “Probabilistic logics and synthesis of reliable organisms
from unreliable components,” in Automata Studies, ser. Annals of Mathe-
matical Studies, no. 34, C. E. Shannon and J. McCarthy, Eds. Princeton,
NJ: Princeton University Press, 1956, pp. 43-98.

[12] J. Heath, G. S. P. Kuekes, and R. Williams, “A defect tolerant com-
puter architecture: Opportunities for nanotechnology,” Science, vol. 280,
no. 5370, pp. 1716-1721, 1998.

[13] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti, “Towards robust
integrated circuits: The embryonics approach,” Proc. IEEE, vol. 88, no. 4,
pp. 516-541, Apr. 2000.

[14] N. Pippenger, “Reliable computation by formulas in the presence of
noise,” IEEE Trans. Inf. Theory, vol. 34, no. 2, pp. 194-197, Mar.
1988.

[15] J. Han and P. Jonker, “A system architecture solution for unreliable nano-
electronic devices,” IEEE Trans. Nanotechnol., vol. 1, no. 4, pp. 201-208,
Dec. 2002.

[16] W. Evans and N. Pippenger, “On the maximum tolerable noise for reli-
able computation by formulas,” IEEE Trans. Inf. Theory, vol. 44, no. 3,
pp. 1299-1305, May 1998.

[17] H. Hansson and B. Jonsson, “A logic for reasoning about time and proba-
bility,” Form. Asp. Comput., vol. 6, no. 5, pp. 512-535, 1994.

[18] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Verifying continu-
ous time Markov chains,” Proc. 8th Int. Conf. Computer Aided Veri-
fication (CAV), R. Alur and T. Henzinger, Eds. New Brunswick, NI:
Springer-Verlag, 1996, vol. 1102, ser. Lecture Notes in Computer Science,
pp. 269-276.

[19] C. Baier, J.-P. Katoen, and H. Hermanns, “Approximate symbolic
model checking of continuous-time Markov chains,” in Proc. 10th Int.
Conf. Concurrency Theory (CONCUR), J. Baeten and S. Mauw, Eds.
Eindhoven, The Netherlands: Springer-Verlag, 1999, vol. 1664, ser. Lec-
ture Notes in Computer Science, pp.146-161.

[2

—

3

[t}

[4

=

[5

—_

[7

—

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 10, OCTOBER 2005

[20] PRISM, web page. [Online]. Available: www.cs.bham.ac.uk/~dxp/prism

[21] R. Alur and T. Henzinger, “Reactive modules,” Form. Methods Syst. Des.,
vol. 15, no. 1, pp. 748, 1999.

[22] W.J. Stewart, Introduction to the Numerical Solution of Markov Chains.
Princeton, NJ: Princeton Univ. Press, 1994.

[23] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic symbolic
model checking with PRISM: A hybrid approach,” Int. J. Softw. Tools
Technol. Transf., vol. 6, no. 2, pp. 128-142, 2004.

[24] D. Parker, “Implementation of Symbolic Model Checking for Probabilis-
tic Systems,” Ph.D. dissertation, School Comput. Sci., Faculty Sci., Univ.
Birmingham, U.K., 2002.

[25] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker, Mathematical
Techniques for Analyzing Concurrent and Probabilistic Systems, vol. 23,
P. Panangaden and F. van Breugel, Eds. Providence, RI: American Math-
ematical Society, 2004, ser. CRM Monograph Series.

[26] K. Nikolic, A. Sadek, and M. Forshaw, “Architectures for reliable
computing with unreliable nanodevices,” in Proc. 1st IEEE Conf. Nano-
technology (IEEE-NANO). Maui, HI: IEEE Computer Society Press,
2001, pp. 254-259.

Simultaneous Adaptive Wire Adjustment and
Local Topology Modification for Tuning
a Bounded-Skew Clock Tree

Haydar Saaied, Dhamin Al-Khalili, Asim J. Al-Khalili,
and Mohamed Nekili

Abstract—The need for incremental algorithms to implement engineer-
ing changes (ECs) in clock trees (CTs) is critical in the system-on-a-chip
(SoC) design cycle. An algorithm, called adaptive wire adjustment (AWA),
is proposed to minimize the clock skew iteratively to any given bound.
In order to speed up AWA’s convergence, a local topology-modification
(LTM) technique is incorporated into AWA. Moreover, LTM incorporation
into AWA results in total wire-length reduction as well. Also, the incorpo-
ration of the LTM technique into the deferred-merge embedding (DME)
algorithm and Greedy-DME (GDME) helps reduce the total wire length
by around 7.8% and 9.8%, respectively. Additionally, applying LTM to
GDME reduces wire elongations and the standard deviation of the path
lengths (SDPL) between clock pins by 96.4% and 51.5%, respectively.

Index Terms—Bounded skew, clock-distribution network, incremental
algorithm, steiner tree, system-on-a-chip (SoC).

I. INTRODUCTION

With technology scaling and growth in the size and complexity of a
system-on-a-chip (SoC), the interconnect becomes a dominant factor
in determining system performance [1], [2]. This makes the routing
between devices a more important issue than the optimization and
placement of the devices. Also, the demand for high performance
in such a design environment results in a going back and forth be-
tween different design subtasks [3], which may necessitate design
modifications to meet a specific criteria. Therefore, the complexities of
current and future systems underline the need for efficient engineering-

Manuscript received November 17, 2003; revised June 2, 2004. This work
was supported in part by Natural Sciences and Engineering Research Council
of Canada. This paper was recommended by Associate Editor J. Lillis.

H. Saaied and A. J. Al-Khalili are with Concordia University, Montreal, QC
N2L 361, Canada (e-mail: haydar@ece.concordia.ca; asim@ece.concordia.ca).

D. Al-Khalili is with the Royal Military College of Canada, Kingston, ON
K7K 7B4, Canada (e-mail: alkhalili-d @rmc.ca).

M. Nekili is with the University of Waterloo, Kingston, ON H3G 1M8,
Canada (e-mail: mnekili@ece.concordia.ca).

Digital Object Identifier 10.1109/TCAD.2005.852034

1637

e PRk 1_21
.w*f ' ¥

Fig. 1.
model.

(a) Example of a tree that connects four clock pins and (b) its RC-Tree

change (EC) techniques that can handle any local change in the layout
of the interconnects of the SoC [4].

The rise in SoC complexity and interconnect dominance team up
to intensify a specific challenge to the clock-tree (CT) design [S]-[7].
The challenge stems from the CT’s crucial role of integrating different
intellectual property (IP) cores into a single synchronous SoC. In the
last decade, many approaches were developed that produced zero-
skew CT (ZSCT) or bounded-skew CT (BSCT) [5]-[15], based on
the Elmore delay model. Many of these approaches control the skew
by using Tsay’s approach, which may resort to wire elongations [8].
Such wire elongations compound the complexity and elevate the power
consumption of the CT. Additionally, it is sometimes required to insert
or remove IPs, or to perform localized modifications without affecting
the performance of the CT. However, a change in the locations or the
load capacitance of clock pins requires a recalculation of the whole
CT solution as in the deferred-merging embedded (DME) algorithm
or greedy DME (GDME) [9], [10]. This is obviously a computation-
intensive process for a complex system. Therefore, what is required
in the presence of minor modifications is an incremental algorithm to
tune the CT, as opposed to redesigning it. This specific process has
received little attention in the literature. Our work provides one of the
first studies of CT redesigning, called CT tuning. We propose a novel
algorithm, called adaptive wire adjustment (AWA), the main goal of
which is to enable a quick EC to the CT that is capable of integrating
IP cores into the SoC [14]. A secondary goal is to reduce the CT wire
length and number of wire elongations to enhance routability and to
minimize power consumption.

Next, we investigate the topology impact on the performance of
AWA, as well as on DME and GDME. A novel technique called local
topology modification (LTM) is proposed to speed up the AWA’s con-
vergence. It is well established that the CT’s topology impacts the total
wire length of the CT. For example, GDME resorts to connecting the
clock pins at different levels of the topology, in order to minimize the
total wire length. But, such an approach compounds the CT intensively
by wire elongations; and the standard deviation of the path lengths
(SDPLs) between the root and the clock pins becomes large [15].
A large SDPL implies inaccuracies in the timing of the clock signal
and the vulnerability of the CT to temperature and process variations.
The incorporation of LTM into AWA, DME, and GDME (LTM-AWA,
LTM-DME, and LTM-GDME, respectively) helps in reducing the total
wire length, the number of wire elongations, and the SDPL of the clock
tree. These advantages of LTM come at the price of an increase in the
computation time.

II. PRELIMINARIES

Consider a tree 7', shown in Fig. 1(a), that connects a set of clock
pins. Each clock pin is associated with a location in the Manhattan
plane and a load capacitance. Any node v € T" is connected to its
parent by an edge e, ; and each edge can be modeled as a lumped 7

0278-0070/$20.00 © 2005 IEEE

	coversheet.pdf
	http://eprints.gla.ac.uk/40149/

