
0-89791-993-9/97 $10.00  1997 IEEE

Micro-Preemption Synthesis: An Enabling Mechanism for

Multi-Task VLSI Systems �

Kyosun Kim, Ramesh Karri Miodrag Potkonjak

Department of ECE Department of Computer Science

University of Massachusetts University of California

Amherst, MA 01002 Los Angeles, CA 90095

fkarri,kkimg@ecs.umass.edu miodrag@cs.ucla.edu

Abstract - Task preemption is a critical enabling
mechanism in multi-task VLSI systems. On pre-
emption, data in the register �les must be preserved
in order for the task to be resumed. This entails
extra memory to save the context and additional
clock cycles to restore the context. In this paper,
we present techniques and algorithms to incorporate
micro-preemption constraints during multi-task VLSI
system synthesis. Speci�cally, we have developed: (i)
algorithms to insert and re�ne preemption points in
scheduled task graphs subject to preemption latency
constraints, (ii) techniques to minimize the context
switch overhead by considering the dedicated registers
required to save the state of a task on preemption and
the shared registers required to save the remaining val-
ues in the tasks, and (iii) a controller based scheme to
preclude preemption related performance degradation.

1 Introduction
1.1 Motivation
Task preemption is a critical enabling mechanism in a
variety of application scenarios. Hard real-time com-
puter systems have stringent timing requirements. In
such systems, the deadlines for critical tasks are en-
forced by preempting less critical tasks. In soft real-
time systems where infrequent deadline violations are
tolerated, less important tasks are preempted to exe-
cute more important ones so as to meet some quality-
of-service requirements. For example, in multimedia
systems, video, voice, and data streams are scheduled
and occasionally interrupted and resumed according
to priority strategies to enforce soft end-to-end dead-
lines.
Along a di�erent dimension, multi-task VLSI systems
are becoming commonplace. For example, Motorola
o�ers numerous DSP ASPPs [3]. An ASPP can be dy-
namically con�gured to one of the implemented tasks.
Although the recon�guration time of an ASPP may be
very low (because recon�guration entails moving from
the �nal state of the current task to the start state of
another task), it may not be acceptable for a critical
task in a real-time system to wait until the current
task is completed.

�This research was supported by an NSF CAREER grant

MIP-9702676

On receiving a preemption request, the state of the
active task must be saved, the context of the new task
must be loaded and then executed. On completion of
task execution, the state of the preempted task must
be restored and the interrupted task resumed to com-
pletion. Important factors that should be considered
while implementing task preemption include:

� Preemption latency: It is de�ned as the maxi-
mum time it takes from the instant a preemption
request is received to the instant the task state is
saved.

� Context switch cost: Hardware overhead in-
curred by the installation of a preemption han-
dling scheme must be considered. A saved state
should contain only enough information (and no
more) so that the preempted task can be resumed
at the precise point where it was interrupted. The
task state should consist of the contents of the
general purpose registers, the condition registers,
and the relevant portion of background memory.

� Performance degradation: There are two
main sources of performance degradation: (i) on
a preemption request, some task states that have
already been executed may be aborted. Retrac-
ing these aborted states adds to the �nish time
of the aborted task. (ii) Any scheme that saves
the context of a preempted task in background
memory may stall execution units.

In this paper we will present a systematic methodol-
ogy for incorporating preemption constraints in multi-
task VLSI systems. Speci�cally, we will show how
context switch cost and performance degrada-
tion can be minimized while satisfying task speci�c
throughput and preemption latency constraints.

1.2 A Motivating Example
Consider a system implementing two tasks A and B.
Task A takes four clock cycles and task B takes six
clock cycles for one iteration. Let A1, A2, A3, and
A4 denote parts of task A that are executed in the
�rst, second, third and fourth clock cycles respectively.
Similarly, let B1, B2, B3, B4, B5 and B6 denote parts
of task B that are executed in the �rst, second, third,
fourth, �fth and sixth clock cycles respectively. The

33

following assumptions were made while designing the
micro-preemption controller.

1. A non-overlapping two-phase clock (clk 1, clk 2).
2. Activation of a new task (i.e. changing the selected

task signal) and transition of a task from one state

to the next are synchronized with falling edge of clk
2.

3. Setting and resetting of preempt mask is synchro-

nized with falling edge of clk 1.
4. A task preemption request is serviced when the pre-

empt mask is low and selected task is high and
clk 2 is falling.

A simulation snapshot of micro-preemption in the two-
task VLSI system is shown in �gure 11. To mini-

time (ns) 275.0 300.0 325.0 350.0 375.0 400.0 425.0 450.0 475.0 500.0 524.0

CLK 1

CLK 2

SELECTED TASK

PREEMPT MASK

ACTIVE TASK

STATE

A B A B NOP

A B A B NOP

A4 A1 A2 A3 B1 B2 B3 B4 A4 A1 B5 B6 NOP

Figure 1: Simulation snapshot showing preemption re-
quest and servicing mechanism in a two-task VLSI
system

mize the controller and context switch overhead, we
mandate that task A can be preempted in states A1
and A3 alone. These are called task preemption
points. Initially the system is in state A4. When
the system goes to state A1, execution of a new task
is requested by setting the selected task to B and
the data inputs to appropriate data values (these have
not been shown here for simplicity). However, it is not
a valid preemption request (since preempt mask is
high). Even when a valid preemption request arrives
in state A2 (i.e. all conditions in item 4 are satis-
�ed) task A is not aborted immediately. Rather, the
computation rolls forward to end of state A3 (the
next preemption point) before the preemption request
is serviced. Notice that it has taken two clock cycles
from the time a valid preemption request arrived (be-
ginning of state A2) to the time the new task (task
B) became active (end of state A3). From the point
of view of task B, this is its preemption latency.
From the point of view of the multi-task VLSI system
as a whole (and task A in particular) rolling forward
of the computation has eliminated the performance
degradation due to an immediate abort. In a nutshell,
preemption points A1 and A3 have partitioned the ex-
ecution of task A into two critical sections fA2, A3g
and fA4, A1g. Similarly, task preemption points
B2, B4 and B6 for task B partition it into three critical
sections fB1, B2g, fB3, B4g, and fB5, B6g.

1the controller has been implemented using 1� SCMOS stan-

dard cell library and simulated using IRSIM.

Task
Select

Interrupt
Disable

Control
Logic Write Enable

Read Select

State
Register
File

To Datapaths
Control Signals

Pipeline Register
CLK2

CLK1

CLK2

State(T+1)

State(T)

ID(T)

ID(T-1)

Task ID Queue

CLK2

CLK1

Figure 2: Controller for a multi-task VLSI system sup-
porting micro-preemption

The controller is shown in �gure 2. It is a collection of
�nite state machines (one for each implemented task)
and has a state register �le that holds the identi�ca-
tion of the currently active task. At every clock cycle,
a di�erent task can be initiated or a preempted task
resumed by the task select signal. The controller sig-
nals are pipelined so that the controller delay does not
a�ect the critical path.
The rest of the paper is organized in the following way.
We �rst brie
y survey the related work along several
dimensions. Next, we will discuss the computational
and hardware models. In sections 3 and 4, we intro-
duce our approach, formulate the micro-preemption
synthesis problems, and describe the proposed algo-
rithms for micro-preemption synthesis. Experimental
results are presented in section 5. In section 6, we
conclude by summarizing the results.

1.3 Related Research
Recon�gurable computing platforms are attracting a
lot of attention recently. A fast growing billion dollar
Field Programmable Gate Array (FPGA) industry is
supported by a number of commercial and research
tools [12]. A number of special purpose recon�gurable
computers have been built. Early work in this di-
rection includes the systems realized at University of
Texas, Austin (TRAC) [5]. The Splash system enables
recon�gurability to more than 100 di�erent con�gura-
tions which are well suited for several computational
tasks in molecular biology [7]. Several generations of
data path recon�gurable video-processors with accom-
panying compilation support have been developed at
University of California, Berkeley [13]. Recently, Ap-
plication Speci�c Programmable Processors (ASPPs)
[16] have been introduced as an excellent candidate
for multifunctional datapaths with frequent context
switching. Though their functionalities must be deter-
mined in the design phase, a single ASPP implement-
ing multiple functions obtains signi�cant area savings
when compared with the dedicated ASIC implemen-
tations of the functions.
Research in implementing interrupts is outlined next.
The IBM 360/91 supports precise and imprecise in-
terrupt handling [1]. Hwu and Patt [2] proposed a
checkpointing approach to handling interrupts. The
checkpoints (which incur some penalty in processor

34

performance) are used to divide the sequential instruc-
tion stream into smaller units to reduce the cost of
resumption. Sohi [9] integrated the functions of reser-
vation stations and reorder bu�ers into the register
update unit to realize precise interrupts. In addition,
Smith and Pleszkun [6] presented architectural solu-
tions such as saving the intermediate state of vector
instructions and saving a sequence of instructions that
must be executed before saving the program counter.
Mosberger et. al. [15] presented a software-only solu-
tion to the synchronization problem in uniprocessors.
Their idea was to execute atomic sequences without
any hardware protection, and to roll the sequence for-
ward to the end, thereby preserving atomicity.
Behavioral synthesis has been active research area for
more than two decades [8], and numerous outstand-
ing systems have been built targeting both data path
oriented and control oriented applications [8]. Synthe-
sis systems that optimize power, testability and fault-
tolerance [14] have been developed.

2 Computational/Hardware Models
Our computational model for a single task is homoge-
neous synchronous data
ow [4]. Within this model,
a task is represented as a hierarchical Control Data
Flow Graph G(N;E; T) (or CDFG), with nodes N
representing the
ow graph operations, and the edges
E and T respectively the data and timing dependences
between the operations.
In modern designs a variety of register �le models have
been used [10]. From among them we have selected the
dedicated register �le hardware model. This model
clusters all registers in register �les and each �le is
then connected only to the inputs of the corresponding
execution units. An important bene�t of the chosen
hardware model is that it reduces the interconnect at
the expense of additional registers.

3 Issues and Our Approach
On preemption, the data in the register �les must be
preserved somewhere in order for a task to resume.
In general purpose microprocessors, these values are
transferred to background memory before an inter-
rupt is serviced. This technique is not acceptable in
multi-task VLSI systems due to the attendant per-
formance penalty. Alternately, a register windowing
technique is used in the Sparc architecture [11]. In
this scheme, data is saved in registers within the pro-
cessor even when a new computation environment is
required. However, it entails non-negligible area over-
heads for duplicated registers. In contrast, we pro-
pose an intuitively simple technique by classifying the
edges in the CDFG and the registers hold them into
two groups:

� Dedicated registers2 (Rt
d) store the values of

edges of a task that straddle preemption points.
These edges that straddle a preemption point are

2coe�cient registers (Rt

c
) that hold the constants used by

the task are not targeted during the context switch optimiza-

tion. This is because, generally these constants di�er from one

task to another and cannot share registers.

called the red edges, and represent intermediate
values essential to resume the task if preempted.

� Shared registers (Rt
s) are shared by the values

associated with the remaining edges (of all tasks)
in the system. These edges that do not straddle a
preemption point are called the green edges. The
dedicated registers of a task can also be used to
store the values associated with the green edges
in the task. However, the shared registers cannot
be assigned to red edges.

Since dedicated registers cannot be shared between
tasks, the associated context switch overhead is the
sum of the dedicated registers over all tasks. On the
other hand, the context switch overhead due to shared
registers is the maximum value across all tasks. Over-
all, the context switch cost of a multi-task VLSI sys-
tem with task set T is:

j R j=
X

t2T

j Rt
d j +max

t2T
j Rt

s j (1)

Performance degradation resulting from aborting a
task is eliminated by (i) partitioning the task states
into critical sections, (ii) executing critical sections
and (iii) preserving atomicity of a critical section by
rolling forward to the end of a critical section on pre-
emption. This is analogous to the classical approach
to precise interrupts.
Next, we present algorithms for (i) preemption point
insertion and (ii) preemption context synthesis that
minimizes the context switch overhead during multi-
task VLSI system synthesis. The optimization prob-
lem can be de�ned as follows:
Given an underlying hardware model and N scheduled
tasks, each with its own time bound (�) and maximum
preemption latency (�), insert preemption points, and
bind edges to registers, so that the context switch over-
head is minimized.
Initially, all tasks are scheduled in an integrated fash-
ion by considering their word length, precision, hard-
ware and topological similarities. Using the number
of edges straddling a clock cycle as an estimate of
the context switch overhead, preemption points are
inserted. The resulting preemption point set for each
task will have more than the minimum number of pre-
emption points. In the next step these preemption
point sets are re�ned. Finally, the preemption con-
text is synthesized by binding edges to registers sub-
ject to preemption constraints. The output is then
passed through hardware mapping and layout genera-
tion tools to synthesize a multi-task VLSI system.

3.1 Preemption Point Insertion
Towards investigating preemption point insertion,
consider a task with �ve edges (e1; :::; e5), an appli-
cation latency of eight clock cycles and an edge-to-
register binding shown in �gure 3. The register �le
has one input port and one output port which are ac-
cessed at the �rst half cycle and the last half cycle,
respectively.
The register overhead of a preemption point can be
estimated as the number of edges straddling it. For in-
stance, assuming a preemption latency of three yields

35

e4e2

e1

e3

e5
r1

r2

r3

PPP
1 2 3 4 50 6 7

Clock Cycle

Register

Figure 3: Preemption point insertion and register
binding. The dotted line shows a cyclic dependency.

clock cycles 1, 4, and 7 as preemption points as shown
in �gure 3. The preemption points are marked by
`P'. On preemption point insertion, e1 and e5 become
red edges and are assigned to two dedicated registers
r1 and r2. e3 becomes a green edge and is assigned
to shared register r3. e2 and e4 become green edges
but are assigned to dedicated register r2. Initially,
preemption points are inserted one task at a time us-
ing a polynomial heuristic time algorithm InsertPre-
emptionPoints(). It incrementally inserts preemp-
tion points (into each task) such that the number of
edges straddling the preemption points is minimized
until the preemption latency constraint is satis�ed.

3.2 Preemption Point Re�nement
Minimizing dedicated registers alone does not reduce
the context switch overhead. Instead, it may increase
the number of shared registers and hence the total
context switch overhead. For example, assume pre-
emption points are inserted at clock cycles 0 and 5.
Consider the following scenarios:

e1 e2

e3 e4 e5

e1 e5

e3 e2

e4
r2

r3

(b)

1 2 3 4 50
P P

Clock Cycle

Register

r1

PP
1 2 3 4 50

Clock Cycle

Register

r1

r2

(a)

Figure 4: Shared register overhead

� scenario 1 (�gure 4 (a)) : Red edges e1 and
e5 are assigned to dedicated registers r1 and r2,
respectively. This results in two dedicated regis-
ters and zero shared registers for the task with a
context switch overhead of two registers.

� scenario 2 (�gure 4 (b)): Red edges e1 and
e5 are bound to dedicated register r1. The green
edges e2, e3 and e4 are bound to shared registers
r2 and r3. This results in one dedicated register
and two shared registers with a context switch
overhead of three registers.

Scenario 1 is superior to scenario 2 if all other tasks
in the system do not require shared registers. Sce-
nario 2 is superior to scenario 1 if at least one of the
remaining tasks uses more than two shared registers.

Based on these observation it is clear that both the
shared and dedicated registers must be considered in
an integrated manner to optimize the context switch
overhead.

Re�nePreemptionPoints (T; P) f
1: for each ti 2 T f
2: for (j 0; j <j P j; j++) f
3: R[i][j] PreemptionContextSynthesis(Ei ; P);
4: p pk s.t. NumberOfEdges(pk) is

maxpl2P NumberOfEdges(pl) and
MaxPreemptionLatency(P � fpkg) � �i;

5: if (p = �) break;
6: P P � fpg; /* Prune a preemption point */

g
g

7: PCCostbest infinite;
8: while ((C GenerateCon�guration()) 6= �) f
9: PCCost PreemptionContextCost(R;C);
10: if (PCCost < PCCostbest)

PCCostbest PCCost;
g
g

Figure 5: Algorithm for preemption point re�nement -
For each task ti in task set T , Ei is the set of edges, �i
is the input latency, and �i is the preemption latency.

For each task, we start from the preemption point sets
generated by the insertion step. We then generate
a list of candidate preemption point sets by pruning
preemption points with large context switch overhead
(steps 2-6 in Re�nePreemptionPoints() in �gure
5). Both dedicated and shared registers are used to
compute the context switch overhead. Since the peak
usage of shared registers cannot be known a priori,
edges are bound to registers (using PreemptionCon-
textSynthesis()) to evaluate the context switch over-
head, exactly. This pruning technique is possible be-
cause for each task, preemption point insertion usually
inserts more preemption points than are necessary. Fi-
nally, the best preemption point set one for each of
the tasks is obtained by using the context switch cost
function given by equation 1. This is summarized in
steps 7-10.
Consider a multi-task VLSI system implementing
three tasks, t1; t2; t3 shown in �gure 6. Following the
preceding steps, task t1 has two candidate preemption
point sets (PPS) with context switch overheads (CSO)
(3, 4) and (2, 5). Similarly, tasks t2 and t3 have four
and three preemption point sets, respectively. The
context switch overhead for each preemption point set
is given as the two-tuple, (# of dedicated registers, #
of shared registers). Selecting preemption point set 2
for t1, preemption point set 4 for t2 and preemption
point set 3 for t3 will result in a context switch cost
of (2 + 2 + 1) + max (5, 7, 5) = 12. The context
switch cost of selecting preemption point set 2 for t1,
preemption point set 3 for t2 and preemption point set
2 for t3 is (2 + 3 + 1) + max (5, 5, 5) = 11. From
among the 2 � 4 � 3 = 24 con�gurations, this has the
lowest context switch overhead.

36

t1 t2 t3
PPS CSO PPS CSO PPS CSO
1 (3, 4) 1 (5, 4) 1 (2, 4)
2 (2, 5) 2 (4, 5) 2 (1, 5)

3 (3, 5) 3 (1, 5)
4 (2, 7)

Figure 6: Candidate preemption point sets for tasks
t1; t2 and t3

3.3 Preemption Context Synthesis
The optimization problem associated with preemption
context binding can be de�ned as:
Given a scheduled task and a set of preemption points,
bind the edges to the registers so that (i) the red edges
are bound to dedicated registers, and (ii) the total num-
ber of registers is minimized.

PreemptionContextSynthesis (E;P) f
1. Classify edges into red and green
2. Bind red edges to dedicated registers
3. Bind green edges to dedicated or shared registers
g

(a)
Classify (E;P) f
Red �; Green E;
foreach e 2 E
foreach p 2 P
if (lifetime of e overlaps p) f
Green Green � feg; Red Red [feg; g

g
(b)

Bind (E) f
repeat f
e ek s.t. j ek:nbr j is maxei2E j ei:nbr j;
e:reg min r s.t. r 6= n:reg 8n 2 e:nbr;
g until ((E E � feg) 6= �);
g

(c)

Figure 7: Algorithms for preemption context synthesis

The algorithm, outlined in �gure 7, minimizes the
number of dedicated registers �rst and then minimizes
the number of shared registers. Initially, the algorithm
groups the edges into red and green edges using Clas-
sify (). Then the red edges are bound to dedicated
registers. Finally, the green edges are bound. The
ordering is important since while green edges can be
bound to either the dedicated or the shared registers,
red edges can only be bound to dedicated registers.
A graph coloring heuristic Bind () (outlined in �g-
ure 7 (c)) is used for binding. The edge with the
largest number of bound neighbors (nbr) is selected
and bound to a register (reg) which is not bound to
any of its neighbors.

4 Experimental Results
Micro-preemption synthesis techniques proposed in
this paper were validated on a set of DSP, video, con-
trol and communication applications. The selected
applications span a wide range of complexities in com-
putational structures and include Arai's fast DCT

algorithm (ARAI), decimate-by-four wave digital �l-
ter (DECBY4), four-state linear controller (FSLC),
Winograd's DFT for N = 8 (FFT8), digital wavelet
transform (WAVELET) and ninth degree bireciprocal
WDF with Butterworth response (WDF9). Synthesis
modules for hardware mapping and layout generation
from HYPER high level synthesis system were used to
complete the synthesis trajectory.

4.1 Register Overhead Evaluation

multi-task allocation # of registers

VLSI system + - * 0-p 1-p all-p

fARAI, FFT8, 2 2 1 64 65 86

WAVELETg 2% 34%

fFIR20, VETT, 2 2 2 81 88 105

VOLTERRAg 9% 30%

fDECBY4, FSLC, 2 3 2 119 134 170

NC, WANGg 13% 43%

fWDF7, WDF9, 2 4 2 62 80 91

WDFBg 29% 47%
fDIF, LDI LP, 2 2 1 40 54 68

WDF5g 35% 70%

fADAPT, LEE, 2 2 2 57 79 92

CASCADEg 39% 61%

Table 1: Register overhead associated with micro-
preemption

The results of six multi-task VLSI systems are sum-
marized in table 1. The �rst column shows the appli-
cations implemented in each system. The next three
columns summarize the hardware allocation. The last
three columns give the number of registers for the case
when no preemption points are inserted (0-p), when
one preemption point is inserted (1-p), and when pre-
emption points are inserted at all clock cycles (all-p).
Using the 0-p case as the base line, the register over-
head for the 1-p case varies from 2% to 39%. At the
other extreme, the register overhead for the all-p case
varies from 30% to 70%.

area (mm2) over

multi-task VLSI system 0-p all-p head

fARAI, FFT8, WAVELETg 40.8 43.2 6%

fFIR20, VETT, VOLTERRAg 94.2 98.0 4%

fDECBY4, FSLC, NC, WANGg 84.6 90.6 7%
fWDF7, WDF9, WDFBg 90.9 96.1 6%

fDIF, LDI LP, WDF5g 28.4 31.4 11%

fADAPT, CASCADE, LEEg 50.3 54.4 8%

Table 2: Area overhead associated with micro-
preemption

We completed the synthesis trajectory by passing
these designs through the hardware mapping and lay-
out synthesis phase. The area overhead for the six
designs using actual layouts are summarized in table
2. The areas are reported for the 0-p case and the
all-p case. Again using the 0-p case as the basis, the
area overhead for the all-p case varies from 4% to 11%
as shown in the last column.

37

When compared to the background memory based
schemes, the proposed scheme does not need (i) ad-
ditional ports of the register �les which are used to
save/restore data to/from the background memories
without stalling currently running task, (ii) additional
buses to interconnect the register �les to the back-
ground memories, and (iii) additional control logic to
compute memory addresses. Since the preemption
requests can be serviced in parallel without stalling
the execution of the tasks, there is no performance
penalty.
As the preemption latency increases, the number of
dedicated registers decreases, the number of shared
registers increases, and the total number of registers
decreases monotonously. Finally, the number of coef-
�cient registers is invariant to the preemption latency.

4.2 Register Transfer Level Analysis

+

16

-

16

+

16

*

31

-

16

(a) preemption latency is 75% of the input latency.

+

16

-

16

+

16

*

31

-

16

(b) preemption latency is 25% of the input latency.

Constant SharedDedicated

Figure 8: Microarchitecture for the multi-task VLSI
system implementing fARAI, FFT8, WAVELETg for
two preemption latencies.

The microarchitecture with preemption points for the
multi-task VLSI system implementing fARAI, FFT8,
WAVELETg are shown in �gure 8. Registers in the
register �les are classi�ed as one of three types by us-
ing di�erent gray levels as shown in the legend in �gure
8. The number of registers increases by 15% (from 73
to 84) as the preemption latency decreases by 50%.
However, since there is no interconnect overhead, the
increase in the total chip area is very small.

5 Conclusions
We presented techniques and algorithms to incorpo-
rate micro-preemption constraints during multi-task
VLSI system synthesis. The area overhead of the

proposed scheme is under 12%. We have also im-
plemented a controller based scheme to eliminate the
performance degradation by (i) partitioning the task
states into critical sections, (ii) executing critical
sections and (iii) preserving atomicity by rolling for-
ward to the end of the critical sections on preemption.

References
[1] D.W. Anderson, F.J. Sparacio, and F.M. Tomasulo,

\The IBM System/360 Model 91: Machine philoso-

phy and instruction-handling," IBM Journal, 11(1),
pp. 8-24, 1967.

[2] W.W. Hwu and Y.N. Patt, \Checkpoint repair for

high performance out-of-order execution machines,"

IEEE Trans Comp (36)12, pp. 1496-1514, 1987.
[3] G.D. Hillman, \DSP56200: An Algorithm-Speci�c

Digital Signal Processor Peripheral", Proc IEEE,

75(9), pp. 1185-1191.
[4] E. A. Lee and D. C. Messerschmitt, \Static Schedul-

ing of Synchronous Data
ow Programs for Digital

Signal Processing", IEEE Trans on Comp, 36(1), pp.
24-36, 1987

[5] G.J. Lipovsky, M. Malek, \Parallel Computing: The-

ory and Comparison", John Wiley.
[6] J.E. Smith and A.R. Pleszkun, \Implementing pre-

cise interrupts in pipelined processors," IEEE Trans

ComP, 37(5), pp. 562-273, May 1988.
[7] M. Gokhale, et al., \SPLASH: A Recon�gurable Lin-

ear Logic Array", ICPP, 1990.
[8] M. C. McFarland and A. C. Parker and R. Cam-

posano, \The high-level synthesis of digital systems",
Proc IEEE, 78(2), pp. 301-318, 1990.

[9] G.S. Sohi, \Instruction issue logic for high-

performance, interruptible, multiple functional unit,

pipelined computers," IEEE Trans Comp, 39(3), pp.
349-359, 1990.

[10] J. Rabaey, et al., \Fast Prototyping of Data Path In-

tensive Architectures," IEEE Design & Test, 8(1), pp.
40-51, 1991

[11] R.J. Baron and L. Higbie, Computer Architecture

Case Studies, Addison-Wesley, pp. 234-237, 1992.
[12] A. El Gamal, J. Rose, A. Sangiovanni-Vincentelli,

\Synthesis Methods for Field Programmable Gate Ar-

rays", Proc. of IEEE, 81(7), pp. 1013-1029, 1993.
[13] A.K. Yeung, J.M. Rabaey, \A 2.4 GOPS data-driven

recon�gurable multiprocessor IC for DSP", ISSCC,

pp. 108-109, 1995.
[14] K. Kim, R. Karri and M. Potkonjak, \Heteroge-

neous Built-In Resiliency of Application Speci�c Pro-

grammable Processors," Proc. of Intl Conf on CAD,

pp. 406-411, Nov 1996.
[15] D. Mosberger, P. Druschel and L. Peterson, \Im-

plementing Atomic Sequences on Uniprocessors Us-

ing Rollforward," Software-Practice and Experience,

26(1), pp. 1-23, Jan 1996.
[16] K. Kim, R. Karri and M. Potkonjak, \Synthesis of Ap-

plication Speci�c Programmable Processors," Proc. of

34th DAC, pp. 353-358, Jun 1997.

38

