
Active Leakage Power Optimization for FPGAs

Jason H. Anderson†,‡, Farid N. Najm†, and Tim Tuan�

†ECE Department, University of Toronto, Toronto, ON, Canada
‡Xilinx Toronto Development Centre, Toronto, ON, Canada

�Xilinx Research Labs, San Jose, CA, USA

janders@eecg.toronto.edu, f.najm@utoronto.ca, tuan@xilinx.com

ABSTRACT
We consider active leakage power dissipation in FPGAs and
present a “no cost” approach for active leakage reduction.
It is well-known that the leakage power consumed by a
digital CMOS circuit depends strongly on the state of its
inputs. Our leakage reduction technique leverages a fun-
damental property of basic FPGA logic elements (look-up-
tables) that allows a logic signal in an FPGA design to be
interchanged with its complemented form without any area
or delay penalty. We apply this property to select polarities
for logic signals so that FPGA hardware structures spend
the majority of time in low leakage states. In an experi-
mental study, we optimize active leakage power in circuits
mapped into a state-of-the-art 90nm commercial FPGA. Re-
sults show that the proposed approach reduces active leak-
age by 25%, on average.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids

General Terms
Design, Algorithms

Keywords
Field-programmable gate arrays, FPGAs, power, leakage,
optimization, low-power design

1. INTRODUCTION
Trends in technology scaling make leakage power an in-

creasingly dominant component of total power dissipation.
Leakage power has two main forms in modern IC processes:
subthreshold leakage and gate leakage. Subthreshold leakage
power is due to a non-zero current between the source and
drain terminals of an OFF MOS transistor. With each pro-
cess generation, supply voltages are reduced and transistor
threshold voltages (VTH) must also be reduced to mitigate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’04, February 22-24, 2004, Monterey, California, USA.
Copyright 2004 ACM 1-58113-829-6/04/0002 ...$5.00.

performance degradations. Reducing VTH leads to an ex-
ponential increase in subthreshold leakage. Gate leakage
on the other hand is due to tunneling current through the
gate oxide of an MOS transistor. In modern IC processes,
gate oxides are thinned to improve transistor drive capabil-
ity, which has led to a considerable increase in gate leakage.
Leakage power is a growing concern in CMOS design and
a recent work suggests that it may constitute over 40% of
total power at the 70nm technology node [8].

Field-programmable gate arrays (FPGAs) are a popular
choice for digital circuit implementation because of their
growing density and speed, short design cycle and steadily
decreasing cost. Several recent works have studied FPGA
power consumption [18, 21, 4] and have shown that the
power consumed by the largest FPGA devices is increasing,
with such devices now consuming Watts of power [21]. These
prior works have been mainly concerned with dynamic power
consumption (due to logic transitions on the signals of a cir-
cuit) and suggest leakage power to be a small component
of total power. However, these analyses have been based
on IC technologies having feature sizes of 0.15µm or larger,
making them somewhat out of step with today’s state-of-
the-art FPGAs, which are fabricated in sub-100nm technol-
ogy [25]. The programmability of FPGAs implies that more
transistors are needed to implement a given logic circuit, in
comparison with custom ASIC technologies. Leakage power
is proportional to total transistor count and consequently,
leakage optimization will likely be a key design objective in
future FPGA technologies. Reducing the power consump-
tion of FPGAs is beneficial as it lowers packaging/cooling
costs, improves reliability and enables FPGA usage in low
power applications, such as mobile electronics.

Unlike ASICs, an FPGA circuit implementation uses only
a fraction of the FPGA’s resources. Leakage power is dissi-
pated in both the used and the unused part of the FPGA.
Prior work on leakage optimization differentiates between
active mode and sleep (standby) mode leakage power. Stand-
by leakage power is that consumed in circuit blocks that are
temporarily inactive and that have been put into a special
“sleep” state, in which leakage is minimized. The sleep con-
cept is commonly used for leakage power reduction in the
ASIC domain; however, support for a sleep mode has yet
to appear in commercial FPGAs. Active leakage power on
the other hand is that consumed in circuit blocks that are
“awake” (blocks that are in use). The absence of sleep mode
support in current FPGAs implies that at present, all leak-
age power dissipated in the used part of an FPGA can be
considered active leakage.

33

In this paper, we focus on optimizing active leakage power
dissipation in FPGAs. We illustrate how the leakage power
of typical FPGA hardware structures depends strongly on
the state of their inputs. We then present a novel leak-
age reduction approach that leverages a property of basic
FPGA logic elements that allows either polarity of a logic
signal to be used, without any area or delay penalty and re-
quires no modifications to the underlying FPGA hardware.
We intelligently choose polarities for signals in a way that
places hardware structures in their low leakage states. To
our knowledge, no prior work has considered active leakage
power optimization in FPGA technology. The paper is or-
ganized as follows: In Section 2, we discuss related work
on leakage optimization. Section 3 describes typical FPGA
hardware structures and studies their leakage power char-
acteristics. Our approach to leakage reduction is described
in Section 4. In Section 5, we validate our approach ex-
perimentally by applying it to optimize leakage in a 90nm
commercial FPGA. Conclusions are offered in Section 6.

2. LEAKAGE POWER OPTIMIZATION
In this section, we summarize a few of the important leak-

age reduction techniques used in ASICs and microproces-
sors. A more detailed overview can be found in [19].

Several recent works have considered standby leakage power
optimization. In [2, 20], the authors introduce high thresh-
old sleep transistors into the N-network (or P-network) of
CMOS gates. Sleep transistors are ON when a circuit is
active and are turned OFF when the circuit is in standby
mode, effectively limiting the leakage current from supply
to ground. A different approach to leakage reduction that
is related to our own is based on the fact that a circuit’s
leakage depends on its input state. In [6, 1], a specific input
vector is identified that minimizes leakage power in a circuit;
the vector is then applied to circuit inputs when the circuit
is placed in standby mode. This idea requires only minor
circuit modifications and has been shown to reduce leakage
by up to 70% in some circuits [1].

Active leakage reduction has also been addressed in the lit-
erature. One approach performs dynamic VTH adjustment
based on system workload [11, 15]. The body effect is used
to raise transistor VTH when high system throughput is not
required and the circuit can be slowed down. Such body
bias methods can also be used for standby leakage power
reduction [9]. Other circuit-level techniques include the use
of multi-threshold (MT) CMOS [22, 24], in which low-VTH

transistors are used in delay critical paths and high-VTH

transistors are used in non-critical paths. Considerable leak-
age power reductions are possible, as there are usually few
delay critical paths. Another popular technique is to replace
individual transistors in gates with “stacks” of transistors in
series [16, 7, 8]; transistor stacks leak less than individual
transistors when in the OFF state. A related approach is
to use transistors with longer channel lengths, which are
known to have better leakage characteristics [19]. Note that
the leakage improvements offered by the techniques men-
tioned here do not come for free – each has an associated
cost, impacting circuit area, delay, or fabrication cost.

3. FPGA HARDWARE STRUCTURES
Before describing our leakage reduction method, we re-

view the circuit structures that are common to current FP-

4-LU
T D FF

clk

S
S
S
S

S

f1

f2

f3

f4

...

f1 f2 f3 f4

SRAM cell

a) logic block

b) 4-LUT

M
U

X

M
U

X

Figure 1: FPGA logic block.

i1

i2

i3

in

S S S...

config

M
U

X BUF

Figure 2: Routing switch.

GAs and study their leakage characteristics.
FPGAs consist of an array of programmable logic blocks

that are connected through a programmable interconnec-
tion network. Most commercial FPGAs use 4-input look-up-
tables (4-LUTs) as the combinational logic element in their
logic blocks. 4-LUTs are small memories that can imple-
ment any logic function having no more than 4 inputs. An
abstract view of an FPGA logic block is shown in Fig. 1(a),
comprising a 4-LUT along with a flip-flop (flip-flop can be
bypassed). Fig. 1(b) shows the internal details of a 4-LUT.
16 SRAM cells hold the truth table for the logic function
implemented by the LUT. The LUT inputs (labeled f1-f4)
select a particular SRAM cell whose content is passed to the
LUT output. Note that logic blocks in commercial FPGAs
contain clusters of LUTs and flip-flops. For example, a logic
block in the Xilinx r© VirtexTM-II PRO FPGA contains 8
LUTs and 8 flip-flops [26].

Connections between logic blocks in an FPGA are formed
using a programmable interconnection network, composed
of variable length wire segments and programmable rout-
ing switches. A typical FPGA routing switch is shown in
Fig. 2 [13, 14]. It consists of a multiplexer, a buffer and
SRAM configuration bits. The multiplexer inputs (labeled
i1-in) connect to other routing conductors or to logic block
outputs. The buffer’s output connects to a routing conduc-
tor or to a logic block input. The programmability of an
FPGA’s interconnection fabric is realized through SRAM

34

i1

i2

i3

i4

i1

i2

i3

i4

a) decoded multiplexer b) encoded multiplexer

s1

s2

s3

s4

s1 s2s1s1 s2 s2

s1

s1

s1

s1

s2

s2

SRAM cell

Figure 3: Multiplexer implementations.

cells in the configuration block (labeled “config” in Fig. 2).
The SRAM cell contents control which input signal is se-
lected to be driven through the buffer.

The multiplexers in FPGA interconnect and LUTs are
typically implemented using NMOS transistor trees [13],
such as those shown in Fig. 31. The figure shows two possi-
ble implementations of a 4-to-1 multiplexer. Fig. 3(a) shows
a “decoded” multiplexer, which requires four configuration
SRAM cells if used in an FPGA routing switch. Input-to-
output paths through this decoded multiplexer consist of a
single NMOS transistor. Fig. 3(b) shows an “encoded” mul-
tiplexer that requires only two configuration SRAM cells,
though has larger delay as its input-to-output paths con-
sist of two transistors in series. In larger multiplexers, a
combination of the designs shown in Fig. 3 is also possible,
allowing one to trade-off area for delay or vice-versa.

We performed SPICE simulations (at 110◦C) to measure
the leakage power of the multiplexers in Fig. 3. Our sim-
ulations were conducted using BSIM4 SPICE models for a
1.2V 90nm commercial CMOS process. We assigned values
to the select signals of the multiplexers so that input i1 was
passed to the multiplexer output and then simulated all 16
possible input vectors.

Fig. 4 shows the multiplexer leakage power results. A ver-
tical bar illustrates the leakage for each input vector. From
Fig. 4, we observe that leakage power in the multiplexers
is highly dependent on input state. For both multiplexers,
the highest leakage occurs when logic 0 appears on input i1
(the input whose signal is passed to the output) and logic 1
appears on all other inputs; the lowest leakage occurs when
all inputs are logic 1. For the decoded multiplexer, there
is a 13.7X difference in leakage power between the highest
and lowest leakage states; for the encoded multiplexer, the
leakage power difference is 14.2X. In addition to the leak-
age for each input vector, Fig. 4 shows the average leakage
power consumed when the output of the multiplexer is a
logic 1 (solid horizontal line) and when the output of the
multiplexer is a logic 0 (dashed horizontal line).

Observe that for both multiplexers in Fig. 3, the aver-
age leakage for passing a logic 1 to the multiplexer output
is substantially smaller than the average leakage for passing
logic 0. There are several reasons for this: First, when logic 1
(VDD) is applied to the drain terminal of an ON NMOS de-
vice, a “weak 1” (≈ VDD−VTH) appears at the source termi-

1Note that full CMOS transmission gates are generally not
used to implement multiplexers in FPGAs because of their
larger area and capacitance [12].

0

10

20

30

40

50

60

00
00

:

00
01

:

00
10

:

00
11

:

01
00

:

01
01

:

01
10

:

01
11

:

10
00

:

10
01

:

10
10

:

10
11

:

11
00

:

11
01

:

11
10

:

11
11

:

Input vector (i1i2i3i4)

P
o

w
er

 (
n

W
)

0

10

20

30

40

50

60

00
00

:

00
01

:

00
10

:

00
11

:

01
00

:

01
01

:

01
10

:

01
11

:

10
00

:

10
01

:

10
10

:

10
11

:

11
00

:

11
01

:

11
10

:

11
11

:

Input vector (i1i2i3i4)
P

o
w

er
 (

n
W

)

decoded multiplexer

encoded multiplexer

average power
when output = 0

average power
when output = 1

Figure 4: Leakage power for multiplexers.

nal. The weak 1 leads to reduced subthreshold leakage power
in other multiplexer transistors that are OFF, versus when
the potential difference across an OFF transistor is VDD (see
Fig. 5(a)). This is partly due to the effect of drain-induced
barrier lowering (DIBL) in short-channel transistors, which
causes threshold voltage to decrease (subthreshold current
to increase) when drain bias is increased [19].

In addition to affecting subthreshold leakage, another sig-
nificant source of leakage power variation is due to a reduc-
tion in gate oxide leakage when the multiplexer is passing
logic 1 to its output. Gate leakage is a considerable frac-
tion of total leakage in 90nm technology. Gate leakage in
an ON NMOS transistor depends significantly on the ap-
plied bias [5]. When an NMOS transistor is passing logic 0,
the voltage difference between the gate and source is VDD

(that is, VGS = VDD) and the transistor is in the strong
inversion state (see Fig. 5(b)). Conversely, when the tran-
sistor is passing logic 1, the transistor is in the threshold
state (VGS ≈ VTH) (see Fig. 5(c)). Gate oxide leakage in
the threshold state is typically several orders of magnitude
smaller than in the strong inversion state [5]. This property
makes it preferable to pass logic 1 (versus logic 0) from the
gate leakage perspective.

Another important circuit element in FPGAs is a buffer
since they are present throughout the routing fabric and
also within logic blocks. We simulated the two stage buffer
shown in Fig. 6 and measured its leakage power in both in-
put states. The buffer’s transistors were sized to achieve
equal rise and fall times, and the second stage was chosen to
be 3 times larger than the first stage. Leakage power results

35

VDD

GND

GND

VDD

~= VDD - VTH

subthreshold leakage

VDD

GND GND

gate leakage

VDD

VDD ~= VDD - VTH

gate leakage

a) reduced subthreshold leakage

b) high gate leakage

c) low gate leakage

Figure 5: Examples of transistor leakage states.

Input Power (nW)
0 56.1
1 46.6

Figure 6: Buffer implementation and leakage power.

for the buffer are shown on the right side of Fig. 6. Al-
though the difference in power between the two input states
is not as pronounced as the differences observed for the mul-
tiplexers, we see that about 20% more power is consumed
when the buffer’s input is a 0 versus when its input is a 1.
The dependence of the buffer’s leakage on input state is a
result of NMOS and PMOS devices having considerably dif-
ferent leakage characteristics (both gate oxide leakage and
subthreshold characteristics), and the dependence of leakage
on transistor size.

4. ACTIVE LEAKAGE POWER
OPTIMIZATION

In Section 3, we observed that in a modern commercial
CMOS process, the leakage power dissipated by elementary
FPGA hardware structures, namely buffers and multiplex-
ers, is typically smaller when the output and input of these
structures is logic 1 versus logic 0. Our active leakage power
optimization approach works by choosing a polarity for each
signal in an FPGA design, in a manner that enables signals
to spend the majority of their time in the logic 1 state (the
logic state associated with low leakage power). A fundamen-
tal property of a digital signal is its static probability, which
is the fraction of time a signal spends in the logic 1 state. A

signal with static probability greater than 0.5 spends more
than 50% of its time at logic 1. Our approach alters signal
polarity to achieve high static probability for most signals.
Unlike in ASICs, signal polarity inversion in FPGAs can be
achieved without any area or delay penalty, by leveraging a
unique property of the basic FPGA logic element.

Fig. 7 illustrates how a signal’s polarity can be reversed in
an FPGA. Part (a) of the figure shows a logic circuit having
two AND gates and an exclusive-OR gate. Part (b) of the
figure shows the circuit mapped into 2-input LUTs. The
memory contents are shown for each LUT and represent the
truth table of the logic function implemented by the LUT’s
corresponding gate. In this example, the aim is to invert
the signal int, so that its complemented rather than its true
form is produced by a LUT and routed through the FPGA
interconnection network. There are two steps to inverting a
signal. First, the programming of the LUT producing the
signal must be changed. Specifically, to invert the signal,
all of the 0s in its driving LUT must be changed to 1s and
the 1s must be changed to 0s. Second, the programming
of LUTs that are fanouts of the inverted signal must be
altered to “expect” the inverted form. This is achieved by
permuting the bits in the SRAM cells of such “downstream”
LUTs. Part (c) of Fig. 7 shows the circuit after the signal
int is inverted. The permutation of bits in the inverted sig-
nal’s fanout LUT is shown through shading: the contents of
the top two SRAM cells in the downstream LUT are inter-
changed with the contents of the bottom two SRAM cells in
the LUT. Through this method, signal inversion in FPGAs
can be achieved by simply re-programming LUTs.

Our approach to leakage power optimization is shown in
Fig. 8. The input to the algorithm is an FPGA circuit as
well as static probability values for each signal in the circuit.
We iterate through the signals and select those signals hav-
ing static probability less than 0.5. Such signals spend most
of their time in the logic 0 state and thus, they are candi-
dates for inversion. For each candidate signal, we first must
check if it can be inverted. The majority of signals in FPGA
designs are produced by LUTs and drive LUTs and all such
signals can be inverted using the approach shown in Fig. 7.
In a commercial FPGA however, in addition to LUTs, other
types of hardware structures are usually present. Some sig-
nals driven by or driving non-LUT structures may also be
invertible, since FPGA vendors frequently include extra cir-
cuitry for programmable inversion. However, some signals
may not be invertible, such as those driving special control
circuitry or entering the FPGA device from off-chip. If we
find that a candidate signal is invertible, we invert it by re-
programming the FPGA configuration memory accordingly.
After processing all signals, the output of our algorithm is a
modified design, having signals that spend the majority of
their time in the logic state favourable to low leakage power.

Altering the polarity of a signal n with static probability
P (n), changes the signal’s probability to 1 − P (n). There-
fore, for signals having static probability close to 0.5, the
benefits of inversion on leakage optimization are minimal,
since the static probability of such signals remains close to
0.5 after inversion. Low leakage power can be achieved when
signals have static probability close to 0 or 1. The question
that arises then is whether the signals in real circuits exhibit
this property. Below, we show that it is unlikely that the
majority of signals in circuits will have probabilities close to
0.5, which bodes well for our leakage optimization approach.

36

0
0
0
1

0
0
0
1

0
1
1
0

a b

c d

int
1
1
1
0

0
0
0
1

1
0
0
1

a b

c d

int
a
b

c
d

int

a) original circuit b) 2-LUT implementation c) after signal inversion

Figure 7: LUT circuit implementation; illustration of signal inversion.

function OptimizeLeakage(design, signal static probabilities)

 for each signal n in the design do

 if static_probability(n) < 0.5 then

 if signal n can be inverted then

 invert(n)
 // FPGA is re-programmed; n replaced with n

 return new design

Figure 8: Leakage optimization algorithm.

The average frequency of logic transitions on a (non-clock)
signal n, F (n), can be expressed as a function of the signal’s
static probability [3]:

F (n) = 2 · P (n) · [1 − P (n)] (1)

where F (n) is commonly referred to as signal n’s switching
activity. F (n) ranges from 0 to 0.5 and can be interpreted as
the fraction of clock cycles in which signal n toggles. Note
that (1) is a frequently used approximation that becomes
exact in the absence of temporal correlations in signal n’s
switching activity (n’s values in two consecutive clock cycles
are independent). Solving (1) for P (n), yields:

P (n) =
1 ±�1 − 2 · F (n)

2
(2)

which is plotted in Fig. 9. Observe that P (n) is 0.5 only
when F (n) is 0.5 and that for a fixed decrease in F (n), there
is a change in P (n) towards either 0 or 1. From Fig. 9, we
infer that if the switching activities of the majority of sig-
nals in circuits are not clustered close to 0.5, then the static
probabilities of signals will also not be clustered close to 0.5.
Switching activity in combinational circuits is well-studied.
Prior work by Nemani and Najm found that switching ac-
tivities are generally not clustered around a single value and
that on average, activity decreases quadratically with com-
binational depth in circuits [17]. We can therefore expect
there to be a range of different static probabilities amongst
the signals of a circuit and that “deeper” signals in circuits
will have static probabilities approaching either 0 or 1. This
analysis suggests that for many signals, changing polarity
will have a significant impact on leakage power.

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
ta

tic
 p

ro
ba

bi
lit

y

Switching activity

-
P

(n
)

- F(n)

Figure 9: Static probability versus switching activ-
ity.

5. EXPERIMENTAL STUDY AND
RESULTS

We evaluate the effectiveness of the proposed leakage power
reduction approach by applying it to optimize active leakage
in a state-of-the-art 1.2V 90nm commercial FPGA. An anal-
ysis of the leakage in this FPGA appeared recently in [23].
We first describe our methodology and subsequently we pro-
vide results.

5.1 Methodology
The target FPGA is composed of an array of configurable

logic block (CLBs) tiles, I/Os and other special-purpose
blocks such as multipliers and block RAMs. Smaller versions
of the FPGA contain only the CLB array and I/Os. An em-
bedded version of the FPGA, containing the CLB array only,
is also available for incorporation into custom ASICs. In this
paper, we focus on leakage optimization within the FPGA’s
CLB array, which represents the bulk of the FPGA’s sil-
icon area, especially in smaller devices and the embedded
version. The non-CLB blocks (e.g. block RAMs) are not
unique to FPGAs; leakage optimization in these blocks has
been studied in other contexts.

A CLB tile contains both logic and routing resources. A
simplified view of a CLB is shown in Fig. 10. The logic
resources in a CLB consist of four logic sub-blocks, called
SLICEs. Each SLICE contains two LUTs, two flip-flops as
well as arithmetic and other circuitry. The interconnect con-
sists of variable length wire segments that connect to one
another through programmable, buffered switches similar

37

S
LIC

E
S

LIC
E

S
LIC

E
S

LIC
E

IN
T

E
R

C
O

N
N

E
C

T

LU
T

LU
T

F
F

F
F

CLB

SLICE

Figure 10: Configurable logic block (CLB) tile.

Table 1: Major circuit blocks in target FPGA.

Circuit block Details

IMUX 30-to-1 multiplexer, buffer
OMUX 24-to-1 multiplexer, buffer
DOUBLE 16-to-1 multiplexer, buffer
HEX 12-to-1 multiplexer, buffer
LONG n-to-1 multiplexer, buffer

(n device/orientation dependent)
LUT 16-to-1 multiplexer, in/out buffers
FLIP-FLOP

to that shown in Fig. 2. Table 1 provides further detail on
the major circuit blocks in a CLB tile. The IMUX (input
multiplexer) selects and routes a signal to a SLICE input
pin. The OMUX (output multiplexer) selects and routes
a signal from a SLICE output pin to a neighboring logic
block. Other interconnect blocks are named corresponding
to their length: DOUBLE blocks drive wire segments that
span 2 CLB tiles, HEX blocks drive wires that span 6 CLB
tiles and LONG resources span the entire width or height
of the FPGA. Note that a single CLB tile contains multiple
instances of each of the blocks listed in Table 1.

Fig. 11 shows our leakage optimization and analysis flow.
As mentioned in Section 4, the input to our algorithm is
an FPGA circuit as well as the static probability value for
each of the circuit’s signals. In our experiments, we use 10
large combinational MCNC benchmark circuits and 6 indus-
trial circuits collected from Xilinx customers; the circuits are
listed in Table 2. The MCNC circuits are first synthesized
(from VHDL) using Synplicity’s Synplify Pro tool (ver. 7.0).
Then, the circuits are technology mapped, placed and routed
in the target FPGA using commercial vendor tools. The in-
dustrial circuits are already available in technology mapped
form so only the placement and routing steps are required
for these circuits.

To gather static probability data, the routed circuits were
simulated using either the Synopsys VHDL System Simula-
tor (VSS) or Mentor Graphics’ ModelSIM. The simulators
have built-in capabilities for capturing the fraction of time
a signal spends at logic 1 (i.e. static probability). Since we
do not have access to simulation vectors for the circuits, the
circuits are simulated using 10,000 randomly chosen input
vectors2. In the vector set for each design, the probabil-
ity of each each primary input toggling between successive
vectors is 50%. Note that, given the static probabilities of a

2Clock and control inputs on circuits were presented with
appropriate (non-random) signals.

HDL synthesis (Synplify Pro)

Technology mapping

Placement and routing

F
P

G
A

 v
en

do
r

to
ol

s

MCNC HDL circuit

Simulation (VSS or ModelSIM)

Routed design

Device usage analysis

Static probability data

Power analysis script

Active leakage power for design

Design usage data

S
im

ulation
vectors

C
ircuit block

leakage data
(from

 S
P

IC
E

)

Industrial circuit

Leakage Optimization (Optional)

Static probability data

Figure 11: Leakage analysis flow.

Table 2: Characteristics of benchmark circuits.

Circuit LUTs FFs

alu4 500 0
apex4 1,078 0

cps 524 0
dalu 323 0

ex1010 1,112 0
ex5p 557 0

misex3 257 0
pdc 609 0
seq 1,193 0

spla 229 0
industry1 1,511 2,128
industry2 1,654 1,278
industry3 2,818 368
industry4 2,942 1,262
industry5 8,676 5,507
industry6 4,895 318

circuit’s primary input signals, the static probabilities of the
circuit’s internal signals can be computed using well-known
probabilistic techniques [27]. Thus, simulation is not a re-
quirement for the use of our optimization approach and we
expect that the approach could be incorporated into EDA
tools that automatically perform the proposed leakage opti-
mization.

In our experiments, the total active leakage power, Lactive,
is computed twice for each benchmark circuit, both with and
without the proposed active leakage optimization. Lactive is
defined as the sum of the leakage power in each used circuit
block. By analyzing the FPGA (routed) implementation
solution for a benchmark, we can determine its circuit block
usage, including the signals on the inputs and outputs of
each used circuit block.

We performed SPICE simulations for each type of circuit
block in the FPGA’s CLB tile and captured the leakage
power consumed by each block for each of its possible input
vectors3. Circuit regularity permitted the blocks with many
inputs to be partitioned into sub-blocks which were then

3SPICE simulations conducted at 110◦C using BSIM4 de-
vice models. High temperature simulations were used since
this work concerns active leakage power in the operating
(hot) part of the FPGA.

38

signal X

I2

I1 I2 POWER
 0 0 5
 0 1 6
 1 0 8
 1 1 10

I1

signal Y
B

P(X) = 0.25, P(Y) = 0.33

Lactive(B) = (1 - 0.25)•(1 - 0.33)•5 + (1 - 0.25) •0.33•6 +
 0.25•(1 - 0.33) •8 + 0.25•0.33*10 = 6.1

from
 S

P
IC

E
 sim

ulations

from benchmark’s HDL simulation

Figure 12: Example active leakage power computa-
tion.

simulated independently. We observed the leakage charac-
teristics of the commercial FPGA’s circuit blocks to be sim-
ilar to those of the generic structures studied in Section 3.
Computing the leakage for a used instance of a circuit block
in a benchmark involves combining the power data extracted
from the block’s SPICE simulation with usage data from the
benchmark circuit’s FPGA implementation and static prob-
ability data from the benchmark’s HDL simulation. It is
worth reinforcing that we do not use the power data pre-
sented in Section 3 in our experimental study; rather, we
use power data extracted from SPICE simulations of the
commercial FPGA’s circuit blocks.

Consider a used instance B of a circuit block in a bench-
mark and let �v represent an input vector that may be pre-
sented to block B. Each bit bi in vector �v corresponds to an
input i on block B. Let SB,i represent the signal on input i
of block B in the benchmark’s FPGA implementation. The
static probability of signal SB,i, P (SB,i), is a known quan-
tity, extracted from the benchmark’s HDL simulation. If bit
bi is logic 1 in vector �v, then we define the static probability
of bit bi, PB(bi), to be equal to P (SB,i). On the other hand,
if bi is logic 0 in �v, then PB(bi) is defined to be 1−P (SB,i).
We can compute the probability of vector �v appearing on the
inputs of block B, PB(�v), as the product of its constituent
bit probabilities:

PB(�v) =
�

bi ε �v

PB(bi) (3)

Note that it is entirely possible that some inputs to a used
circuit block may have no signal on them. For example,
some inputs to a routing switch (see Fig. 2) may attach to
conductors that are not used in the FPGA implementation
of a benchmark circuit. Such unused inputs are pulled up
to logic 1 in the target FPGA device.

The average active leakage power for a used circuit block
B, Lactive(B), is computed as a weighted sum of the leakage
power consumed by B for each of its input vectors:

Lactive(B) =
�

�v ε VB

PB(�v) · Lactive(B�v) (4)

where VB represents the set of all possible input vectors for
circuit block B and Lactive(B�v) represents the leakage power
consumed by block B when its input state is vector �v, ob-
tained from SPICE simulations. An example of the leakage
power computation approach for a block with 2 inputs is
shown in Fig. 12.

Leakage power was not a primary design consideration
in the target commercial FPGA. We envision that our ac-
tive leakage reduction approach will be used in conjunction

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

al
u4

ap
ex

4

cp
s

da
lu

ex
10

10

ex
5p

m
is

ex
3

pd
c

se
q

sp
la

in
du

st
ry

1

in
du

st
ry

2

in
du

st
ry

3

in
du

st
ry

4

in
du

st
ry

5

in
du

st
ry

6L
ea

ka
g

e
p

o
w

er
 r

ed
u

ct
io

n
 (

%
)

avg = 25.1%

Figure 13: Leakage power reduction results.

with a future, leakage-optimized FPGA architecture. Con-
sequently, in our experiments, we consider only the active
leakage power and ignore leakage in the unused part of the
FPGA. We view unused leakage as a separate optimization
problem that can be addressed by either powering down the
unused circuit blocks or by applying the standby leakage op-
timization techniques mentioned in Section 2. Further, we
do not include the leakage in the FPGA’s SRAM configu-
ration cells. Since the contents of such cells changes only
during the initial FPGA configuration phase4, their speed
performance is not critical. Thus, the SRAM configuration
cells can be slowed down and their leakage reduced or elimi-
nated using previously-published low-leakage memory tech-
niques (e.g., [10]) or by implementing memory cells with
high-VTH or long channel transistors.

5.2 Results
We begin by comparing the active leakage power con-

sumed in the unoptimized circuits versus that consumed in
the optimized circuits. Fig. 13 shows the percentage reduc-
tion in active leakage power for each circuit. The improve-
ment ranges from 15% to 38%, with the average being 25%.
The power benefits observed are quite substantial, consider-
ing that the proposed optimization has no impact on circuit
area or delay, and requires no hardware changes.

Table 3 gives the detailed power results for each circuit.
Columns 2-4 give power data for the unoptimized circuits.
Columns 2 and 3 present the power dissipated in the in-
terconnect and non-interconnect (labeled “other”) circuit
blocks, respectively. Column 4 presents the total active leak-
age power for each circuit. Columns 5-7 present analogous
data for the optimized circuits. In these columns, percent-
age improvement values (versus the unoptimized circuits)
are shown in parentheses. From Table 3, we see that the pro-
posed optimization is more effective at reducing leakage in
the interconnect versus the non-interconnect circuit blocks.
The non-interconnect blocks include LUTs, flip-flops and
other circuitry. We observed that flip-flop leakage power
was only slightly dependent on whether the flip-flop was
storing a 0 or a 1. Consequently, flip-flop leakage is not
affected substantially by the proposed method. Similarly,
we found that the LUTs in the target FPGA contain ad-
ditional input buffers and other circuitry that make their
leakage less sensitive to their input state. In the unopti-
mized circuits, 30% of active leakage power is dissipated in
the non-interconnect circuit blocks (on average) and 70% in

4FPGA device configuration is typically done only once: at
power-up.

39

Table 3: Detailed active leakage power results.

Unoptimized Optimized

Interconnect Other Total Interconnect Other Total
Circuit (µW) (µW) (µW) (µW) (%) (µW) (%) (µW) (%)

alu4 547 193 740 400 (26.9) 187 (3.1) 587 (20.7)
apex4 1406 415 1821 929 (33.9) 410 (1.2) 1339 (26.5)

cps 604 183 787 395 (34.6) 180 (1.6) 575 (26.9)
dalu 372 126 498 266 (28.5) 125 (0.8) 391 (21.5)

ex1010 1606 427 2033 960 (40.2) 424 (0.7) 1384 (31.9)
ex5p 709 210 919 372 (47.5) 210 (0.0) 582 (36.7)

misex3 254 99 353 190 (25.2) 97 (2.0) 287 (18.7)
pdc 747 235 982 511 (31.6) 230 (2.1) 741 (24.5)
seq 1660 453 2113 1151 (30.7) 441 (2.6) 1592 (24.7)

spla 256 89 345 185 (27.7) 87 (2.2) 272 (21.2)
industry1 2997 1556 4553 1911 (36.2) 1530 (1.7) 3441 (24.4)
industry2 2030 1340 3370 1158 (43.0) 1305 (2.6) 2463 (26.9)
industry3 4394 1573 5967 3538 (19.5) 1558 (1.0) 5096 (14.6)
industry4 6176 1926 8102 3133 (49.3) 1856 (3.6) 4989 (38.4)
industry5 15425 6486 21911 11295 (26.8) 6412 (1.1) 17707 (19.2)
industry6 5553 3524 9077 3407 (38.6) 3464 (1.7) 6871 (24.3)

Average: 25.10%

the interconnect blocks. In the optimized circuits, 40% of
leakage is attributable to non-interconnect blocks.

The results in Table 3 show there to be a wide variation
in improvement across the circuits. This can be partially
explained by considering the distribution of static probabil-
ities amongst a circuit’s signals. The proposed technique
offers the greatest benefit in circuits having many signals
with low static probability, and the least benefit in circuits
having many signals with static probability ≥ 0.5 (these
signals are already in the low leakage state). Note that the
static probability of a signal in a circuit is a function of both
the simulation vector set as well as the circuit’s logic func-
tionality. From Table 3, we see that the best results were
achieved for the circuit industry4, with leakage reduced by
38%. Fig. 14(a) shows a histogram of static probabilities
in this circuit, extracted from the ModelSIM simulation.
The horizontal axis represents static probability; the ver-
tical axis represents the fraction the circuit’s signals having
static probability in a specific range. Observe that for this
circuit, the majority of signals have low static probability,
with more than 60% of signals having probability less than
0.1. We verified that the skewed distribution was not a
result of the simulation vector set failing to adequately ex-
ercise the circuit. In fact, more than 90% of the signals in
circuit industry4 experienced toggling during its simulation.
Fig. 14(b) shows the histogram for the circuit industry3, for
which the worst results were observed. Here we see many
signals having static probability close to 0.5. For such sig-
nals, the static probability remains close to 0.5 after inver-
sion, limiting the benefit of the leakage reduction approach.
Further characterization and control of static probability in
FPGA circuits is a direction for future work.

6. CONCLUSIONS
Trends in technology and voltage scaling have made leak-

age power a first class consideration in digital CMOS design.
In this paper, we studied the leakage power characteristics
of common FPGA hardware structures and found that their

leakage depends strongly on the state of their inputs. We
proposed a novel approach for leakage power reduction in
which polarities are selected for logic signals to place hard-
ware structures into low leakage states as much as possible.
Our technique is based on a unique property of FPGA logic
elements (LUTs) that permits either the true or comple-
mented form of a signal to be generated, without any area
or delay penalty. Experimental results for a 90nm state-
of-the-art commercial FPGA show the proposed approach
reduces active leakage by 25%, on average.

0

10

20

30

40

50

60

70

[0
.0

:0
.1

]

[0
.1

:0
.2

]

[0
.2

:0
.3

]

[0
.3

:0
.4

]

[0
.4

:0
.5

]

[0
.5

:0
.6

]

[0
.6

:0
.7

]

[0
.7

:0
.8

]

[0
.8

:0
.9

]

[0
.9

:1
.0

]

Static probability

%
 o

f s
ig

na
ls

0

10

20

30

40

50

60

70

[0
.0

:0
.1

]

[0
.1

:0
.2

]

[0
.2

:0
.3

]

[0
.3

:0
.4

]

[0
.4

:0
.5

]

[0
.5

:0
.6

]

[0
.6

:0
.7

]

[0
.7

:0
.8

]

[0
.8

:0
.9

]

[0
.9

:1
.0

]

Static probability

%
 o

f s
ig

na
ls

a) circuit industry4

b) circuit industry3

Figure 14: Histograms of static probability.

40

7. REFERENCES
[1] A. Abdollahi, F. Fallah, and M. Pedram. Runtime

mechanisms for leakage current reduction in CMOS
VLSI circuits. In International Symposium on
Low-Power Electronics and Design, pages 213–218,
2002.

[2] M. Anis, S. Areibi, M. Mahmoud, and M. Elmasry.
Dynamic and leakage power reduction in MTCMOS
circuits using an automated efficient gate clustering
technique. In ACM/IEEE Design Automation
Conference, pages 480–485, 2002.

[3] M.A. Cirit. Estimating dynamic power consumption of
CMOS circuits. In IEEE International Conference on
Computer-Aided Design, pages 534–537, 1987.

[4] V. George and J. Rabaey. Low-Energy FPGAs:
Architecture and Design. Kluwer Academic Publishers,
Boston, MA, 2001.

[5] R.S. Guindi and F.N. Najm. Design techniques for
gate-leakage reduction in CMOS circuits. In IEEE
International Symposium on Quality Electronic
Design, pages 61–65, 2003.

[6] J.P. Halter and F.N. Najm. A gate level leakage power
reduction method for ultra-low-power CMOS circuits.
In IEEE Custom Integrated Circuits Conference, pages
475–478, 1997.

[7] M.C. Johnson, D. Somasekhar, L.-Y. Choiu, and
K. Roy. Leakage control with efficient use of transistor
stacks in single threshold CMOS. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems,
10(1):1–5, February 2002.

[8] J. Kao, S. Narendra, and A. Chandrakasan.
Subthreshold leakage modeling and reduction
techniques. In IEEE International Conference on
Computer-Aided Design, pages 141–148, 2002.

[9] A. Keshavarzi, S. Ma, et. al. Effectiveness of reverse
body bias for leakage control in scaled dual Vt CMOS
ICs. In ACM/IEEE International Symposium on Low
Power Electronics and Design, pages 207–211, 2001.

[10] C.H. Kim, J.-J. Kim, S. Mukhopadhyay, and K. Roy.
A forward body-biased low-leakage SRAM cache:
Device and architecture considerations. In
ACM/IEEE International Symposium on Low-Power
Electronics and Design, pages 6–9, 2003.

[11] C.H. Kim and K. Roy. Dynamic Vth scaling scheme
for active leakage power reduction. In IEEE Design,
Automation and Test in Europe Conference, pages
163–167, 2002.

[12] G. Lemieux. Design of interconnection networks for
programmable logic devices. In Ph.D. Thesis.
Department of Electrical and Computer Engineering,
University of Toronto, 2003.

[13] G. Lemieux and D. Lewis. Circuit design of routing
switches. In ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, pages 19–28,
2002.

[14] D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane,
P. Leventis, et. al. The Stratix routing and logic
architecture. In ACM/SIGDA International
Symposium on Field Programmable Gate Arrays,
pages 12–20, 2003.

[15] S.M. Martin, K. Flautner, T. Mudge, and D. Blaauw.
Combined dynamic voltage scaling and adaptive body
biasing for lower power microprocessors under
dynamic workloads. In IEEE International Conference
on Computer-Aided Design, pages 721–725, 2002.

[16] S. Narendra, S. Borkar, V. De, D. Antoniadis, and
A. Chandrakasan. Scaling of stack effect and its
application for leakage reduction. In IEEE
International Symposium on Low-Power Electronics
and Design, pages 195–200, 2001.

[17] M. Nemani and F. N. Najm. High-level area and
power estimation for VLSI circuits. IEEE Transactions
on Computer Aided Design, 18(6):697–713, June 1999.

[18] K.W. Poon, A. Yan, and S. J. E. Wilton. A flexible
power model for FPGAs. In International Conference
on Field-Programmable Logic and Applications, pages
312–321, 2002.

[19] K. Roy, S. Mukhopadhyay, and
H. Mahmoodi-Meimand. Leakage current mechanisms
and leakage reduction techniques in
deep-submicrometer CMOS circuits. In Proceedings of
the IEEE, pages 305–327, February 2003.

[20] T. Sakurai. Minimizing power across multiple
technology and design levels. In IEEE International
Conference on Computer-Aided Design, pages 24–27,
2002.

[21] L. Shang, A. Kaviani, and K. Bathala. Dynamic
power consumption the Virtex-II FPGA family. In
ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 157–164,
2002.

[22] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda, and
D. Blaauw. Duet: An accurate leakage estimation and
optimization tool for dual-Vt circuits. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 10(2):79–90, April 2002.

[23] T. Tuan and B. Lai. Leakage power analysis of a 90nm
FPGA. In IEEE Custom Integrated Circuits
Conference, pages 57–60, 2003.

[24] K. Usami, N. Kawabe, M. Koizumi, K. Seta, and
T. Furusawa. Automated selective multi-threshold
design for ultra-low standby applications. In IEEE
International Conference on Low-Power Electronics
and Design, pages 202–206, 2002.

[25] Xilinx, Inc., San Jose, CA. Spartan-3 FPGA Data
Sheet, 2003.

[26] Xilinx, Inc., San Jose, CA. Virtex II PRO FPGA Data
Sheet, 2003.

[27] G. Yeap. Practical Low Power Digital VLSI Design.
Kluwer Academic Publishers, Boston, MA, 1998.

41

	Main Page
	FPGA04
	Front Matter
	Table of Contents
	Author Index

