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Algorithms in FastStokes and Its Application to
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Abstract—For a wide variety of micromachined devices, de-
signers need accurate analysis of fluid drag forces for compli-
cated three-dimensional (3-D) problems. This paper describes
FastStokes, a recently developed 3-D fluid analysis program. Fast-
Stokes rapidly computes drag forces on complicated structures by
solving an integral formulation of the Stokes equation using a pre-
corrected fast Fourier transform (PFFT)-accelerated boundary
element method (BEM). The specializations of the PFFT algorithm
to the Stokes flow problem are described, and computational
results are presented. Timing results are used to demonstrate that
FastStokes scales almost linearly with problem complexity, can
easily analyze structures as complicated as an entire comb drive
in under an hour, and can produce results that accurately match
measured data.

Index Terms—Boundary element method (BEM), FastStokes,
fluid, microelectromechanical systems (MEMS), simulation,
Stokes flow.

I. INTRODUCTION

N EARLY all of the micromachined devices being devel-
oped for biological applications manipulate gas or liquid,

and for many of these devices, performance optimization
depends critically on understanding fluid forces in very com-
plicated three-dimensional (3-D) geometries [1]. Although
general finite-volume and finite-element fluid flow analysis
programs can perform these analyses, these programs are too
time consuming to be used for design optimization, particularly
for very complicated geometries. In the case of micromachined
devices, faster approaches can be developed by noting that the
fluid flow is primarily Stokes flow and the quantities of interest
are typically drag forces on bodies or structures in fluid.

In this paper, we describe the algorithms used in FastStokes,
a very fast fluid analysis program useful for extracting surface
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forces on very complicated micromachined devices. The Fast-
Stokes program is based on solving an integral formulation
of Stokes equation using a specialized accelerated boundary
element method (BEM). We describe the approach by first
reviewing background material on the integral formulation of
the Stokes equation, the standard BEM discretization, and the
precorrected fast Fourier transform (PFFT)-accelerated itera-
tive algorithm for solving the BEM equations. In Sections III
and IV, we present the main contributions of the paper, starting
with a description of the specializations of the PFFT algorithm
to Stokes flow problem in Section III. In Section IV, we discuss
the singularity in the BEM operators and present a modified
Krylov subspace algorithm for addressing the singularity. In
Section V, we provide several numerical examples and compare
computational results with experimental results to demonstrate
the accuracy and efficiency of FastStokes.

II. BACKGROUND

The FastStokes program numerically solves the incompress-
ible Stokes equation. In this section, we describe the incom-
pressible Stokes equation, which can be derived by assuming
a small Reynolds number in the incompressible Navier–Stokes
equation, and give an integral formulation. We also describe
the basic BEM method for discretizing integral equations and
show how it is as applied to the integral form of Stokes
equation. Finally, we use a simple electrostatics example to give
a brief presentation of the PFFT-accelerated iterative method
for solving BEM equations.

A. Stokes Integral Equations

Fluid flow in which viscous forces dominate over inertial
forces is referred to as a Stokes flow or a creeping flow. The flow
in many micromachined devices, such as air-packaged actuators
or liquid-handling mixers, pumps, and valves, is Stokes flow, as
can be seen by examining the associated Reynolds number. The
Reynolds number is defined as Re = UL/ν, where U is the
velocity, L is the characteristic length, and ν is the kinematic
viscosity of the fluid. Since Re ∝ inertia force/viscous force,
Reynolds number is frequently used in experiments to de-
termine whether viscous or inertial forces dominate. Be-
cause the feature size of many microelectromechanical sys-
tem (MEMS) devices is on the order of a micrometer, the
UL product is small even if the movable parts oscillate at
a reasonably high frequency. For example, consider an air-
packaged resonator oscillating at 10 kHz with an oscillation
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amplitude of 1 µm. Using an air kinematic viscosity at 300 K
of ν = 1.566 ∗ 10−5 m2/s [2], the Reynolds number is Re =
(2π × 104 × 10−6 × 10−6/1.566 × 10−5) ≈ 0.004, and there-
fore the inertial force can be neglected. For structures in liquids,
the kinematic viscosity is much lower because of the higher
density of liquid, but the operating frequencies (or structure
velocities) are commensurately lower than those in air, and so
Reynolds number remains low. Applying the small Reynolds
number assumption to the Navier–Stokes equations yields the
steady Stokes equations

{
−∇P + µ∇2#u = 0
∇ • #u = 0

(1)

where #u is the vector velocity, P is the pressure, and µ is the
dynamic viscosity of the fluid. The surface velocities and forces
satisfy an integral relation

ui(#x) =
3∑

j=1

∫
Gij(#x, #y)fj(#y)ds(#y)

+
3∑

j=1

3∑

k=1

∫
Tijk(#x, #y)uj(#y)nk(#y)ds(#y),

i = 1, 2, 3 (2)

where the domain of integration for the surface integrals is the
union of the surfaces of the structures embedded in the fluid, #x
is any field point, #y is a point on a structural surface, ui(#x) and
fi(#x), i = 1, 2, 3, are the x-, y-, or z-directed surface velocities
and surface forces, respectively, and #n is the surface outward
normal. Green’s functions are given by [3]

Gij = − 1
8πµ

(
δi
j

r
+

x̂ix̂j

r3

)

Tijk = − 3
4π

x̂ix̂j x̂k

r5

r = |#x − #y|, x̂i = xi − yi.

For micromachined devices, the fluid-embedded structures
are either stationary and rigid, or are deforming more slowly
than the fluid response time and can be treated as quasi-
statically rigid. For rigid bodies, the surface integral with kernel
Tijk in (2) is zero [3], greatly simplifying the integral equation.
The FastStokes program makes use of this rigid body assump-
tion and solves the simplified integral equation

ui(#x) =
3∑

j=1

∫
Gij(#x, #y)fj(#y)ds(#y), i = 1, 2, 3. (3)

Integral equation (3) can be used to determine traction and
pressure forces on the surface of a fluid-embedded structure
given velocity boundary conditions. The form of (3) is also
referred to as the single-layer integral equation representation
of the Stokes flow problem [3].

B. Discretization

In order to compute traction and pressure forces using (3),
FastStokes uses a BEM scheme in which the integral equa-
tion is first discretized by subdividing the surface into flat
panels. In particular, the FastStokes program reads an input
file that contains data describing a surface mesh discretization
comprised of flat triangle or quadrilateral panels. The primary
reason for using flat panel discretizations is that they are easy
to generate, but flat panels are also particularly well suited
to micromachined structures as they usually have nearly flat
surfaces.

After surface discretization, a piece-wise constant colloca-
tion method is applied to solve the integral equation in (3). This
collocation method is based on assuming panel force densities
are constant on each panel and that when these panel force
densities are used as the traction forces in (3) they produce
velocities at panel centroids that exactly match the given veloc-
ity boundary conditions. This discretized form of the velocity
integral equation is then

ui(#xl) =
number of panels∑

k=1

3∑

j=1

fj(#ycentroid)

×
∫

panel k

Gij(#xl, #y)dsk(#y), i = 1, 2, 3 (4)

where #xl is the centroid of the lth panel. The panel integrals
in (4) can be evaluated analytically, at least for the case of
polygonal flat panels, using an extension of an approach in [10].
The technique is described in detail in the Appendix.

Equation (4) can be written in matrix–vector form as



U1

U2

U3



 =




G11 G12 G13

G21 G22 G23

G31 G32 G33








F1

F2

F3



 (5)

or

U = GF

where U1, U2, and U3 are the x, y, and z components of the
known panel centroid velocity vectors; F1, F2, and F3 are the
x, y, and z components of the unknown piece-wise constant
panel surface force density vectors; and G is the matrix form
of the Gij integral operator. Given the surface velocities, which
automatically satisfy the continuity equation if all the surfaces
are boundaries of rigid bodies, (5) can be used to compute
surface forces. Finding methods for efficiently solving (5) is
the key to developing a fast solver since the G matrix is not
only dense but also singular. We discuss solving the dense
matrix problem in the next subsection; the singularity problem
is discussed in Section IV.

C. PFFT Algorithm

It is well known that traditional BEM methods are too slow
for large problems because they generate dense linear systems
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that are expensive to form and solve. Very efficient techniques
for handling these linear systems were developed during the
past two decades by combining sparsification techniques with
rapidly converging preconditioned iterative schemes, as first
proposed in [4] and first used for accelerating BEM in general
3-D problems in [5]. As will be described below, such methods
avoid explicitly forming (5) and can be used to reduce the cost
of solving (5) from O(n3) to nearly O(n) operations.

The basic idea behind these accelerated BEM methods fol-
lows from first considering applying an iterative method, like
the Krylov subspace based GMRES algorithm [8], to solve a
dense system like the one in (5). When applied to solving a
generic linear system Ax = b, the qth iteration of a Krylov
subspace method constructs an approximate solution by select-
ing the best weighted combination of the vectors in a qth-order
Krylov subspace

{b, Ab,A2b, . . . , Aqb}.

The q + 1th-order Krylov subspace can be computed from
the qth-order subspace by multiplying a vector by the matrix
A, and since that matrix is dense in the BEM case, computing
matrix–vector products is O(n2) operations and dominates the
cost of iteratively solving BEM equations.

For the case of many BEM matrices, the matrix–vector prod-
ucts can be computed approximately in O(n) or O(n log(n))
time by exploiting the fact that the matrices associated with
BEM have certain properties. For example, nearby panels can
be clustered together when evaluating their contributions to the
potential at distant collocation points. This multiresolution idea
is exploited in methods based on the fast multiple algorithm [6].
Alternatively, the near convolutional structure of the underlying
integral equation can be exploited using the PFFT algorithm
[7]. The FastStokes program uses a modification of the PFFT
algorithm, which is described in more detail below.

The basic PFFT algorithm is easily illustrated using the
single-variable electrostatic problem as an example. In the
simpler electrostatic problem, the integral equation and its
discretized form are

V (#x) =
1

4πε

∫
1

‖#x − #y‖q′(#y)ds(#y)

Vi =
number of panels∑

j=1

Πijqj or V = Πq

with

Πij =
1

4πε
1

area(panel j )

∫

panel j

1
‖#x − #y‖ds(#y) (6)

where Vi is the voltage at the centroid of the ith panel and
V is the voltage vector. The charge density q′ is assumed to
be constant over each panel, and qj is used to denote the net
charge on the jth panel. The matrix element Πij is the potential
at collocation point i due to unit net charge on panel j.

Fig. 1. Four major steps of the PFFT algorithm.

Given a voltage vector V, consider computing the charge
vector q by solving V = Πq using the GMRES algorithm
mentioned above. Since GMRES is a Krylov subspace method,
it will be necessary to compute many matrix–vector products
with the dense matrix Π. The PFFT algorithm can be used
to reduce the cost of computing matrix–vector products by
separating the panel interactions into nearby and far field inter-
actions. Then, the cost-dominant and smoother far field interac-
tions are computed very rapidly by projecting and interpolating
from an underlying uniform grid, and then resolving the grid
interactions using multidimensional FFTs. Note that we say the
far field interaction is smoother because the kernel 1/‖#x − #y‖
varies much more slowly in space when the source point #y
is far from the field point #x. Nearby interactions have very
rapid spatial variations so they are computed directly using an
accurate kernel integration algorithm to avoid large numerical
errors.

The four major steps of the PFFT algorithm are listed below
and are also pictorially illustrated in Fig. 1:

1) project the panel charges onto the FFT grid qgrid =
Wprojectionqpanel;

2) compute grid voltages due to grid charges using
the FFTs. This step can be expressed as Vgrid =
ifft(fft(Πgrid)fft(qgrid));

3) interpolate the grid voltages back to panel voltages, i.e.,
Vpanel = WinterpolationVgrid;

4) directly compute nearby interactions and use the results
to replace the inaccurate nearby parts of the voltages
calculated from the grid.

The cost of the PFFT algorithm is dominated by the cost of
the FFT step, which costs O(n log(n)) operations. The panel
charges are projected onto neighboring grid points using the
sparse projection matrix Wprojection, the elements of which
are calculated by matching the panel moments with the nearby
grid moments. The interpolation step assumes the potential
distribution is smooth, so that panel centroid potentials can
be computed accurately by polynomially interpolating grid
potentials. Since the number of the neighboring grid points
associated with a panel is bounded by a constant, the costs of
the local projection and interpolation operations are only O(n).
Therefore, the total computational cost of the PFFT-accelerated
BEM is O(n log(n)).
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Fig. 2. FFT operations in FastStokes.

III. PFFT FOR THE STOKES PROBLEM

The PFFT algorithm described in the previous section can be
used for both one-variable (scalar) and multivariable (vector)
problems, but the most obvious vector extension is not the most
efficient. In this section, we discuss how to efficiently adapt the
PFFT algorithm to the vector Stokes flow problem.

When applying an iterative method to solve (5), U = GF,
the most expensive computation is forming matrix–vector
products using the dense matrix G. Forming the needed
matrix–vector products can be equivalently considered as com-
puting panel centroid velocities due to a candidate set of panel
forces. In order to use the PFFT algorithm to compute the vector
of centroid velocities, it is most straightforward to consider
using the algorithm to separately compute the nine terms asso-
ciated with the contribution of three force components to three
velocity components.

To see why the straightforward approach is inefficient,
consider the second step of the PFFT algorithm described
in Section II-C. This second step is a convolution computed
using an FFT and an inverse FFT (IFFT). The straightforward
approach to performing this step for the vector case can be
described as

Ugrid
j =

3∑

k=1

IFFT
(
G̃grid

jk × FFT
(
F grid

k

))
. (7)

Note that the formula in (7) requires a total of 18 FFTs and
IFFTs. A more efficient approach that avoids repeating the cal-
culations of FFT(F grid

j ) is to save the result of F̃ gird
j =

FFT(F grid
j ). In addition, only one IFFT is needed for every grid

velocity calculation if the following scheme is used, i.e.,

F̃ grid
j = FFT(F grid

j )

Ugrid
j = IFFT

(
3∑

k=1

(
G̃grid

jk × F̃ grid
j

))

. (8)

Note that using the approach in (8), only six FFT and IFFT
operations are needed for the matrix–vector product calcula-
tion, rather than the 18 FFTs and IFFTs needed using (7). This
idea can be shown schematically in Fig. 2.

In addition to the modification of the transform part of
the PFFT algorithm, there are other optimizations helpful for
Stokes problems. The Stokes integral equation has three ve-
locity components and three force components, but only six
independent kernels, as Gij = Gji. This is a helpful observa-

tion because the FFTs of the grid kernels G̃grid
jk = FFT(Ggrid

jk )
are calculated once and then stored so that they can be used
repeatedly for each matrix–vector product. The projection and
interpolation matrices are also stored, and if polynomial projec-
tion is used, then these matrices are coordinate independent and
only one set is needed [9].

IV. NULL SPACE OF THE SINGULAR INTEGRAL

OPERATORS AND THE MODIFIED GMRES

The fact that only the derivative of pressure arises explicitly
in the Stokes equation implies that any constant pressure can
be added to the solution of the Stokes equation, and therefore
the equation does not have a unique solution. This constant-
pressure zero-velocity solution is a “singular mode” or a null
space vector that does not affect the total forces on a single
rigid body, but the singularity can impact the results produced
by a numerical procedure. One approach to eliminating the null
space is to add an addition operator to the integral equation
that maps the Stokes flow operator’s null space to its defect
in the range [11]. Below, we describe an alternative, one that
removes the null space using a modification of the GMRES
iterative matrix solution algorithm. Our approach is not as
general as the technique in [11], but it fits with the fast solver
methodology and guarantees a null space free solution inde-
pendent of discretization or sparsification errors. Note that the
null space free solution is only useful for computing total body
forces. To correctly compute the detailed force distribution,
the null space contributions must be determined by solving an
additional pressure matching equation [12].

Constant pressure force on the surface of a rigid body gener-
ates zero net body force or torque, and therefore zero velocity.
Consider such a force, denoted as fj , acting on a rigid body.
This force acts only on the surface normal direction of the rigid
body and has a constant magnitude, so it is a multiple of the
surface normal vector for the rigid body, denoted nj . And since
fj generates zero velocity, it must follow that

∫

surface

Gijnjds = 0 (9)

and therefore nj is in the null space of the integral equation.
In general, a problem with m independent bodies will have m
independent null space vectors that correspond to being equal
to the surface normal on one body and zero on the others. The
discretization of an m-body system generates a system equation
U = GF, where G is now the discrete form of the integral
operator with an m-dimension null space given by the outward-
normal vectors of the m objects in the system.

If a Krylov subspace based method is applied to solve U =
GF, then removing the null space of the G matrix can be per-
formed by removing the null space from every Krylov subspace
vector since the final solution is in the Krylov subspace, i.e.,

Krylov Subspace = [U,GU,G2U,G3U, . . .]. (10)

A simple approach to removing the null space is to remove
the orthogonal projection on to the null space from every
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Fig. 3. Convergence of the modified GMRES algorithm.

matrix–vector product computed in the Krylov subspace algo-
rithm. Such an approach guarantees that the null space vectors
will not contaminate any orthogonalization being performed on
the Krylov subspace. This is important because contamination
of the Krylov subspace by the null space can interfere with
convergence. Thus, this modification not only generates a null-
space-free solution but also makes the Krylov subspace algo-
rithm converge faster. To demonstrate this phenomenon, the
GMRES algorithm was applied to solve a system of the form
in (5) generated from a complicated fluid analysis. The conver-
gence of GMRES with and without the null space remover is
shown in Fig. 3, and demonstrates that without the null space
remover the GMRES algorithm stalls.

It is worth noting that when a velocity vector associated
with rigid body motion forms the right-hand side of (5), that
velocity vector must satisfy a divergence-free condition. This
implies that the velocity vector is orthogonal to the integral
equation null space. Orthogonality should guarantee that the
associated Krylov subspace is also null space free and the null-
space remover should be unnecessary. However, since the PFFT
algorithm is used to compute approximates to matrix–vector
products with G, the null space can easily appear and contam-
inate the subspace. Therefore, the null space remover substan-
tially enhances robustness.

V. SIMULATION EXAMPLES

We present three simulation examples in this section to
show the effectiveness of the steady incompressible FastStokes
solver. The first simple sphere example demonstrates that the
fast solver does not interfere with the convergence of the
discretization method. The second and third examples, a comb
drive and a micromirror, are used to demonstrate that the
FastStokes program generates drag results that correlate sur-
prisingly well with measured data.

A. Translating Sphere

For the simple spherical geometry, an analytical solution of
the Stokes equation exists. Given the radius of the sphere R0

Fig. 4. Percentage relative error of the sphere versus the number of panels.

Fig. 5. CPU times of FastStokes and Gauss elimination.

and a constant velocity #U , the drag force on the sphere is

#F = 6πµR0#u. (11)

For this computational experiment, it is assumed that
µ = 1, R0 = 1, Ux = 1, Uy = Uz = 0, and FastStokes is used
to calculate the x-direction drag forces numerically. The red
line in Fig. 4 shows the percentage relative error and clearly
indicates that the error decreases from approximately 2% for
100 panels to 0.004% for 100 000 panels and that decrease
is a straight line when viewed on a log–log plot. The blue
line in Fig. 4 shows the error of total surface area due to
the flat panel discretization. Note that the blue line is parallel
and very close to the red line. This is because the error of
the flow calculation is mainly due to the geometrical error of
using a flat panel discretization, and this geometrical error is
reflected by the error of the total surface area. The CPU times
of using the O(n log(n)) FastStokes solver and the traditional
O(n3) Gaussian elimination method (LU decomposition) are
compared in Fig. 5. If 5000 panels are used, FastStokes is about
3000 times faster than Gaussian elimination. The memory used
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Fig. 6. Memory usage of FastStokes and Gauss elimination.

by Gaussian elimination is O(n2) while that of FastStokes is
much less (about O(n) ∼ O(n1.5)); the comparisons are shown
in Fig. 6. A 500-MHz dual-processor computer running an
Alpha-Linux system is used for the simulations.

B. Comb-Drive Resonator

A lateral comb-drive resonator is shown in Fig. 7. The test
structure was fabricated using the MUMPS process at MCNC
(now Cronos Integrated Microsystems Inc., Research Trian-
gle Park, NC). The dimensions of the resonator are given in
Table I. The movable comb-drive was set into motion in air at
atmospheric pressure using an electrical stimulus to one static
comb-drive. The magnitude and angle of the resulting motions
were measured using the computer microvision technology
[13]. The measured resonant frequency of the later motion is
19.2 kHz and the quality factor is 27.

A discretization using 16 544 panels is shown in Fig. 8. The
lateral direction surface force solution is shown in Fig. 9. Using
the rigid-body assumption and a second-order spring-mass-
damper system as a macromodel, we calculate the damping co-
efficient b from the FastStokes result and then further calculate
the quality factor Q, i.e.,

meff ẍ + bẋ + kx = Felectrostatic

Q =
√

kmeff

b

meff = mm +
12
35

mb +
1
4
mt

= 5.61 × 10−11 kg (12)

where mm and mt are the masses of the movable comb-
drive and the tethers, respectively [13], and mt is the mass
of the connecting truss. Stiffness k can be calculated from
the resonance frequency and the effective mass using k =
(2πf0)2meff = 0.816 N/m. The simulation result is compared
with the experimental result in Table II. The steady incompress-
ible FastStokes solver gave a numerical solution that is very
close to the experimental results, while simple approaches such

Fig. 7. SEM of a lateral resonator.

TABLE I
RESONATOR DIMENSIONS

as using the Couette flow model failed. The convergence is
shown in Fig. 10; the solution is accurate even if a coarse mesh
with 4868 quadrilateral panels is used. The CPU time is shown
in Fig. 11, a very fine discretization with 59 280 panels takes a
little more than an hour’s time.

C. Micromirror

An electrostatically actuated micromirror is simulated using
FastStokes [12]. The micromirror is fabricated and tested at
the Micromachined Product Division of Analog Devices Inc.
(Cambridge, MA). The air-packaged micromirror is the crit-
ical part of an optical switch, and its dynamic performance
is strongly affected by the viscous drag forces. Testing data
have shown that the mirror is heavily damped with a quality
factor of around two in certain designs. Two major modes, the
“mirror only” rotation mode and “mirror + gimbal” rotation
mode, are simulated here. Table III compares the simulation
and experimental results of two different designs.

The simulated and measured quality factors match within
10%. Again, the small differences prove the accuracy of the
FastStokes program. Fig. 12 shows the z-direction force on a
mirror when both mirror and gimbal rotate. Only half of the
mirror is plotted in Fig. 12 in order to show a clear view of the
force distribution. Fig. 13 shows that the simulation solution
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Fig. 8. Surface discretization of the lateral resonator.

Fig. 9. Detailed drag force on a lateral resonator using the incompressible
Stokes model.

TABLE II
COMB-DRIVE RESONATOR SIMULATION AND MEASUREMENT RESULTS

quickly converges as the discretization is refined. Fig. 14 shows
the CPU time. The simulation was finished in less than an hour
when 42 340 panels were used.

VI. SUMMARY

In this paper, we summarized the algorithms in FastStokes,
and in particular described several specializations of the PFFT-
accelerated BEM algorithm to the Stokes flow problem. In addi-
tion, we gave timing results on several examples to demonstrate

Fig. 10. Convergence of the drag forces of comb-drive resonator simulation.

that FastStokes scales almost linearly with problem complexity,
can easily analyze structures as complicated as an entire comb
drive in under an hour, and can produce results that accurately
match measured data.

The techniques in FastStokes have been extended to include
slip boundary conditions as these conditions are used to model
noncontinuum microfluidic effects [14]–[16]. As devices are
scaled, slip effects will become important, but geometries in
current common designs are still so large that the impact of
slip effects on net drag is limited. Future work is on developing
more efficient methods for handling substrate ground planes
and extending these fast fluid solver techniques to unsteady
problems, convection–diffusion problems, cells-in-flow prob-
lems, and noncontinuum problems.

APPENDIX

ANALYTICAL FLAT PANEL INTEGRATION ALGORITHM

Accurate calculation of the elements of G in (5) associated
with nearby interactions is crucial to ensuring the accuracy of
the Stokes flow calculation. Although these nearby terms are
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Fig. 11. CPU times of comb-drive resonator simulation.

TABLE III
QUALITY FACTORS OF THE MICROMIRROR

SIMULATIONS AND MEASUREMENTS

Fig. 12. z-direction force on a micromirror.

few in number, they are large and very sensitive to spatial
variation. The most reliable approach to computing nearby
interactions is to develop analytical formulas for panel integrals
of Stokes kernels. For the FastStokes program, a fast analytical
kernel integration algorithm was developed based on an ex-
tension of the method in [10]. This precise algorithm is given
below.

Local Coordinate System

To simplify the calculations, a local Cartesian coordinate sys-
tem (ξ, η, ζ) is set up so that the panel is in the ξ−η coordinate
plane with the centroid at the origin. Major computations of
the kernel integration are done in the local coordinate system
and the solutions are then transferred back to the global coor-

Fig. 13. Convergence of the micromirror simulation.

Fig. 14. CPU times of micromirror simulation.

dinate system. Transition between the local coordinate system
(ξ, η, ζ) and the global coordinate system (x, y, z) can be ex-
pressed as




ξ
η
ζ





3×1

=




Coordinate

Transformation
Matrix





3×3









x
y
z





3×1

− Centroid









X
Y
Z





3×1

=




Coordinate

Transformation
Matrix





3×3









X ′

Y ′

Z ′





3×1

− Centroid






(A1)

where (X,Y, Z) is the local coordinate of the evaluation point
and (X ′, Y ′, Z ′) is the corresponding global coordinate.

Integration of the Stokes Kernels

In [10], the Gauss–Bonnet theorem was used to show that
the potential due to a constant −4π normal dipole distributed
over the flat panel is given by (A2) at the bottom of the next
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page, where r is the distance between the evaluation point and
a point on the panel; Ri is the distance between the evaluation
point and the ith panel corner; ξi and ηi are the local coordinate
of the ith panel corner; δξi = ξi+1 − ξi, δηi = ηi+1 − ηi; and
ns is the number of corners. Integrating Φ in the direction
of the panel normal yields Ψ, which is the potential due to
−4π monopole distribution over a flat panel. The resulting
formula is

Ψ =
∫∫

1
r
dξ dη

=
ns∑

i=1

[(X − ξi) sin θi − (Y − ηi) cos θi] Qi − ZΦ

and

Qi = log
Ri + Ri+1 + si

Ri + Ri+1 − si
. (A3)

Here, θi is the polar angle of the ith edge and si is the
length of the ith edge. Furthermore, the potentials due to linear,
bilinear, and higher order dipole distributions can be obtained
in a similar way, i.e.,

(
Φx

Φy

)
= Z

∫∫ (
ξ
η

)
dξ dη

r3

=
(

X
Y

)
Φ ± Z

ns∑

i=1

Qi

(
sin θi

cos θi

)

Φxy = XΦy + Y Φx − XY Φ

+ Z
ns∑

i=1

cos θi [viQi sin θi − (Ri+1 − Ri) cos θi]

Φxx = Ψ +
ns∑

i=1

{

(Ri+1 − Ri) cos θi sin θi

+ (ξi + ui cos θi − X)

× sin θi ln
(

Ri+1 − Ui

Ri − ui

)}

ΦY Y = Ψ −
ns∑

i=1

{

(Ri+1 − Ri) cos θi sin θi

− (ηi + ui sin θi − Y )

× cos θi ln
(

Ri+1 − Ui

Ri − ui

)}

(A4)

where (ui,−vi) and (Ui,−Vi) are real and imaginary parts of
two 2-D vectors starting from the ith corner and the (i + 1)th
corner individually; both vectors end at the projection of the
evaluation point on the ith edge.

Transferring Local Solutions Back
to the Global Coordinate System

The above solutions are local solutions that must be trans-
ferred back to the global coordinate system. Here, we offer a
simple approach to the Stokes kernels. Assume that the solu-
tions in the local coordinate system and in the global coordinate
system are defined as

Φlocal
m,n,k =

∫∫
1
r3

(X − ξ)m(Y − η)nZkds

Φglobal
m,n,k =

∫∫
1
r3

(X ′ − x)m(Y ′ − y)n(Z ′ − z)kds

and

[Φ]local
1 =




Φlocal

1,0,0

Φlocal
0,1,0

Φlocal
0,0,1





[Φ]local
2 =




Φlocal

2,0,0 Φlocal
1,1,0 Φlocal

1,0,1

Φlocal
1,1,0 Φlocal

0,2,0 Φlocal
0,1,1

Φlocal
1,0,1 Φlocal

0,1,1 Φlocal
0,0,2





[C] =




Coordinate

Transformation
Matrix





3×3

. (A5)

Then applying coordinate transition equations in (A1) yields

Φglobal
0,0,0 =Φlocal

0,0,0

Ψglobal
0,0,0 =Ψlocal

0,0,0

[Φ]global
1 = [C]T [Φ]local

1

[Φ]global
2 = [C]T [Φ]local

2 [C]. (A6)
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Φ =Z

∫∫
1
r3

dξ dη

=
ns∑

i=1

{

tan−1

(
δηi

[
(X − ξi)2 + Z2

]
− δξi(X − ξi)(Y − ηi)

RiZδξi

)

− tan−1

(
δηi

[
(X − ξi+1)2 + Z2

]
− δξi(X − ξi+1)(Y − ηi+1)

Ri+1Zδξi

)}

(A2)
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