
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006 1209

Exact and Approximate Algorithms for the Extension
of Embedded Processor Instruction Sets

Laura Pozzi, Member, IEEE, Kubilay Atasu, Student Member, IEEE, and Paolo Ienne, Member, IEEE

Abstract—In embedded computing, cost, power, and perfor-
mance constraints call for the design of specialized processors,
rather than for the use of the existing off-the-shelf solutions.
While the design of these application-specific CPUs could be
tackled from scratch, a cheaper and more effective option is
that of extending the existing processors and toolchains. Exten-
sibility is indeed a feature now offered in real designs, e.g., by
processors such as Tensilica Xtensa [T. R. Halfhill, Microprocess
Rep., 2003], ARC ARCtangent [T. R. Halfhill, Microprocess
Rep., 2000], STMicroelectronics ST200 [P. Faraboschi, G. Brown,
J. A. Fisher, G. Desoli, and F. Homewood, Proc. 27th Annu. Int.
Symp. Computer Architecture, 2000, p. 203], and MIPS CorExtend
[T. R. Halfhill, Microprocess Rep., 2003]. While all these processors
provide development environments with simulation capabilities
for evaluating efficiently hand-crafted solutions, the tools to iden-
tify automatically the best processor configuration for a given
application are less common. In particular, solutions to choose
specialized instruction-set extensions (ISEs) have been investi-
gated in the past years but are still seldom part of commercial
toolchains. This paper provides a formal methodology and a set
of algorithms that help address the problem. It proposes exact
algorithms to derive optimal ISEs; exact identification of a single
ISE is applicable to basic blocks of up to 1500 assembler-like
instructions. This paper also introduces approximate methods that
can process basic blocks of larger size. Results show that the
described algorithms find solutions close to those that a designer
would obtain by a detailed study of the application code. Both
heuristic and exact algorithms find ISEs able to speed up unex-
tended processors up to 5.0x. State-of-the-art comparisons show
that the presented algorithms outperform existing ones by up
to 2.6x.

Index Terms—Application-specific microprocessors, computer
instructions, customizable microprocessors, extensible micro-
processors, instruction-set extensions, reduced instruction set
computing, tightly-coupled coprocessors.

I. INTRODUCTION

IN THE COMPUTING world, CPUs have evolved during the
last decades from complex instruction set computer (CISC)

to reduced instruction set computer (RISC) architectures, and
this shift has enabled the introduction of very-high-performance

Manuscript received July 14, 2004; revised March 16, 2005. This paper was
recommended by Associate Editor R. Camposano.

L. Pozzi was with the Ecole Polytechnique Fédérate de Lausanne (EPFL),
School of Computer and Communication Sciences, Laussane CH-1015,
Switzerland. She is now with the Faculty of Informatics, University of Lugano,
Lugano 6900, Switzerland (e-mail: Laura.Pozzi@epfl.ch).

K. Atasu was with the Ecole Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences, CH-1015 Lausanne,
Switzerland. He is now with the Computer Engineering Department, Bogazici
University, Istanbul, Turkey (e-mail: atasu@cmpe.boun.edu.tr).

P. Ienne is with the Ecole Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences, Lausanne CH-1015,
Switzerland (e-mail: Paolo.Ienne@epfl.ch).

Digital Object Identifier 10.1109/TCAD.2005.855950

multiple-issue processors. Yet, traditional RISCs, in general
computing applications, have not displaced the most common
CISC architecture: Many economic and practical issues favored
and still favor the market domination by a single architecture—
a RISC at heart under the appearance of an old CISC.

This dominance of a single architecture in the general com-
puting world is not at all typical of embedded processing,
especially in the area of processors for application-specific
integrated circuits (ASIC). Most of the reasons, which fa-
vored the concentration on a single architecture in traditional
computing, have little or no weight in the ASIC context.
For instance, binary compatibility is of less importance since
software is provided only for the specific product the ASIC is
made for—and often it is completely invisible to the end user.
Also, the precise tradeoff between performance, area cost, and
power consumption varies widely in the embedded processor
world: Typically, it is not absolute maximum performance that
matters, but minimum cost or power consumption for a given
lower bound on performance; such more precise optimizations
are only possible through a wide choice of architectures or
customization of existing ones. Finally, in a programmable
ASIC, it is economically conceivable to use a nonstandard
processor because the latter is integrated and manufactured on
the same die with the rest of the application-specific system—of
course, in practice, one cannot develop a new processor and its
toolchain from scratch for each product.

In this scenario of emerging extensible CPUs, there is a need
for techniques that help the designer in deciding how best to
extend the base architecture to meet the design goals. While the
potential offered by these new machines is noteworthy, what is
still needed is a set of design automation tools that start from
the software description of an application and lead the architect
toward an extended design. In particular, a missing part of
the typical design toolchain is that of automatically deciding
the instruction-set extensions (ISEs) of the new architecture
(a recent commercial exception is discussed in Section II). In
fact, at present, designers still need to analyze applications by
hand in order to decide which ISEs would be the most benefi-
cial. Although this is still feasible in reasonable time for a single
application, when several DSP or cryptographic applications
need to be hand accelerated, the existence of an automatic
and yet efficient methodology is of major importance. In this
paper, a solution is given to this problem, and a set of algo-
rithms is proposed to identify ISEs from automatic application
analysis.

For all these reasons, and due to the important progress
in design automation, many traditional and new vendors pro-
pose customizable processors. Tensilica Xtensa [1], ARC

0278-0070/$20.00 © 2006 IEEE

1210 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 1. Typical extensible processor with a five-input three-output application-specific functional unit.

ARCtangent [2], STMicroelectronics ST200 (a.k.a. Lx) [3],
MIPS CorExtend [4], and Nios II [5] are only a few of the
many application-specific customizable architectures that have
emerged in the recent years. These extensible CPUs offer
customers the possibility to tailor the processor to a specific
application. Roughly, such processor cores accept extensions
in the form of application-specific functional units, as shown in
Fig. 1. Various processors differ in the number of operands they
can supply in a single cycle from the register file, in the number
of results they can write back to it, in the availability of memory
ports, and in the existence of architecturally visible registers in
the additional unit.

In the following section, the state of the art in ISE is
described, and the present work is compared to it. The spe-
cific goals and contribution of this paper are anticipated in
Section III, with the aid of motivational examples aimed at
showing the importance of the work. The problem which is here
tackled is formalized in Section IV, and Section V introduces
the algorithms proposed to solve it. Results are described in
the two following sections: Section VI details the experimental
setup used, and Section VII discusses the results. This pa-
per concludes with some considerations on future directions
opened by this work.

II. RELATED WORK

Loosely stated, the problem of identifying ISEs consists of
detecting clusters of operations, which, when implemented as a
single complex instruction, maximizes some metric—typically
performance. Such clusters must invariably satisfy some con-
straint; for instance, they must produce a single result or use
no more than four input values. The problem solved by the
algorithms presented in this paper is formalized in Section IV,
but this generic formulation is used here to discuss related work.

In the 1990s, research in design methodologies for system-
on-chip processors has been mainly revolving around the
synthesis of application-specific instruction-set processors
(ASIPs). This includes the automatic generation of complete
instruction sets for specific applications [6]–[9]. In that con-
text, the goal is typically to cluster all the atomic operations
required for an application into a complete instruction set,

which minimizes some important metric (e.g., execution time,
program memory size, number of execution units). An example
of synthesis of application-specific instructions more closely
related to the goals of the present work was discussed for em-
bedded signal processing applications [10]: The purpose is to
add special single- and multiple-cycle instructions to a small set
of primitive instructions. The authors essentially concentrate on
a selection problem, which targets a maximal reuse of complex
instructions and a minimal number of instructions selected. The
reuse goal is likely to favor the identification of small clusters of
primitive operations; hence, heuristically, the authors prune the
search space by explicitly limiting the complexity of the special
instructions. The philosophy of this paper is different: The goal
is here directly formulated as achieving a maximal gain per
special instruction. Section III will show the importance of very
large clusters in realistic cases.

Some work on reconfigurable processors and, more recently,
on customizable architectures is more in line with the goal of
this paper. Early attempts used a bottom-up greedy approach
to cluster operations together by adding predecessor operations
until some constraint is violated [11], [12]. A formal approach
has been proven to result into a decomposition of maximal
single-output subgraphs [13]; unfortunately, the approach can-
not be easily extended to multiple-output subgraphs and the
property of maximal size does not represent optimality under
constraints on the number of inputs. Under limited input–output
constraints, Kastrup et al. have found useful to disregard max-
imal size and extract from maximal patterns every possible
subpattern—the potential advantage arising from a wider reuse
of the special instruction in various parts of the application [14].
An interesting early approach to build all single-sink patterns
was used for PipeRench [15]: It consists in iteratively building,
with appropriate data structures, all patterns of size l rooted
at each node from the patterns of size l − 1. The complexity
of the exponential process was reduced using some heuristics,
including limiting the pattern size.

Other authors use approaches combining template generation
(identification, in our parlance) and template matching (instruc-
tion selection, as it is called in compilers). One such piece of
work is peculiar in that clustering is based on the frequency
of node type successions—e.g., multiplications followed by

POZZI et al.: APPROXIMATE ALGORITHMS FOR THE EXTENSION OF EMBEDDED PROCESSOR INSTRUCTION SETS 1211

additions—rather than on the frequency of execution of specific
nodes [16]. This emphasis on global frequency of recurrence
has similar effects as in previous work on signal processors
[10]: The authors observe that the number of operations per
cluster is typically small and conclude that simple pairs of
operations appear the best candidates. Successive work by the
same group widens the scope of clustering to address parallel
templates [17]: The goal is there to cluster not only nodes
connected by a dependence edge but also independent nodes
that can be scheduled together. Heuristic is used to decide
which parallel templates are best clustered. Emphasis is still
on relatively small clusters and experiments were limited to
five internal nodes. Template generation leading to patterns
with arbitrary inputs and outputs was developed for very long
instruction word (VLIW) processors [18]. Here too, the number
of operations per pattern is restricted in the experiments to a
maximum of three, because of the algorithm execution time
among other reasons. The importance of growing larger clusters
is acknowledged in a more recent work [19]. The authors
implement incremental cluster growth but they do not stop the
search process as soon as the constraints are violated; to avoid
an explosion of the search space, they guide the growth of the
cluster with a heuristic function based on operation criticality,
operation latency, operator area, and cluster input/output. The
use of a heuristic guide function appears effective in reducing
the search space, but it makes it hard to ensure that good
candidate clusters are not overlooked. Yu and Mitra [20] have
goals very similar to those of the present work with one main
difference: They focus on connected graphs and thus base
their algorithm on the union of cones of the data-flow graphs.
Albeit still of exponential complexity, their algorithm solves
the simplified problem much faster in practice. We have in-
cluded a discussion of the benefits of considering disconnected
graphs in Section VII.

In the last couple of years, researchers have addressed the
variety of configuration possibilities of commercial customiz-
able processors. A recent formulation for the Nios II processor
uses an exponential enumeration algorithm to find all patterns
with a single output [21]; the algorithm is usable in practice
in the given microarchitectural context by limiting the number
of inputs to 5. A very comprehensive work, first introduced
in 2002, has covered the whole customization flow of the
Tensilica Xtensa platform with considerable microarchitectural
accuracy [22]. Their template-generation phase includes inde-
pendent templates, apparently similar to the parallel templates
introduced around the same time by Brisk et al. [17]. In the
iterative process of generating templates, the authors use a
prioritized list and, to reduce the number of useless templates
generated, they trim the list when the advantage of a template is
below some fraction of the advantage of the best one. In another
contribution [23], the same authors suggest how to exploit the
hierarchical nature of software applications and progressively
refine the selected templates. Finally, Tensilica is to our knowl-
edge today the only company to market a tool for the automatic
generation of the optimized processor configuration from high-
level application code [1]. Among the different customizations
supported by the tool, instruction fusion corresponds to what
is called here ISE [24]. Exhaustive enumeration of the patterns

is used, subject to the usual input–output constraints, as well
as to a maximal number of estimated cycles to run the special
instruction. The higher potentials of the algorithms presented
here, with respect to all above methods, are detailed at the end
of Section III.

Baleani et al., in the context of hardware/software partition-
ing [25], address the identification problem in a manner similar
to this paper’s. A greedy clustering algorithm is used, called
clubbing, to enforce limits on the input and output counts (to 3
and 2, respectively, in the examples) and to ensure deterministic
functionality (see Section IV). The exact algorithm presented
in this paper is more expensive but considers the complete
design space and therefore does not miss potentially good
solutions. Finally, note that the run-time performance of the
exact algorithm presented here is orders of magnitude better
than that of a similar previously reported work [26], because of
addition of a pruning criterion based on the number of inputs
(see Section V-B2 for details).

III. MOTIVATION AND CONTRIBUTIONS

The contributions of this paper are motivated by means
of two examples. Fig. 2 shows the data-flow graph of the
basic block most frequently executed in a typical embedded
processor benchmark; nodes represent atomic operations (typ-
ically corresponding to standard processor instructions) and
edges represent data dependencies. The first observation is that
identification based on recurrence of clusters would hardly
find candidates of more than 3–4 operations. Additionally, one
should notice that recurring clusters such as M0 have several
inputs and could be often prohibitive. In fact, choosing larger
albeit nonrecurrent clusters might ultimately reduce the number
of inputs and/or outputs: Subgraph M1 satisfies even the most
stringent constraints of two operands and one result. An inspec-
tion to the original code suggests that this subgraph represents
an approximate 16 × 4-bit multiplication and is therefore the
most likely manual choice of a designer even under severe
area constraints. For different reasons, most existing algorithms
would bail out before identifying such large subgraphs, and
yet, despite the apparently large cluster size, the resulting
Functional Unit can be implemented as a very small piece
of hardware.

Availability of a further input would include also the fol-
lowing accumulation and saturation operations (subgraph M2
in Fig. 2). Furthermore, if additional inputs and outputs are
available, one would like to implement both M2 and M3 as
part of the same instruction—thus exploiting the parallelism of
the two disconnected graphs. Among others, an exact algorithm
is presented here that identifies all of the abovementioned
instructions depending on the given user constraints. To the best
of the knowledge of the authors, the algorithm presented here
is the only one described in literature capable of this.

Since the exact algorithm mentioned above is limited in
the size of basic blocks it can handle, a second motivational
example is presented that shows the importance of heuristic so-
lutions. The core of the aes encryption algorithm is the “round
transformation,” operating on a 16-B state and described in
Fig. 3. The state is a two-dimensional array of bytes consisting

1212 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 2. Motivational example from the adpcmdecode benchmark [27]. SEL represents a selector node and results from applying an if-conversion pass
to the code.

of four rows and four columns; the columns are often stored in
four 32-bit registers, and are inputs of the round transformation.
First, a nonlinear byte substitution is applied on each of the
state bytes by making table lookups from substitution tables
stored in memory. Next, the rows of the state array are rotated
over different offsets, and then a linear transformation called the
MixColumn transformation is applied to each column. Finally,
an XOR with the round key is performed, and the output of a
round transformation becomes the input of the next one. In the
C code we have used, the above core has been unrolled twice
by the programmer, so that the size of the main basic block
amounts to around 700 assemblerlike operations.

The exact algorithms proposed in this paper cannot handle
such size for high (e.g., 8–4) I/O constraints. However, appli-
cations such as this one are of extreme interest for ISE even
for higher I/O constraints: Specialized instructions consisting
mostly of very simple bitwise calculations have great potential

of improving performance significantly. The MixColumn block
(see Fig. 3) represents the most computationally intensive part
of the algorithm; it is free of memory access, and is the most
interesting candidate for ISE. Moreover, it has very low I/O
requirements of 1 input and 1 output (graph M0). Availability
of three further inputs would allow inclusion of a RotateRows
block (graph M1), and of course all four MixColumns in
parallel should be chosen when four input and four output ports
are available (graph M2), and all MixColumns and RotateRows
when 16 inputs and 4 outputs are given (graph M3).

A heuristic that can automatically identify the abovemen-
tioned ISEs is of immediate interest and obvious importance.
In this paper, we present several heuristics, the most effective
of them based on genetic algorithms, that attempt to perform a
choice close to that of expert designers. Section VI will discuss
in detail the achievements and limitations of the proposed
algorithms with respect to this application.

POZZI et al.: APPROXIMATE ALGORITHMS FOR THE EXTENSION OF EMBEDDED PROCESSOR INSTRUCTION SETS 1213

Fig. 3. Motivational example from the aes encryption benchmark.

All contributions of this paper are now finally enumerated.
This work improves the state-of-the-art in four respects: Firstly,
prior work is mostly limited to instructions with a single output
(with the exceptions of a very limited number of outputs
and cluster size [17], [25] or of limitation to very specific
cases [28]). The techniques presented here identify custom
instructions with any number of outputs up to a user-specified
constraint. Note that current VLIW architectures like ST200
and TMS320 can commit four values per cycle and per cluster.

Secondly, the present methods can detect any kind of discon-
nected graphs, which results in the possibility of automatically
identifying also single-instruction multiple data (SIMD)-like
instructions. Most previous techniques can either only identify
connected subgraphs or are limited to small candidates.

Thirdly, heuristics are presented that can identify ISEs con-
sisting of hundreds of nodes and that in some cases closely
mimic the choice of expert designers.

Lastly, many previous works lack a formal methodology for
identification and selection of candidates. Here, identification
and selection are coupled and solved formally at once. Two
methods are presented, one exact, which is limited in the
size of the basic blocks it can process, and some heuristic
techniques—the most effective based on genetic algorithms—
that can process large numbers of nodes.

IV. PROBLEM STATEMENT

We call G(V,E) the directed acyclic graphs (DAGs) repre-
senting the data flow of each basic block; the nodes V represent
primitive operations and the edges E represent data dependen-
cies. Each graph G is associated to a graph G+(V ∪ V +, E ∪
E+), which contains additional nodes V + and edges E+. The
additional nodes V + represent input and output variables of the
basic block. The additional edges E+ connect nodes V + to V ,
and nodes V to V +.

A cut S is an induced subgraph of G: S ⊆ G. There are
2|V | possible cuts, where |V | is the number of nodes in G. An
arbitrary function M(S) measures the merit of a cut S. It is
the objective function of the optimization problem introduced

Fig. 4. (a) Topologically sorted graph. (b) Nonconvex cut. (c) A cut violating
the output check, for Nout = 1. (d) A cut violating the permanent input check,
for Nin = 1.

below and typically represents an estimation of the speedup
achievable by implementing S as a special instruction.

We call IN(S) the number of predecessor nodes of those
edges that enter the cut S from the rest of the graph G+. They
represent the number of input values used by the operations
in S. Similarly, OUT(S) is the number of predecessor nodes
in S of edges exiting the cut S. They represent the number of
values produced by S and used by other operations, either in G
or in other basic blocks. We call the cut S convex if there exists
no path from a node u ∈ S to another node v ∈ S that involves
a node w �∈ S. Fig. 4(b) shows an example of a nonconvex cut.

1214 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Finally, the values Nin and Nout express some features of
the microarchitecture and indicate the register-file read and
write ports, respectively, which can be used by the special
instruction. Also, due to microarchitectural constraints, some
operation types might not be allowed in a special instruction,
depending on the underlying organization chosen. This may
reflect, for instance, the existence or absence of memory ports
in the functional units: When no memory ports are desirable,
load and store nodes must be always excluded from possible
cuts, as reflected in the example of Fig. 2 (nodes labeled LD
and ST represent memory loads and stores, respectively). We
call F (with F ⊆ V) the set of forbidden nodes which should
never be part of S. We have addressed some particular cases of
memory loads in another work [29].

Considering each basic block independently, the identifica-
tion problem can now be formally stated as follows.
Problem 1 (Single-Cut Identification): Given a graph G+

and the microarchitectural features Nin, Nout, and F , find
the cut S, which maximizes M(S) under the following
constraints:

1) IN(S) ≤ Nin;
2) OUT(S) ≤ Nout;
3) F ∩ S = ∅; and
4) S is convex.

The convexity constraint is a legality check on the cut S
and is needed to ensure that a feasible scheduling exists: As
Fig. 4(b) shows, if all inputs of an instruction are supposed to
be available at issue time and all results are produced at the end
of the instruction execution, there is no possible schedule which
can respect the dependencies of this graph once S collapsed into
a single instruction.

We call Nbb the number of basic blocks in an application.
Since we will allow several special instructions from all Nbb

basic blocks, we will need to find up to Ninstr disjoint cuts,
which, together, give the maximum advantage. This problem,
referred here as selection, could be solved nonoptimally by
repeatedly solving problem 1 on all basic blocks and by simply
selecting the Ninstr best ones. Formally, the problem that we
want to solve is as follows.
Problem 2 (Selection): Given the graphs G+

i of all basic
blocks and the microarchitectural features Nin, Nout, and F ,
find up to Ninstr cuts Sj which maximize

∑
j M(S)j under the

same constraints of problem 1 for each cut Sj .
One should notice that the above formulation implicitly as-

sumes that the benefits of multiple instructions Sj (represented
by M(S)j) are perfectly additive. In some architectures, such
as RISC and single-issue processors, this is practically exact.
In other architectures such as VLIW, some secondary effects
might slightly make the merit function nonadditive; yet, the
detailed computation of the advantage of several cuts simulta-
neously would require scheduling the remaining operations and
would therefore be infeasible in this context.

The above formulation of the problems addresses ISE exclu-
sively limited to data-flow operations. We attack only indirectly
the control flow by applying typical compiler transformations
aimed at maximizing the exploitable parallelism, such as if
conversion and loop unrolling. We believe that a comprehensive

solution of the identification of data-flow clusters is a pre-
condition to the exploration of the control flow. Similarly, the
approach presented here does not address the storage of some
variables in the functional unit implementing an instruction—in
other words, functional units might contain pipeline registers
but not architecturally visible ones. The automatic allocation of
local storage [29] is a natural extension of the present work.

V. IDENTIFICATION AND SELECTION ALGORITHMS

We propose two kinds of solutions to solve the problem
just formalized: Exact methods, described in Section V-A, and
approximate methods, described in Section V-B, used when the
size of basic blocks prevents the exact methods to complete.

A. Exact Techniques

We introduce the algorithms to solve exactly problems 1 and
2 in three successive steps: 1) find the optimal single cut in a
single basic block; 2) find the optimal set of n nonoverlapping
cuts in a single basic block; and finally 3) find an optimal set
of nonoverlapping cuts in several basic blocks. The first step
corresponds to problem 1, the second step to a generalization
of problem 1, which is formalized below, and the last step
corresponds to the final goal expressed in problem 2.
1) Single-Cut Identification: Enumerating all possible cuts

within a basic block exhaustively is not computationally feasi-
ble. We describe here an exact algorithm that explores the com-
plete search space but effectively detects and prunes infeasible
regions during the search. It solves exactly problem 1 above.
The algorithm starts with a topological sort on G: Nodes of G
are ordered such that if G contains an edge (u, v) then u appears
after v in the ordering. We write that u � v. Fig. 4(a) shows
a topologically sorted graph. The algorithm uses a recursive
search function based on this ordering to explore an abstract
search tree.

The search tree is a binary tree of nodes representing possible
cuts. It is built from a root representing the empty cut, and
each couple of one and zero branches at level i represents the
addition or not of the node of G having topological order i, to
the cut represented by the parent node. The nodes of the search
tree immediately following a zero branch represent the same
cut as their parent node, and can be ignored in the search. Fig. 5
shows the search tree for the example of Fig. 4(a), with some
tree nodes labeled with their cut values. The search proceeds
as a preorder traversal of the search tree. It can be shown that
in some cases there is no need to branch toward lower levels;
therefore, the search space is pruned.

A trivial case, when it is useless to explore the subtree of a
particular node in the search tree, is when such node represents
a cut S, which contains a forbidden node in F . Clearly, such
S cannot be a solution of problem 1, nor can it be any solution
which adds further nodes.

But the real usefulness of this traversal order can be un-
derstood from the following discussion. Suppose for instance
that the output-port constraint has already been violated by the
cut defined by a certain tree node: Adding nodes that appear
later in the topological ordering cannot reduce the number
of outputs of the cut. An example of this situation is given

POZZI et al.: APPROXIMATE ALGORITHMS FOR THE EXTENSION OF EMBEDDED PROCESSOR INSTRUCTION SETS 1215

Fig. 5. Search tree corresponding to the graph shown in Fig. 4(a).

in Fig. 4(c), where an output constraint of 1 is violated at
inclusion of node 1, and cannot be recovered. Similarly, if the
convexity constraint is violated at a certain tree node, there is
no way of regaining the feasibility by considering the insertion
of nodes of G that appear later in the topological ordering.
Considering for instance Fig. 4(b) after inclusion of node 3,
the only ways to regain convexity are to either include node 2
or remove from the cut nodes 0 or 3: Due to the use of a
topological ordering, both solutions are impossible in a search
step subsequent to insertion of node 3. As a consequence, when
the output-port or the convexity constraints are violated when
reaching a certain search tree node, the subtree rooted at that
node can be eliminated from the search space.

We formalize the above intuition in the following simple
theorems, which justify the use of the described traversal order.
Given two cuts of S1 and S2 of G, we will indicate as S1 ∪ S2

the induced subgraph of G, which contains all nodes in S1

and in S2.
Theorem 1 (Monotonicity of the Number of Outputs): Let S1

and S2 be two disjunct cuts of G such that for every node u1 ∈
S1 and every node u2 ∈ S2, it is u2 � u1. Then, OUT(S1 +
S2) ≥ OUT(S1).

Proof: By definition of the number of outputs, there are
OUT(S1) nodes in S1 which are predecessors of edges toward
nodes of G+ which are not in S1. It could be possible that
OUT(S1 + S2) < OUT(S1), only if some of these predeces-
sor nodes would not be in S1 + S2 or if their successors would
be in S1 + S2. Neither can happen because all nodes of S1 are
in S1 + S2 and all nodes in S2 are predecessors in G of nodes
in S1 (that is, they come later in the ordering). �
Theorem 2 (Monotonicity of the Convexity): Let S1 and S2

be two disjunct cuts of G such that for every node u1 ∈ S1 and
every node u2 ∈ S2, it is u1 ≺ u2. Then, if S1 is nonconvex,
S1 + S2 is also nonconvex.

Proof: By definition of convexity, if S1 is nonconvex,
there exist at least one node w �∈ S1 which is on a path from
a node v ∈ S1 to another node v ∈ S1. The cut S1 + S2 can be
convex only if at least u and/or v would not be in S1 + S2 or
w would be in S1 + S2. Neither can happen because all nodes
of S1 are in S1 + S2, and w is a (indirect) successor of u ∈ S1,
whereas all nodes in S2 are predecessors in G of all nodes in S1

(that is, they come later in the ordering). �
Additionally, we can limit the search space also when spe-

cific violations of the input-port constraint happen. For this,
we note that there are cases when the edges entering a cut S
from G+ cannot be removed from IN(S) by further adding

Fig. 6. Single-cut identification algorithm.

to the cut nodes of G which appear later in the topological
ordering. We call INf(S) the number of predecessor nodes of
those edges which enter S from the rest of G+ and either:
1) belong to V + or F—that is, come from either primary input
variables or forbidden nodes or 2) they are nodes that have
been already considered in the tree traversal and have been
assigned a zero in the cut, i.e., they have been excluded from
the cut. In the first case, there is no node in the rest of G
that can remove this input value. In the second case, nodes
that could remove the inputs exist, but they have been already
excluded from the cut. Of course, it is always INf(S) ≤ IN(S)
and we call such inputs permanent. As an example, consider
Fig. 4(d); after inclusion of node 2, the cut has accumulated
two permanent inputs: One is the external input of node 2, and
another is the input of node 0, which was made permanent when
node 1 was excluded from the cut. Similar to what happens for
the output-port and the convexity constraints, when the number
of permanent inputs INf(S) violates the input-port constraint
when reaching a particular search-tree node, the subtree rooted
at that node can be eliminated from the search space.

Fig. 6 gives the algorithm in pseudo C notation. The search
tree is implemented implicitly, by the use of the recursive
search function. The parameter current_choice defines the
direction of the branch, and the parameter current_index
defines the index of the graph node and the level of the tree on

1216 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 7. Execution trace of the single-cut algorithm for the graph given in Fig. 4(a), for Nout = 1 and Nin = 1. Note that cut 1100 corresponds to the subgraph
shown in Fig. 4(c), it violates output constraints, and cut 1010 corresponds to the subgraph shown in Fig. 4(d), it fails the permanent input check.

Fig. 8. Number of cuts considered by the single-cut algorithm with Nin = 4 and Nout = 2, for several graphs (basic blocks) with sizes varying between 2 and
1500 nodes.

which the branch is taken. The function forbidden returns true
if S contains a node in F . The functions input_port_check,
permanent_input_port_check, and output_port_check
return a true value when, respectively, IN(S) ≤ Nin, INf(S) ≤
INin, and OUT(S) ≤ Nout. The function convexity_check
returns a true value when S is convex. When either the output-
port check, the permanent input-port check, or the convexity
check fail, or when a leaf is reached during the search, the
algorithm backtracks. The best solution is updated only if all
constraints are satisfied by the current cut.

Fig. 7 shows the application of the algorithm to the graph
given in Fig. 4(a) with Nout = 1 and Nin = 1. Only four cuts
pass the output-port check, the permanent input-port check,
and the convexity check, while six cuts are found to violate a
constraint, resulting in the elimination of five more cuts. Among
16 possible cuts, only ten are therefore considered (the empty
cut is never considered).

The graph nodes contain O(1) entries in their adjacency
lists on average, since the number of inputs for a graph node
is limited in every practical case. Combined with a single
node insertion per algorithm step, the input_port_check,
permanent_input_port_check, output_port_check,
convexity_check, and calculate_speedup functions
can be implemented in O(1) time using appropriate data
structures. The overall complexity of the algorithm is therefore

O(2|V |) but, although still exponential, the algorithm reduces
in practice the search space very tangibly. Fig. 8 shows the
run-time performance of the algorithm using an output-port
constraint of two and an input-port constraint of four on
basic blocks extracted from several benchmarks. The actual
performance follows rather a polynomial trend in all practical
cases considered; however an exponential tendency is also
visible. Constraint-based subtree elimination plays a key role
in the algorithm performance: The tighter the constraints are,
the faster the algorithm is.
2) Multiple-Cut Identification: We can easily adapt the al-

gorithm described in the previous section to identify multiple
cuts from a single graph. Formally, we generalize Problem 1 as
follows:
Problem 3 (Multiple-Cut Identification): Given a graph G+

and the microarchitectural features Nin, Nout, and F , find
the K disjoint cuts Sj which maximize

∑
j M(Sj) under the

following constraints for each cut Sj :

1) IN(Sj) ≤ Nin;
2) OUT(Sj) ≤ Nout;
3) F ∩ Sj = ∅; and
4) Sj is convex.

Of course, for K = 1, this reduces to problem 1.

POZZI et al.: APPROXIMATE ALGORITHMS FOR THE EXTENSION OF EMBEDDED PROCESSOR INSTRUCTION SETS 1217

Fig. 9. Search tree for two cuts.

Fig. 10. Number of cuts considered by the multiple-cut identification algorithm with K = 2, Nin = 4, and Nout = 2.

This generalization is easily achieved: If K is the number of
cuts to be identified within a basic block, it suffices to build a
similar search tree where every node makes K + 1 branches
instead of 2. Fig. 9 shows a fragment of a tree for K = 2.
Nodes of the search tree now represent K cuts: An n-branch
at level i leads to inclusion of the graph node with index i
in the nth cut. Fig. 10 shows the run-time performance of the
multiple-cut identification algorithm for K = 2, Nout = 2, and
Nin = 4, on basic blocks extracted from several benchmarks.
Only basic blocks of up to 30 nodes could be processed
within hours.
3) Optimal Selection: The multiple-cut identification algo-

rithm is the natural building block for solving problem 2. One
should allocate the Ninstr cuts to be selected to the various
basic blocks. For this, in the general case, one should find
out the advantages of allocating 1, 2,. . . up to Ninstr to each
basic block, and find the best combination. This requires up
to Ninstr · Nbb applications of the multiple-cut identification
algorithm and all possible combinations represent possible
solutions.

Choosing the best solution exhaustively after the many iden-
tifications is probably feasible in most practical cases, but
the main computational burden lays in the number of uses
of the expensive multiple-cut identification algorithm. Even
considering that in practical cases the maximum merit of most
basic blocks is usually below the merit of the good cuts in
other basic blocks (property which could reduce the number
of basic blocks to be considered to a handful), a fully optimal
selection could often be too expensive. We will consider in the
next section a slightly approximated selection algorithm, which
can be proven optimal in a broad class of cases and which brings

the number of invocations to the multiple-cut identification
algorithm to at most Nbb + Ninstr − 1.

B. Approximate Techniques

We begin our series of approximate techniques by addressing
the last problem mentioned: The large number of invocations
of the multiple-cut identification algorithm required for an
optimal selection. We address the problem in Section V-B1
by introducing a modified selection algorithm, which we call
pseudooptimal: In fact, it can be proven optimal if some very
broad conditions are verified.

Although effective in pruning the search space, this pseu-
dooptimal selection algorithm still relies on the multiple-cut
identification algorithm, whose complexity is sensibly higher
than that of the single-cut identification (see Fig. 10). In
Section V-B2, we therefore introduce a heuristic approach,
which reverts back to using the more efficient single-cut
identification.

The resulting algorithm is very efficient and effective for
basic blocks of medium size—typically up to approximately
hundreds of nodes, that is, most of the important basic blocks
of typical applications. Nevertheless, especially when one uses
aggressive compiler transformations, there are cases where one
wishes to address much larger basic blocks. We present two
very different techniques to overcome the limitations of the
iterative selection algorithm. Firstly, in Section V-B3, we show
a heuristic technique to partition large graphs in subgraphs
small enough for the iterative selection algorithm to be ap-
plicable successfully. Secondly, in Section V-B4, we follow a
completely different strategy by employing a genetic algorithm

1218 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 11. Pseudooptimal selection of three cuts in three basic blocks. Circles represent cuts, that is, subgraphs, of the basic blocks. Dashed circles are best
candidates returned by five calls to the multiple-cut identification algorithm of Section V-B1.

Fig. 12. Pseudooptimal selection algorithm.

for the selection problem; we will benchmark it, when possible,
against the exact solutions.
1) Pseudooptimal Selection: The pseudooptimal selection

algorithm begins by applying the single-cut identification
algorithm on each basic block (K = 1). The first cut is chosen
from the basic block, which offers the largest speedup im-
provement. Then at each iteration, the algorithm: 1) increments
the value of K for the basic block, which was chosen by the
previous iteration; 2) performs multiple-cut identification on
this basic block with the new value of K; and 3) calculates the
improvement. Again, the new cut is chosen from the basic block
that gives the largest speedup improvement. The iterations
continue until Ninstr cuts are chosen. Fig. 11 illustrates the
algorithm with a simple example.

Fig. 12 gives the algorithm in pseudo C notation. The func-
tion multiple_cuts_ident(i, j) implements the multiple-
cut identification algorithm and returns the cumulative benefit

∑
k M(Sk) of choosing j cuts from the ith basic block. The

function index_max_diff(A, B, n) returns the number i for
which A[i] − B[i] is maximal, A and B being two n-element
vectors. It is clear from Fig. 12 that the algorithm requires
application of the multiple-cut identification algorithm at most
Nbb + Ninstr − 1 times.

The algorithm can be proven to return optimal solutions
if, for every basic block, the additional advantage of in-
creasing the number of cuts selected in the basic block is
a monotonically decreasing function. This can be formalized
in the following theorem. For this, let us call Gb

i the incre-
mental merit of adding an ith cut (i > 0) to basic block b.
Specifically, Gb

1 = M(S), where the cut S is returned by
solving problem 1, and, for i ≥ 2, Gb

i =
∑best i cuts

j M(Sb
j) −∑best i − 1 cuts

j M(Sb
j), where both sums are values returned

by solving problem 3 with the multiple-cut identification
algorithm on basic block b.
Theorem 3 (Sufficient Condition For Optimality): If, for all

basic blocks b, the values Gb
i constitute sequences decreasing

with i, then the solution returned by the pseudooptimal algo-
rithm is optimal.

Proof: Selecting the best allocation of the Ninstr cuts in
the Nbb basic blocks corresponds in this case to selecting
the best Ninstr additional advantages Gb

i from Nbb ordered
lists. The pseudooptimal selection algorithm compares at each
step the additional advantages possible on all basic blocks and
chooses the largest one: The lists being ordered, the cuts are
also chosen as if their additional advantage were drawn form
a sorted global list of all additional advantages, and therefore
their overall merit is maximal (in fact, the pseudooptimal
selection algorithm acts like the Merge step of a Merge-Sort
algorithm [30]). �

POZZI et al.: APPROXIMATE ALGORITHMS FOR THE EXTENSION OF EMBEDDED PROCESSOR INSTRUCTION SETS 1219

Fig. 13. Three examples of basic blocks with different implications on the optimality of the pseudooptimal selection algorithm. With basic blocks such as
(a) pseudooptimal algorithm is not guaranteed to be optimal because the incremental merit of adding a new cut is not monotonically decreasing (i.e., G1 = 10,
G2 = 1, and G3 = 4). With basic blocks such as (b) or (c), the selection is optimal because Theorem 3 and, in the latter case, Corollary 1 apply.

It should be noted that the above condition is sufficient but
not necessary.

An important case where the above property is verified is
expressed by the following corollary.
Corollary 1 (Special Case of Optimality): If, for every basic

block, the multiple-cut identification of K cuts results in the
identification of the same cuts identified for K − 1 plus a new
cut, the pseudooptimal algorithm returns the optimal solution.

Proof: The hypothesis says that for any basic block b
and any K, the multiple-cut identification returns cuts
Sb

0, . . . , S
b
K−1, when looking for K cuts, and returns the same

cuts plus Sb
K , when looking for K + 1 cuts. Since the identi-

fication is optimal, it must be Sb
K ≤ Sb

j , ∀j ≤ K − 1, or cut
Sb

K should have been chosen instead of one of the other cuts
when identifying the best K cuts. Therefore, the sequence
Gb

i = Sb
i is monotonically decreasing with i and Theorem 3

applies. �
Fig. 13 shows graphically three examples of basic blocks.

When none of the basic blocks is like those in Fig. 13(a), opti-
mality is guaranteed. Note that we have applied the pseudoop-
timal algorithm to all the benchmarks shown in the experiment
section and to all basic blocks that could be processed: We have
observed that the additional advantage of increasing the number
of cuts selected in the basic block was always a monotonically
decreasing function. The pseudooptimal algorithm was there-
fore optimal in all our experiments.

2) Iterative Selection: Repeated calls to the multiple-cut
identification algorithm on large basic blocks may result in im-
practicable computational complexity. To avoid this, a heuristic
approach was also used; results of the two selection strategies
were compared in the experiments and show that the loss is null
or negligible in practical cases.

The iterative selection approach consists in iterative applica-
tions of the single-cut identification algorithm to the same basic
block. Previously identified cuts are merged into single graph
nodes, and are excluded from the forthcoming identification
steps. Fig. 14 illustrates the algorithm on the same example
used in Fig. 11. One can notice that, contrary to what happens
with the pseudooptimal algorithm, once selected, cuts are now
permanently added to the solution; of course, the final selection
is not necessarily the same.

Fig. 15 gives the algorithm in pseudo C notation. The
function single_cut_ident(i) implements the single-cut
identification algorithm and returns the benefit M(S) of
the best cut from the ith basic block. The function
collapse_and_forbid_best(i) transforms the ith basic
block by merging all nodes of the currently best cut into a
single forbidden node. The function index_max(A, n) returns
the index i for which A[i] is maximal, A being an n-element
vector. It is clear from Fig. 15 that the algorithm requires
application of the single-cut identification algorithm at most
Nbb + Ninstr − 1 times.

1220 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 14. Selection of three cuts in three basic blocks using the iterative selection algorithm.

Fig. 15. Iterative selection algorithm.

3) Partitioning-Based Selection: A natural way of extend-
ing the optimal single-subgraph-identification algorithm for
very large data-flow graphs, where the algorithm performance
is not sufficient to explore the complete search space, is to
partition the data-flow graphs into pieces that could be han-
dled separately by the algorithm. Intuitively, partitions with
the smallest number of inputs and outputs are favorable, since
they maximize the chances of locating clusters within the given
constraints. Moreover, since the size of the largest partition
will determine the overall run-time performance, the size of
the partitions should be balanced. Effectively, this is the well-
known min-cut hypergraph-partitioning problem.

A hypergraph is a generalization of a graph, where the
set of edges is replaced by a set of hyperedges, a hyperedge
being any possible set of vertices. We define a hypergraph
H(V h, Eh) based on a data-flow graph G(V,E). The vertex
set V h is identical to the vertex set of G. The hyperedge set Eh

is constructed by defining for each node v ∈ V , a hyperedge
h := {v} ∪ C, where C is the set of successor nodes of v in G.

We use the recursive bisection algorithm implementation
supplied by the hMETIS hypergraph partitioning package [31]
to obtain the min-cut partitioning of our hypergraphs. After that,
we apply the optimal single-subgraph-identification algorithm
of Section V-A1 on each partition. Our strategy heuristically
tries to locate the best subgraph within a single partition, and
relies on the optimal algorithm for its identification. However,
if the best subgraph happens to be split across partitions, there
is no way of identifying it, and partial solutions may be strongly
suboptimal. Therefore, this heuristic might be perfectly ef-
fective in some cases but could completely miss the optimal
solution in others. In particular, notice that it can never choose
extensions larger than the partition size. To overcome this limi-
tation, we have developed a completely different identification
strategy based on genetic algorithms, and we will compare the
two approaches in Section VI.
4) Identification With Genetic Algorithms: Introduced in

the 1970s by Holland [32], genetic algorithms have emerged
as practical and robust optimization methods. In multimodal
search landscapes, where several locally optimal solutions ex-
ist, genetic algorithms have a high probability of locating the
globally optimal solution. Genetic algorithms are stochastic
algorithms inspired by the natural phenomena of genetic inheri-
tance and survival of the fittest; they perform a multidirectional
search by maintaining a population of potential solutions. In
the most common form, solutions are encoded as strings of bits
from a binary alphabet. A fitness function evaluates each string,
and associates a fitness value with each one, reflecting how
good it is. A selection mechanism based on the fitness values
decides which individuals will survive to the next generation.
Information exchange across different dimensions of the search
space is achieved through recombinations based on crossovers

POZZI et al.: APPROXIMATE ALGORITHMS FOR THE EXTENSION OF EMBEDDED PROCESSOR INSTRUCTION SETS 1221

Fig. 16. Genetic algorithm structure.

Fig. 17. Genetic algorithm encoding.

and mutations on surviving individuals. Repeated selections
and recombinations between generations result in a continuous
evolution of the population.

The pseudocode of our genetic algorithm implementation for
the single-subgraph-identification problem is given in Fig. 16.
In the following sections, we explain its crucial components,
and the way they are adapted to our problem.

a) Encoding: A natural encoding of induced subgraphs,
within a data-flow graph G, is the use of a binary string of bits
with a single bit associated with each graph node. Each node
is included in or excluded from the subgraph depending on the
value of the corresponding bit. The nodes are assigned an index
following a topological order, in the same way as described in
Section V-A1: If G contains an edge (u, v) then the index of
the bit associated with u is higher than the index of the bit
associated with v in the string. Fig. 17 shows an example of
encoding.

b) Initial population: The nature of the constraints on
the subgraphs makes the generation of an initial population
a nontrivial task: Randomly generated bit strings often result
in highly infeasible subgraphs. Instead, we generate random
clusters of nodes making use of heuristic approaches. Simi-
lar to the clubbing algorithm [25], we build convex clusters
starting from randomly selected nodes, and add adjacent nodes
until the constraints are reached. Another heuristic we employ
is the MaxMISO algorithm [13], which extracts all the dis-
joint maximal-input single-output subgraphs from the data-flow
graph. We generate a diversity of initial solutions using the two
algorithms.

In terms of quality, the results of the two heuristics men-
tioned are far from optimal [26], but they have complementary
qualities useful to bootstrap our population: The clubbing algo-
rithm can find only small subgraphs. The MaxMISO algorithm,
on the other hand, can identify large clusters of operations,
not necessarily within the constraints, but possibly contain-
ing good legal subclusters, that may appear during future
recombinations.

Our strategy is, in fact, similar to the strategy of messy
genetic algorithms introduced by Goldberg et al. [33]: We
explicitly search for low-order, high-fitness solutions as build-
ing blocks in the initial stages and then aim to combine such
building blocks during recombinations in the later stages.

c) Fitness evaluation: The fitness function is closely re-
lated to the objective function, that is, to the function to be
optimized—M(S) in our case. However, we also integrate
domain-specific knowledge: Application data-flow graphs often
contain large clusters starting with a few inputs, generating
many intermediate variables, and resulting in a few outputs. In
our solutions, we allow subgraphs violating input and output
constraints because we expect them to converge eventually to
feasible subgraphs, either by growing or shrinking. Growing of
subgraphs is implicitly promoted by the characteristics of the
objective function; to control this effect, we assign penalties to
constraint violations in the fitness function.

The fitness value of a subgraph S satisfying all the con-
straints is simply equal to the value of the objective function
M(S). We penalize all other subgraphs: Let the best fitness
value found among the existing feasible solutions be Mb.
If the number of inputs for the subgraph exceeds the input
constraint by INe(S) = IN(S) − Nin and OUTe(S) is the cor-
responding value for outputs, the fitness value of this subgraph
is defined by

F (S)= (1− α (INe(S)+ OUTe(S)))· min(Mb,M(S)) (1)

where α is the penalty parameter. The min(·) term ensures that
the best fitness value is always owned by a feasible solution, and
the factor in front of the min(·) term associates scaled fitness
values with infeasible solutions, assigning a penalty increasing
with the number of violations.

d) Selection: The selection mechanism models the
survival-of-the-fittest phenomenon: The fittest individuals
survive and the weaker ones die. Our selection mechanism
employs the proportionate selection scheme, using the roulette-
wheel selection technique [32]. In the proportionate selection
scheme, a solution S with fitness F (S) allocates F (S)/F
offsprings, where F is the average fitness of the population.

e) Genetic operators: The most crucial operation of our
genetic algorithm is the crossover operation, that aims at ex-
changing “building blocks” from different clusters in order to
form better subgraphs [see Fig. 18(a)]. Pairs of solutions are
chosen randomly from the current population to be subjected
to crossover, and the crossover is applied on the pair with a
probability called the crossover rate. We found the two-point
crossover scheme most suitable in our case. The two-point
crossover scheme basically exchanges segments of the two
strings between two randomly selected points. It eliminates the
single-point crossover bias for the last bits of the strings, and
it is more promising in exploiting building blocks of different
solutions.

Mutation causes random alterations of the bits of the strings.
Each bit is flipped independently with a probability called the
mutation rate [see Fig. 18(b)]. Mutation is given a secondary
role in our genetic algorithm.

1222 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 18. Genetic operators. (a) Crossover and (b) Mutation.

Fig. 19. Examples of hardware timing and area models of some operators. The CMOS technology used is a common 0.18-µm process and the standard cells are
from the Artisan library.

f) Constraint violations: The application of genetic op-
erators, on the selected individuals, does not always result
in feasible solutions. As mentioned above, input and output
violations are taken care by the penalties in the fitness func-
tion defined by (1). On the other hand, convexity violations
are suppressed immediately. In case a subgraph generated by
crossover or mutation is nonconvex, our first attempt is to
include all the graph nodes on the violating paths within the
subgraph. However, this may not be always possible because
of the existence of forbidden nodes, denoted F in Section IV,
which should never be part of S (e.g., memory loads). When
such a graph node is on a violating path, we remove either all
of its predecessors or all of its successors from the subgraph,
choosing the solution that removes fewer nodes. This strategy
results in convex subgraphs, and is an effective way of combin-
ing “building blocks” imported from different solutions.

g) Random immigrants: Genetic algorithms have a nat-
ural tendency of converging rapidly. However, when the popula-
tion converges too quickly into a set of homogeneous solutions,
crossovers lose their power in the quest for better individuals;
and typically low mutation rates are inadequate for continuing

Fig. 20. Characteristics of the benchmarks used: Number of basic blocks
processed and size of the largest basic block.

exploration. We make use of the random immigrant mechanism
introduced by Grefenstette [34] to compensate this phenomena.
The random immigrant mechanism replaces a fraction of the
population by randomly generated solutions. The fraction re-
placed is called the replacement rate. We generate our immi-
grants in the same way as we generate the initial population.
This strategy effectively concentrates mutations in a subpopu-
lation, and plays a role of regenerating the lost genetic material.

POZZI et al.: APPROXIMATE ALGORITHMS FOR THE EXTENSION OF EMBEDDED PROCESSOR INSTRUCTION SETS 1223

Fig. 21. Comparison of Pseudo−Optimal and Iterative. The difference in performance is negligible, while the difference in complexity is very important (see
Figs. 8 and 10).

h) Control parameters: Genetic algorithms, while ex-
ploiting the already sampled regions, try to explore new regions
of the search space. The balance between the two mechanisms
is achieved by a careful selection of control parameters. In
our experiments, we observed best results using a rather large
population size of 400, a very high crossover rate of 0.95, a
modest replacement rate of 0.1, and a low mutation rate of
0.001. The penalty parameter α used in the fitness function is
0.05. Lastly, the termination criteria are defined as having no
improvement in the best fitness value for 20 generations.

VI. EXPERIMENTAL SETUP

In order to measure the speedup achieved by the algorithms
described in this paper, a particular function M(·) is assumed
to express the merit of a specific cut. M(S) represents an
estimation of the speedup achievable by executing the cut S
as a single instruction in a specialized datapath.

In software, we estimate the latency in the execution stage
of each instruction; in hardware, we evaluate the latency of
each operation by synthesizing arithmetic and logic operators
on a common 0.18-µm complex complimentary metal–oxide–
semiconductor (CMOS) process and normalize to the delay of
a 32-bit multiply accumulate. Fig. 19 shows the relative delay
and area of some operators.

The accumulated software values of a cut estimate its ex-
ecution time in a single-issue processor. The latency of a cut
as a single instruction is approximated by a number of cycles
equal to the ceiling of the sum of hardware latencies over the
cut critical path. The difference between the software and the
hardware latency is used to estimate the speedup. Although
quite rough, this model is also very fast to evaluate, and hence
apt for use in the inner loop of the identification algorithms
presented here, where the use of a computationally heavier
model would be prohibitive.

VII. RESULTS

The described algorithms were implemented within the
MachSUIF framework [35] and tested on some Media-
Bench [27], embedded microprocessor benchmark consortium
(EEMBC) [36], and cryptography benchmarks. Application C-

code was compiled to MachSUIF intermediate representation,
preprocessed with an if-conversion pass, and then analyzed.
Fig. 20 describes the benchmarks used and their characteristics:
The number of basic blocks selected by profiling, and the
number of nodes of the largest basic block.

In order to show the potentials of the algorithms described
here, with respect to the state of the art, we have implemented
a generalization of Clubbing [25], and the MaxMISO [13]
identification algorithms. The first is a greedy linear-complexity
algorithm that can detect n-input m-output graphs, where n
and m are user given parameters. The second is a linear-
complexity algorithm that identifies maximal-size single-output
and unbounded-input graphs. This comparison shows the power
of the approach presented in this paper when in search for large
possibly nonrecurrent ISEs. Note that since the spirit of the
presented approach is to find as large as possible ISEs, close
to those sought after by experienced designers, recurrence of
the identified subgraphs is not checked and is considered to be
equal to one by default.

We have also implemented a simple algorithm, denoted with
Sequences, that can identify only recurrent sequences of two
instructions; it makes possible a comparison with works that
propose as ISE’s small recurrent subgraphs, such as shift add or
multiply accumulate. Sequences traverses the data-flow graph
once and selects an ISE every time it identifies a positive-
gain two-instruction sequence. Recurrence of the identified
sequences is checked, and the gain is modified accordingly,
i.e., it is multiplied by recurrence. Of course, the algorithm thus
constructed is very simple and less sophisticated than the ones
presented in literature, but this simple implementation is meant
to give the order of magnitude of the potential gain of such
small ISEs, even when recurrence is considered.

Speedup results for all algorithms proposed are shown in
Figs. 21, 22, and 27. All graphs depict the speedup of the differ-
ent algorithms for different benchmarks and for different input
and output constraints; note that MaxMISO can be shown for
single-output constraints only, and Sequences for three inputs
and one output only, while all other algorithms can span any
I/O constraint. Partitioning was run only for the cases where
Iterative could not complete. In all experiments, selection of up
to 16 ISEs was allowed.

1224 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 22. Analysis of the performance of Iterative.

The conclusions that can be derived by observing the re-
sults are organized in three parts: Firstly, a comparison of
Pseudo−Optimal and Iterative is shown; recall that Pseudo-
Optimal selects multiple ISEs concurrently, and that Iterative

identifies iteratively a single ISE at a time (see Section V-B1
and V-B2, respectively for full details). Secondly, the power
of Iterative over the state of the art algorithms is demon-
strated. Thirdly, the heuristics Genetic and Partitioning (see

POZZI et al.: APPROXIMATE ALGORITHMS FOR THE EXTENSION OF EMBEDDED PROCESSOR INSTRUCTION SETS 1225

Fig. 23. Run times of Iterative, in seconds, for input/output constraints of
2–1, 4–2, 4–3, and 8–4.

Section V-B4 and V-B3, respectively), are evaluated. Recall
that Genetic is a heuristic based on genetic algorithms, while
Partitioning is a heuristic that first partitions the original graph
and then applies Iterative to each subpart.

A. Comparison of Pseudo-Optimal and Iterative

Fig. 21 depicts two benchmarks, gsmdecode and
g721encode, where Pseudo−Optimal was able to terminate.
It can be noted that the superiority in performance of
Pseudo−Optimal over Iterative is negligible—recall that the
observed difference in complexity is instead very important, as
shown in Figs. 8 and 10. For all practical purposes, it appears
that using Iterative instead of Pseudo−Optimal does not
compromise results.

B. Evaluation of Iterative Over the State of the Art

Results for Iterative, Clubbing, MaxMISO, and Sequences
can be observed in Fig. 22. Three main points should be noted:
Firstly, Iterative constantly outperforms other algorithms; in
particular, for low input/output constraints, all algorithms have
generally similar performances (see for example benchmarks
adpcmencode and viterbi), but in the case of higher, and yet
still reasonable, constraints Iterative excels. Secondly, a large
performance potential lays in multiple output, and therefore
possibly disconnected graphs, and the algorithms presented
here are among the first ones to exploit it. Disconnected graphs
are indeed chosen by Iterative in most benchmarks; an example
is given by adpcmdecode and aes, discussed in detail later.
Lastly, note that the potential that lays in the large and non-
recurrent graphs chosen by Iterative is constantly much greater
than that of small recurrent sequences, especially once the I/O
constraints are loosened. This can be seen by observing the
performance of Sequences, for example in benchmarks fft and
autcor. Recall that current VLIW architectures like ST200 and
TMS320 can commit four values per cycle and per cluster: It is
therefore reasonable to loosen the constraints.

In the light of the motivation expressed with the help of
Fig. 2, it is useful to analyze the case of adpcmdecode.

1) Clubbing is generally limited in the size of the in-
structions identified, and Sequences selects the couples
and–compare and shift–add of subgraphs M0.

2) MaxMISO finds the correct solution (corresponding to
M2 in the figure) with a constraint of more than two
inputs. Yet, when given only two input ports, it cannot

find M1 because M1 is part of the larger three-input
MaxMISO M2.

3) Iterative manages to increase the speedup further when
multiple outputs are available; in such cases, it chooses
a disconnected subgraph at once, consisting M2 + M3.
Iterative is the only algorithm that truly adapts to the
available microarchitectural constraints.

Of course, the worst case complexity of Iterative is much
higher than that of Clubbing, MaxMISO, or Sequences, but it is
on average well below exponential complexity, as Fig. 8 shows.
The run times of Iterative are shown in Fig. 23, for input/output
constraints of 2–1, 4–2, 4–3 and 8–4, and for a single ISE. It
can be seen that run times are almost exclusively in the order
of seconds or lower; only benchmarks md5 and aes (1500 and
700 nodes, respectively) exhibit run times of the order of
minutes for a constraint of 4–2, and of hours or cannot terminate
for higher constraints.

Lastly, the benefits of identifying disconnected subgraphs
are discussed here. Of course, if only connected subgraphs are
considered for ISE identification, the search space decreases
considerably. Figs. 24 and 25 show how the run-time com-
plexity decreases in practice when considering connected-only
graphs versus possibly disconnected ones. Almost all state-of-
the-art proposals consider connected graphs only (see Section II
for exceptions), but an algorithm able to identify large discon-
nected graph, such as Iterative, has the important capability
of discovering parallelism. In benchmarks where parallelism
is abundant, such as aes, the difference in performance when
considering disconnected subgraphs is considerable, as shown
in Fig. 26. In particular, note that in the case of connected
graphs only, performance fails to increase with the output
constraint, i.e., it fails to take advantage of the register port
availability.

C. Evaluation of the Heuristics

The performance of the two heuristics proposed, Partitioning
and Genetic, is now studied. Note that, for the benchmarks
of Fig. 22, Genetic performs very closely and sometimes
identically to Iterative. Fig. 27 shows results for the last two
benchmarks, md5 and aes, which are the largest and feature
1500- and 700-node basic blocks, respectively. In the case
of aes, it can be seen that Genetic underperforms for very
small constraints, where Iterative performs well. However,
in the cases of higher constraints, Iterative cannot terminate,
while Genetic obtains very high speedup, sometimes close
to the optimal manual choice, as described in more details
later. With respect to Partitioning, it should be noted that
Genetic finds systematically better solutions; the difference is
extremely significant in the case of the loosest constraints. In
aes, for a constraint of eight inputs and four outputs, the best
subgraph found by Genetic contains about 130 nodes, whereas
Partitioning cannot execute on partitions larger than 80 nodes.

Fig. 28, a detailed version of Fig. 3, depicts the core of
the aes benchmark. Iterative finds the optimal solutions of one
MixColumn (graph M1) for a constraint of 1–1, a MixColumn
and a RotateRows (graph M2) for a constraint of 4–1, three
MixColumn transformations in parallel (the equivalent of three

1226 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 24. Number of cuts considered by Iterative when identifying potentially disconnected graph versus connected-only graph, for Nin = 4 and Nout = 2.

Fig. 25. Complexity difference (in terms of number of cuts considered for identifying the first ISE in the largest basic block of 700 nodes) for potentially
disconnected and connected-only graphs, for benchmark aes, and algorithm Iterative.

Fig. 26. Speedup difference for potentially disconnected and connected-only graphs, for benchmark aes, 16 ISEs chosen, and algorithm Iterative (∗ stands for
Genetic, used where Iterative could not terminate).

Fig. 27. Evaluation of the heuristic: Genetic and Partitioning. Note that while Genetic underperforms for very small constraints, which can be handled by
Iterative, it performs very well, and better than Partitioning for high constraints.

M1 graphs) for a constraint of 3–3, and two RotateRows in
parallel (the equivalent of two M2 graphs) for a constraint
of 8–2. It cannot terminate for higher constraints. Genetic
underperforms for low constraints, but is very effective for
higher constraints, intractable for Iterative. It is able to achieve
a speedup as high as 3.8x in the case of eight inputs and four
outputs, where it identifies three MixColumn transformations in
parallel (the equivalent of three M1 graphs), and some bitwise
operations from the RotateRows transformations. In terms of
run times, Genetic takes seconds for basic blocks of hundreds
of nodes, and minutes for aes and md5. The run time does not
depend on the I/O constraint.

We now explore in more detail the behavior of Genetic:
Fig. 29 demonstrates the maximum, minimum, and average
fitness values (normalized to the largest fitness value) obtained
applying the algorithm on the kernel of aes, using Nin = 8 and
Nout = 4. It can be seen that the algorithm starts with high-
quality initial solutions. MaxMISO identifies separately each
MixColumn block together with additional operations coming
from the RotateRows transformation, resulting in additional
inputs. However, 4 MixColumn blocks within a single ISE,
with part of RotateRows, are the desired choice for a constraint
of 8–4. The genetic algorithm gradually removes the unde-
sired additional inputs, and tries to combine the MixColumn

POZZI et al.: APPROXIMATE ALGORITHMS FOR THE EXTENSION OF EMBEDDED PROCESSOR INSTRUCTION SETS 1227

Fig. 28. RotateRows, MixColumn, and AddKey computational blocks of aes (compare with Fig. 3, which shows the same application in less detail). The optimal
choice for a constraint of 1–1 is graph M1, which represents a MixColumn transformation, while four MixColumn blocks in parallel should be selected for a
constraint of 4–4. MixColumn and RotateRows, graph M2, represent the optimal choice for a constraint of 4–1.

1228 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 29. Maximum, average, and minimum fitness values obtained during identification of the first ISE in aes, using Nin = 8 and Nout = 4.

blocks. This process is clearly visible in Fig. 29. A second
MixColumn block is concatenated with the best initial solution
around generation 2, and another one is concatenated around
generation 20. The genetic algorithm terminates around gen-
eration 40, with the best solution consisting of three MixCol-
umn blocks, and several bitwise operations from RotateRows
transformations.

Finally, note that the area investment for implementing 16
ISEs of constraint 4–2, for each benchmark, was within the area
of a couple of a 32 × 32-multiply accumulate.

VIII. CONCLUSION

This paper has presented new and efficient algorithms for
identifying clusters of datal-flow operations to be implemented
as application-specific instructions for the existing System-on-
Chip processors. This task is essential in order to automate the
specialization of commercial processors: Many readily exten-
sible processors are now on the market, and the algorithms
presented here automate in an efficient way the identification
of their ISEs. In particular, powerful extensions are generated
by taking into account microarchitectural constraints given by
the designer, and enforcing a legality property on the choice.
This work is novel with respect to four points.

1) It considers any register-file read write port constraint; it
allows therefore architecture exploration of the best orga-
nization with respect to port needs. As a consequence, it is
also able to select multiple-output instructions, generally
unexplored in the state of the art.

2) It is the first to present algorithms to identify generic
disconnected graphs. Quantitative results show the impor-
tance of the above points.

3) It is the first to formalize identification and selection and
solve them together within the same formal framework.

4) It represents a complete methodology in that it provides
a powerful heuristic for treatment of large basic blocks,
together with exact algorithms for manageable sizes.

The experiments show that the estimated speedup is raised
dramatically when compared with the existing state-of-the-art
algorithms. The presented exact algorithms efficiently prune
the design space, although still exponential in the worst case.
To process very large basic blocks, a powerful heuristic so-
lution has been designed around the presented identification
algorithm, that performs an ISE selection close to that of
manual choice. Future work will address directly the prob-
lem of instruction selection under area constraint, inclusion
of generic memory elements in ISEs, and definition of the
compiler techniques beneficial to ISE generation. Finally, we
are planning to use a retargetable compiler to assess precise
speedup potentials—especially in VLIW processors where our
estimation model is less suitable.

REFERENCES

[1] T. R. Halfhill, “Tensilicas software makes hardware,” Microprocess. Rep.,
Jun. 23, 2003.

[2] ——, “ARC Cores encourages ‘plug-ins’,” Microprocess. Rep., Jun. 19,
2000.

[3] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood, “Lx:
A technology platform for customizable VLIW embedded processing,”
in Proc. 27th Annu. Int. Symp. Computer Architecture, Vancouver, BC,
Canada, Jun. 2000, pp. 203–213.

[4] T. R. Halfhill, “MIPS embraces configurable technology,” Microprocess.
Rep., Mar. 3, 2003.

[5] ——, “Alteras new CPU for FPGAs,” Microprocess. Rep., Jun. 28,
2004.

[6] M. Imai, A. Alomary, J. Sato, and N. Hikichi, “An integer programming
approach to instruction implementation method selection problem,” in
Proc. Eur. Design Automation Conf., Hamburg, Germany, Sep. 1992,
pp. 106–111.

[7] B. K. Holmer, “Automatic design of computer instruction sets,” Ph.D.
dissertation, Comput. Sci. Dept., Univ. California, Berkeley, 1993.

[8] J. Van Praet, G. Goossens, D. Lanneer, and H. De Man, “Instruction
set definition and instruction selection for ASIPs,” in Proc. 7th Int.
Symp. High-Level Synthesis, Niagara-on-the-Lake, ON, Canada,
Apr. 1994, pp. 11–16.

[9] I.-J. Huang and A. M. Despain, “Synthesis of application specific instruc-
tion sets,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 14,
no. 6, pp. 663–675, Jun. 1995.

[10] H. Choi, J.-S. Kim, C.-W. Yoon, I.-C. Park, S. H. Hwang, and
C.-M. Kyung, “Synthesis of application specific instructions for

POZZI et al.: APPROXIMATE ALGORITHMS FOR THE EXTENSION OF EMBEDDED PROCESSOR INSTRUCTION SETS 1229

embedded DSP software,” IEEE Trans. Comput., vol. 48, no. 6, pp. 603–
614, Jun. 1999.

[11] R. Razdan and M. D. Smith, “A high-performance microarchitecture
with hardware-programmable functional units,” in Proc. 27th Int. Symp.
Microarchitecture, San Jose, CA, Nov. 1994, pp. 172–180.

[12] A. Ye, N. Shenoy, and P. Banerjee, “A C compiler for a processor with
a reconfigurable functional unit,” in Proc. 8th ACM Int. Symp. Field-
Programmable Gate Arrays, Monterey, CA, Feb. 2000, pp. 95–100.

[13] C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami, “A DAG based design
approach for reconfigurable VLIW processors,” in Proc. Design, Automa-
tion and Test Europe Conf. and Exhibition, Munich, Germany, Mar. 1999,
pp. 778–779.

[14] B. Kastrup, A. Bink, and J. Hoogerbrugge, “ConCISe: A compiler-
driven CPLD-based instruction set accelerator,” in Proc. 5th IEEE Symp.
Field-Programmable Custom Computing Machines, Napa Valley, CA,
Apr. 1999, p. 92.

[15] S. Cadambi and S. C. Goldstein, “CPR: A configuration profiling
tool,” in Proc. 7th IEEE Symp. Field-Programmable Custom Computing
Machines, Napa Valley, CA, Apr. 1999, pp. 104–113.

[16] R. Kastner, A. Kaplan, S. Ogrenci Memik, and E. Bozorgzadeh,
“Instruction generation for hybrid reconfigurable systems,” ACM Trans.
Des. Automat. Electron. Syst., vol. 7, no. 4, pp. 605–627, Oct. 2002.

[17] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh, “Instruction gen-
eration and regularity extraction for reconfigurable processors,” in Proc.
Int. Conf. Compilers, Architectures, and Synthesis Embedded Systems,
Grenoble, France, Oct. 2002, pp. 262–269.

[18] M. Arnold and H. Corporaal, “Designing domain specific processors,”
in Proc. 9th Int. Workshop Hardware/Software Codesign, Copenhagen,
Denmark, Apr. 2001, pp. 61–66.

[19] N. Clark, H. Zhong, and S. Mahlke, “Processor acceleration through
automated instruction set customisation,” in Proc. 36th Annu. Int. Symp.
Microarchitecture, San Diego, CA, Dec. 2003, pp. 129–140.

[20] P. Yu and T. Mitra, “Scalable custom instructions identification for in-
structionset extensible processors,” in Proc. Int. Conf. Compilers, Archi-
tectures, and Synthesis Embedded Systems, Washington DC, Sep. 2004,
pp. 69–78.

[21] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-specific in-
struction generation for configurable processor architectures,” in Proc.
ACM/SIGDA 12th Int. Symp. Field Programmable Gate Arrays, Monterey,
CA, Feb. 2004, pp. 183–189.

[22] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “Custom-instruction
synthesis for extensible-processor platforms,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 23, no. 2, pp. 216–228, Feb.
2004.

[23] ——, “A scalable application-specific processor synthesis methodology,”
in Proc. Int. Conf. Computer Aided Design, San Jose, CA, Nov. 2003,
pp. 283–290.

[24] D. Goodwin and D. Petkov, “Automatic generation of application specific
processors,” in Proc. Int. Conf. Compilers, Architectures, and Synthesis
Embedded Systems, San Jose, CA, Oct. 2003, pp. 137–147.

[25] M. Baleani, F. Gennari, Y. Jiang, Y. Patel, R. K. Brayton, and
A. Sangiovanni-Vincentelli, “HW/SW partitioning and code generation of
embedded control applications on a reconfigurable architecture platform,”
in Proc. 10th Int. Workshop Hardware/Software Codesign, Estes Park,
CO, May 2002, pp. 151–156.

[26] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific
instruction-set extensions under microarchitectural constraints,” in Proc.
40th Design Automation Conf., Anaheim, CA, Jun. 2003, pp. 256–261.

[27] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A
tool for evaluating and synthesizing multimedia and communications
systems,” in Proc. 30th Annu. Int. Symp. Microarchitecture, Research
Triangle Park, NC, Dec. 1997, pp. 330–335.

[28] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHIMAERA: A high-
performance architecture with a tightly-coupled reconfigurable functional
unit,” in Proc. 27th Annu. Int. Symp. Computer Architecture, Vancouver,
BC, Canada, Jun. 2000, pp. 225–235.

[29] P. Biswas, V. Choudhary, K. Atasu, L. Pozzi, P. Ienne, and N. Dutt,
“Introduction of local memory elements in instruction set extensions,”
in Proc. 41st Design Automation Conf., San Diego, CA, Jun. 2004,
pp. 729–734.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001.

[31] G. Karypis and V. Kumar, hMETIS: A Hypergraph Partitioning Package.
Minneapolis: Dept. Comput. Sci. Eng., Univ. Minnesota, Nov. 1998.
version 1.5.3.

[32] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor:
Univ. of Michigan Press, 1975.

[33] D. E. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms: Motiva-
tion, analysis, and first results,” Complex Syst., vol. 3, no. 5, pp. 493–530,
1989.

[34] J. J. Grefenstette, “Genetic algorithms for changing environments,” in
Proc. Parallel Problem Solving Nature 2, R. Männer and B. Manderick,
Eds. Amsterdam, The Netherlands, 1992, pp. 137–144.

[35] M. D. Smith, and G. Holloway. (2000). An Introduction to Machine SUIF
and Its Portable Libraries for Analysis and Optimization. Cambridge,
MA: Harvard Univ., http://www.eecs.harvard.edu/hube/software/

[36] T. R. Halfhill, “EEMBC releases first benchmarks,” Microprocess. Rep.,
May 1, 2000.

Laura Pozzi (M’01) received the M.S. and Ph.D.
degrees in computer engineering from Politecnico di
Milano, Milan, Italy, in 1996 and 2000, respectively.

She is an Assistant Professor at the Faculty of
Informatics, University of Lugano, Lugano, Switzer-
land. Previously, she was a Postdoctoral Researcher
at the School of Computer and Communication Sci-
ences, Swiss Federal Institute of Technology Lau-
sanne, Lausanne, Switzerland, a Research Engineer
with STMicroelectronics, San Jose, CA, and an
Industrial Visitor at the University of California-

Berkeley. Her research interests include automating embedded processor cus-
tomization, high-performance compiler techniques, and reconfigurable comput-
ing.

Dr. Pozzi was the recipient of the Best Paper Award in the embedded
systems category at the 2003 Design Automation Conference (DAC). She is
in the Technical Program Committee of the 2005 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES).

Kubilay Atasu (S’03) received the B.Sc. degree
in computer engineering from Bogazici University,
Turkey, in 2000, and the M.Eng. degree in embed-
ded systems design from Advanced Learning and
Research Institute (ALaRI), University of Lugano,
Switzerland, in 2002. He is currently working toward
the Ph.D. degree at the Department of Computer
Engineering, Bogazici University, Istanbul, Turkey.

His research interests include computer arith-
metic, cryptography, and hardware/software code-
sign. He was with the Swiss Federal Institute of

Technology Lausanne (EPFL), Processor Architecture Laboratory, in 2003.
Mr. Atasu was a recipient of a Best Paper Award in embedded systems

category at the 2003 Design Automation Conference (DAC). He is a Scholar
of Turkish Scientific and Technical Research Council (TUBITAK) as of 2004.

Paolo Ienne (S’90–M’96) received the Dottore in
Ingegneria Elettronica degree from Politecnico di
Milano, Milan, Italy, in 1991, and the Ph.D. degree
from the Swiss Federal Institute of Technology Lau-
sanne (EPFL), Lausanne, Switzerland, in 1996.

From 1990 to 1991, he was a Junior Researcher
with Brunel University, Uxbridge, U.K. From 1992
to 1996, he was a Research Assistant at the Micro-
computing Laboratory (LAMI) and at the MANTRA
Center for Neuro-Mimetic Systems of the EPFL.
In December 1996, he joined the Semiconductors

Group of Siemens AG, Munich, Germany (which is now Infineon Technologies
AG). After working on datapath generation tools, he became Head of the
embedded memory unit in the Design Libraries division. Since 2000, he has
been a Professor at the EPFL and heads the Processor Architecture Laboratory
(LAP). His research interests include various aspects of computer and processor
architecture, reconfigurable computing, language-based very large scale inte-
gration (VLSI) design methodologies, and computer arithmetic.

Dr. Ienne was a recipient of the 40th Design Automation Conference Best
Paper Award in 2003. He is or has also been a member of the program
committees of international workshops and conferences, including Design
Automation and Test in Europe (DATE), the International Conference on
Computer Aided Design (ICCAD), and the Workshop on Application-Specific
Processors (WASP).

