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ABSTRACT 
This paper addresses the problem of maximizing the utilization of 
the battery capacity of the power source for a portable electronic 
system under a given performance constraint. A new stochastic 
model of a power-managed battery-powered electronic system is 
proposed, which is based on continuous-time Markovian decision 
processes (CTMDP). In this model, two important characteristics of 
today’s rechargeable battery cells, i.e., the current rate-capacity 
characteristic and the relaxation-induced recovery are considered 
for. In addition, system properties, such as workload statistics and 
performance constraints are properly captured. The battery-aware 
power management problem is formulated as a policy optimization 
problem based on the theories of CTMDP and stochastic networks 
and solved exactly using a linear programming approach. 
Experimental results shows that our method outperforms existing 
heuristic methods for battery management by as much as 17% in 
terms of the average energy delivered per unit weight of battery 
cells. 

1. INTRODUCTION 
With the steady rapid progress in semiconductor technology and fast 
growing complexity of system applications, portable communication 
and computing devices have to deliver ever increasing performance, 
with limited energy budgets. In many cases, the energy constraint 
has become the bottleneck in the design of complex and high-
performance portable electronics. Much work has been done on 
minimization of power consumption. Among these works, dynamic 
power management (DPM) has proven to be a highly effective 
technique for reducing the total system power.  
 
As seen by a DPM controller, an electronic system is a collection of 
components that perform different functions at possibly different 
times. The key idea of DPM is to selectively shut-off or slow-down 
the idle or underutilized components to eliminate or reduce wasted 
power consumption. Earliest DPM works described predictive 
shutdown approaches [1][2] based on “time-out” policy. A power 
management approach based on discrete-time Markovian decision 
processes was proposed in [3]. This approach outperforms the 
previous heuristic techniques because of its solid theoretical 
framework for system modeling and policy optimization. However, 
the discrete-time model requires policy evaluation at periodic time 
intervals and may thus consume a large amount of power dissipation 
even when no change in the system state has occurred. To overcome 
this shortcoming, a model based on continuous-time Markovian 
decision processes (CTMDP) was proposed in [4]. The policy 
change under this model is asynchronous and thus more suitable for 
implementation as part of a real-time operating system environment.  

Reference [5] also improved on the modeling technique of [3] by 
using time-indexed semi-Markovian decision processes. 
 
Although the abovementioned DPM techniques can greatly reduce 
the system power consumption, they are not able to obtain the 
optimal policy for a battery-powered system. This is because the 
characteristics of battery behavior were not properly modeled or 
exploited in these techniques. As demonstrated by research results 
in [6], the total energy capacity that a battery can deliver during its 
lifetime is strongly related to the discharge current rate. More 
precisely, as the discharge current increases, the deliverable capacity 
of the battery decreases. This phenomenon is called the (current) 
rate-capacity characteristic. Another important property of batteries, 
which was analyzed and modeled in [8], is named the relaxation 
phenomenon (or recovery effect). It is caused by the concentration 
gradient of active materials in the electrode and electrolyte formed 
in the discharge process. Driven by the concentration gradient, the 
active material at the electrolyte-electrode interface, which is 
consumed by the electrochemical reactions during discharge, is 
replenished with new active materials through diffusion. Thus the 
battery capacity is somewhat recovered during a no-use state. Due to 
these non-linear characteristics, a minimum power consumption 
policy does not always necessarily result in the longest battery 
service life because the energy capacity of its power sources may be 
not fully exploited when the cut-off voltage of the battery is 
reached. 
 
A series of battery models have been proposed. These can be 
divided into two categories: electrochemical model and stochastic 
model. The electrochemical models are based on diffusion equations 
and provide an accurate description of the underlying 
electrochemical process. A low level model for lithium-ion batteries 
and a high level model for the time-varying load were proposed in 
[8] and [9], respectively. The electrochemical models require a 
predetermined workload profile. However, in most real situations, 
the workload is unknown a priori and often evolves as a random 
process. In these cases, stochastic models are needed. Stochastic 
models describe the battery behavior as a stochastic process whose 
parameters are extracted from the electrochemical characteristics of 
the simulated battery. Some stochastic models have been reported in 
the literature, e.g. a discrete-time VHDL model [10] and a discrete-
time Markovian chain model [11]. The stochastic model in [11] is a 
Markovian chain of the battery states of charge with forward and 
backward transitions corresponding to the normal discharge and 
recovery effect, respectively. The load is expressed as a stochastic 
demand on the charge units. The model in [11] is mainly focused on 
the recovery effect. 
 



 

A series of battery management policies have been proposed to 
maximize the battery lifetime. A round robin policy was presented 
in [11]. Other policies were studied and compared in [12]. A 
shortcoming of these heuristic approaches is that the optimality 
cannot be guaranteed. Reference [13] presents a dual-battery power 
supply structure which consists of two batteries that have different 
rate-capacity characteristics and uses them in an interleaved manner 
in responding to different current requirement.  
 
To the best of our knowledge, there has been no reported work for 
integrating the model of a power-managed portable electronic 
system with the model of its power source – i.e., batteries. This is, 
however, precisely the contribution of our paper. More precisely, 
we extend the work in [4] to achieve a complete model for the 
battery-powered portable system by introducing and incorporating a 
new CTMDP model of the battery source. This model correctly 
captures the two important battery characteristics, i.e., the recovery 
effect and current-capacity curve. Furthermore, it considers the case 
of a multiple battery power source with a power switch that is 
controlled by the power management policy. Based on this model 
the battery-aware power management problem is formulated as a 
policy optimization problem based on the CTMDP theory and 
solved optimally by using linear programming (LP). 
 
This paper targets a power-management portable system as shown 
in Figure 1. The example depicts a typical dual-battery powered 
portable system. The system contains a service requestor (SR) to 
generate the tasks to be serviced, a service provider (SP) which 
provides the required services, and a service queue (SQ) to store the 
tasks waiting for service.1 The SP is powered by two batteries (B1 
and B2), which may have different current-capacity and recovery 
characteristics. B1 and B2 alternately discharge and provide power 
for the SP. The power switch (SW) selects either B1 or B2 to 
provide power at any given time. Note that only one of the batteries 
is used at a given time and the other is always resting at that time. 
Based on this model, we will show that an optimal management 
scheme can be obtained by solving a LP problem.  
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Figure 1. Dual-battery powered portable system model. 

 

The paper is organized as follows: The model of the battery-
powered portable power-managed system is described in Section 2. 
The solution technique for the optimal problem is described in 
Section 3.  In Section 4, we present the experiment results and we 
conclude in Section 5. 

2. SYSTEM MODELING 
First, we model each component in this portable system. Next, 
based on these models we build the complete model of the power-
managed, portable, battery-powered system.  

The models of the SR, SQ and SP are similar to those described in 
[4]. These components are all modeled as stationary continuous-

                                                           
1 Notice that it is straight-forward to handle multiple SR’s, multiple 

SP’s and even multiple SQ’s. In this paper, we focus on single 
SR, single SP, and single SQ to simplify the presentation. 

time Markovian decision processes. Figure 2 gives examples of each 
of the SR, SQ and SP models.  
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Figure 2. CTMDP models of the SR, SQ and SP. 

The SR model consists of a state set }...,,2,1,0,{ Rir i ==R  and a 

generator matrix 
SRG , where R is the number of the states of the 

SR. The SQ model consists of a state set }...,,2,1,0,{ Qiqi ==Q  and 

a generator matrix ),( srGSQ
, where Q is the maximum length of the 

queue, s denotes a state of the SP, and r denotes a state of the SR. 
The SP model consists of a state set }...,,2,1..{ Sitssi ==S , an 

action set 
sA , and a parameterized generator matrix )( sSP aG , 

where 
ss Aa ∈ . The SP can be described by a quadruple 

)),(),(),(,( ji ssenespowsµχ , where χ  is the transition speed 

matrix of the SP. )(sµ  is the service speed of the SP when it is in 

state s, )(spow  is the power consumption of the SP staying in state 

s and ),( ji ssene  is the energy required by the SP to transit from 

state 
is  to 

js . There are two kinds of transition: autonomous and 

command-controlled transition. A command-controlled transition 
may only occur when the SP receives a command from the DPM 
controller that asks the SP to make such a transition, e.g. the 
transition from state idle1 to state busy1. An autonomous transition 
takes place without instruction from the DPM controller, e.g. the 
transition from state busy1 to state idle1, which takes place 
autonomously when the SP finished the current service. 

The expected power consumption (cost rate) of the SP when it is in 

state s  and action sa  is chosen is calculated as 
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represents the probability that the next state of the SP is s′  when 

its present state is s  and action sa  is chosen.  

(2-1) 



 

2.1 Model of the Power Switch 
The Power Switch (PS) is modeled as a stationary, continuous-time 
Markovian process, with a state set }...,,2,1..{ Witswi ==W , an 

action set }...,,2,1..)({ WitsiaA swsw == , and a generator matrix 

SWG . Here )(iasw
 means that the 

thi  battery source should be used 

next to power the system. 
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Figure 3. CTMDP model of the PS. 

2.2 Model of the Battery 
The battery (BAT) is modeled as a stationary, continuous-time 
Markovian decision process with a state set 

}...,,2,1,0..,{ Nitsrsb ii ==B , a parameterized generator matrix 

),,( bwsGB
, and a function ),( ji bbene : RNN →× . 

The subscript i of state 
ib or 

irs  in the state set B , denotes that in 

this state the remaining energy capacity of the BAT is %100×
N

i  of 

the full energy capacity. Therefore, 
0b  implies that the battery has 

been completely discharged whereas 
Nb  means that the battery is 

fully charged. For example, ignoring the states 
irs  for the moment, 

let 5=N , then the state set is %}100%,80%,60%,40%,20,0{=Β . 

Function ),( ji bbene  represents the energy-capacity difference 

between state 
ib  and 

jb . Figure 4 illustrates the CTMDP model of 

the BAT. 
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Figure 4. CTMDP model of the BAT. 

In this model, state 
ib  represents an “active” state, in which the 

battery may be discharged when it is used or can recover capacity 
when it is resting.  

State 
irs  represents a “stable” state, in which the battery can neither 

discharge nor recover. 

The transition from state 
1+ib  to 

ib  represents the discharge process 

of the battery, ),,( wasρ  denotes the transition rate. If PS selects 

this battery and SP consumes power when it is in state s  and action 
a  is chosen, the value of ),,( wasρ  is determined by equation (2-1) 

(cf. Table 1); otherwise, ),,( wasρ  is equal to 0.  

 

The transition from state 
ib  to 

1+ib  represents the recovery process 

of the battery, ),,,( ibwasω  denotes the transition rate, which is a 

function of the SP state s  and the battery state ib . If the SP does 

not consume power when it is in state s  and action a  is chosen, or 
if the PS does not select this battery, the value of ),,,( ibwasω  is 

determined by the battery state ib  (cf. Table 1); otherwise 

),,,( ibwasω  is equal to 0. 

The transition from state 
ib  to 

irs  may only occur when the battery 

is resting. ),,,( ibwasυ  denotes the transition rate. If the SP does 

not consume power when it stays in state s  and action a  is chosen, 
or if the PS does not select this battery, the value of ),,,( ibwasυ  

is determined by the battery state ib  (cf. Table 1); otherwise 

),,,( ibwasυ  is equal to 0. 

The transition from state 
irs  to 

ib  may only occur when the battery 

is used again. Here ),,( wasδ  means that if the SP consumes power 

when it stays in state s  and action a  is chosen, and if the PS 
selects this battery, the battery goes from 

irs  to 
ib  immediately. 

The value of ),,( wasρ , ),,,( ibwasω , ),,,( ibwasυ  and 

),,( wasδ  are summarized in the following table. In the first row of 

Table 1, if the SP consumes power when it stays in state s  and 
action a  is chosen, ),( as  is set to 1; otherwise ),( as  is set to 0. If 

the PS selects this battery, w  is set to 1; otherwise w  is set to 0. 

Table 1. Parameters of the BAT 

),( as , w  0, 0 0, 1 1, 1 1, 0 

),,( wasρ  0 0 ),( asρ′ * 0 

),,,( ibwasω  )( ibω′ ** )( ibω′ ** 0 )( ibω′ ** 

),,,( ibwasυ  )( ibυ ′ ** )( ibυ ′ ** 0 )( ibυ ′ ** 

),,( wasδ  0 0 ∞  0 

* ),( asρ′  is defined by equation (2-2) in section 2.2.1. 

** )( ibω′  and )( ibυ ′  are functions each defined by a look-up table 

indexed by 
ib . The actual value of each entry in the two tables is 

obtained from simulation results. The method is described in more 
detail in section 2.2.2. 

 

The transition from state 
0b  to 

Nb , denoted by the long wrap-

around dashed arrow line, represents that an exhausted (used-up) 
battery is replaced with a fresh (fully charged) battery of the same 
type. This transition is added because without it, state 

0b  becomes a 

trap. If transition from 
0b  to 

Nb  is not included in the model, then 

when time tends to infinity, the battery will eventually arrive into 
the state 

0b  and cannot subsequently leave this state. Consequently, 

no feasible solution would be found when using the LP technique to 
solve the optimal policy problem. 

The battery model is constructed based on the following three 
assumptions: 



 

(a) During the discharge process of the battery, only a transition 
from state 

1+ib  to 
ib  is allowed, where 1,,0 −= Ni ! , which 

means that the battery discharges gradually.  

(b) When the battery is resting (i.e. not being used), if it is in the 
state 

ib , it may regain some of its capacity due to the recovery 

process or it may transit to the state 
irs . However, when the battery 

is in the state 
irs , it cannot recover capacity any more and will stay 

in this state until it is used again to power up the system. As soon as 
this happens, the battery moves from state 

irs  to 
ib  and then 

possibly to 
1−ib .  

(c) During the recovery process of the battery, only a transition 
from state 

1−ib  to 
ib , Ni ,,2 != , is allowed, which means that 

the battery always recovers gradually. State 
0b  means that the 

battery capacity has been exhausted, so the battery cannot serve any 
more and should be replaced.  

Assumptions (a) and (c) are realistic because of the continuous 
nature of the electrochemical processes. Assumption (b) also is 
realistic because the energy recovery speed of a battery diminishes 
when the rest time increases. Example result depicted in Figure 5 
empirically confirms this important observation. Notice that the 
curve marked with blue ‘+’ signs is obtained by simulating a real Li-
ion battery. The horizontal axis denotes the ratio of the rest time to 
the discharge time. 
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Figure 5. Relationship between the capacity recovery effect and 
ratio of the rest time to the discharge time for a Li-ion battery.  

 

2.2.1 Determining ),( asρ′  

As stated previously, ),( asρ′ represents the transition rate of the 

battery from state 
ib  to 

1−ib , Ni ,,1 != , when the SP stays in 

state s  and action a  is chosen. It can be formulated as 

NCas

aswpo
as

⋅−
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=′
)),(1(

),(
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β
ρ  

where C  is the full energy capacity of the battery. Here ),( asβ  

captures the rate capacity of the battery,  1),(0 << asβ . The SP 

state s  and the chosen action a determine the current drawn from 
the battery, i.e. determine the value of ),( asβ . As shown in Figure 

6, under different discharge currents, the deliverable capacity of a 
secondary battery may be quite different (in Figure 6, this effect is 
more pronounced for battery B1). So for different batteries, ),( asβ  

may take different forms.  
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Figure 6. Current-capacity relations of two different batteries. 

2.2.2 Determining )( ibω′  and )( ibυ ′  

Transition rates )( ibω′  and )( ibυ ′  can be obtained from battery 

simulation results. Based on assumption (b), let )(tri , Ni ...,,1= , 

denote the expected recovered capacity during a time period t  
(assuming that during this period, the recovery process is not 
interrupted by the discharge requests, i.e., the battery is not selected 
by the PS to power the SP), if at the beginning of this period the 
battery starts in state 

ib . Define an 1×N  vector 

[ ]T
N trtrtrt )()()()( 21 …=r , which satisfies the equation: 

bArr += )()( tt# , 

where A is an NN ×  matrix: NNija ×)( , and 
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b  is an 1×N  vector: 1)( ×Nib , and 
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where C is the full energy capacity of the battery (defined in 
equation (2-2)). 

The boundary condition is 

0)0( =r  

The )( ibω′  and )( ibυ ′  can be determined as described below in a 

top-down manner:  

1) Since 
Nb  represents a state of full capacity, 0)( ≡trN

.  

2) Then )(1 trN−
 satisfies: 
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trbbtr ωυω#  

    using the boundary condition, we get 

))))()((exp(1(
)()(

)(
)

1
1()( 11

11

1
1 tbb

bb

b

N
tr NN

NN

N
N −−

−−

−
− ′+′−−

′+′
′

−= υω
υω

ω  

    

(2-2) 

(2-3) 
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(2-6) 

(2-5) 



 

    Next, we do battery simulation: discharge the battery to 
N

N 1−  of 

its original capacity, let it rest for a time period t, then fully 
discharge the battery. Next we change the value of t and repeat 
the above steps. Proceeding in this way, we obtain a curve of the 
recovery capacity vs. rest time at the battery state 

1−Nb . Next, we 

choose a set of )( 1−′ Nbω  and )( 1−′ Nbυ  that make the curve 

determined by equation (2-6) match the simulation curve best. 

3) Since )(1 trN−
 is known, we can solve for )(2 trN−

 and determine 

)( 2−′ Nbω  and )( 2−′ Nbυ  by repeating step 2). We repeat step 2) 

until )(1 tr  is obtained and )( 1bω′  and )( 1bυ ′  are thereby 

determined.  

The steps can be simplified, if two conditions are satisfied:  i) 

)( ibω′  is much less than ),( asρ′ , and ii) υυ ≡′ )( ib , is 

independent of 
ib . In this case, the expected recovered battery 

capacity related to the rest time may be approximated as follows, 

τυωτ υτ detr
t

i
−⋅= ∫

0
)(  

                                     ( )tt tee υυ υ
υ
ω −− −−= 1  

where ∑
−+

=

′=
1

)(
1 ki

ij
jb

k
ωω , normally setting k  to 2 or 3 is adequate.  

The solid curve shown in Figure 5 is the analytical results of the 
recovery effect given by this battery model when it is used to 
capture the real Li-ion battery of which the simulation result is also 
shown in Figure 5 as the curve marked with “+”). Indeed Figure 5 
demonstrates that the analytical function describing the recovered 
capacity of the battery as a function of the rest time t is very 
accurate (when compared with detailed battery simulation results).  

A function ),( ji bbene  is associated with each pair ),( ji bb . This 

function is defined as follows: 
N

Cbbene ji ±=),( , where 

1±= ij . When 1−= ij , 0),( >ji bbene , represents the energy 

consumed when the battery transits from state 
ib  to 

jb . When 

1+= ij , 0),( <ji bbene , represents energy recovered in the 

battery due to the battery relaxation process. 

For a two-battery powered system, the generator matrix of the two-
battery model is given as 

21 BBB GGG ⊗= , where ⊗  is the tensor 

product of the two generator matrixes of battery B1 and B2 [15]. 

2.3 Model of the Battery-Powered System 
We use five components: SR, SQ, SP, PS and BAT models, to 
construct the model of a power-managed, portable, battery-powered 
system. The state set is given by: 

}{ statesinvalidBWSQRX −××××= . The invalid states 

include the states where SP is busy and SQ is empty. Thus the SYS 
state can be represented as a quintuple ),,,,( bwsqrx = , where 

Bbbb ∈= },{ )2()1( , 
1

)1( Bb ∈ , 
2

)2( Bb ∈ . 

The system action set 
sysA is the union of the action set 

sA for the 

SP and the action set 
swA  for the PS. We use )(aGSYS

 to represent 

the generator matrix of the system, where 
sysAa ∈ . Since the 

service requester is assumed to be independent of the other 
components, the generator matrix )(aGSYS

 can be calculated as 

)()()( aGaGaG BATPSSPSQSRSYS −−−⊕= , 

)()()( aGaGaG PSSPPSSP ⊕=− , 

where the SQ-SP-PS-BAT denotes the joint CTMDP model of the 
SQ, SP, PS and BAT, and the SP-PS denotes the joint CTMDP 
model of the SP and PS. 

Unfortunately, the Markovian processes of the SQ and the SP-PS, 
and the Markovian processes of the BAT and the SP-PS are both 
correlated. The SP-PS and the Battery are correlated in the sense 
that when the state of the SP-PS changes, the discharge rate of the 
Battery also changes. Based on our assumptions for the battery 
model, we can calculate each entry of the )(aG BATPSSPSQ −−−  as 

described below in detail.  

Let 
xx ′,σ  denote the transition rate of the system for going from 

state ),,,( bwsqx =  to state ),,,( bwsqx ′′′′=′ . 

1) If bb =′ , 
xx ′,σ  is equal to 

),,(),,,( qwsqws ′′′σ , which is the joint 

state transition rate of the SQ-SP-SW. 

2) If ss =′ and qq =′ , and if 
1ww =  and 

ibb =)1(  and 

1
)1(

−=
′

ibb  and )2()2( bb =′
, then 

xx ′,σ  is equal to ),(
1

asBρ , 

which is the discharge transition rate of battery 
1B  from state 

ib  to state 
1−ib . 

3) If ss =′ and qq =′ , and if 
2ww =  and 

ibb =)2(  and 

1
)2(

−=
′

ibb  and )1()1( bb =′
, then 

xx ′,σ  is equal to ),(
2

asBρ , 

which is the discharge transition rate of battery 
2B  from state 

ib  to state 
1−ib . 

4) If ss =′ and qq =′ , and if 
2ww =  or the SP is in the sleep 

state, and if 
ibb =)1(  and 

1
)1(

+=
′

ibb  and )2()2( bb =′
, then 

xx ′,σ  is equal to ),(
1

asBρ , which is the recovery transition 

rate of battery 
1B  from state 

ib  to state 
1+ib . 

5) If ss =′ and qq =′ , and if 
1ww =  or the SP is in the sleep 

state, and if 
ibb =)2(  and 

1
)2(

+=
′

ibb  and )1()1( bb =′
, then 

xx ′,σ  is equal to ),(
2

asBρ , which is the recovery transition 

rate of battery 
2B  from state 

ib  to state 
1+ib . 

6) If ss =′ and qq =′ , and if 
2ww =  or the SP is in the sleep 

state, and if 
ibb =)1(  and 

irsb =′)1(  and )2()2( bb =′
, then 

xx ′,σ  is equal to ),(
1

wsBυ , which is the transition rate of 

battery 1B  from state 
ib  to state 

irs . 

7) If ss =′ and qq =′ , and if 
1ww =  or the SP is in the sleep 

state, and if 
ibb =)2(  and 

irsb =′)2(  and )1()1( bb =′
, then 

xx ′,σ  is equal to ),(
2

wsBυ , which is the transition rate of 

battery 
2B  from state 

ib  to state 
irs . 

8) For any other transition, 
xx ′,σ  is equal to 0. 

(2-7) 



 

3. SOLUTION METHOD  

3.1 Cost Function 
The expected cost xa

xγ , which represents the expected energy 

delivered from the battery when the system is in state x  and action 

xa  is chosen, is calculated as: 

∑
′

′⋅=
x

a
xx

a
x bbenep xx ),(',γ  

Let xa
xf  denote the frequency that the system will be in state x  and 

action 
xa  is chosen. Let xa

xτ  denote the expected time that the 

system will stay in state x  when action 
xa  is chosen. Let xa

xlq  

denote the waiting cost in the queue, xa
xlq  can be calculated as 

.xx a
xx

a
x qlq τ⋅=  

3.2 Objective function 
Our goal is to find an optimal policy to minimize the energy 
delivered from the batteries under the constraints on the average 
number of waiting requests in the queue and the request loss rate. 
Notice that a request issued by the SR is lost in (dropped by) the SQ 
if the queue is full when the request comes in. We formulate this 
problem as a linear program as follows: 
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The last constraint ensures that the probability that the queue 
becomes full should be less than a preset threshold. It is our way of 
controlling request loss rate in the system.      

4. EXPERIMENTAL RESULTS  
It has been demonstrated that DPM techniques based on Markovian 
decision process outperform heuristic policies, when not 
considering the characteristics of the batteries [14]. To compare the 
effects of different power management policies on the battery 
service lifetime, in this experimental setup, we use the policy 
obtained in [4] to determine the behavior of the SP under a number 
of heuristic methods: M1-M4, see below. Notice that these heuristic 
methods do not intrinsically account for the battery effects as part of 
solving an integrated battery-aware power management problem, 
which is what we have proposed in this paper. We use the low-level 
simulator DUALFOIL [7] to simulate the batteries.  

As shown in Figure 1, the experimental system contains a SR, a SP 
with its own SQ and two batteries. The details are as follows. 

We use an input trace file to capture the statistical behavior of the 
SR. More precisely, the distribution of the input requests is a 
combination of the exponential and Pareto distribution as observed 
in [5]. 

The SP has six power states: {busy1, idle1, busy2, idle2, waiting, 
sleeping}. The busy1 and busy2 states are working states where the 
SP services the requests waiting in the queue. In the waiting or 
sleeping states, the SP does not service any requests. The only 
differences between the two states are as follows, 1) in the waiting 
state, the SP consumes power whereas in the sleeping state, it does 
not; 2) in the waiting state, the SP can return to a working state 
much faster than in the sleeping state. The idle states are in one-to-
one correspondence with the busy states. They are abstract states 
where new policy decisions are issued to the SP. Transition from 
busy to idle state is autonomous and instant.  Since the DUALFOIL 
accepts current density as an input, in this experiment we express 
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The two batteries have different rate-capacity characteristics and 
recovery abilities. From Figure 6, we can see that in low current 
working state, busy1, battery B1 can deliver more energy than B2, 
while in high current working state, busy2, battery B2 can deliver 
more energy than B1.  Figure 7 shows that battery B1 has a much 
stronger recovery ability than B2.  
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Figure 7. Recovery abilities of battery B1 and B2.                       
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We consider and compare four heuristic methods of battery 
management with our CTMDP-based policy: 

   M1: As in [13], we account for the rate-capacity characteristics of 
the battery, but do not consider the recovery effect and use a 
pre-assigned battery when the SP is in a particular state, e.g., 
we use battery B1 when the SP is running in the state busy1, 
while we use battery B2 when the SP is in state busy2. 

   M2: Similar to [16], we account for the recovery effect in battery 
but we do not consider the rate-capacity characteristics of 
batteries and switch between the two batteries (B1-B2) with a 
fixed frequency (0.1 Hz, as suggested in [16]). 

   M3: We use two batteries of type B1, switching between them 
(B1-B1) with a fixed frequency (0.1 Hz). 

   M4: We use two batteries of type B2, switching between them 
(B2-B2) with a fixed frequency (0.1 Hz). 

Furthermore, we consider two battery replacement policies: 
  P1: As soon as a battery is completely consumed, it is immediately 

replaced with a new battery of the same type. 

  P2:  The both batteries are replaced together and only after both 
have been completely used up. If only one battery is used up, 
the other battery will be used in all situations until it is also 
exhausted. 

 
The experiment results are shown in Table 2. We can see that our 
method provides as much as 17% improvement over the heuristic 
methods. 
  

Table 2. Experimental results for comparison 

  M1 M2 M3 M4 CTMDP 

Average 
gravio-metric 

energy 
delivered 
(wh/kg) 

 
54.35 

 

 
53.24 

 
53.32 

 
53.20 

 
61.25 

 
 
 

P1 

 
Improvement 
for CTMDP 

 
12.7 
% 

 
15.0 
% 

 

 
14.9 
% 

 
15.1 
% 

 

 
-- 

Average 
gravio-metric 

energy 
delivered 
(wh/kg) 

 
51.64 

 
52.66 

 
53.05 

 
53.19 

 
60.37 

 
 
 

P2 

 
Improvement 
for CTMDP 

 
16.9 
% 

 
14.6 
% 

 
13.8 
% 

 
13.5 
% 

-- 

 

5. CONCLUSION 
In this paper, a new stochastic model for the battery-powered 
portable electronic system is proposed based on continuous time 
Markovian decision processes. Two important battery 
characteristics: current-capacity and recovery effect are taken into 
account in this model. The battery-aware power management policy 
is solved as a Linear Programming problem. Experiment results 
demonstrate the effectiveness of this method.  
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