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Optimal Synthesis of Multiple Output Boolean
Functions Using a Set of Quantum Gates

by Symbolic Reachability Analysis
William N. N. Hung, Xiaoyu Song, Guowu Yang, Jin Yang, and Marek Perkowski

Abstract—This paper proposes an approach to optimally syn-
thesize quantum circuits by symbolic reachability analysis, where
the primary inputs and outputs are basis binary and the inter-
nal signals can be nonbinary in a multiple-valued domain. The
authors present an optimal synthesis method to minimize quan-
tum cost and some speedup methods with nonoptimal quantum
cost. The methods here are applicable to small reversible func-
tions. Unlike previous works that use permutative reversible gates,
a lower level library that includes nonpermutative quantum gates
is used here. The proposed approach obtains the minimum cost
quantum circuits for Miller gate, half adder, and full adder, which
are better than previous results. This cost is minimum for any
circuit using the set of quantum gates in this paper, where the con-
trol qubit of 2-qubit gates is always basis binary. In addition, the
minimum quantum cost in the same manner for Fredkin, Peres,
and Toffoli gates is proven. The method can also find the best
conversion from an irreversible function to a reversible circuit as a
byproduct of the generality of its formulation, thus synthesizing in
principle arbitrary multi-output Boolean functions with quantum
gate library. This paper constitutes the first successful experience
of applying formal methods and satisfiability to quantum logic
synthesis.

Index Terms—Formal verification, logic synthesis, model check-
ing, quantum computing, reversible logic, satisfiability.

I. INTRODUCTION

R EVERSIBLE logic [1] plays an important role in the
synthesis of quantum computing circuits [2], [3]. The

synthesis of reversible logic circuits using elementary quantum
gates [4], [5] is different from classical (nonreversible) logic
synthesis. There are some works [6]–[9] on reversible logic
synthesis using basic reversible gates (Toffoli, Fredkin [10], or
Feynman gates). However, these reversible logic gates have dif-
ferent quantum implementation costs (e.g., the cost of Feynman
is lower than Toffoli). Therefore, finding the smallest number
of gates to synthesize a reversible circuit does not necessarily
result in quantum implementation with the lowest cost (in terms
of quantum gates).
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In this paper, we focus on synthesizing reversible circuits
using quantum primitives with the lowest total cost using a
library of basic 2-qubit quantum gates, which will be described
in Section III. Our synthesis method can also be modified to
use other libraries of gates. We chose a library of basic 2-qubit
quantum gates in this paper as they allow us to better evaluate
the quantum implementation costs. The circuits we synthesized
include common reversible gates that can next be used at higher
levels of logic synthesis. Our approach can also be used as an
equivalent of “technology mapping” for quantum circuits.

We reduce the quantum logic synthesis problem to multiple-
valued logic synthesis; this reduction simplifies the search
space and reduces the algorithm complexity. We formulate the
above quantum logic synthesis task via symbolic reachability
analysis [11], [12]. We used satisfiability-based model checking
to solve the problem, but other decision methods or combinato-
rial optimization techniques can be similarly applied here. Our
method not only guarantees to find a quantum implementation
(for reversible circuits) but also guarantees the lowest quantum
cost in the synthesized result (for the set of circuits where
the control qubit of our 2-qubit gates is always basis binary).
We also introduce an automated way of adding ancilla qubits
and finding their appropriate constant values in the synthesis
process. Thus, even irreversible circuits can be converted to
reversible circuits that in turn are synthesized by our method.
In contrast to previous works, which either use permutative
reversible gates to design permutative circuits or universal
quantum gates to design quantum circuits, we use a subset of
quantum gates to design permutative circuits.

II. BACKGROUND

Given a function f , we say f is reversible if and only if there
exists a function g such that x = g(f(x)) for all x in the domain
of f . The corresponding function g (as described above) is usu-
ally referred to as f−1. Given n Boolean inputs, any multiple-
output Boolean function on such n Boolean inputs must have
exactly n Boolean outputs so that it is reversible [2]. We use
n× n to denote a reversible function with n Boolean inputs
and n Boolean outputs. Given an n× n reversible function f ,
there are 2n input rows and 2n output rows in the truth table of
f . The output rows must be a permutation of the input rows in
the truth table of f .

In quantum computing [2], the fundamental information unit
is a qubit. The state of a qubit is a superposition of 0 and 1
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states, also denoted as |0〉 and |1〉, respectively. The qubit state
q can be represented by

q = α|0〉 + β|1〉

where α and β are both complex numbers and |α|2 + |β|2 = 1.
The classical state of binary 0 corresponds to the case where

α = 1 and β = 0. Similarly, the classical state of binary 1 cor-
responds to α = 0 and β = 1. We refer to them as basis binary
0 and basis binary 1, respectively. All other combinations of α
and β are not basis binary. The quantum state of a single qubit
is usually denoted by the vector

(
α

β

)
.

Given the state of each qubit, the overall quantum state is a
Kronecker product of the states of each qubit. Take two qubits
for example

(
u0

u1

)
⊗
(
v0

v1

)
=



u0

(
v0

v1

)

u1

(
v0

v1

)

 =



u0v0

u0v1

u1v0

u1v1


 . (1)

Notice that if the individual qubits are basis binary, then the
Kronecker product is simply an enumeration of all the possible
binary values (truth table) of its qubits. If we can use the
quantum state of multiple qubits to determine the individual
state of each qubit (such as the above case), we call it a
separable state. There are some cases where the quantum state
cannot be separated into individual states of each qubit, i.e., we
cannot describe (mathematically) the state of each qubit but
we can describe the quantum state of all the qubits combined.
We call such states entangled states. This idea of entangled
state is called quantum entanglement, and it originated from
the Einstein–Podolsky–Rosen paradox [13].

The effect of quantum gates on a quantum state can be
described as vector operations, where the quantum gates are
represented by unitary matrices. A unitary matrix is a n× n
complex matrix M with the property

M ×M+ = M+ ×M = I

where I is the identity matrix and M+ is the conjugate trans-
pose (also known as the Hermitian adjoint) of M .

Given an n-qubit quantum gate G, we call G a permutative
quantum gate if and only if the outputs of G are all basis binary
when its inputs are all basis binary, i.e., G is a permutative
quantum gate if and only if G implements an n× n Boolean
reversible function (when its inputs are basis binary).

A generalized 2-qubit controlled U gate [5] is shown in
Fig. 1. Its unitary matrix is




1 0 0 0
0 1 0 0
0 0 u00 u01

0 0 u10 u11




Fig. 1. Controlled-U gate.

where the four entries in the right bottom also form a (single
qubit) unitary matrix U by itself

U =
(
u00 u01

u10 u11

)
.

It has been shown [4], [5] that permutative quantum logic
circuits can be constructed using elementary quantum, XOR,
controlled-V , controlled-V +, or NOT gates, as shown in Fig. 2.
The NOT gate is also called an inverter. Its unitary matrix is

MNOT =
(

0 1
1 0

)
.

Quantum XOR gates are also called Feynman gates or
controlled-NOT (CNOT) gates. The controlled-V gate’s data
output is the same as its data input (B) when its control input
(A) value is 0 (FALSE). When its control value is 1 (TRUE),
the data output becomes V (input) [2]

V =
1 + i

2

(
1 −i
−i 1

)
, V + =

1 − i

2

(
1 i
i 1

)
.

Similar rules apply to the controlled-V + gate, except that its
data output becomes V +(input), where V + is the Hermitian of
V , i.e.,

1 + i

2

(
1 −i
−i 1

)
× 1 − i

2

(
1 i
i 1

)
=
(

1 0
0 1

)
.

The quantum XOR (controlled-NOT), controlled-V , and
controlled-V + are all special cases of the generalized
controlled-U gate, where the matrix U corresponds to MNOT,
V , and V +, respectively.

According to [2], the values V and V + are constructed
such that they are the square root of NOT (i.e., inverter gate):
V × V = V + × V + = MNOT. Hence, if the signal V (input)
is passed through another controlled-V gate with its control
value also equal to 1 (TRUE), the output of the second gate
becomes the NOT of the input.

The quantum XOR, controlled-V , and controlled-V + gates
are 2 × 2 gates. They are also called 2-qubit gates. Similarly, the
NOT gate (inverter) is a 1-qubit gate. For quantum implementa-
tion, the cost of 2-qubit gates far exceeds the cost of 1-qubit
gates. Hence, in a first approximation, the quantum cost of
1-qubit gates is usually ignored in the presence of 2-qubit
implementations [5], [14].

In this paper, we adopt the quantum gate cost evalu-
ation introduced in [4]. According to the method in [4],
each of the 2-qubit gates (quantum XOR, controlled-V ,
controlled-V +) has a quantum implementation cost of 1.
In addition, when both quantum XOR and controlled-V (or
controlled-V +) are operating on the same two qubits in a
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Fig. 2. Elementary quantum logic gates.

Fig. 3. Merged 2-qubit gates.

symmetric pattern (shown in Fig. 3), their total cost is consid-
ered as 1 as well. A more accurate cost function can be created
for a particular quantum technology such as nuclear magnetic
resonance (NMR) [15], but for simplicity and comparison to
previous work we will use here the cost function from [4].

Given a reversible function, the quantum logic synthesis task
considered in this paper is to synthesize the function using
the above elementary quantum logic gates with the minimum
cost. Various heuristic methods have been applied to find low-
cost quantum implementations (using the elementary gates)
for the functionality of the Fredkin [4], Toffoli [16], and
Peres [17] gates. Yet, nobody has been able to prove that they
have the lowest quantum cost implementation (based on the
cost evaluation criteria given above).

We can perform the above quantum logic synthesis task
through reachability analysis. Symbolic reachability analysis is
a well-known technique in formal verification [11]. Its basic
idea is to find all the reachable states of a finite state machine
(FSM). Using symbolic representation, we can check if an
invariant (property) is true for all reachable states. This tech-
nique is used in invariant checking [11], where the state space
is traversed exhaustively against an invariant. Since the state
space tends to be large for practical systems, recent symbolic
reachability analysis techniques use various methods, such
as binary decision diagram (BDD) [18], [19] or satisfiability
(SAT), to avoid enumerating every system state while preserv-
ing the completeness of the reachability analysis. We use state-
of-the-art SAT-based bounded model checking [12] to check
invariants. If the invariant is false, it can automatically generate
a counter-example. We can find the shortest counter-example
in this way by starting with a zero bound and gradually incre-
menting the bound. If the invariant is true and given enough
time, this method can also check that the bound is sufficiently
large and establish the proof. SAT-based model checking has
been successfully deployed in the industry [20]–[22].

III. SYMBOLIC FORMULATION

We consider each “quantum wire” of the quantum circuit as
a superposition of |1〉 and |0〉, denoted as 1 and 0, respectively.
We are interested in synthesizing quantum circuits with basis

binary inputs (1 and 0). The values of these signals are modified
after passing through elementary gates (Fig. 2). There are six
possible output values when we apply binary (1 and 0) inputs
to one of those elementary gates: 0, 1, V0, V1, V +

0 , V +
1 , where

V0 represents V (input) when the input is 0, and similarly for
V1, V +

0 , V +
1 , i.e.,

V0 =
1 + i

2

(
1 −i
−i 1

)
×
(

1
0

)
=

1 + i

2

(
1
−i

)

V1 =
1 + i

2

(
1 −i
−i 1

)
×
(

0
1

)
=

1 + i

2

(
−i
1

)

V +
0 =

1 − i

2

(
1 i
i 1

)
×
(

1
0

)
=

1 − i

2

(
1
i

)

V +
1 =

1 − i

2

(
1 i
i 1

)
×
(

0
1

)
=

1 − i

2

(
i
1

)
.

These six possible values are used as input values to gates
in subsequent stages. We want to synthesize our circuit
such that the “control” input of controlled-NOT (quantum
XOR), controlled-V , or controlled-V + is always basis binary
(0s and 1s), i.e., their input values cannot be V0 or V1, etc.

We impose the above restriction because a nonbinary value
at the control input of the controlled-NOT, controlled-V , or
controlled-V + gate can generate an entangled quantum state.
For example, if we have V0 at both control and data inputs
of the controlled-V gate, the unitary matrix multiplied by the
Kronecker product (of the inputs) becomes




1 0 0 0
0 1 0 0
0 0 1+i

2
1−i
2

0 0 1−i
2

1+i
2


×




0.5i
0.5
0.5

−0.5i


 =




0.5i
0.5
0

0.5 − 0.5i


 .

The vector result cannot be separated into two individual qubit
states using (1). The u1u0 entry from (1) is 0, which requires
u1 = u0 = 0. It contradicts with the other entries of the vector.
This is an entangled quantum state. Similar scenarios exist for
controlled-V +. The controlled-NOT also has similar examples
[23]. For the rest of this paper, we focus on synthesizing quan-
tum circuits using our set of quantum gates (NOT, controlled-
NOT, controlled-V , and controlled-V +), where the control
input of the 2-qubit gates is always basis binary. However, the
same approach can be used to synthesize circuits using other
libraries of quantum gates as long as it can be reduced to a
multiple-valued logic problem.
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Based on the unitary matrices in Section II, we can see that
if the input of the NOT gate is not basis binary, namely V0, V1,
V +

0 , or V +
1 , its corresponding output is V1, V0, V +

1 , or V +
0 ,

respectively. Given a basis binary 1 on the control input of the
controlled-NOT gate, the data input and the data output exhibit
the same property (above) as the NOT gate. Also, as shown in
Section II, given the six possible values (0, 1, V0, V1, V +

0 or
V +

1 ) at the data input of the controlled-V or controlled-V +,
their corresponding data output has the same set of six possible
values. Hence, the input/output of every quantum gate in the
circuit can be represented using the above six values.

If we look at the complex matrix representation of V0, V1,
V +

0 , and V +
1 , we can deduce that V0 = V +

1

V0 =
1 + i

2

(
1
−i

)
=
(

0.5 + 0.5i
0.5 − 0.5i

)

V +
1 =

1 − i

2

(
i
1

)
=
(

0.5 + 0.5i
0.5 − 0.5i

)

and V1 = V +
0

V1 =
1 + i

2

(
−i
1

)
=
(

0.5 − 0.5i
0.5 + 0.5i

)

V +
0 =

1 − i

2

(
1
i

)
=
(

0.5 − 0.5i
0.5 + 0.5i

)
.

Thus, it suffices to represent signals in the circuit using four
values: 0, 1, V0, V1. In this way, we reduce the problem of
quantum circuit synthesis (which would normally use unitary
matrices and Hilbert space to represent signals) to a simpler
synthesis problem in mixed binary/quaternary algebra. This
is a general approach to efficiently synthesize a subclass of
quantum circuits. It can be applied to gates other than the
2-qubit gates introduced above.

Theorem 1: For any deterministic quantum circuit (with n
qubits, n > 0) that produces basis binary outputs for basis
binary inputs, its unitary matrix is canonical, i.e., there is only
one unitary matrix that represents the function of this circuit.
This is a permutation matrix.

Proof: We prove the theorem in four steps. Step 1): There
are 2n! distinct n× n binary reversible logic functions. Step 2):
When all n qubits are basis binary, their Kronecker product has
one entry equal to 1 while all the other entries are equal to 0.
Step 3): Each row or column of the unitary matrix should have
only one entry equal to 1 while all the other entries are equal
to 0. Step 4): The unitary matrix must be unique under the above
circumstances.

Step 1) The function of this quantum circuit is a binary
reversible logic function. The output entries in the
truth table are permutations of the input entries
for this function. The truth table has 2n rows, i.e.,
2n distinct binary input entries (and corresponding
output entries). Since the output entries are permu-
tations of the 2n input entries, there are 2n! ways to
permute them. Hence, there are 2n! distinct n× n
binary reversible logic functions.

Step 2) The Kronecker product of n qubits is

(
α1

β1

)
⊗ · · · ⊗

(
αn

βn

)
=



α1α2, . . . , αn−1αn

α1α2, . . . , αn−1βn
...

β1β2, . . . , βn−1βn


.

For each qubit, αβ have only two choices (10 or 01)
to be basis binary. There are 2n distinct ways for all
n qubits to be basis binary. Under this circumstance,
the above Kronecker product is an enumeration of
the truth table patterns for α and β of each qubit.
Hence, there is one entry in the Kronecker product
equal to 1 while all the other entries are equal to 0.

Step 3) Let U be a unitary matrix of the n-qubit circuit.
There are 2n rows and 2n columns in U . Let P and
Q be the Kronecker product of the input and output
for this circuit, respectively. We have

U × P = Q. (2)

According to Step 2), the vector P has one entry
equal to 1 and all the other entries are 0. Similarly,
the vector Q has one entry equal to 1 and all the
other entries are 0. We use uij to denote the value of
matrix U in the ith row and jth column, and pi and
qi to denote the value of vector P and Q in the ith
row, respectively.
Given 0 ≤ i ≤ 2n, suppose all the entries in the ith
row of U are 0, then qi will be 0 for all possible
values of P due to (2). This is a contradiction
because Q has 2n rows and 2n distinct values, so
qi must be 1 for one of those cases. Hence, any row
of U cannot be all zeros.
Furthermore, suppose there are more than one en-
try that is nonzero (say columns uij and uik are
nonzero), then we can have two distinct patterns
of P , one with pj = 1 and the other with pk = 1,
both being able to produce a nonzero qi. Again, this
is a contradiction because we can only have one
possibility for qi to be nonzero. Hence, every row
of U must have exactly one nonzero entry. In order
to produce a corresponding 1 in the vector Q, the
nonzero entry in U must be 1.
Lastly, suppose we have uij = 1 and ukj = 1, both
in the jth column. We can pick a valuation of P
with pj = 1. The corresponding vector Q will have
qi = 1 and qk = 1. This is again a contradiction
since only one row of vector Q can be nonzero.
Thus, every column of U must have exactly one
nonzero entry (which must be 1).

Step 4) There are 2n! possibilities for U to satisfy the prop-
erty in Step 3), which is exactly the number of
distinct permutations. Hence, to each permutation
corresponds a unique unitary matrix U . This com-
pletes the Proof of Theorem 1. �

The importance of the above theorem is that once we have
specified the basis binary input/output behavior of the quantum
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circuit, there is only one unitary matrix that can satisfy the
specification (because it is canonical). Hence, the functional
behavior of the synthesized quantum circuit, under nonbinary
(complex number) input/outputs, would be deterministic, even
though they were not in the original specification. This idea
is especially important for the synthesis of binary reversible
functions (Toffoli, Fredkin, etc.) using quantum gates. It suf-
fices to specify the basis binary input/output behavior of the
reversible function, and the synthesized quantum circuit would
have identical behavior as those of classical quantum circuits
for all quantum values.

Suppose we intend to synthesize an n× n reversible function
R specified by its truth table with n input columns, n output
columns, and 2n rows corresponding to n output patterns using
the 2-qubit quantum gates [Fig. 2(b)–(d)] described above. The
synthesized result should be a cascade of L stages. Each stage
consists of one of the above quantum gates. Since the function
applies to n qubits and the quantum gates at each stage are
1-qubit or 2-qubit gates, the synthesized result should indicate
to which qubits the gates are connected. For each stage i, we
use gi to represent the gate selection variable [Fig. 2(b)–(d)],
and we use Ai and Bi to indicate the two qubits that the
gate is connected to, i.e., Ai, Bi ∈ {1, . . . , n}. As a naming
convention, we refer to the qubit indicated by Ai [the upper
qubit in Fig. 2(b)–(d)] as the control qubit, and we refer to the
qubit indicated by Bi [the lower qubit in Fig. 2(b)–(d)] as the
data qubit. Since the two qubits must be different, we have

Ai �= Bi. (3)

We denote the inputs of stage i as �Ui, where �Ui =
u1iu2i, · · · , uni. Each qubit (uqi, q = 1, . . . , n) of the stage i
can have four possible values (0, 1, V0, V1). The output of stage
i is denoted by �Ui+1, i.e.,

uq(i+1) =



uAii ⊕Q uqi, (q = Bi)∧(g = Fig. 1(b))
V (uqi), (q = Bi)∧(g = Fig. 1(c))∧uAii

V +(uqi), (q = Bi)∧(g = Fig. 1(d))∧uAii

uqi, otherwise.

Note that we use ⊕Q to denote the quantum XOR operation.
Due to our restriction on the control input, the values V0 and

V1 cannot be applied to the control input of controlled-NOT,
controlled-V , or controlled-V + gates. We create a Boolean
signal Ei to represent whether the gate has been erroneously
configured (misconfigured) with the V0 or V1 values in the
current (ith) synthesis stage or any previous synthesis stages. At
the initial stage, there is no misconfiguration, and we initialize
by setting

E0 = 0.

As we move to subsequent stages, the Ei+1 value (in stage
i+ 1) is 1 if either of the following two cases is true.

1) Ei (in the previous stage) is already 1.
2) The value of the control qubit uAii is not binary (where

Ai is the control qubit).

Fig. 4. L-2Syn problem.

Thus

Ei+1 = Ei ∨ (uAii �∈ {0, 1}) .

So far, gi had only three possible values [Fig. 2(b)–(d)]. To
better reflect the quantum implementation cost, let us use a
different gate selection variable Gi with seven possible values.
Gi has all the three possible values of gi, with four additional
values to reflect the quantum XOR gate merged with controlled-
V and controlled-V + gates (Fig. 3). We define the synthesis
function S as

(�Ui+1, Ei+1) = S(Gi, Ai, Bi, �Ui, Ei). (4)

Definition 1 (L-2Syn): The quantum logic synthesis problem
for the reversible function R using 2-qubit gates as a cascade
of L stages is to find a set of satisfying values to Gi, Ai, Bi

(whereAi �= Bi and i = 0, 1, . . . , L− 1) such thatE0 = EL =
0 and �UL = R(�U0) for all possible Boolean input values of
�U0. Mathematically speaking, a solution to the L-2Syn problem
exists if and only if

∃G0∃A0∃B0, . . . ,∃GL−1∃AL−1∃BL−1 ·
(
∀�U0 ∈ {0, 1}n

·(E0 = EL = 0) ∧
(
�UL = R(�U0)

))
∧
(

L−1∧
i=0

Ai �= Bi

)
(5)

where G0A0B0, G1A1B1, . . . , GL−1AL−1BL−1 form a solu-
tion to the L-2Syn problem.

Fig. 4 illustrates the L-2Syn problem. Notice that we are
performing n× n reversible logic synthesis here. E0 is not
an input constant to the reversible logic circuit because all the
reversible gates use only qubits 1, . . . , n. The Ei (i = 0, . . . , n)
Boolean values are used to keep track of prohibited logic values,
they are not a part of the reversible circuit.

Definition 2 (min-2Syn): The minimum length quantum
logic synthesis problem for the reversible function R using
2-qubit gates (quantum XOR, controlled-V , controlled-V +, or
their merged versions) is to solve L-2Syn with the smallest
possible number L.

Theorem 2: For any reversible function R that does not
require inverters in its quantum implementation, finding its
quantum logic implementation with the minimum cost is equiv-
alent to solving the min-2Syn for R.

Proof: The min-2Syn solution consists of the smallest
possible L stages where each stage has a quantum cost of 1.
Thus, the minimum quantum cost is L. �
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Fig. 5. FSM for reachability analysis.

So far, we have not considered inverters (1-qubit gates).
Since the 1-qubit gate cost is negligible compared to 2-qubit
gate costs, we can model our synthesis problem without worry-
ing about the cost of inverters. This can be done by injecting
inverters for each qubit at the inputs, outputs, and between
stages. We can modify the equations mentioned in this section
to arrive at a theorem similar to Theorem 2 for the minimum
quantum logic implementation cost using inverters (1-qubit) or
other 2-qubit gates.

IV. REACHABILITY ANALYSIS

Let us first formulate a solution for synthesizing reversible
functions that do not require inverters. Later in this section, we
will extend our formulation for any reversible function with or
without inverters.

A. Invariant Checking

We have shown in Theorem 2 that finding the quantum
implementation with the minimum cost of a reversible function
(that does not require inverters) is equivalent to solving the
min-2Syn problem.

We construct an FSM shown in Fig. 5, use a bounded model
checker [12] to temporally unroll the FSM up to a specific
bound, and invoke an SAT solver to find a counter-example.
Our machine in Fig. 5 is in a way similar to Fig. 4, but there
are some differences. Instead of cascading L instances of the
S functional block in Fig. 4, we have 2n parallel instances
of FSMs (M1, . . . ,M2n ) in Fig. 5, as many as the number
of rows in the truth table. Each FSM contains a functional
block S. Three primary inputs (G,A,B) are fed to every FSM.
Each machine has its own set of registers (or memory states)
containing �U (in terms of u1, . . . , un) and E.

The FSM will be initialized at time t = 0, and then proceeds
to new states at t = 1, 2, . . .. For convenience, we use �µ(Mh, t)
to denote the value of the register vector u1, . . . , un of machine
Mh at time t, where h = 1, . . . , 2n. Similarly, we use ε(Mh, t)

to denote the value of the register E of machine Mh at time t. In
addition, we use Gt, At, Bt to denote the input values at time t.
As a constraint (environmental assumption), we require

∀t ≥ 0 · (At �= Bt). (6)

From Fig. 5, we can see that the next state is computed
from the current state and inputs through the combinational
functional block S, i.e.,

(�µ(Mh, t+ 1), ε(Mh, t+ 1))

= S (Gt, At, Bt, �µ(Mh, t), ε(Mh, t)) . (7)

We initialize the E register of every machine to 0 (FALSE):
ε(Mh, 0) = 0 for h = 1, . . . , 2n. We also initialize the �U regis-
ters of every machine to their corresponding patterns in a truth
table, i.e.,

M1 : �µ(M1, 0) = 0 . . . 00

M2 : �µ(M2, 0) = 0 . . . 01

...

M2n : �µ(M2n , 0) = 1 . . . 11. (8)

Given the reversible function R that we want to synthesize,
we want to check the nonsynthesizeability invariant

inv(t) = ¬
2n∧

h=1

(�µ(Mh, t) = R (�µ(Mh, 0))) ∧ (ε(Mh, t) = 0)

where inv(t) is checked for all time t ≥ 0.
Theorem 3: The function R is synthesizeable using 2-qubit

gates if and only if there exists a counter-example (input
sequence Gt, At, Bt for t = 0, . . . , L) that satisfies (6)–(8)
and violates the invariant inv(t) at time t = L, where L is the
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corresponding quantum cost using any of those seven 2-qubit
gates presented in Section III.

Proof: Given a counter-example of length L, this counter-
example will consist of assignments to the inputs Gt, At,
Bt for t = 0, . . . , L. The counter-example satisfies the initial
condition (8), which means that all Boolean patterns (from the
truth table) for �Ut=0 have been explored. The initial condition
essentially states that

∀�Ut=0 ∈ {0, 1}n · Et=0 = 0. (9)

For any t > 0, the machine states �µ(Mh, t) and ε(Mh, t) are
computed from their initial states �µ(Mh, 0) and ε(Mh, 0) and
the inputs Gt′ , At′ , Bt′ for t′ = 0, . . . , t− 1. Since our initial
condition explored all possible patterns of �Ut=0, any formula of
the form

∀h ∈ {1, . . . , 2n} · (ε(Mh, 0) = 0) ∧ f (�µ(Mh, t), ε(Mh, t))

can be rewritten as ∀�Ut=0 ∈ {0, 1}n · (E0 = 0) ∧ f(�Ut, Et).
We can conjunct the violated invariant inv(t) with the initial
condition (9) and rewrite them as

∃G0∃A0∃B0, . . . ,∃GL∃AL∃BL · ∀�Ut=0 ∈ {0, 1}n

·(Et=0 = 0) ∧ (Et=L = 0) ∧
(
�Ut=L = R(�Ut=0)

)
. (10)

The existence of a counter-example is equivalent to the
conjunction of formulae (6), (9), and (10). We can rewrite (6)
as
∧L

t=0 At �= Bt. We can also push the conjunction inside the
quantification operators to obtain

∃G0∃A0∃B0, . . . ,∃GL∃AL∃BL

·
(

L∧
t=0

At �= Bt

)
∧ ∀�Ut=0 ∈ {0, 1}n

· (Et=0 = Et=L = 0) ∧
(
�Ut=L = R(�Ut=0)

)
. (11)

Equation (11) characterizes the Boolean condition for the ex-
istence of a counter-example. The difference between (11) and
(5) is that the existential quantification of 1inputs Gt, At, Bt

and the constraint on input assumption At �= Bt ranges from 0
toL in formula (11) but only ranges from 0 toL− 1 in (5). Now
observe that the registers (E and �U ) in our FSM (Fig. 5) depend
only on the input values of the previous time cycle. Therefore,
the input values GL, AL, BL do not affect the existence of
our counter-example at all. Hence, the existence of a counter-
example is equivalent to the existence of a solution to the
L-2Syn problem. �

We have shown that synthesizing the quantum logic is equiv-
alent to finding a counter-example to the invariant checking
problem. Using bounded model checking, we can find the
existence of a counter-example within the length of the bound.
By starting with a small bound and gradually increasing the

bound, we can find the shortest counter-example, essentially the
minimum cost quantum implementation of the function R.

As mentioned in Section III, we can easily modify the
above invariant checking formulation to find the minimum
quantum implementation cost with inverters or other types of
2-qubit gates.

The invariant checking formulation is useful for synthesizing
the quantum logic with the minimum cost as outlined above.
In case the function R is not synthesizeable, as being not
reversible, the model checker will prove the invariant has no
counter-example (Theorem 3). However, we can easily add
ancilla qubits (input constants) to transform nonreversible func-
tions to reversible functions, thus making it synthesizeable.
The next section describes an automatic approach for this
transformation.

B. Synthesizing With Input Constants

Our formulations so far concentrated on synthesizing a
function without additional input constants (ancilla qubits).
However, some functions (e.g., irreversible functions) cannot
be synthesized without input constants. For these functions, it
makes sense to synthesize them with the minimum number of
input constants.

We can add k input constants to the original n× n circuit,
making it an (n+ k) × (n+ k) circuit, run it through our
model checker, and see if we can get a counter-example or
a proof. If we get a proof, we can increment k until we
eventually get a counter-example (which should happen for
finite k according to [10]). A systematic way of doing this is
to start with k = 1 and gradually increment k until we reach a
counter-example.

The invariant checking formulation with k input constants is
slightly different from Section IV-A. For every input constant
bit, we do not know if it should be a constant 0 or a constant 1.
In order to get a counter-example (i.e., synthesize the circuit),
we want to find out these constant values.

Let us look back at our machines in Fig. 5. From the
figure, we have 2n machines (M1, . . . ,M2n ), each with n
registers. We modify this figure so that we have n+ k reg-
isters (u1, . . . , un+k) in each machine and each S (and δ if
applicable) functional block will handle n+ k instead of n
registers, as well as the E register.

For notational clarity, we still use �µ(Mi, t) to denote the
value of the register vector (u1, . . . , un) for machine Mi (where
i = 1, . . . , 2n) at time t. We use νj(Mi, t) to denote the value
of each register uj (where j = 1, . . . , n+ k) of machine Mi

(where i = 1, . . . , 2n) at time t. Thus, the newly introduced reg-
ister values can be referred to as νn+1(Mi, t), . . . , νn+k(Mi, t).

Let us also introduce a new state ζ in addition to all the 2n

machines (M1, . . . ,M2n). This register is initialized to 0 and
then set to 1 thereafter, i.e.,

ζ =
{

0, t = 0
1, t > 0.

(12)

For those additional k registers, we want to limit their initial
state to the set {0, 1}. In addition, we want to restrict the initial
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state of the jth register (j = n+ 1, . . . , n+ k) at each machine
to be the same

n+k∧
j=n+1

2n∧
i=1

νj(Mi, 0) ∈ {0, 1} (13)

n+k∧
j=n+1

ζt ∨ (νj(M1, t) = . . . = νj(M2n , t)) . (14)

Equation (13) is possible because the symbolic model checking
formulations [11] allow the initial state to be a set of values.
The constraint (14) is used as an assumption that restricts the
state space. Notice that we still have 2n FSMs (M1, . . . ,M2n)
overall because the number of rows in the truth table for input
patterns is still the same as in the case without the additional
input constants.

By increasing the combinational function blocks S (and δ
if applicable), we are essentially synthesizing for (n+ k) ×
(n+ k) reversible logic. Our initial state specification allows us
to consider the constant 0 and constant 1 cases. The generated
counter-example will contain specific values for the initial state
of each bit, thus finding out the constant input values.

C. Example

Consider a classical computation unit, half adder, which
takes two input bits (n = 2) and outputs a sum and a carry.
There are two input patterns in its truth table (ab = 01, 10)
that produce the same output pattern. Therefore, one needs to
add a single input constant in order to separate 01 and 10 and
to create a 3 × 3 reversible function R. We construct the 22

machines and the invariant according to Sections IV-A and B.
A model checker can return a counter example that contains
values of initial states and a sequence of input values. Most of
the initial state values are already specified in (8), except for the
state values of the input constant in (13). In this case, the model
checker tells us that the input constant is 0, i.e.,

v3(M1, 0) = v3(M2, 0) = · · · = v3(M22 , 0) = 0.

Hence, the initial state values of the FSM are

M1 : �µ(M1, 0) = 000

M2 : �µ(M2, 0) = 001

M3 : �µ(M3, 0) = 010

M4 : �µ(M4, 0) = 011.

The sequence of input values in the counter-example is

G0 =V +, A0 = 2, B0 = 3

G1 = XOR, A1 = 1, B1 = 2

G2 =V, A2 = 2, B2 = 3

G3 =V _XOR, A3 = 1, B3 = 3.

Notice that the above input sequence satisfies the constraint (6).
If we substitute these inputs back into the FSM, we will arrive at

M1 : �µ(M1, 4) = 000

M2 : �µ(M2, 4) = 110

M3 : �µ(M3, 4) = 010

M4 : �µ(M4, 4) = 001.

We compare the final state with the initial state. The initial
state of M1, . . . ,M4 corresponds to the input patterns in a truth
table. The final state of M1, . . . ,M4 corresponds to the output
patterns in a truth table. Notice that the least significant bit
(rightmost column) in the final state satisfies the carry function,
and the middle bit (middle column) satisfies the summation
function. The bottom bit in Fig. 10 is a garbage function a ∧ ¬b.
Let us assume that in the circuit the top qubit corresponds to the
least significant bit of our truth table, and similarly the bottom
qubit corresponds to the most significant bit of our truth table.
The gate types (quantum XOR, controlled-V , etc.) are already
given by G0, . . . , G3 of the counter-example. The connection
of these gates to qubits are given by A0, B0, . . . , A3, B3. These
values directly translate to the circuit in Fig. 10.

V. COMPLEXITY AND TIME

Industrial experience [20], [22] suggests that the complexity
of model checking is sensitive to the number of state retain-
ing elements in the FSM. For our FSM in Fig. 5, there are
n× 2n registers, where n is the number of qubits. Each register
has four possible values (0, 1, V , V +). If we use Boolean
states to encode these registers, we have 2n× 2n Boolean state
elements. However, the number of qubits n tends to be small
due to physical limitations. So far, the largest number [24] of
qubits is 7, which is 1792 Boolean state elements. This is still
manageable in the scope of industrial strength bounded model
checkers [20], [22]. Nevertheless, we would like to speed up
our synthesis process.

We introduce two speed up methods in this section. The first
method breaks the synthesis process into two or more smaller
synthesis stages. The second method constrains the location of
certain gates (such as the controlled-V or controlled-V + gates),
which reduces the search space of the algorithm.

A. Synthesis in Multiple Stages

We devised a strategy to speed up the synthesis process at the
expense of a higher circuit cost. Given an n× n reversible gate
to synthesize, there are 2n cases to be enumerated. Assume,
however, that we pick one of the inputs, say the first input, and
consider only cases where it is 0. Then we have 2n−1 cases. To
perform reachability analysis, we construct the same FSM as
shown in Fig. 5, but check it with a different invariant inv′(t)

¬


2n−1∧

h=1

(�µ(Mh, t) = R (�µ(Mh, 0))) ∧
2n∧

h=1

(ε(Mh, t) = 0)


 .
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The main difference between inv′(t) and inv(t) is that the new
invariant inv′(t) checks that R is accomplished for only half of
all the possible input patterns, which accounted for those cases
where the first input is 0. It is easier to find a counter-example
for this new invariant because only half of the cases have to
be accomplished. We take a snapshot of all register states at
the end of this counter-example and use it as the initial state of
the FSM. We then run model checker again with our original
invariant inv(t). This time, since we started from a state fairly
close toR, it is easier to generate a counter-example. According
to Theorem 4, this method guarantees to generate the counter-
example if the function that we want to synthesize is reversible.

Theorem 4: Suppose we want to synthesize a reversible
function R, and suppose we have already synthesized another
reversible function Q, then there exists a reversible function P
such that R is equivalent to the cascade of Q and P , i.e., R =
Q ◦ P , where R, Q, and P are all n× n reversible functions.

Proof: Since Q is reversible, we have function Q−1 such
that Q ◦Q−1 = I , where I is the identity function (outputs are
equal to inputs). Hence, there exists P = Q−1 ◦R such that
Q ◦ P = Q ◦Q−1 ◦R = I ◦R = R. �

B. Constraining Search Space

The runtime complexity of model checking is due to its
exhaustive nature. We can introduce more constraints to reduce
the search space. For instance, we can limit the location of the
data input for the controlled-V and controlled-V + gates to a
subset of the qubits (such as the first qubit). This example will
mean that (5) in Definition 1 will be changed to

∃G0∃A0∃B0, . . . ,∃GL−1∃AL−1∃BL−1

·
(
∀�U0 ∈ {0, 1}n · (E0 = EL = 0) ∧

(
�UL = R(�U0)

))

∧
(

L−1∧
i=0

((Gi = Fig. 1(c)) ∨ (Gi = Fig. 1(d))) ⇒ Bi

)

∧
(

L−1∧
i=0

Ai �= Bi

)
. (15)

Once formula (5) is changed, all subsequent logic reasoning can
be adjusted for the constraint as well.

Formula (15) is just an example to limit the location of the
V input to the first qubit. Similar constraints can be constructed
to limit the location of the control input for the controlled-V
and/or controlled-V + gates, or to limit the control or data inputs
of the Feynman gates, etc.

VI. EXPERIMENTS

We constructed our invariant checking formulations de-
scribed in Section IV using NuSMV with BerkMin [25]. Our
method was applied to synthesize some common quantum cir-
cuits. All experiments are conducted on a 850-MHz Pentium III
processor running on Linux.

The quantum costs of several circuits are summarized in
Table I. The “Prior” and “Our” columns indicate the best pub-

TABLE I
QUANTUM COST OF COMMON CIRCUITS

Fig. 6. Miller gate with optimum quantum cost = 6.

Fig. 7. Alternative Fredkin gate implementation with quantum cost = 5.

Fig. 8. Peres gate implementation with optimum quantum cost = 4.

Fig. 9. Toffoli gate implementation with optimum quantum cost = 5.

lished quantum cost in previous literature and our synthesized
quantum cost, respectively. For Miller gate [26], our synthesis
result has a quantum implementation cost of 6, shown in Fig. 6.
It is better than any previously published result (cost of 7)
[26], [27].

For the Fredkin [10], Peres [17], and Toffoli [5], [16] gates,
our synthesized results (Fig. 7–9) have the same quantum costs
as reported in prior literature [4], [27]. But nobody was able to
show that the cost was minimum until now. Notice also that our
synthesized Fredkin circuit (Fig. 7) is different from the circuit
in [4], but they are functionally equivalent (due to the canonical
unitary matrix as described in Theorem 1).

We synthesized a classical half adder using input constants
discussed in Section IV-B. In the past, people have been syn-
thesizing the 2-bit adder using a Toffoli gate and a quantum
XOR gate [23], [28]. Since the Toffoli gate has a minimum
cost of 5 and the quantum XOR gate cost 1, the total quantum



HUNG et al.: OPTIMAL SYNTHESIS OF MULTIPLE OUTPUT BOOLEAN FUNCTIONS USING QUANTUM GATES 1661

Fig. 10. Half adder with quantum cost = 4.

Fig. 11. Alternative half adder with quantum cost = 4.

Fig. 12. q4 example.

Fig. 13. Peres-double and Toffoli-double specification.

implementation cost would be 6 using that method. Our method
proved that the minimum quantum cost is actually 4, as shown
in Fig. 10. In fact, if we do not restrict the output of the adder to
be the top two qubits, we can put one of the desired outputs on
the ancilla qubit. Such an implementation is actually the Peres
circuit with the last qubit input set to zero, shown in Fig. 11.

We also synthesized several 4-qubit functions using the
method in Section V-B by restricting the data input/output
of the controlled-V or controlled-V + gates to be the fourth
qubit. The “q4-example” is a simple 4-qubit function shown in
Fig. 12. The “Peres-double” and “Toffoli-double” functions are
specified by cascading two 3-qubit Peres and Toffoli functions,
respectively, in a 4-qubit manner shown in Fig. 13, where the
numbers 1–3 indicates the input/output correspondence to the
first, second, and third qubit of the original Peres or Toffoli
functions. Since the smallest quantum cost of Peres and Toffoli
gates are known to be 4 and 5, respectively, the quantum cost of
having two Peres and Toffoli in a cascading manner would be 8
and 10, respectively. However, our synthesis result indicate that
their quantum cost can be heuristically decreased to 6 (Fig. 14)
and 7 (Fig. 15), respectively.

We synthesized the full adder using four different strategies
shown in Table II. Recent papers [6], [7] used two Toffoli
gates and two Feynman gates to implement a quantum cost

Fig. 14. Peres-double quantum cost = 6.

Fig. 15. Toffoli-double quantum cost = 7.

TABLE II
SYNTHESIS OF FULL ADDER

of 12. We proved that the minimum quantum cost for a full
adder is 6, as shown in Fig. 16. To shorten the CPU runtime
for synthesizing the full adder, we used a two-stage strategy
mentioned in Section V-A and obtained an implementation with
quantum cost of 9, shown in Fig. 17. The CPU runtime is
significantly reduced (from 7 h to 140.83 s). Notice that the
cost of this implementation can be reduced to 8 if we choose
to omit the “propagate” logic (the last quantum XOR gate). We
also applied the synthesis method in Section V-B by restricting
the data input of the controlled-V or controlled-V + gates to the
location of the “sum” qubit. The runtime is reduced from 7 h
to 1104.97 s, and the quantum cost is the same as the original
optimal method. All the top three experiments in Table II use
a specification such that the useful output (sum and carry-out)
does not use the same qubit as the garbage input (ancilla qubit).
We remove this requirement in the last experiment of Table II
and used the input/output specification in [6] and [7]. The result
is shown in Fig. 18 and the synthesis took 176.09 CPU seconds.

VII. CONCLUSION

In this paper, we applied invariant checking, a formal veri-
fication technique, to the synthesis of quantum logic circuits.
We reduced problems in quantum logic synthesis to those of
multiple-valued logic synthesis, thus simplifying the search
space and algorithm complexity. To solve the synthesis prob-
lem, we created an optimal synthesis method, a multistage syn-
thesis method, and several constraint-related speed-up methods.
Our optimal method and the multistage method are guaranteed
to synthesize the circuit. We created minimum cost quantum
circuits for Miller gate, half adder, and full adder, which are
better than previous results. This cost is minimum for any
circuit using our set of quantum gates, where the control qubit
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Fig. 16. Full adder with quantum cost = 6.

Fig. 17. Full adder with quantum cost = 9.

Fig. 18. Full adder with different output arrangement: quantum cost = 6.

of 2-qubit gates is always basis binary. We also proved the min-
imum quantum cost in the same manner for Fredkin, Peres, and
Toffoli gates. In addition, we found quantum implementations
with lower cost (than previous known results) for (cascaded)
double Peres gates and (cascaded) double Toffoli gates. As
shown in Section VI, our method can also automatically convert
a nonreversible (irreversible) function to the simplest equivalent
reversible function (Fig. 16) by adding and initializing the
minimum number of ancilla wires. This step is missing from
most reversible circuit synthesis algorithms, and the problem
of minimal convertion was never discussed in the literature.
We have demonstrated our method on small circuits. It can
be a starting point to create such methods for larger Boolean
functions. Our work is the first successful application of formal
methods and satisfiability in quantum logic synthesis.
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