IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 5, MAY 2006 743

Using Simulation and Satisfiability to Compute
Flexibilities in Boolean Networks

Alan Mishchenko, Member, IEEE, Jin S. Zhang, Member, IEEE, Subarna Sinha, Jerry R. Burch, Member, IEEE,
Robert Brayton, Fellow, IEEE, and Malgorzata Chrzanowska-Jeske, Senior Member, IEEE

Abstract—Simulation and Boolean satisfiability (SAT) checking
are common techniques used in logic verification. This paper
shows how simulation and satisfiability (S&S) can be tightly in-
tegrated to efficiently compute flexibilities in a multilevel Boolean
network, including the following: 1) complete ‘‘don’t cares”
(CDCs); 2) sets of pairs of functions to be distinguished (SPFDs);
and 3) sets of candidate nodes for resubstitution. These flexibili-
ties can be used in network optimization to change the network
structure while preserving its functionality. In the first two ap-
plications, simulation quickly enumerates most of the solutions
while SAT detects the remaining solutions. In the last application,
simulation efficiently filters out most of the infeasible solutions
while SAT checks the remaining candidates. The experimental
results confirm that the combination of simulation and SAT offers
a computation engine that outperforms binary decision diagrams,
which are traditionally used in such applications.

Index Terms—Boolean network, logic synthesis, satisfiability,
simulation.

I. INTRODUCTION

OGIC synthesis transforms a Boolean network with the

goal of improving its area, delay, power, testability, etc.
While maintaining the required input—output global function-
ality of the network, it is possible to change the local function
and local fanins of some nodes. The environment of a node
determines the extent to which the node can be changed,
resulting in the so-called flexibility of the node in the network.
Several formalisms for computing these flexibilities have been
proposed over the years, offering powerful analysis techniques
to discover opportunities for network optimizations. The power
of each formalism correlates with the complexity of the com-
putation it requires. In this paper, we focus on three such
formalisms, namely: 1) complete “don’t cares” (CDCs) [22]; 2)
sets of pairs of functions to be distinguished (SPFDs) [31]; and

Manuscript received July 14, 2005. This work was supported in part by the
National Science Foundation under grants CCR 9988402 and CCR 0312676, by
the MARCO Focus Center for Circuit System Solution under Contract 2003-
CT-888, and by the California Micro Program with industrial sponsors, Fujitsu,
Intel, Magma, and Synplicity. This paper was recommended by Guest Editor
R. I. Bahar.

A. Mishchenko and R. Brayton are with the Department of Electrical
Engineering and Computer Sciences, University of California, Berkeley, CA
94720 USA (e-mail: alanmi@eecs.berkeley.edu; brayton @eecs.berkeley.edu).

J. S. Zhang and M. Chrzanowska-Jeske are with the Department of Electrical
and Computer Engineering, Portland State University, Portland, OR 97207
USA (e-mail: jinsong@ece.pdx.edu; jeske @ece.pdx.edu).

S. Sinha is with Synopsys, Inc., Mountain View, CA 94043 USA (e-mail:
Subarna.Sinha@synopsys.com).

J. R. Burch is with Synopsys, Inc., Hillsboro, OR 97124 USA (e-mail:
jrb@synopsys.com).

Digital Object Identifier 10.1109/TCAD.2005.860955

3) node resubstitutions [14]. Traditionally, algorithms for these
formalisms have been implemented using binary decision dia-
grams (BDDs) [1], [5] and are computationally quite expensive
in practice. We reformulated these problems using simulation
and Boolean satisfiability (SAT), which led to improvements in
the speed and practicality of the algorithms.

Simulation has always played an important role in testing
and verification of digital designs. Its main advantage is that it
catches many bugs quickly. However, it is practically an incom-
plete technique, because it is infeasible to simulate all possible
patterns on large circuits. In contrast, SAT is able to prove, by
efficient exploration of the search space, that a certain property
always holds. Because of its exhaustive nature, SAT can be slow
in solving large problems or many instances of small problems.
Recently, remarkable progress in SAT algorithms [9], [19], [25]
has made it possible to extend its range of applications.

The two methods, simulation and SAT (S&S), make a pow-
erful combination, taking advantage of the strengths of each
method. Simulation is fast at finding satisfying assignments or
disproving the properties, thereby saving the runtime that SAT
would need for exhaustive search. However, random simulation
quickly saturates (stops turning out new assignments), at which
point SAT can search for any remaining assignments. When
the computational resources are intelligently divided among the
methods, S&S becomes a formidable competitor to BDD-based
approaches.

One reason why SAT outperforms BDDs in these logic
synthesis applications is that, for many problems, construction
of both BDDs and SAT requires, in the worst case, expo-
nential time in the problem size. The BDD-based approach
starts by constructing the canonical representation for the
given functions. SAT starts by searching the solution space
immediately while relying on the available circuit to represent
the functions. Thus, SAT avoids the overhead of constructing
the canonical representation. This overhead is too costly in
many practical instances when the size of intermediate or final
BDD is prohibitively large and dynamic variable reordering is
inefficient or very slow. Similar arguments for the development
of SAT-only combinational equivalence checkers are stated
in [10].

The main contribution of this paper is in formulating and pre-
senting three algorithms, based on S&S, to compute flexibilities
in multilevel Boolean networks. The flexibilities computed are
CDCs, SPFDs, and resubstitution candidates. Experimental re-
sults show that S&S offers much more affordable runtimes than
the earlier methods. This extends the scope and applicability of
algorithms for network optimization.

0278-0070/$20.00 © 2006 IEEE

744 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 5, MAY 2006

The paper is organized as follows. Section II gives a brief
background on Boolean networks, simulation, and SAT. The
background on CDCs, SPFDs, and resubstitution, together
with corresponding S&S-based algorithms to compute each of
these flexibilities and the experimental results, are presented in
Sections III-V, respectively. Section VI presents some relevant
implementation details. Section VII concludes the paper and
suggests possible directions for future work.

II. BACKGROUND
A. Boolean Network

A Boolean network N is a directed acyclic graph (DAG) such
that for each node 7 in N, there is a Boolean function f; and a
Boolean variable y;, where y; = f;. A node ¢ is a fanin of a
node j if there is a directed edge {4, j} and a fanout if there is
a directed edge {j,7}. A node i is a transitive fanin (TFI) of a
node j if there is a directed path from ¢ to j and a transitive
fanout (TFO) if there is a directed path from j to i. The sources
of the graph are the primary inputs (PIs) of the network; the
sinks are the primary outputs (POs). The functionality of a
node in terms of its immediate fanins is its local function. The
functionality of a node in terms of the PIs of the network is its
global function.

As with other logic optimization problems, when computing
flexibilities of network nodes, we consider only acyclic combi-
national Boolean networks.

The following notation is used throughout the paper: X is
the set of Pls, x is a particular PI variable; Y is the set of local
inputs of a particular node, y is a particular local variable; and
Z the set of POs, z a particular PO variable. g(X) and f(Y)
are, respectively, the global and local functions of a node.

B. Simulation

Simulation computes the values of the internal signals and
POs of a network, given the values of the PIs. One round of
simulation involves propagating one particular set of values
through the network; its complexity is linear in the network
size. Since we consider only combinational networks, there are
no state variables.

We contrast two forms of simulation, namely: 1) random
simulation, when values of the PIs are assigned randomly and
2) guided simulation, when PIs are assigned based on certain
information, such as that provided by a SAT solver about
assignments that prove or disprove a property. Only random
simulation is used in the applications discussed in this paper.

As detailed below, we use two ways to control the amount
of simulation performed, namely: 1) the static approach, where
a fixed number of rounds of simulation is performed and
2) the dynamic approach, where simulation stops when no new
solution is discovered after several rounds.

C. Satisfiability

Boolean SAT [19], [25] is a process of proving that a given
Boolean formula has a satisfying assignment. Although solving
a general SAT problem is NP-complete in the problem size,

many practical problems have properties, which dramatically
reduce the complexity. For example, if a SAT problem is
formulated for a circuit, using the circuit structure can reduce
the problem complexity [27].

The performance of SAT solvers has improved greatly in the
last few years. State-of-the-art SAT solvers, such as those found
in [9], [10], and [25], are based on techniques that dramatically
speed up exploration of the search space. The following are the
most successful.

1) Nonchronological backtracking [19]: This is a way of
exhaustively exploring the search tree more efficiently by
skipping some branches.

2) Dynamic variable ordering [25]: The branching variable
is determined by the dynamically updated “activity” of
variables. Each time a variable participates in a conflict
analysis, its activity is increased by a fixed amount. The
activity counters are periodically divided by a constant to
help focus the SAT search on recent conflicts.

3) Two-literal watching [25]: The clause database is orga-
nized in such a way that fewer clauses are visited when
literals are assigned, and no clauses are visited when
literals are unassigned.

In our applications, we are solving “bounded ALL-SAT”
problems. The form of these problems is to determine all
satisfying assignments of a formula 3, P(X,Y’), where X is
the PI space, which grows with network size, and Y is the
local input space, which has a fixed size. These are called
ALL-SAT problems, because a SAT solver needs to enumerate
the whole space of satisfying assignments. This increases the
computational complexity compared to the classical SAT prob-
lem, which only requires one satisfying assignment. However,
since the set Y of free variables is bounded, the asymptotic
complexity is the same as in the classical SAT problem.

When used together with SAT, simulation filters out a signif-
icant number of satisfying assignments (infeasible candidates),
leaving SAT to work only on the hardest ones. Therefore, solu-
tion enumeration based on S&S works well in practice, result-
ing in affordable runtimes for many benchmarks. The approach
presented in this paper can be improved further by incorporat-
ing recently published efficient methods for solving the ALL-
SAT problem [13].

III. CoOMPUTING CDCs

Optimization of Boolean networks using don’t cares plays an
important role in technology independent logic synthesis and
incremental resynthesis of mapped netlists. Traditionally, only
satisfiability don’t cares (SDCs) and compatible observability
don’t cares (CODCs) have been used [28]. CODCs form a
subset of the CDCs (or complete flexibility [23]) projected onto
a node by its context in a multilevel network. It was shown
experimentally [21], [22] that the computation of CDCs is
comparable in runtime and memory requirements to the com-
putation of SDCs and CODCs, while the amount of flexibility
is larger. This additional freedom offered by CDCs leads to an
increase in optimization quality.

MISHCHENKQO et al.: COMPUTING FLEXIBILITIES IN BOOLEAN NETWORKS

M @

Examples: (1) SDCs and (2) ODCs.

Fig. 1.

A. Background

Definition 3.1: A completely specified Boolean function
(CSF) is a many-to-one mapping from n-dimensional (n > 0)
Boolean space into a one-dimensional space: {0, 1}"™ — {0, 1}.
An assignment of n Boolean variables is called a minterm. A
CSF has negative (positive) minterms, which correspond to the
assignments, for which it takes a value of O (1). The union of
positive and negative minterms is called the care minterms.

A don’t care for a logic function is a minterm for which the
function can take either O or 1 as a possible value. If there exists
at least one such input combinations, the function is called an
incompletely specified Boolean function (ISF). Such minterms
are called don’t care minterms. One ISF is said to be larger than
another if it has more don’t care minterms.

A CSF is compatible with an ISF (implements the ISF), if the
CSF can be derived from the ISF by assigning either 0 or 1 to
each don’t care minterm.

Definition 3.2: In Boolean logic, conjunctive normal form
(CNF) is a method of standardizing and normalizing logical
formulas. A logical formula is considered to be in CNF if and
only if it is a single conjunction of one or more disjunctions of
one or more literals. For example, the following formulas are in
CNF: AANB;-AAN(BVC);and (AV B)A(-BV CV D).

Definition 3.3: The CDCs, or CF, of a node in the binary
network, is the largest ISF (as a function of the node’s fanins),
whose don’t care minterms represent conditions under which
the output of the node does not influence the values produced
by any of the POs of the network.

The CDCs include the SDCs, which arise because some
combinations are not produced as the inputs of the node, and the
observability don’t cares (ODCs), which arise because under
some conditions, the output of the node does not matter. Fig. 1
shows a situation when node F; has SDCs in the local space
(d = 0and e = 1) due to limited controllability, while node F5
has ODCs (¢ = 1 and b = 1) due to limited observability.

CDCs are important for network optimization, because re-
placing the node’s function by any CSF compatible with the ISF
representing a node’s CDCs does not change the functionality
of the POs of the network. A key observation about CDCs is
that they are not compatible, i.e., the POs of the network may
produce incorrect values if CDCs derived for several nodes are
used independently. In this sense, CDCs differ from CODCs
[29]. However, if CDCs are computed and used immediately to
optimize a node before continuing to another node, compatibil-

745

Fig. 2. Example of 1 x 1 window.

ity is not required. In that case, whenever a CDC is computed
for a node, it reflects all prior changes to other nodes.

B. Compute CDCs Using S&S

Don’t care computations are traditionally performed in the
context of the entire Boolean network, as exemplified by SIS
[30]. In the case of CDCs, this approach is optimal in that it
guarantees that the don’t cares computed are the largest don’t
cares possible for a node in the network. However, the network
may be too large, making the computation too expensive. In
such cases, the computation can be restricted to a relatively
small neighborhood subnetwork. The don’t cares computed
for the node in this subnetwork are complete for the subnet-
work, but not for the entire network; thus, considering a larger
subnetwork leads to a longer runtime but may result in more
don’t cares.

A windowing method has been developed to limit the sub-
network used for don’t care computation to only a few levels
of logic surrounding the node. A detailed discussion of this
windowing method can be found in [24]. An important observa-
tion is that reconvergence is responsible for don’t cares; hence,
along with the TFIs and TFOs of the node, a window should
contain all reconvergent paths that begin and terminate in the
window. Of course, if the window extends all the way to include
PIs and POs, the window CDC is equal to the CDC.

We refer to the window of a node constructed by including /;
TFI logic levels and [, TFO logic levels as an /; x I, window.
For example, Fig. 2 shows a 1 x 1 window for node n. The
window’s roots (top) and leaves (bottom) are shaded.

To compute CDCs using the whole network or a subnetwork
derived by windowing, we construct a miter network, as shown
in Fig. 3. A miter [2] refers to a circuit whose output evaluates to
1 if and only if some property does not hold. The first network
N represents the original network, while the second network N’
has an additional inverter added at the output of the given node.
Comparing the POs of these networks detects when the change
in the node’s behavior influences the POs’ functionalities. Thus

C(X) =" [g:(X) & gi(X)] (1)

i

represents the care set in the global space. The ODCs of the
node in the global space is the complement of the care set,

746 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 5, MAY 2006

&04)

Fig. 3. Illustration of CDC computation.

function CompleteDC(node # , context S')

{ aig M = ConstructMiter(S, n);
function C| = RandomSimulation(A/);
enf P = CircuitTOCNF(M) A FunctionToCNF(C,);
function C; = SatSolutions(P);
return C+Cy;

}

Fig. 4. Pseudocode of S&S-based CDC computation.

given as

ODC(X) = C()=H[9¢(X)59§(X)]~ 2)

K3

The local CDCs are computed by imaging the global ODCs into
the local space. To this end, mapping M (X,Y") is used, which
uses the TFI of the node to relate the global and local spaces
CDC(Y) =Vx [M(X,Y) = ODC(X)]

- [M(X, Y) +0DC(x)]. 3)
This computation adds the SDC, M (X, Y), to the already com-
puted ODC, resulting in the CDC. Thus, (3) can be interpreted
as follows: “A don’t care minterm Y belongs to the CDC if
it is either an SDC or an ODC for all assignments of the PI
variables X.” If external don’t cares are available, they are
added to the ODCs.

CDCs can be computed by a straightforward application of
BDD operations to (1)—(3), first deriving the global functions
of the POs of the two networks, {g;(X)} and {g}(X)}, where
the index ¢ varies over the POs.

Fig. 4 shows the pseudocode of the S&S-based CDC
computation.

The top-level procedure CompleteDC takes node n and its
context S given by the network (or by a window constructed for
node n). Procedure ConstructMiter applies structural hashing
[15] to the miter shown in Fig. 3. The AND-INV graph (AIG)
M is constructed in one depth-first search (DFS) traversal of
the nodes in .S, without duplication of the window. Random
simulation is applied to the miter network. Each assignment
of the PIs variables X, such that the output of the miter is 1,

TABLE 1
RUNTIME COMPARISON FOR BDD VERSUS S&S FOR CDC COMPUTATION

Name Window 1 x 1 Window 2 x 2 Window 4 x 4
BDDs S&S BDDs S&S BDDs S&S

bl4 1.47 0.67 3.50 0.84 12.29 1.24
bl5 0.84 0.99 3.11 1.20 26.70 5.30
bl7 2.97 1.33 6.69 321 48.59 437
b20 2.98 2.18 6.19 2.19 20.18 223
b21 342 2.13 6.48 2.79 18.34 242
b22 4.50 3.18 9.62 4.86 27.80 324
s15850 0.17 0.26 0.39 0.28 4.14 0.30
835932 0.28 0.20 0.44 0.28 1.10 0.53
s38417 1.16 0.50 3.40 0.55 18.78 1.15
pil 1.69 1.58 5.75 1.38 15.26 235
pj2 0.20 0.20 0.28 0.26 3. 66 0.28

Ave 1.00 0.80 1.00 0.46 1. 00 0.14

detects a care minterm of the node in terms of variables Y.
These are put in the set C7. Only unique care minterms are
collected. Bit-parallel simulation is performed until saturation,
which is reached when m successive rounds of simulation (each
consisting of 32 random patterns) do not identify any new
local care minterms. In our implementation, we set m to 10.
In practice, for most windows with 10-30 inputs, this approach
requires about 50-100 rounds of simulation.

The CNF P is the conjunction of clauses derived from A/ and
the complement of C1, the part of the care set already derived
by random simulation. The CNF of M is derived using a well-
known technique, which adds three CNF clauses for each AND
gates, e.g., the clauses added for gate ab = c are as follows:
c4+a;c+b;and@+ b+ c. The only other clause added to the
CNF is the one asserting that the output of the miter is equal
to one. Better techniques for translating AIG into CNF can be
found in [37], which will further reduce the runtime.

The SAT solver enumerates through the satisfying solutions
Cs of the resulting problem representing the remaining part
of the care set. In practice, often, the SAT problem has no
solutions (C2 = 0). In such cases, SAT is only useful to prove
the completeness of the care set derived by simulation.

Simulation and SAT effectively enumerate the minterms of
the care set in the local space of the node. Therefore, it should
be limited to nodes with roughly ten inputs or less, which is
typically the case for most Boolean networks. If larger nodes
exist, this limit can be enforced by decomposing the large
nodes. The implementation can also be extended to return
incomplete satisfying assignments, which correspond to cubes
rather than minterms of the care set, similar to [13].

C. Experimental Results

Both BDD-based and S&S-based methods for computing
CDCs of a node in the context of both a window and the whole
network were implemented in the package MVSIS [26]. The
following experiments were done on a Windows XP computer
with a 1.6-GHz central processing unit (CPU) and 1 GB of
random-access memory (RAM), although less than 256 MB of
RAM was needed for the largest benchmarks in Table I. The
resulting networks were verified using a SAT-based verifier in
MVSIS designed along the lines of [10], [15], and [18].

MISHCHENKQO et al.: COMPUTING FLEXIBILITIES IN BOOLEAN NETWORKS

TABLE II
NETWORK OPTIMIZATION USING CDCS, WINDOWING, AND SAT
Name | In/Out/Latch Literals in factored forms Runtime, s
sweep |mfsw22 |script22 | mfsw22 | script22
bl4 32/54/245) 17388 | 10664 7911 3.9 18.0
bl5 36/70/449 | 16244 | 15056 | 10948 6.1 22.9
bl17 37/97/1415) 57311 | 49067 | 37877 357 1048
b20 32/22/490 | 35149 | 21826 | 16813 7.6 55.0
b21 32/22/490 | 35908 | 22312 | 16932 93 51.1
b22 32/22/735| 52276 | 33017 | 25174 13.5 59.8
$15850 147871597 7303 6350 4033 1.2 4.0
$35932 35/320 | 24408 | 20248 | 10986 42 16.7
s38417 28/ 106 | 18699 | 17327 | 13640 4.5 155
pi! 1769/ 1063/0 | 34828 | 30547 | 18076 9.5 37.0
pi2 690 / 429/0 7422 6464 3457 1.1 4.0
Ave 1.00 0.79 0.54 1.00 4.36

Table I compares the runtime of the don’t care computations,
using BDDs and S&S for windows of different sizes. The
benchmarks used were the largest ITC’99 benchmarks [11]
(b-files), the largest sequential circuits from the ISCAS bench-
marks [40] (s-files), and the combinational logic extracted
from cores of the PicoJava microprocessor [36] (pj-files). The
second column of Table II gives the numbers of inputs, outputs,
and latches in the selected benchmarks.

Three window sizes were considered (1 x 1, 2 x 2, and
4 x 4). In each case, the runtimes (in seconds) of the BDD-
based computation (“BDDs”) and the S&S-based computation
(“S&S”) are reported. It was formally verified that the CDCs
computed in each case by BDDs and S&S using the same
window were identical. The last row in Table I shows the
average of the ratios S&S/BDD runtimes in all cases.

The measurements in Table I are not exactly comparable
due to different pruning criteria employed by the two methods.
One pruning technique uses window rescaling, which reduces
the scope of a window if its size exceeds a predefined limit.
For example, if a 4 x 4 window turns out to be too large, it
is automatically replaced by a 3 x 3 window. For BDDs, the
window is rescaled if it has more than 30 leaves or more than
15 roots, while for SAT, the window is rescaled if it contains
more than 500 AND gates after structural hashing.

Table I indicates that the S&S-based computations are faster
and scale better than the BDD-based ones. For 1 x 1 windows,
S&S is, on average, 20% faster, for 2 x 2 windows, over two
times faster, while for 4 x 4 windows, over seven times faster.
This ratio increases further with the window size. The larger the
window, the more CDC flexibility for the node. Thus, window
sizing provides a tradeoff between runtime and optimization
potential.

It is worth noting that the combination of simulation and
BDD does not benefit CDC computation. To compute the
remaining care minterms not detected using simulation, the
general BDD image computation is still needed, which is just
as hard as computing all the care minterms.

Table II shows the results of network optimization using the
S&S-based flow for the benchmarks from Table I. These bench-
marks are relatively large. As a result, BDD-based methods,

747

full_simplify in SIS and mfs in MVSIS without windowing,
cannot be applied.

The first column of Table II lists the benchmark names;
the second column shows the numbers of inputs, outputs, and
latches; the next three columns contain the numbers of literals
in the factored forms in 1) the original benchmark after sweep-
ing (“sweep”), 2) after applying mfs with 2 x 2 windowing
(“mfsw22”), and 3) as part of a script (“script22”); the last two
columns show the runtimes in seconds for the two optimization
options. The script used in this experiment is script22. This
is similar to script.rugged in SIS, with full_simplify (CODC
computation implemented using BDDs) replaced by mfs with
2 x 2 windows (mfs—w 22, CDC computation using S&S).

Table II demonstrates that the proposed don’t-care-based
optimization flow can be applied to large circuits. This is
because the don’t care computation is performed in a window,
and is, therefore, local and does not depend on the circuit size.
The overall runtime scales well with the problem size and is
predictable; a rule of thumb is for mfs—w 22, the computation
takes about 1 s per 3000 literals in the original netlist.

These two experiments demonstrate that, compared to the
BDD-based approach, the proposed method enhances opti-
mization quality, reduces runtime, and provides robustness and
scalability for large problems. Thus, the computation of internal
don’t cares becomes more affordable and applicable to large
industrial networks.

IV. COMPUTING SPFDs

SPFDs [31], [39] express a different type of flexibility of
nodes in a multilevel network. They offer greater flexibility than
CDC:s by allowing the node function and functions in its TFO to
change. SPFDs contain CDCs as a special case but are not com-
parable with the notion of multioutput Boolean relations [38].
It has been proven [35] that “minimum” SPFDs provide more
optimization power than CDCs [24], rewiring [6], and ATPG
techniques [16]. Some interesting applications of the minimum
SPFDs in logic synthesis include node optimization using the
windowing concept proposed in Section III [34], and combined
rewiring and mapping during resynthesis optimizations [32].
This section proposes an efficient way of computing SPFDs
using S&S applied to the circuit representation of Boolean
functions.

A. Background

Consider two networks N and N’ with identical structure.
Let X and X’ be their respective Pls, and Z and Z’ be their
respective POs. For corresponding nodes n and n’ in network NV
and N’, denote their output variables to be y and 4’ and fanins
Y and Y”. Let the local and global functions at n and n’ be y =
fY),y=g(X)andy = f(Y'),y = g(X’), respectively.

Definition 4.1: The global SPFD of node n, SPFD" (X, X'),
specifies that the minterms in the care ON set of n have to be
distinguished from the minterms in the care OFF set of n. An
SPFD is a Boolean function over the product of PI spaces X x
X' and is computed as

SPFD™ (X, X') = g(X) @ g(X). “4)

748 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 5, MAY 2006

Similarly, the local SPFD of node n is
SPED(Y,Y") = f(¥) @ f(Y"). 5)

For example, the local SPFD of a two-input OR gate is
{(00,01), (00,10), (00,11)}, i.e., the OFF set minterm (00) has
to be distinguished from all the ON set minterms (01, 10, 11).
Intuitively, a pair of minterms (x, 2’) belonging to the SPFD of
a node can be thought of as an elementary unit of information
distinguished by the node, while the total SPFD of a node (the
set of pairs of input minterms that it can distinguish) represents
the information processing capability of the node.

Definition 4.2: A cut C of network NV is a subset of nodes,
such that every path from the PIs to the POs passes through at
least one node in C.

Definition 4.3: A cut C is redundant if there exists n € C'
such that C'\ n is a cut. Otherwise, the cut is irredundant.

Definition 4.4: Let C be an irredundant cut containing node
n. C'\ n is called a separator of n, denoted Sep(n).

Intuitively, information needs to propagate from PIs to POs,
and a separator is a set of nodes such that the information
(SPFDs) passing through them, combined with the informa-
tion (SPFD) passing through node n, subsumes the infor-
mation required at the POs.

Definition 4.5: Sep,(n) dominates Sep, (n) if the union of
SPFDs of nodes in Sep,(n) contains the union of SPFDs of
nodes in Sep; (n)

>

aeSep, (n)

SPFD*(X) C SPFD?(X). (6)

D

BeSep,(n)

Sep, (n) is equivalent to Sepy(n) if the union of SPFDs of
nodes in Sep, (n) is the same as the union of SPFDs of nodes
in Sep,(n).

Definition 4.6: The largest (smallest) separator of n,
SePrax(min) (1), is the separator that dominates (is dominated
by) all other separators of n.

The largest separator of n is composed of all PIs not in
TFI(n), plus the nodes in TFI(n) that have a fanout outside
TFI(n). The smallest separator is composed of all POs not in
TFO(n), plus any node with a fanout to TFO(n) \ n. Intuitively,
nodes located closer to the PIs have more information.

Definition 4.7: The minimum global SPFD of n with respect
to a separator o = Sep(n), SPFDZ (X, X'), is the set of pairs of
minterms of the global SPFDs of the POs not contained in the
SPFDs of nodes in the separator

SPFD}(X, X') = Y SPFD“(X,X') A > SPFD?(X, X').

acPO Beo

(7

Thus, minterm pair (z,z’) belongs to the minimum global
SPFD of node n with respect to some separator o if x and 2’
are distinguished by at least one PO, but not by any of the nodes
in o. Intuitively, o is a barrier through which information must
flow to get to the PO € TFO(n), and the minimum global SPFD
is the information necessarily provided by n, not available at
any node of o. Note that the minimum SPFD is always defined
with respect to a particular separator o, however, use of the

pE
1
b
J:Di
C

Example circuit.

Fig. 5.

largest separator will guarantee the smallest minimum SPFD
at a node.

Definition 4.8: The minimum local SPFD of n with respect
to a separator o = Sep(n), SPFD2(Y,Y”), is the image of
SPFD? (X, X’) in the local space of node n

SPFD”(Y,Y")
= Jx.x/SPFD?(X, X') A M(X,Y) A M(X',Y") (8)

where M (X,Y) and M (X',Y’) are mappings from the PI
spaces X and X’ into the fanin spaces Y and Y’ of nodes n
and n’ in networks NV and N'.

Example 4.1: Consider the circuit shown in Fig. 5. The
largest separator of node g¢; is {a,b,c}. The global SPFD of
z1 is equal to {(1——,0——)} (the minterms are in the form
of abc). The global SPFDs of a, b, and ¢ are {(1——,0——)},
{(=1—,-0—)} and {(——1,——0)}, respectively. All the
minterm pairs of the global SPFD of z; are contained in the
global SPFD of a. Hence, the minimum SPFD of g; with
respect to the largest separator is empty. However, the node is
neither s—a—0 nor s—a—1 redundant. This is because nodes in
the TFO of ¢g; depend on the specific information flow through
node ¢g;.

The usefulness of a minimum SPFD is that the current func-
tion at a node n can be replaced by any function that contains
the node’s minimum SPFD. However, after the replacement, in
order to preserve the functions of the POs, the functions on
the output side of o may need to be changed. The property
of minimum SPFDs guarantees that the new functions of these
nodes can always be derived. Note that the use of the largest
separator has the maximum number of nodes that might have to
be changed.

If a minimum SPFD of n is empty, then n does not provide
any “useful” information that is not already supplied by other
nodes in o. Therefore, n can be removed, while other nodes can
be resynthesized, keeping the network’s behavior unchanged.
The procedures for resynthesizing the nodes using their mini-
mum SPFDs are described in [31].

B. Computing SPFDs Using S&S

BDD-based SPFD computations limit the applicability of
SPFDs to medium-sized circuits [31]. In [33], an improvement
was proposed, which computes SPFD of a node by putting
together two copies of the logic cone of the node. The circuit
representation of these cones is translated into CNF and given
to the SAT solver enhanced with the capability to exhaustively
enumerate the satisfying assignments. The set of all satisfying
assignments produced by the SAT solver is the SPFD of the

MISHCHENKQO et al.: COMPUTING FLEXIBILITIES IN BOOLEAN NETWORKS

749

TABLE III
RUNTIME STATISTICS OF S&S-BASED VERSUS BDD-BASED
MINIMUM SPFD COMPUTATION

Fig. 6. Specialized miter for computing SPFDs.

given node. Simulation was not used and the problem formula-
tion was not tuned for SAT. As a result, although the method of
[33] can handle larger circuits than previous approaches based
entirely on BDDs, its runtime is also larger. In this paper, we
propose a much more efficient algorithm to compute SPFDs
using S&S applied to the circuit representation of Boolean
functions, offering better runtimes than previous approaches
and with application to larger circuits.

The minimum SPFD computation for a node begins by
building a miter for the node. The following steps describe how
the miter is constructed and used in the S&S-based minimum
SPFD computations.

1) Construct the miter cone as shown in Fig. 6. The miter
cone feeds PIs X into the first network N and PIs X’
into the second network N’. Identical separators o of
the nodes n and n’ are introduced in both networks. The
POs are connected pairwise to form miter cone M1. The
outputs of the nodes in the two separators are connected
pairwise to form the miter cone M2. The output of M2
is one if and only if the separator can distinguish a PI
minterm pair (z,z’). Finally, the M1 output is ANDed
with the complement of the M2 output. As a result,
the final output is one if and only if the POs of the
network can distinguish (x, 2’), but the separator cannot
distinguish it. By construction, the final output is one
only for the PI minterm pairs that belong to the minimum
SPFD of n with respect to separator o.

2) Perform simulation on the miter cone network. Assign
random simulation vectors at the PIs and propagate them
to the POs. Each pair of simulated minterms x and z’
in the PI space has a corresponding pair (y, 3') in the
local space Y and Y. If the output of the network is one,
then (y, y) belongs to SPFD}(Y, Y”). A static simulation
model is used where a fixed number of patterns are
simulated. We found that simulating 512 random patterns
works well for most benchmarks.

3) Convert the miter cone network into a SAT instance.
The local SPFD minterms (in Y, Y”) already computed
(which belong to the minimum SPFD) are complemented
and added to the SAT instance as blocking clauses, and

Circuit | #Nodes | BDD(s) | S&S(s) Gain Stopped | Stopped

(BDD) (SAT)
dalu 1131 >4000 2914 >13.7 737 661
frg2 522 1769.2 1194 14.9 75 135
pair 824 323.9 97.8 3.3 289 119
C499 202 44.9 14.9 3.0 202 133
880 357 3515.1 20.1 174.9 245 87
C1355 514 1813.6 64.2 28.2 514 314
C1908 880 3980.4 177.7 22.4 638 492
(3540 1667 | >4000.0 554.4 >7.2 1663 1192
6288 2416 | >4000.0 | 2446.7 >1.6 2416 2312
C7552 3266 | >4000.0 1651.4 >2.4 3256 1363
C5315 2288 | >4000.0 798.7 >5.1 2247 0
il0 2488 | >4000.0 1070.3 >3.7 2337 1117
Ave. >23.0

SAT is used to enumerate through the remaining sat-
isfying (Y,Y”) assignments. When SAT returns “unsat-
isfiable,” the complete minimum SPFD of the node is
obtained.

Some practical applications require checking the equivalence
of the SPFDs of two separators, or of two multioutput networks
with the same PIs but possibly different POs. To check the
equivalence of SPFDs of the networks, it is enough to construct
for each network a miter similar to miter M1 in Fig. 6. The
outputs of the miters are combined using an additional EXOR
gate. The resulting “miter of miters” is constant 0 if and only if
the multioutput networks have the same SPFDs. The problem
can be solved using an SAT solver.

C. Experiment Results

Both the S&S-based and BDD-based computations of the
minimum SPFDs for the smallest separator were implemented
in SIS [30]. The smallest separator is more useful for network
optimization, because it allows for a more efficient control of
changes performed on the network after resynthesis of the node.
These changes are limited to the TFO of the node resynthesized.
A detailed discussion about limiting the area of change and
modifications to the fanouts even further can be found in [31].

For S&S, the SPFD miter was generated for each node in
the circuit and the minimum local SPFD computed. The BDD-
based computation used BDDs exclusively, including building
the global SPFDs of the PO nodes and the nodes of the
separator, constructing the minimum global SPFD of the node,
and the image computation.

In most examples, the limiting factor using BDDs was the
construction of the minimum global SPED of the node. This im-
plies that a combination of simulation and BDDs is not suitable
for computing the minimum SPFDs. Even if all the minterm
pairs in a minimum SPFD can be enumerated using simulation,
the BDD-based computation for ensuring the completeness of
the minimum SPFD computation could still encounter the same
blowup problems.

The experiments were performed on a 400-MHz UltraSparc
IT with 4.0 GB of RAM. Table III compares the S&S-based

750 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 5, MAY 2006

and the BDD-based computations of the minimum SPFDs for
each node in the network. Columns 1 and 2 report the name
of the benchmark and the number of nodes, respectively. Since
the BDD-based computation cannot be applied to very large
circuits, we used a randomly selected subset of medium-sized
MCNC benchmarks. Columns 3 and 4 report the runtimes in
seconds for the BDD-based and the S&S-based implementa-
tions, respectively. The overall time limit was set to 4000 s for
each circuit. The gain in runtime ration (BDD/S&S) is reported
in Column 5. Thus, S&S demonstrates an average performance
improvement of at least 23 x compared to BDDs.

In general, the improvement due to S&S is even larger, since
the runtime of the BDD-based implementation for some of
the larger circuits exceeds the timeout limit. The BDD-based
implementation is very slow for large circuits, and, hence,
limitations on the size of the intermediate BDDs had to be
introduced. The largest size to which an intermediate BDD
was allowed to grow was set to 50000 nodes. To attempt a
similar limitation on the SAT solver, the maximum number of
backtracks was set to 200. If the resource limit (size of BDD or
number of SAT backtracks) is reached in computing the SPFDs
of a node, the program abandons its computation and moves
on to a different node until the total 4000-s runtime limit is
reached. The number of network nodes for which these resource
limits were reached is reported in Columns 6 and 7 for BDDs
and S&S, respectively. In addition, Column 6 includes the
number of nodes that could not be processed when the total run-
time of the BDD-based computation exceeded the 4000-s time-
out. These numbers clearly demonstrate that the S&S-based
computation can process a larger number of nodes than the
BDD-based implementation for the same benchmark, even
though we put a limit on the number of SAT backtracks.

It is worth pointing out that the current implementation of the
algorithm cannot be applied to sequential circuits, which tend
to have more shorter paths with smaller support set. As a result,
the BDD-based method may not suffer as much when applied to
sequential circuits. However, we feel that S&S will still perform
better than BDD. We hope to collect supporting results in our
future work.

The results in Table IV summarize the contribution of
simulation to the S&S-based minimum SPFD computation.
Column 1 reports the name of each circuit. Column 2 reports
the total number of minterm pairs in the minimum SPFDs of the
nodes in the circuit. The number of minterm pairs identified by
simulation is reported in Column 3. The runtimes of simulation
and SAT in the S&S-based implementation are presented in
Columns 4 and 5, respectively. The results show that simulation
can identify about 40% of all minterm pairs in a minimum
SPFD and contributes to a good fraction of the total runtime.
Thus, simulation plays a significant role in the S&S-based
minimum SPFD computation.

The two experiments demonstrate that S&S is better suited
than a pure BDD-based algorithm for the efficient computation
of minimum SPFDs, especially for large circuits. In addition,
we repeat that a combined simulation and BDD-based algo-
rithm would suffer from a lot of the disadvantages of a pure-
BDD-based algorithm, because the primary bottleneck in the
minimum SPFD computation is in computing the global SPFDs

TABLE 1V
CONTRIBUTION OF SIMULATION TO S&S-BASED MINIMUM
SPFD COMPUTATION

Circuit #Total #Minterm | SIM SAT
minterm pairs using | Runtime Runtime
pairs SIM (s) (s)
dalu 3088 1329 5.8 288.0
frg2 8982 2867 354 84.6
pair 8450 3519 20.2 78.5
C499 458 178 2.4 12.2
830 1584 697 47 152
C1355 596 238 59 57.9
C1908 2542 664 103 167.3
C3540 1278 615 10.2 540.4
C6288 324 162 20.3 2256.2
C7552 8758 3771 31.1 1593.9
C5315 5600 2522 22.6 764.3
i10 9896 2935 36.7 10257

of the separator nodes and the PO nodes. Another advantage
of the proposed method is that the efficient use of minimum
SPFDs opens up the possibility of their use in an optimization
framework for realistic designs. In previous work, only subsets
of the minimum SPFD could be used for optimization. Future
work might investigate the impact of the added flexibility
provided by the minimum SPFDs in optimization framework.

V. COMPUTING RESUBSTITUTIONS

Resubstitution plays an important role both in technology-
independent [30] as well as technology-dependent [17] logic
synthesis. This section describes an S&S-based algorithm to
compute sets of nodes for Boolean resubstitution. In particular,
we focus on speeding up resubstitution used in the resynthesis
flow of [14].

A. Background

Definition 5.1: Resubstitution of a node in a network re-
places the node’s local function by a new local function, which
depends on a different set of fanins, but does not alter the global
functionality of the node.

Resubstitution can be used to restructure the network to
minimize delay, area, routeability, etc. Delay can be improved if
the new fanin(s) arrive earlier and routeability can be improved
if they are closer than those replaced. Area can be improved if
after resubstitution, some of the old fanins of the node have no
fanouts and, therefore, can be removed from the network.

The existence of a resubstitution is closely related to the con-
cept of functional dependency [12]. Resubstitution functions
can also be computed using interpolation [20]. The definitions
and the theorems below are taken from [12]. We give a new
computation procedure that relies on S&S rather than BDDs, as
in [12].

Definition 5.2: Given node n with global function g(X)
and nodes mq,ma,...,my with global functions ¥, (X),

MISHCHENKQO et al.: COMPUTING FLEXIBILITIES IN BOOLEAN NETWORKS

TABLE V
TRUTH TABLE OF G' AND CANDIDATE SETS
abe p Set | — Set 2
yi=ab y=abc ys=(a+b) y4=bc
000 0 0 0 0 0
001 0 0 0 0 0
010 1 1 0 1 0
011 1 1 0 1 1
100 0 0 0 1 0
101 1 0 1 1 0
110 0 0 0 | 0
111 0 0 0 1 1
Yma (X)s -« o, Ym,, (X), nodes my, ma, . .., my, can resubstitute

node n if the global function of n can be expressed as

g(X):F(yml(X)ﬂynﬂ(X)v'~~7ymk(X)) (9)

where F'(y1,y2,. ..
stitution function.

Theorem 5.1: Nodes mq, ma, ..., my with global functions
Ym1(X), Yma(X), ..., Ym, (X) can resubstitute node n with
global function ¢g(X) if and only if there is no minterm pair
(21, x2), such that g(z1) # g(z2) but Y (21) = ymj(z2), for
allj,1 <5<k

Thus, resubstitution is possible if and only if the distinguish-
ing power of g (output) is not greater than the union of the
distinguishing powers of all the functions ¥,,,; (inputs).

Example 5.1: Suppose the global function of node n is g =
(a®b)(bV c), where a, b, and c are the PIs. Consider two sets
of resubstitution candidates with global functions: (y; = ab,
Yo = abc) and (y3 = a \V b, y4 = bc). Table V shows the truth
tables of all the global functions. The set (y3, y4) is not a valid
resubstitution candidate for g, because minterm pair (101, 110)
is distinguished by g but not distinguished by y3 and y4. On the
other hand, the set (y1, y-) satisfies Theorem 5.1, because all
the minterm pairs distinguished by g are also distinguished by
at least one function in the set.

Theorem 5.2: LetY = {y1,¥y2, - .., yr}- Node n with global
function ¢g(X) can be resubstituted using nodes mq,ma,
...,my, each with global functions ¥y,,1(X),¥ym2(X),...,
Ymi (X), if and only if FON(Y)FOF¥(Y') = 0, where

,Yx) is a Boolean function called a resub-

]) _

FOPF(y) =3x [gX) A [[s = wms(X)| (10)
L J=1 J
-] ;

FON(Y) =3x |g(X)A [Jws = vms(X) |- (D)
L]_1 -

If this property holds, then any function F(Y") that agrees
(FON(Y) C F(Y) C FOFF(Y)) with the above incompletely
specified function (represented by its ON set and OFF set) can
be a new resubstitution function for node n.

751

IENIE

Fig. 7. Resubstitution function for g.

Example 5.2: Using the same functions as in the above
example, we compute the ON set and the OFF set based on
Theorem 5.2 with respect to local nodes y; and yo: FOFF(Y) =
7172 and FON(Y) = 9,92 V 4175, as shown in Fig. 7. Mini-
mizing this ISF, we derive the simplest resubstitution function
for node n using candidates y; and yo: g = y1 V y2 = ab V abc.

B. Computing Resubstitution Using S&S

Given a node and a set of resubstitution candidate sets
derived using the structural support of g(X), the goal is to
determine those candidate sets that can be used for resubstitu-
tion. The following steps describe the computation of feasible
candidate sets.

1) Assign pairs of random vectors at the PIs corresponding
to minterms x1 and x5. Perform simulation of the network
and compare the outputs for functions g and resubstitu-
tion candidate sets {y1,y2, - .., yx }. Using Theorem 5.1,
eliminate the candidate sets for which resubstitution does
not exist. Repeat random simulation for a predetermined
number of rounds. Experimentally, we found that 64
simulation rounds (32-bit patterns each) works well in
practice.

2) Apply SAT to each of the remaining candidate sets. SAT
is used to compute the ON set and OFF set of F' (the
images) in Theorem 5.2 by enumerating the satisfying
assignments not found by simulation. (The combinations
appearing during simulation at the root node and the can-
didate nodes are added to the solver as blocking clauses.)
If the images computed by SAT satisfy Theorem 5.2,
resubstitution exists, and the resubstitution function is
found by minimizing the incompletely specified function
represented by the ON set and the OFF set.

C. Experimental Results

S&S-based and BDD-based resubstitution algorithms were
implemented in the resynthesis package used to improve the
quality of standard-cell technology mapping in MVSIS [26].
The experiments were run on a Pentium 4 computer with a
1.8-GHz CPU and 512 MB of RAM. Several randomly selected
large benchmarks from MCNC [40], ITC [11], ISCAS [4], and
PicoJava [36] benchmark suites demonstrate the applicability
of the proposed algorithm to a large variety of circuits. The
benchmarks were read into MVSIS followed by technology
mapping [7], using a gain-based standard-cell library derived
from mcnc.genlib [30], by ignoring the load-dependent part of
the delay. Next, the netlist was resynthesized to reduce area,

752 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 5, MAY 2006

TABLE VI
RUNTIME COMPARISON OF S&S-BASED VERSUS BDD-BASED
RESUBSTITUTION COMPUTATION

TABLE VII
RESYNTHESIS STATISTICS

Run Area Total DSIM | DSAT | PSAT | USAT
Name | In/Out/Latch |BDD (s) Simulation & Sat (s) Gain Name | Time | Imp. | cand. sets (%) (%) (%) (%)
SIM | SAT | Total s | @
dalu 75/16/0 | 78.74 138 2.12 3.50 22.5 dalu 4.82] 13.96 417,162 94.68 1.12] 4.20] 0.00
des 256/245/0 | 104.66 348 | 12.75] 16.23 6.5 des 17.74] 2.94 731,665 89.32] 9.82] 083 0.02
frg2 143/139/0 | 30.78 1.57 242 3.99 7.7 frg2 4.53| 1541 341,118] 92.61) 0.04] 7.33] 0.01
i10 257/224/0 | 172.99 2.24 2.34 4.58 37.8 il0 7.61 7.58 825859 9735 1.31 1.33] 0.01
k2 45/45/0 | 53.41 1.99 9381 11.37 4.7 k2 11.12] 8.09 313,343 83.21| 14.14] 2.65] 0.00
pair 173/137/0 | 75.44 1.52 1.27 279 27.0 pair 3.23) 1235 399,039] 96.06] 0.00] 3.94| 0.00
C432 36/7/0 | 83.00 0.36 0.29 0.65 127.7 C432 0.84] 7.68 97375] 96.89] 179 132] 0.00
C2670 233/140/0 | 48.04 0.69 1.28 1.97 24.4 C2670 2.18] 20.98 150,979] 93.44] 2.62] 3.86] 0.08
C5315 178/123/0 | 109.95 1.13 1.86 2.99 36.8 C5315 3.86] 13.15] 369,656 96.21| 025] 3.62| 0.01
C7552 207/108/0 | 145.04 2.68 6.11 8.79 16.5 C7552 9.87] 15.83 578,142 92.12] 3.73] 4.10] 0.05
$15850 14/87/597 | 170.60 2.80 3.45 6.25 273 s15850 9751 1145 825209 9516 2.64] 220] o0.01
$35932 35/320/1728) 4045) 140 1.28] 2.68 15.1 535932 51| 321 4s1.714] 9679] 0.00] 321 0.00
pjl 1769/1063/0 | 163.90 3.98 4.82 8.80 18.6 pil 66.79] 10.29] 3,988.250] 95.00] 2.99] 2.00] o0.01
b14 32/547245 | 17346 172) 2.86) 458] 379 bl4 2556| 5.17| 2367501 96.64] 236] 097] 0.02
b17 37/97/14141 27401 246] 393] 639) 429 b17 180.67] 8.44] 9,050,793] 93.20] 573] 1.05] 0.02
b20 32/22/490 | 166.99) 246) 6.17] 863 194 20 6193 7.52] 5672,59| 96.95] 1.64] 138] 0.03
b22 3222703 1 16949] 181) 398) S79] 293 b22 101.04] 7.14] 8130.898] 96.60] 2.00] 1.26] 0.05
Ave. 295 Ave. 10.07 94.25] 3.07] 2.66] 0.02
TABLE VIII
with a total runtime limit of 3 min taken for all nodes in the RUNTIME COMPARISON BETWEEN SIM + SAT VERSUS SIM + BDD
network. . , SIM SAT | BDD Gain
During the resynthesis step, the runtime of S&S-based and Name (sec) (sec) sec) | sAT/BDD
BDD-based resubstitution was compared. The resubstitution dalu 131 262 257 1.02
runtimes include only the time to derive the final valid candidate des 3.13 13.4 9.02 1.49
sets, but not the time to select the initial candidate sets or to frg2 1.72 1.93 1.76 110
perform the actual resubstitution after a valid set is chosen. i10 243 327 7.53 0.43
The results of both computations are verified against each other. k2 };? ?'(5)2 Zg (l)'éé
Table VI contains the experimental results. Columns 1 and 2 list Cp j;rz 023 02 0.82 015
the names and the characteristics of each benchmark. Column 3 2670 052 127 191 0.66
lists the runtime of the BDD-based approach. Columns 4, 5, 5315 1.03 1.84 2.18 0.84
and 6 list the runtimes of the S&S-based approach (simulation, C7552 211 5.82 14.42 0.40
SAT, and total, respectively). Table VI shows an average 29 x s15850 2.87 5.02 639 0.79
performance improvement of the S&S-based approach com- 535932 1.04 130 0.67 1.94
pared to the BDD-based approach. pj! 13.21 28.61 41.09 070
. L. . L. . bl4 7.40 12.37 21.59 0.57
To give more insight into the S&S-based resubstitution in bl7 1754 48.02 3711 055
these experiments, additional statistics are given in Table VII. 520 16.26 2488 5787 047
Column 2 gives the total resynthesis runtime. Since the runs b22 2326 | 41.29 78.98 0.52
were limited to 3 min, resynthesis did not complete for bench- Ave 0.79

mark b17. However, the area improvements and the total num-
ber of resubstitutions are valid. Column 3 is the percentage
of area improvement due to resynthesis. The total number of
sets of candidates considered (over all nodes) is reported in
Column 4. Column 5 (DSIM) and Column 6 (DSAT) give
the percentages of the candidate sets that were filtered out by
simulation and SAT, respectively. Column 7 (PSAT) reports
the percentages of the candidate sets that SAT proved useful
for substitution. The last column (USAT) is the percentage of
candidate sets not proved by SAT due to a resource limit on the
number of backtracks. Table VII shows that an average 94% of
the candidate sets are filtered out by simulation, indicating that
simulation plays a significant role in this application of S&S.
Tables VI and VII together demonstrate the power of S&S
for solving a computationally hard problem in logic synthesis.

We also performed an experiment to compute resubstitutions
using simulation and BDDs (S&B), instead of SAT. BDDs are
used to check the validity of the remaining 6% candidate sets
after simulation, in contrast to Table VI, where BDDs are used
to check all candidate sets. Table VIII contains the runtime
information. Column 2 is the common simulation runtime,
used in S&S and S&B. SAT and BDD runtimes are given in
Columns 3 and 4, respectively. Column 5 shows the perfor-
mance improvement between SAT and BDDs. On the set of
17 benchmarks, SAT wins in 12 cases, mostly in larger circuits.
The average SAT/BDD runtime ratio is 0.79, demonstrating
that SAT wins over BDDs in performance alone, without the
advantages of simulation.

MISHCHENKQO et al.: COMPUTING FLEXIBILITIES IN BOOLEAN NETWORKS

VI. IMPLEMENTATION DETAILS
A. Simulation

The more efficient simulation is, the larger is the part of the
search space it covers in a short time, leaving SAT to work
on the remaining part. To ensure efficient simulation, in our
implementation, we employed the following techniques.

1) Using AIGs [15] as our network representation. AIGs
are compact and homogeneous. Simulating an AIG node
involves bitwise operations on the simulation information
of the fanins.

2) Performing simulation in a bit-parallel fashion, that is,
simulating 32 or 64 minterms simultaneously.

3) Allocating memory for storing the simulation information
in one large memory array. The nodes as well as the
chunks of memory associated with the nodes are ordered
topologically in a DFS order. This reduces the number
of cache misses and improves the speed of simulation-
intensive applications.

4) In CDC computation, simulation stopped upon saturation,
i.e., no care minterm turns up after a fixed number of
simulation rounds. In computing SPFD and node resub-
stitution, however, a static simulation scheme was used.
This was done because it is simple and works quite well
in practice.

Both bit-parallel simulation and AIGs lead to a significant
speedup in computation. The impact of controlling the amount
of simulation depends on each problem instance, but the
above general principles work for a variety of applications and
benchmarks.

Simulation is an efficient technique, because, in most ap-
plications, it has a linear complexity in the size of the cir-
cuit and in the number of patterns simulated. In one of the
applications, computation of SPFDs, simulation has a worst
case quadratic complexity in the number of patterns, because
pairs of simulation patterns must be considered. In practice,
the worst case complexity is reduced by computing equivalence
classes of simulation patterns. Two patterns belong to the same
class if they produce the same values at all POs. When we
compute the SPFDs, we considered only pairs of patterns
inside each equivalence class. This reduced the number of pairs
considered, but the complexity is still higher than linear. This
observation explains why the impact of simulation on the run-
time of S&S is less pronounced for SPFDs, compared to other
applications.

B. Satisfiability

The SAT solver used in these applications was implemented
using an ‘“extensible SAT solver,” MiniSat [8]. MiniSat is
very efficient despite its small size [600 lines of C++ code
written without a standard template library (STL)]. In our
experiments, it outperformed several popular SAT solvers.
Moreover, the implementation of MiniSat is easy to understand
and modify, in complete agreement with the intention of its
developers.

For the applications described in this paper, MiniSat was
modified to treat satisfying assignments similar to how conflicts

753

are treated. In this case, when a new assignment is found, it
is added to the list of satisfying assignments, and a blocking
clause is generated, which prevents it from appearing again.
After this, a nonchronological backtracking is performed to
the lowest level allowed by the blocking clauses. This tech-
nique makes enumeration of satisfying solutions more effi-
cient, compared to an implementation that restarts the solver
at the topmost level each time a new satisfying assignment
is found.

A new SAT instance is constructed for each new problem,
such as computing the don’t cares for a node or checking
resubstitution using a subset of nodes. The variables and clauses
are added to the solver in the order corresponding to a DFS
order of nodes in the network or the window considered. No
static variable ordering was used, because MinSat [8] dynam-
ically determines a good variable ordering by applying the
variable state independent decaying sum (VSIDS) heuristic
[25]. This heuristic focuses the solver on the relevant parts
of the search space and is relatively cheap to realize. In our
experiments, updating variable activities and computing next
branching variable took about 20% of the solver runtime.

C. Integration of Simulation and SAT

The information from the simulation to the SAT solver is
passed using additional SAT clauses. In the naive implemen-
tation, each pattern found by simulation is transformed into
a clause and added to the solver. In this case, the number of
additional clauses can be close to the number of minterms in
the input space. If the input space of a problem is large (say, ten
inputs), it leads to a large number of clauses, which consume
memory and slow down the solver. This motivates the need to
compact the additional clauses.

In our implementation of CDC computation, the clauses are
compacted by deriving the Boolean function of all satisfying as-
signments found by simulation, transforming this function into
an irredundant sum of product (ISOP) [8], [21], and deriving
the clauses from the ISOP using DeMorgan’s rule. This led
to a substantial speedup in SAT. In the other two applications
(SPFDs and resubstitution), the improved implementation did
not give an advantage over the naive one.

Depending on the application, the role of simulation and
SAT in solving the problem is different. Typically, a prob-
lem can be solved with SAT alone without simulation at the
cost of increases in runtime. Among the three applications
considered, SPFD computation is the least sensitive to using
simulation. Disabling simulation for SPFDs increases runtime
roughly by 50% on average. In the other applications, CDCs
and resubstitution, the runtime of SAT-only solution typically
increases an order of magnitude or more compared to the run-
time of S&S.

VII. CONCLUSION AND FUTURE WORK

Flexibilities in a Boolean network can be computed and
used to transform logic functions of nodes without changing
the PO functions. This process leads to more optimization,
compared to that based on faster but suboptimal algebraic

754 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 5, MAY 2006

methods [3]. Although several formalisms for modeling flexi-
bilities are known, the computational cost is often very high,
which makes the computations impractical for mainstream
logic synthesis. In this paper, we revisited three algorithms
for computing flexibilities, CDCs, SPFDs, and resubstitutions,
and proposed more efficient formulations and implementations
based on simulation and Boolean SAT. Experimental results
show that the new implementations are significantly better than
the previous ones based on BDDs. The following observations
can be made.

1) In computing CDCs, S&S is, on average, 20% faster than
BDDs for 1 x 1 windows, over two times faster for 2 x 2
windows, and over seven times faster for 4 x 4 windows.
This ratio increases further with the window size.

2) In computing SPFDs, S&S is, on average, at least
23 times faster than BDDs.

3) In computing resubstitutions, S&S is, on average, 29
times faster than BDDs. Even if simulation is coupled
with the BDD-based computation, SAT still outperforms
BDDs.

Future work may include developing new applications of
CDCs and SPFDs in technology-independent optimization and
technology mapping. Several improvements to the windowing
algorithm will be investigated, which will allow for more
flexibilities to be computed with smaller computational effort.
Another interesting application is to develop an efficient S&S-
based algorithm for negation and permutation of inputs, nega-
tion of outputs (NPN) matching of large Boolean functions for
which BDD cannot be constructed.

REFERENCES

[1] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of
a BDD package,” in Proc. DAC, Orlando, FL, 1990, pp. 40-45.

[2] D. Brand, “Verification of large synthesized designs,” in Proc. ICCAD,
Santa Clara, CA, 1993, pp. 534-537.

[3] R. K. Brayton and C. McMullen, “The decomposition and factorization of

Boolean expressions,” in Proc. ISCAS, Rome, Italy, 1982, pp. 29-54.

F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of

sequential benchmark circuits,” in Proc. ISCAS, Portland, OR, 1989,

pp- 1929-1934.

[5] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677-691, Aug. 1986.

[6] S.-C. Chang, L. P. P. P. van Ginneken, and M. Marek-Sadowska,
“Circuit optimization by rewiring,” IEEE Trans. Comput., vol. 48, no. 9,
pp. 962-970, Sep. 1999.

[7] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam, “Re-
ducing structural bias in technology mapping,” in Proc. ICCAD, San Jose,
CA, 2005, pp. 519-526.

[8] O. Coudert, J. C. Madre, H. Fraisse, and H. Touati, “Implicit prime
cover com putation: An overview,” in Proc. SASIMI, Nara, Japan, 1993,
pp. 413-422.

[9] N. Eén, N. Sorensson, “An extensible SAT-solver,” in Proc. The-
ory Applications Satisfiability Testing (SAT), Santa Margherita, Ligure,
Italy, 2003, pp. 502-518. [Online]. Available: http://www.cs.chalmers.se/
Cs/Research/FormalMethods/MiniSat/

[10] E. Goldberg, M. Prasad, and R. K. Brayton, “Using SAT for combina-
tional equivalence checking,” in Proc. DATE, Munich, Germany, 2001,
pp. 114-121. [Online]. Available: http://eigold.tripod.com/

[11] E Corno, M. Sonza Reorda, and G. Squillero, “RT-level ITC 99
benchmarks and first ATPG results,” IEEE Des. Test. Comput.,
pp. 44-53, Jul./Aug. 2000. [Online] Available: http://www.cad.polito.
it/tools/itc99.html

[12] J.-H. R. Jiang and R. K. Brayton, “Functional dependency for verification
reduction,” in Proc. CAV, Boston, MA, 2004, pp. 268-280.

[13] H.-S. Jin, H.-J. Han, and F. Somenzi, “Efficient conflict analysis
for finding all satisfying assignment of a Boolean circuit,” in Proc.

[4

=

TACAS , N. Halbwachs, L. Zuck, Eds., Edinburgh, U.K., 2005, vol. 3440,
pp- 287-300.

[14] V. N. Kravets and P. Kudva, “Implicit enumeration of structural
changes in circuit optimization,” in Proc. DAC, San Diego, CA, 2004,
pp. 438-441.

[15] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 21, no. 12,
pp. 1377-1394, Dec. 2002.

[16] W. Kunz, D. Stoffel, and P. Menon, “Logic optimization and equiv-
alence checking by implication analysis,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. CAD-16, no. 3, pp. 266-281,
Mar. 1997.

[17] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic decom-
position during technology mapping,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 16, no. 8, pp. 813-833, Aug. 1997.

[18] E Lu, L. Wang, K. Cheng, and R. Huang, “A circuit SAT solver with
signal correlation guided learning,” in Proc. DATE, Munich, Germany,
2003, pp. 892-897.

[19] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A search algorithm
for propositional satisfiability,” IEEE Trans. Comput., vol. 48, no. 5,
pp. 506-521, May 1999.

[20] K. L. McMillan, “Interpolation and SAT-based model checking,” in Proc.
CAV, Boulder, CO. Berlin, Germany: Springer-Verlag, 2003, vol. 2725,
pp. 1-13.

[21] S. Minato, “Fast generation of prime-irredundant covers from binary de-
cision diagrams,” IEICE Trans. Fundam., vol. E76-A, no. 6, pp. 973-976,
Jun. 1993.

[22] A. Mishchenko and R. K. Brayton, “Simplification of non-determi-
nistic multi-valued networks,” in Proc. ICCAD, San Jose, CA, 2002,

pp. 557-562.

[23] ——, “A theory of non-deterministic networks,” in Proc. ICCAD, San
Jose, CA, 2003, pp. 709-716.

[24] ——, “SAT-based complete don’t-care computation for network opti-

mization,” in Proc. DATE, Munich, Germany, 2005, pp. 418-423.

[25] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Proc. DAC, Las Vegas, NV, 2001,
pp- 530-535.

[26] MVSIS Group, MVSIS: Multi-Valued Logic Synthesis System, Berkeley:
Univ. California. [Online]. Available: http://www-cad.eecs.berkeley.edu/
mvsis/

[27] M. Prasad, P. Chong, and K. Keutzer, “Why is ATPG easy?,” in Proc.
DAC, New Orleans, LA, 1999, pp. 22-28.

[28] H. Savoj and R. K. Brayton, “The use of observability and external
don’t-cares for the simplification of multi-level networks,” in Proc. DAC,
Orlando, FL, 1990, pp. 297-301.

[29] H. Savoj, “Don’t cares in multi-level network optimization,” Ph.D. dis-
sertation, Dept. Elect. Eng. Comput. Sci., Univ. California, Berkeley,
May 1992.

[30] E. Sentovich et al., “SIS: A system for sequential circuit synthesis,”
Dept. Elect. Eng. Comput. Sci., Univ. California, Berkeley, Tech. Rep.
UCB/ERL M92/41, 1992. ERL.

[31] S. Sinha and R. K. Brayton, “Implementation and use of SPFDs in
optimizing Boolean networks,” in Proc. ICCAD, San Jose, CA, 1998,
pp. 103-110.

[32] S. Sinha, S. Khatri, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Bi-
nary and multi-valued SPFD-based wire removal in PLA networks,” in
Proc. ICCD, Austin, TX, 2000, pp. 494-503.

[33] S. Sinha and R. K. Brayton, “Improved robust SPFD computations,” in
Proc. IWLS, Tahoe City, CA, 2001, pp. 156-161.

[34] S. Sinha, A. Mishchenko, and R. K. Brayton, “Topologically constrained
logic synthesis,” in Proc. ICCAD, San Jose, CA, 2002, pp. 679-686.

[35] S. Sinha, X. Wang, and R. K. Brayton, “Comparing two rewiring models,”
in Proc. IWLS, Temecula, CA, 2004, pp. 438-445.

[36] SUN Microelectronics, PicoJava Microprocessor Cores. [Online]. Avail-
able: http://www.sun.com/microelectronics/picoJava/

[37] M. N. Velev, “Efficient translation of Boolean formulas to CNF in formal
verification of microprocessors,” Tech. Rep. Jan. 2005. [Online]. Avail-
able: http://www.ece.cmu.edu/~mvelev/Velev_TechReport_R1.pdf

[38] Y. Watanabe, L. Guerra, and R. K. Brayton, “Logic optimization with
multi-output gates,” in Proc. ICCD, Cambridge, MA, 1993, pp. 416—420.

[39] S. Yamashita, H. Sawada, and A. Nagoya, “A new method to express
functional permissibilities for LUT based FPGAs and its applications,”
in Proc. ICCAD, San Jose, CA, 1996, pp. 254-261.

[40] S. Yang, “Logic synthesis and optimization benchmarks,” Version 3.0.
Tech. Rep., Microelectron. Center North Carolina, Research Triangle
Park, NC, 1991.

MISHCHENKQO et al.: COMPUTING FLEXIBILITIES IN BOOLEAN NETWORKS

Alan Mishchenko (M’99) received the M.S. degree
in applied mathematics and information technology
from the Moscow Institute of Physics and Technol-
ogy, Moscow, Russia, in 1993, and the Ph.D. degree
in computer science from the Glushkov Institute of
Cybernetics, Kiev, Ukraine, in 1997.

Since 1998, he has been a Research Scientist in the
U.S. From 1998 to 2002, he was with the Portland
State University, Portland, OR. Since 2002, he has
been with the University of California, Berkeley. His
research interests include developing computation-
ally efficient methods for logic synthesis and verification.

AN Y

Jin S. Zhang (M’93) received the B.S. degree in
electrical engineering, the B.A. degree in English for
science and technology, and the M.S. degree in elec-
trical engineering from Tianjin University, Tianjin,
China, in 1991, 1991, and 1994, respectively, and the
M.S. degree in electrical and computer engineering
from Portland State University, Portland, Oregon,
in 2001. She is currently working toward the Ph.D.
degree in electrical and computer engineering at
Portland State University.

From 1995 to 2002, she was with Lattice Semi-
conductor Corp. and Cadence Design Systems and Real Intent, Inc., working
on logic and layout verification.

Subarna Sinha received the B.Tech. (Hons.) degree
in electronics and electrical communication engi-
neering from the Indian Institute of Technology,
Kharagpur, India in 1996, and the Ph.D. degree in
electrical engineering and computer science from the
University of California, Berkeley, in 2002.

She is currently working with the Advanced Tech-
nology Group, Synopsys, Inc., Mountain View, CA.
Prior to that, she was a member of the Strategic
CAD Laboratories at Intel. Her research interests
include logic synthesis, physical design, and design
for manufacturability.

Jerry R. Burch (M’92) received the B.S. and M.S.
degrees in computer science from the California
Institute of Technology, Pasadena, CA, in 1984
and 1985, respectively, and the Ph.D. degree in
computer science from Carnegie Mellon University,
Pittsburgh, PA, in 1992.

From 1992 to 1994, he was a Postdoctoral Scholar
in the Computer Science Department, Stanford Uni-
Y. versity. From 1994 to 2002, he was with Ca-

/ dence Berkeley Laboratories. He is currently with
the Advanced Technology Group, Synopsys, Inc.,
Hillsboro, OR.

755

Robert Brayton (M’75-SM’78-F’81) received the
B.S. degree in electrical engineering from Iowa State
University, Ames, in 1956, and the Ph.D. degree in
mathematics from MIT, Cambridge, in 1961.

He was a member of the Mathematical Sciences
Department, IBM T. J. Watson Research Center
until he joined the Electrical Engineering and Com-
puter Science Department, University of Califor-
nia, Berkeley, in 1987. He held the Edgar L. and
Harold H. Buttner Endowed Chair and is currently
the Cadence Distinguished Professor of Electrical
Engineering. He has authored over 400 technical papers and ten books in the
areas of the analysis of nonlinear networks, simulation, and optimization of
electrical circuits, logic synthesis, and formal design verification.

Dr. Brayton is a member of the National Academy of Engineering and a
Fellow of the AAAS. He received the 1991 IEEE CAS Technical Achievement
Award, the 1971 IEEE Guilleman—Cauer award, and the 1987 ISCAS Darling-
ton Award. He received the 2000 CAS Golden Jubilee and the IEEE Millennium
Medals, the 2002 Iowa State University Marston Medal, and the 2006 IEEE
Piore Award.

Malgorzata Chrzanowska-Jeske (S’86-M’88-
SM’98) received the M.S. degree in electrical engi-
neering from Politechnika Warszawska (the Tech-
nical University of Warsaw), Warsaw, Poland, in
1972, and the Ph.D. degree in electrical engineering
from Auburn University, Auburn, AL, in 1988.

She has served on the faculty of the Technical
University of Warsaw and as a Design Automation
Specialist at the Research and Production Center
of Semiconductor Devices, Warsaw, Poland. Since
1989, she has been with the Department of Elec-
trical and Computer Engineering, Portland State University, Portland, OR,
currently as a Professor and the department’s Chair. Her research interests
include vertically integrated computer-aided design (CAD) for very large scale
integration (VLSI) integrated circuit (IC) and mixed signal system-on-chip
(MS-SOC), three-dimensional (3-D) chip architectures, field programmable
gate array (FPGA) synthesis and architecture, design for manufacturability and
testability in deep submicron, and nano/bioelectronics. She has published more
than 100 technical papers.

Dr. Chrzanowska-Jeske is a member of the ACM and Eta Kappa Nu. She was
arecipient of the 1990 Best Paper Award from the Alabama Section of IEEE for
a paper on the simulation of a bipolar transistor at low temperature published
in the IEEE TRANSACTIONS ON ELECTRON DEVICES. She is a member
of the VLSI Systems and Applications, and Nanoelectronics and Gigascale
Systems Technical Committees of the IEEE Circuits and Systems Society. She
has served on the Technical, Steering, and Organizing Committees of many
international conferences and was the Technical Chair of the 2002 International
Conference on Electronics, Circuits and Systems. In 2004, she was a Guest
Editor of the International Journal on Analog Integrated Circuits and Signal
Processing. She serves as a panelist for the National Science Foundation (NSF)
and as a reviewer for National Research Council Canada (NRC) and many
international journals and conferences.

