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Abstract
This paper presents a theoretical framework that optimally solves many open
problems in time budgeting. Our approach unifies a large class of existing time-
management paradigms. Examples include time budgeting for maximizing to-
tal weighted delay relaxation, minimizing the maximum relaxation and min-skew
time budget distribution. We show that many of the time management problems
can be transformed into a min-cost flow instance that can be optimally and ef-
ficiently solved through well-known combinatorial techniques. Experiments in-
clude mapping of several designs, which are implemented using parameterized
CoreGen IP cores, on Xilinx FPGA devices. Different time budgeting policies
have been applied during the mapping stage. Our time management techniques
always improved the area requirement of the implemented testbenches compared
to a widely-used path-based method. We also compared the maximum budgeting
and fairness in delay budget assignments. Our experimental results show that an
average improvement of 19% in area can be achieved when fairness and maxi-
mum budgeting policies are combined, compared to pure maximum budgeting.

1. Introduction
With tremendous growth in the complexity of today’s systems, tradi-

tional design techniques are no longer capable of handling the design
issues. One approach to tackle this problem is to design the system in a
modular and hierarchical fashion, which requires the system level con-
straints to be translated into component level constraints. This task is
generally referred to asbudget management.

The problem of budget management has been studied for several de-
sign constraints including timing and area. Particularly, time budget-
ing is performed in order to slow down as many components as possi-
ble without violating the system’s timing constraints. The slowed-down
components can be further optimized to improve system’s area, power
dissipation, or other design quality metrics.

However, almost all of the previous research efforts employ sub-optimal
heuristics for addressing the reasonable formulations of the budgeting
problem. In our previous work [11], we solved the problem of integral
budget assignment optimally through LP relaxation. However, combi-
natorial methods are often preferred to LP-based approaches due to their
numerical instability and slow runtimes.

In this paper, we present a unified theoretical framework that can solve
different well-known formulations of the budgeting problem through ef-
ficient combinatorial techniques. We model the given application as a
directed acyclic graph (DAG) and assign timing budget values to the
edges of the DAG. Many other common budgeting models such as node
budgeting or hybrid edge/node budgeting are special cases of our generic
model. We show that our method optimally solves the problems of max-
imum, weighted, bounded, and fair budgeting. It also provides some
guidelines for incremental budget re-assignment, which is useful for
many practical applications.

Timing budget management is applied to different design tasks such
as gate and wire sizing, and library mapping. To experiment our the-
oretical results, we apply our technique during the library mapping at
datapath level. We integrate the time budgeting and module selection
into the synthesis flow for mapping applications onto FPGA devices.
Efficient time budgeting allows us to choose the proper modules from
the library to obtain further quality improvements. Our results highlight
that along with the total weighted summation of delay budget, its distri-
bution throughout the design can significantly impact the design quality.

Next section presents some applications and related works. Section 3
formally formulates the problem. Section 4 presents a combinatorial op-
timal algorithm for solving the formulated problem. The problem is then
extended to other budgeting policies in Section 5. We also show that all
of the extensions are amenable to our approach. In Section 6, we discuss
some interesting incremental properties of the problem, which are use-
ful for incremental budget assignment. Some experiments supporting
our theoretical results are reported in Section 7. Section 8 concludes the
paper.

1.1 Motivating Example
Figure 1 illustrates an example of different delay budget assignment

policies in action. All of the nodes in the example have unit intrinsic de-
lay. Therefore, the critical path of the graph has length 4. Delay budgets
are assigned to the nodes and we assume that the timing constraint for
the application is 8 time units. Hence, delay budget assignment should
not create any path that takes longer than 8 units of time. For each cost
function (policy), an optimal solution is depicted in the table. The delay
budget assigned to each node is shown in each cell of the table. Note
that the delay budget should be added to the unit intrinsic delay of the
node to calculate its actual latency.
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Fig. 1: Different timing budget management policies lead to differ-
ent budget assignments. The example shows the optimal solution
for maximum, bounded and min-max (with different total budgets)
delay budget assignment. Our technique can accommodate all these
policies optimally.

An intuitive budget assignment policy tries to maximize the total de-
lay budget assigned to the graph, assuming that larger total budget cor-
relates to larger improvements in the utility function. First column of the
table shown in Figure 1 (maximum budgeting) represents the result of
applying this cost function. A useful extension of this policy considers
different weights for the nodes and tries to maximize the total weighted
budget assignment.

Second column of the table (bounded maximum budgeting) illustrates
the node budgets when the cost function tries to maximize the total bud-
get while maintaining some lower/upper bounds on the amount of delay
budget assigned to nodes. In this example, nodea has a lower bound of
1, and nodesb andc have an upper bound of 3 on their delay budgets.
Lower/upper bounds are useful for many application domains, due to
non-linear relation of the utility function for each node to its delays.

Another popular policy is to distribute the budget values fairly (min-



imizing the maximum budget value), while still trying to maximize the
total budget. The last two columns of the table (min-max) represent the
result of applying this policy to the sample graph, where 25% and 40%
deviation from maximum budget is allowed for each case. Note that
minimizing the maximum budget value has trivial solutions if there is
no constraint on the total budget.

The technique that we present in this paper unifies all of the afore-
mentioned budget assignment policies (plus a few others including min-
skew budget assignment) into one generic theoretical framework. We
continue to present efficient combinatorial algorithms for solving all of
the motivated problems.

2. Related Works
The concept of slack in a more general context has been addressed in

the synthesis community, where negative slack for a node translates to
the timing constraint violation. The budgeting problem on a graph (both
temporal and spatial budgeting) has been studied in theory and practice
and is widely used for many different applications.

� Design timing closure- During design optimization flow, timing
budget is allocated to each node under a given timing constraint
and optimization is applied. If timing constraint is not met, the
delay budget is re-allocated [4, 20]. Distribution of delay bud-
get is applied to determine the wirelength under the given timing
constraints.

� Timing-driven placement and floor planning- Delay budgeting dur-
ing placement and floor planning has been extensively studied by
several researchers [1, 3, 16]. In [16, 18], placement and net
re-budgeting are combined. In [26], a novel technique for net-
weighting algorithm is proposed for timing optimization in place-
ment. Recently, in [6], a new technique for delay budgeting on
sequential circuits is proposed.

� Gate/wire sizing and power optimization- Under a given timing
constraint, budget management can be applied to find a set of
nodes/edges in the netlist graph such that their physical size or
power dissipation can be reduced by mapping to smaller, or power-
efficient cell instances with larger delays from a target library [3,
13, 21].

� Exploiting slack in high-level synthesis- There are several related
work in the area of high-level synthesis where timing slack of the
nodes in the data flow graphs are considered for better optimiza-
tion in area and power. Examples are the algorithms and tech-
niques developed for area minimization in pipelined datapath [24]
and power minimization under timing constraint [14, 27].

� Layout compaction- Space budgeting has been studied in layout
compaction in the field of VLSI CAD [28, 15, 12]. The concept of
budgeting was first proposed by C.K.Wong et al. [28], for spatial
budgeting in layout compaction.

Almost all of the techniques employed in these works are suboptimal
heuristics such as Zero Slack Algorithm [23] and MISA [2]. In our
previous work [11], we solved the problem of integral delay budgeting
through LP relaxation. Due to the LP numerical instability and slow
runtime, combinatorial methods are often preferred.

In this paper, we present an optimal combinatorial method for solving
the integral budgeting problem. Furthermore, we utilize our method to
solve the budgeting problem under many other objective functions, in-
cluding weighted, bounded, and fair budgeting. Moreover, we present
potentials for tackling the incremental budgeting problem. Our method
is similar to the approach that Boros et. al have taken for the problem of
balancing the data-flow graphs [9, 10]. However, time budgeting prob-
lem is fairly different from their problem at hand. Moreover, to the best
of our knowledge, this technique is quite novel in EDA community.

3. Problem Statement
Intuitively, the problem of timing budget management can be stated

in the following way: Given an application with distinct constituting
blocks, what is the maximum tolerable slow down of individual blocks

without violating the timing constraints of the application? The slowed-
down blocks can be further optimized to improve any of the generic
design quality metrics depending on the application domain.

Although constituting blocks are often modelled as nodes in a DAG,
the problem of delay budgeting for nodes is a special case of the more
general edge budgeting case. This fact will be discussed in Section 5 in
more details. Therefore, we focus on the edge budgeting problem. We
assume that delay values and delay budgets are assigned to each edge
of the DAG and nodes do not impose any delay on application paths.
Edge budgeting has direct application in many areas such as routing and
network optimization. Moreover, its special cases can solve node bud-
geting problem which applies to many other areas such as application
and architecture synthesis.

Given an application represented by a DAGG�V�E�, there is a non
negative delay valuedi j and a non negative delay budget variablebi j
associated to each edgeei j � E. There is a given valueT that specifies
the timing constraint of the application. Timing constraint implies that
all paths from any primary input to any primary output must take no
longer thanT . The delay of each path is calculated according to the
following definition.

Definition: The delay of a pathp from nodes to nodet is equal to
∑ei j�p �di j �bi j�. We may use the terms delay of the path, cost of
the path and the distance between nodess andt, interchangeably.

For simplicity, we add a virtual super input node (SI) to G that is only
connected to all of the primary inputs. Similarly, there is a virtual super
output node (SO) that takes only all of the primary outputs ofG as its
fanins (Figure 2). All of the edges connectingSI or SO to any other node
in G have zero delay. We still useV andE to represent the set of nodes
and edges after addingSI and SO to G. The problem at hand can be
formally formulated as maximizing∑ei j�E bi j such that all paths from
SI to SO take no longer thanT .

We assume that the problem input and output varibales are all non-
negative integers. This is particularly useful since for many application
domains only discrete integer values are meaningful. Examples include
high-level synthesis that deals with discrete clock cycles, or grid routing
that can only handle discrete values for addressing grid coordinates.
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Fig. 2: A sample DAG with edge delay annotations. Nodes SI and
SO and corresponding virtual edges are shown with dashed lines.

The problem can be stated as the following ILP formulation:

Max ∑
ei j�E

bi j (1)

∑�di j �bi j�� T �SI � SOpaths (2)

bi j�di j�T � Z� �ei j � E (3)

Directed acyclic graphs (DAGs) are usually utilized to model the ap-
plications at different levels of abstraction. Examples include task graphs
modeling a high-level computation at the task level, data flow graphs



representing applications at the architectural level and netlists modeling
a gate level combinational circuit. The problem and techniques pre-
sented in this paper are valid on any DAG. Therefore, they are quite
generic and applicable at different levels of abstraction.

3.1 Equivalent Formulations
The following lemma is a crucial observation that allows us to re-

formulate the problem.

Lemma 1. In an optimal budget assignment, the delay of all paths
from SI to SO is T .

It follows that for a given graphG, the cost of a path from nodei to
SO does not depend on the choice of the path and is only a function of
i. Let ri be a variable assigned to each nodei that represents its distance
to SO. Therefore:

ri� r j �di j � bi j �ei j � E (4)

Substituting this equation into the equations 1-3 leads to the following
set of equations.

Max ∑
ei j�E

bi j (5)

ri � r j �di j �bi j �ei j � E (6)
rSI � rSO � T (7)

ri�bi j � Z� �vi �V andei j � E (8)

Note that the number of constraints in equations 1-3 can grow expo-
nentially with respect to the number of nodes in the graph. However,
formulation 5 has polynomial number of constraints with respect to the
problem size. Moreover, we can assume that there is a virtual edgeeoi,
from SO to SI with �T delay (Figure 2). The constraintrSI � rSO � T
can be represented as one of the regular edge constraints and can be
safely removed as a separate constraint. The example shown in Figure 2
assumes that the timing constraint for the application is 6 time units.

Utilizing equation 4, we can eliminatebi j variables from the objective
function by substitutingbi j � ri� r j�di j. Note that the non negativity
constraint ofbi j transforms to�ei j � E : ri� r j � di j. It follows that:

∑
ei j�E

bi j � ∑
ei j�E

ri� r j�di j � ∑
vi�V

ri�out�vi�� in�vi��� ∑
ei j�E

di j

6/5

-1/0

-1/0
-1/2

-1/1

-1/0-1/1

-2/0

-2/0

0/30/1

-1/0

-2/1

-2/1
-1/0

-1/0

0/3
0/1

-1/0

-1/0

-1/0

6/-6

0/0 0/0

-1/1-1-1

-1

-2/2

-1/1

-1

-1

-1/1
-2

-2
-1

-1
-1

-1

-2/2

0/0
0/0

-3

-6

0

-6
-6

00

-2

-3

-5
-5

-4

-1

a) b)

Fig. 3: a)The dual Min-cost flow problem/solution for example in
Figure 2. Each edge is annotated with its cost and flow, respectively.
Supply at each node i is in�vi��out�vi�. b) The corresponding resid-
ual graph and edge costs. The number in each node shows the short-
est path to SO (δi).

wherein�vi� andout�vi� are the in-degree and out-degree of vertex
vi, respectively. Note that the term∑ei j�E di j is constant and can be
eliminated from the objective function. Definingρi � out�vi�� in�vi�,
equations 5-8 can be rephrased as:

Max ∑
i�V

ρiri (9)

r j� ri ��di j �ei j � E (10)
ri � Z� �vi �V (11)

the dual problem to the LP equations 9-11 is:

Min ∑
ei j�E

�di jyi j (12)

∑
eki�E

yki� ∑
ei j�E

yi j � ρi �vi �V (13)

yi j � Z� �ei j � E (14)

Interestingly, the equations 12-14 formulate a conventional min-cost
flow problem on the DAG, whereyi j variables are the amount of flow
along edgesei j with cost�di j, andρi is the amount of demand at node
i. Equivalently,�ρi can be interpreted as the amount of flow supply at
that node. Note that∑i�V ρi � 0 is satisfied as required in the min-cost
flow problem [22, 9].

It follows that the original problem can be solved optimally in polyno-
mial time. Section 4 presents an algorithm that can determine the value
of bi j for each edge after solving the dual min-cost flow problem.

4. Efficient Optimal Algorithm
As shown in Subsection 3.1, the dual of the original edge delay bud-

geting problem can be stated as a min-cost flow problem on a new graph
called G��V�E�. G� are G are the same in terms of nodes and edges.
However the cost of edgeei j is�di j in G�, and the amount of flow sup-
ply at nodevi is�ρi � in�vi��out�vi�. The flow supply has to be satis-
fied at each node by a feasible flow solution. Note that the cost ofeoi is
T . Hence, there is no negative cycle in the graph and the dual problem
can be solved by any of the well-known min-cost flow algorithms [22].
Figure 3 illustrates the dual min-cost flow problem and its solution for
the graph shown in Figure 2.

Onceyi j variables (the amount of flow along edgeei j) are figured out,
we can construct the residual graphGy�V�E �� from G��V�E�. For any
edgeei j in G� with non-zero flow along it, there are two edgesei j and
e ji in the residual graph. The cost of each backward edgeeji is di j,
which is equal to the complement of the forward edge cost.

Let δi be the shortest distance of nodei to SO in the residual graph
Gy. There is no negative cost cycles in the residual graphGy and hence,
δi variables are well defined.δi variables can be determined by utilizing
any well-known shortest path algorithm, such as Bellman-Ford algo-
rithm [25], that is applicable to graphs with negative edge costs. Figure
3 shows the residual graph (Gy) andδi variables for the example shown
in Figure 3.

Variablesri and bi j of the primal problem can be easily calculated
by substitutingri ��δi andbi j � ri� r j �di j. The following theorem
proves that this simple equation determines the primal variables cor-
rectly.

Theorem 2. ri ��δi is an optimal solution to the equations 9, where
δi is the shortest path of node i to SO in the residual graph Gy.

Proof: Corresponding to each flow variableyi j on edgeei j, there is
a constraint for that particular edge in the primal problem. According
to the complementary slackness condition [8], we only need to assign
values tori variables such that the corresponding constraints become
an equality for edges with non-zero flow. We now show thatri � �δi
satisfies this condition.

Suppose thatyi j � 0 for an arbitrary edgeei j in G�. Therefore, both
edgesei j and e ji exist in Gy. Note that the cost of edgesei j and e ji
are�di j and di j in Gy, respectively. According to the shortest path
definition both of the following equations hold:



Algorithm 1 Optimal assignment of budget values to edges of a DAG

Input: G�V�E��di j�T
Output:bi j
CreateG��V�E �� with appropriate edge costs and node supplies;
Solve min-cost flow onG� and determineyi j;
Create the residual graphGy;
for all vi �V do

Let δi = length of the shortest path fromvi to SO inGy;
Let ri ��δi;

end for
for all ei j � E do

Let bi j � ri� r j�di j ;
end for
Returnbi j;

δi � δj�di j

δj � δi �di j

Consequently,ri� r j � δj �δi � di j, which is exactly what comple-
mentary slackness condition implies.�

Edge delay budgets are now easily calculated bybi j � ri � r j � di j.
This process is depicted in Algorithm 1. Well-studied techniques includ-
ing min-cost flow and shortest path calculation are only used as a black
box.

For the graph shown in Figure 2, the amount of the budget assigned
to each edge of the graph is illustrates in Figure 4 utilizing Algorithm 1.
Note that the number on each node is its distance to SO, and does not
depend on the choice of path (Lemma 1). The amount of budget on edge
ei j is readily given bybi j � ri� r j �di j.
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Fig. 4: Optimal budget assignment for the example in Figure 2. The
numbers on each edge denote the delay and the assigned budget.
Nodes are annotated with their delay to SO (ri).

5. Extensions to Other Budgeting Policies
The timing budget assigned to each of the design components can be

exploited to improve different design quality metrics such as area, power
dissipation, predictability or cost. The objective function presented in
Section 3 (∑ei j�E bi j) assumes that a unit of delay budget assigned to
any component will lead to the same amount of savings in the particular
design quality metric of interest. This is not the case, however, in many
practical situations.

For example, the amount of utility improvement per unit budget for
a particular component might be twice as much of another component.
Moreover, a component might be able to utilize only a limited amount of
extra delay budget. Similarly, designers might need a minimum amount
of delay budget assigned to some component in order to optimize it for
some design metric.

In this section, we study the problem of delay budget assignment un-
der various cost functions. We will show that many natural budget dis-

tribution policies are simple extensions of what we presented in Section
3.

5.1 Weighted Budget Distribution
A unit delay budget can lead to different amounts of savings in the

utility metric depending on the component that the budget is assigned
to. In such cases, the budget assigned to different components of the
application contributes to the cost function with differentweights. Let
non-negativewi j variables denote the weight of edgeei j. The weighted
budget assignment problem can be formulated as:

Max ∑ei j�E wi jbi j (15)

ri � r j �di j �bi j �ei j � E (16)
rSI � rSO � T (17)

ri�bi j � Z� �vi �Vandei j � E (18)

And similar to what we did in the previous section:

∑
ei j�E

wi jbi j � ∑
ei j�E

wi j�ri� r j �di j�

� ∑
vi�V

ri� ∑
v j�out�vi�

wi j� ∑
k�in�vi�

wki�� ∑
ei j�E

wi jdi j

which turns into the equations 9 after definingρi � ∑v j�out�vi�wi j �

∑k�in�vi�wki. Therefore, the algorithm described in Section 4 can han-
dle the weighted version as well. The only required modification is the
demand function (ρi) at each node for the dual min-cost flow problem.

An interesting special case of the weighted edge budgeting problem
can solve thenode budgeting problem, where each node has a delay
value and we would like to assign budget values to nodes instead of
edges. It is straight forward to see that a weighted node budgeting in-
stance can be transformed into a weighted edge budgeting problem. The
only required transformation is splitting each node into two other sub-
nodes that are connected to each other by an edge with weight equal to
the original node edge. All other regular edges should have zero weight.
The technique is similar to the implementation of node capacities in a
network flow instance that can handle only edge capacities. Note that
some edges with zero weight might be assigned delay budgets in order
to validate Lemma 1.

5.2 Bounded Budget Distribution
The delay budget assigned to each component can be exploited to

some specific extent. Extra budget assigned to a component would po-
tentially be wasted, i.e., it will not lead to any utility improvement. In
such cases, it is desirable to have a/an lower/upper bound on the delay
of each edge. Budget lower bounds are easy to implement, since they
can be added to the edge delay at the first place.

Upper bounds, however, are not as easy as the lower bounds to han-
dle. In this subsection, we address the problem of maximum budget
assignment under upper bound constraints on edges. We show that this
problem boils down to solving the min-cost flow on a modified network
and is similar to what we presented in Section 3.

Assume that there is an upper boundui j for the delay of edgeei j.
Therefore, equations 9-11 change into:

Max ∑
i�V

ρiri (19)

r j� ri ��di j �ei j � E (20)
ri� r j � ui j �ei j � E (21)

ri � Z� �vi �V (22)

the dual problem to this problem is:



Min ∑
ei j�E

ui jzi j�di jyi j (23)

∑
eki�E

�yki� zki�� ∑
ei j�E

�yi j � zi j� � ρi �vi �V (24)

yi j�zi j � Z� �ei j � E (25)

Equations 25 formulate a min-cost flow problem on a network that
is built by the following rule: For every edgeei j with cost�di j, there
is a reverse edgeeji with cost ui j. yi j and zi j are the amount of flow
along edgesei j ande ji, respectively. Note that by definitiondi j � ui j.
Hence, there is no negative cycle introduced into the network. Again,
this problem can be solved using standard min-cost flow techniques. The
solution to the primal problem will be easily determined after knowing
yi j andzi j values.

5.3 Min-Max Budget Distribution
Fair distribution of the available budget to the application components

is another reasonable objective.Fair distribution can be quantified by
minimizing the maximum budget assigned to the graph edges, or mini-
mizing the budget skew (the difference between the maximum and the
minimum allotted budgets).

The problem of fair budgeting would have trivial ineffective solutions
that minimize the maximum assigned budget or budget skew, if fair-
ness was the only objective. For example, the zero budget assignment
minimizes the maximum assigned budget. Similarly, one might incre-
ment the budget on each edge as long as the timing constraints are not
violated, which leads to minimizing the budget skew. Therefore, fair
budget distribution has to be considered as a supplementary objective to
maximizing the total budget. For example, one might look for fair bud-
get assignments among the solutions that have at least %80 of the total
budget of an optimal solution.

In any case, the problem has to be initially solved using the algorithm
described in Section 3.1 to maximize the total budget. Assuming that
minimizing the maximum assigned budget (min-max) is the objective,
we can perform binary search on the budget upper bounds to choose the
best solution that has a reasonable total budget distribution. It follows
that the algorithm complexity is onlyO�log�T �� times more than that
of the Algorithm 1. Similarly, we can search on edge lower and upper
bounds at the same time to minimize the budget skew (the difference
between the maximum and minimum assigned budget). However, this
can increase the time complexity by a factor ofO�T2� in the worst case.

6. Potentials for Incremental Budgeting
In many practical situations, the delay of a component and hence, the

problem instance might change during the design flow iterations. Exam-
ples include, but are not limited to, library binding and physical design.
Such problem instances can have millions of nodes in their representing
graphs. Therefore, it is often impractical to re-execute the Algorithm 1
to find a new budget assignment for each local change. In such cases,
it is often required to transform the current solution to a new feasible
solution by performing local, rapid and incremental calculations.
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Fig. 5: a)A sample DAG and a sample cut are shown. b)The cor-
responding edge graph. The edges in the cut correspond to dark
nodes. c) The transitive graph of the edge graph. The cut corre-
sponds to the maximum independent set here.

In this section, we present some interesting properties of the problem
formulated in Section 3. These properties can be further exploited to
tackle other practical budgeting problems including incremental budget
assignment. Due to the page limitation, some proofs or details of the
proofs are eliminated.

Lemma 3. Flow variables of the dual LP problem will not change
with the increase of the timing constraint T .

Proof: There is no negative cycle inG�. Therefore, all paths that do
not includeeoi have costs not less than�T (Figure 3). The min-cost flow
algorithms work based on the augmenting path idea. In each iteration,
a path with minimum cost from a source to a sink is found and the flow
along that path is added to the solution. Therefore, increasingT has no
effect on the flows that run along paths that do not containeoi. Note that
all such paths have negative cost.

However, edgeeoi is the onlybackward edge of the graphG� and is
common among the rest of the flows. Hence, increasing its cost will
increase the cost for all such paths and will not change the choice of the
path for min-cost flow algorithms. It follows that the flow variables will
not change by increasingT . �

Moreover it is easy to update the shortest path variables (δi) in the new
residual graph. If the shortest path from a node toSO passes througheio
in the originalGy, the value of the path is decreased by the amount of the
increase inT . For other nodes,δi variables remain intact. It follow that if
the timing constraint (T ) is increased by∆T , the budget of a certain set of
edges will be increased by∆T . In other words we start from the original
budget assignment that has been carried out under timing constraintT .
∆T is then added to the budget of a particular set of edges.

Definitions: In graphG�V�E�, a subset of edges is called acut if and
only if every SI to SO path contains exactly one edge of the set
(Figure 5). GraphG��V ��E�� is called the intersection graph (or
edge graph) ofG�V�E�, if there is a nodev�i j �V � for everyei j �

E; and there is an edgee�i jk betweenv�i j andv�jk. Note that a cut in
G corresponds to anindependent set of the transitive graph ofG�

(Gt�). In the transitive graph, if there is an edge from nodevx to
vy and fromvy to vz, there is also an edge fromvx to vz. We use
Gt to represent the transitive graph ofG.

Definitions: Let Gain � OPT �G�T � denote the maximum amount of
delay budget that can be added to graphG under timing constraint
T . Let GraphGb be the new graph that is formed by adding the
delay budgets to the edges ofG.

Lemma 4. For a given instance of the edge budgeting problem with
critical path equal to T:

Gain�OPT�G�T �∆T ��OPT �G�T ��OPT �Gb�∆T ��OPT�G�T ��
∆T �MIS�Gt�

b � �� OPT�G�T ��∆T �MIS�Gt�� �
i.e. if the timing constraint T is increased by ∆T , the budget of the

edges that form a max-cut (a cut with the maximum cardinality) will be
increased by ∆T . Such edges correspond to the maximum independent
set in the transitive intersection graph of the problem instance and can
be found using existing methods [7] (Figure 5). Therefore, incremental
calculation of the budget assignment and edge delay budgets for various
values of T can be performed optimally.

The following lemma assists in performing budget re-assignment and
incremental budget management.

Lemma 5. Let Gb denote the graph after budget assignment. Let c1
and c2 represent two cuts in Gb, where all edges in c1 are assigned at
least δ units of budget. Decreasing the budget of all of the edges in c1
by δ, and increasing the budget of all of the edges in c2 by δ leads to
another maximal feasible solution (one that does not violate the timing
constraint and all paths take exactly T ).

7. Delay Budget Assignment During Library Map-
ping

Delay budget assignment is applied during different design tasks at
various stages of VLSI CAD flow. We apply delay budgeting during



library mapping on a given datapath. We experimented with some ap-
plications from MediaBench [5]. We generated the dataflow graphs for
these applications using SUIF compiler [19] and Machine-suif [17].

In Figure 6, the synthesis flow of mapping an application on an FPGA
device is illustrated. This is a core-based implementation in which the
computational operations are directly mapped to the existing optimized
cores in the libraries. We use Xilinx VirtexE FPGA device as the target
platform. Xilinx CoreGen tool is used to generate parameterizable cores
optimized for the target architecture. For a given functionality, a number
of cores can be generated to realize it with different characteristics such
as latency. Figure 7 demonstrates the trade-off between the latency and
the area in a 16-bit multiplier generated by CoreGen and mapped on
FPGA VirtexE.

C codeC code

SUIF compilerSUIF compiler

Dataflow graphs

Delay BudgetingDelay BudgetingCoreGen
Library

CoreGen
Library

Synplicity SynthesisSynplicity Synthesis

Xilinx
Place and Route

Xilinx
Place and Route

Delay BudgetingDelay Budgeting

Max
budgeting

Max
budgeting

Max-fair
Budgeting
Max-fair

Budgeting
Fair

Budgeting

Fig. 6: Delay budgeting in core-based FPGA CAD flow.

From mediaBench applications, we selected the large dataflow graphs
(DFGs) that could fit in the largest FPGA devices. The computations in
the selected DFGs are multiplication, addition, subtraction, division, and
shifting. We assume that all the data paths are 16-bit wide. Each com-
putation is assigned to a resource generated from CoreGen tool based on
delay budget allocated to the node.

The characteristics of the selected DFGs are outlined in Table 7. The
latency column is the DFG latency plus additional slow-down for further
delay budget injection. We apply different delay budgeting algorithms to
allocate the delay budgets to the nodes (Figure 6). After library mapping
and synthesis, the circuit is placed and routed on a FPGA device. We
used the Synplify Pro 7.3 from Synplicity for synthesis and ISE 6.1 place
and route tool provided by Xilinx.
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Fig. 7: Area vs. Latency for a 16-bit CoreGen Multiplier.

Figure 7 demonstrates almost linear trade-offs between the area and
latency of the multiplier core in the library. Hence, maximizing the total
budget can lead to further optimization in the area. In our previous work
[11], we theoretically and empirically showed that optimal maximum
budgeting outperforms ZSA [23] in reducing the design size. Maxi-

mum budgeting reduced the design size by more than 10% on average
compared to ZSA algorithm. In this work, we apply the min-max (fair)
budgeting using the algorithm described in Subsection 5.3.

The objective function for this method is to maximize the minimum
delay budget assigned to the nodes. In this technique, the total budgeting
is compromised with the upper bound on the delay budgets. In the first
set of experiments, we allow at most 10% degradation in the maximum
total budget. In the second set, we allow more fair distribution of delay
budget among the nodes by allowing at most 25% of degradation in total
delay budget.

The results are outlined in Table 2. We compare different budgeting
algorithms from two different perspectives: the objective value and the
number of nodes with non-zero delay budgets (fair budgeting). Also,
the impact of different techniques on total area is demonstrated. There
are four different implementations for each DFG. In the first set called
no budgeting no delay budget assignment is applied and in the rest, dif-
ferent algorithms are applied for delay budget assignment.

DFGs Application description # of nodes Latency
dfg0 DSP AR-lattice-filter 18 20
dfg1 mesa matrix rotation 28 17
dfg2 mesa invert matrix 101 20
dfg3 jpeg idct 58 23

Table 1: Characteristics of DFG benchmarks.

The topology and connectivity in the applications affect the distribu-
tion of delay budgets in the graph. If most of the paths in the graph are
critical, there is not much timing slack to be exploited. We assume that
the timing constraint at the output of each application is its minimum
possible latency plus some excess delay budget (∆T � 4). Therefore,
more timing slack is injected to the graph before applying different de-
lay budgeting algorithms.

The results on the area of the implemented designs (both LUT and
slice count) show that the combination of fair and maximum budgeting
can greatly reduce the design size. For most of the benchmarks, in the
case of fair budgeting within 10% degradation in total budget the best
results are obtained. Hence, the total injected budget, as well as the
distribution of delay budgets both have a significant impact on the design
quality. In DFG0 andDFG1 the total budget does not change but fair
distribution outperforms the other max budgeting with no fairness. For
DFG2, the fair budgeting with more degradation in total budget leads
to better results. One reason is that the delay constraints for a larger
number of nodes are relaxed (better distribution).

The last two columns compare the quality of different delay bud-
geting techniques. The columnVariation in quality metric illustrates
the percentage of variation in the quality metric (area) among different
budgeting policies. The last column compares the best value of qual-
ity metric vs. the value where no budgeting technique is applied. The
values in the last two columns are computed as the percentage of the
difference between the best and the worst value in the set over the best:
worst�best

best �100. On average, the area of designs after delay budgeting
varies 18.08% in terms of LUT count (and 9.72% in terms of slice count)
from the best depending on the algorithms used for budgeting. Applying
delay budgeting improves the area by 53.66% (in terms of LUT count)
and 35.83% (in terms of slice count) on average, compared to no bud-
geting.

8. Conclusion
We presented a theoretical framework that unifies a large class of

existing time-management paradigms. Our model can optimally han-
dle many time budgeting policies including maximizing total budget,
weighted, bounded and fair budgeting. In addition, our technique is ap-
plicable to time management for edges, nodes and hybrid combination
of these two elements.

We have performed experimental results on mapping some applica-
tions onto Xilinx FPGAs. We have generated the applications’ datap-
ath components using CoreGen IP cores. We have compared different
time budgeting policies in terms of the design area under equal timing
constraints. Experimental results exhibit significant savings in design
quality (area in our experiments) and advocate our theoretical results.



Benchmark Design Metric Delay Budgeting Algorithms Variation among Delay Budgeting
No-budget Max Max-fair (10%) Max-fair (25%) Budgeting policies(%) vs. no Budgeting (%)

LUT count 1790 1342 1158 1478 27.63 35.30
DFG0 Slice count 1232 1008 920 1104 8.73 33.91

Total budget - 66 64 53 20.7 -
Relaxed nodes - 8 8 8 0 -
LUT count 3856 2365 2168 2608 20.20 43.77

DFG1 Slice count 2672 1930 1837 2090 13.77 31.72
Total budget - 66 64 53 24.52 -
Relaxed nodes - 13 18 18 38.46 -
LUT count 8658 5149 5102 4837 6.40 78.99

DFG2 Slice count 6249 4525 4496 4355 3.90 43.49
Total budget - 138 122 109 26.60 -
Relaxed nodes - 28 38 40 42.85 -
LUT count 3168 2022 2075 2388 18.10 56.60

DFG3 Slice count 2224 1657 1686 1864 12.49 34.21
Total budget - 42 39 32 31.25 -
Relaxed nodes - 11 12 12 9.09 -
LUT count 4368.00 2719.5 2625.75 2827.75 18.08 53.66

Average Slice count 3094.25 2280.00 2234.75 2353.25 9.72 35.83
Total budget - 78 72.25 61.75 25.76 -
Relaxed nodes - 15 19 19.5 22.6 -

Table 2: The quality of different delay budget assignment techniques.
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