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Abstract

This paper presents a theoretical framework that optimally solves many open
problems in time budgeting. Our approach unifies a large class of existing time-
management paradigms. Examples include time budgeting for maximizing to-
tal weighted delay relaxation, minimizing the maximum relaxation and min-skew
time budget distribution. We show that many of the time management problems
can be transformed into a min-cost flow instance that can be optimally and ef-
ficiently solved through well-known combinatorial techniques. Experiments in-
clude mapping of several designs, which are implemented using parameterized
CoreGen IP cores, on Xilinx FPGA devices. Different time budgeting policies
have been applied during the mapping stage. Our time management techniques
always improved the area requirement of the implemented testbenches compared
to awidely-used path-based method. We also compared the maximum budgeting
and fairness in delay budget assignments. Our experimental results show that an
average improvement of 19%in area can be achieved when fairness and maxi-
mum budgeting policies are combined, compared to pure maximum budgeting.

1. Introduction
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Next section presents some applications and related works. Section 3
formally formulates the problem. Section 4 presents a combinatorial op-
timal algorithm for solving the formulated problem. The problem is then
extended to other budgeting policies in Section 5. We also show that all
of the extensions are amenable to our approach. In Section 6, we discuss
some interesting incremental properties of the problem, which are use-
ful for incremental budget assignment. Some experiments supporting
our theoretical results are reported in Section 7. Section 8 concludes the

paper.

1.1 Motivating Example

Figure 1 illustrates an example of different delay budget assignment
policies in action. All of the nodes in the example have unit intrinsic de-
lay. Therefore, the critical path of the graph has length 4. Delay budgets
are assigned to the nodes and we assume that the timing constraint for
the application is 8 time units. Hence, delay budget assignment should
not create any path that takes longer than 8 units of time. For each cost

With tremendous growth in the complexity of today’s systems, tradiinction (policy), an optimal solution is depicted in the table. The delay
tional design techniques are no longer capable of handling the dediyfget assigned to each node is shown in each cell of the table. Note
issues. One approach to tackle this problem is to design the system i@ the delay budget should be added to the unit intrinsic delay of the
modular and hierarchical fashion, which requires the system level céde to calculate its actual latency.

straints to be translated into component level constraints. This ta
generally referred to asudget management.

The problem of budget management has been studied for sever
sign constraints including timing and area. Particularly, time bud
ing is performed in order to slow down as many components as p
ble without violating the system’s timing constraints. The slowed-d¢
components can be further optimized to improve system'’s area, [
dissipation, or other design quality metrics.

However, almost all of the previous research efforts employ sub-o
heuristics for addressing the reasonable formulations of the budc
problem. In our previous work [11], we solved the problem of inte(
budget assignment optimally through LP relaxation. However, col
natorial methods are often preferred to LP-based approaches due t
numerical instability and slow runtimes.

In this paper, we present a unified theoretical framework that can ¢
different well-known formulations of the budgeting problem through
ficient combinatorial techniques. We model the given application
directed acyclic graph (DAG) and assign timing budget values tc
edges of the DAG. Many other common budgeting models such as
budgeting or hybrid edge/node budgeting are special cases of our g
model. We show that our method optimally solves the problems of r
imum, weighted, bounded, and fair budgeting. It also provides s
guidelines for incremental budget re-assignment, which is usefu
many practical applications.

Timing budget management is applied to different design tasks
as gate and wire sizing, and library mapping. To experiment our
oretical results, we apply our technique during the library mappin
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Fig. 1. Different timing budget management policies lead to differ-
ent budget assignments. The example shows the optimal solution
for maximum, bounded and min-max (with different total budgets)
delay budget assignment. Our technique can accommodate all these
policies optimally.

An intuitive budget assignment policy tries to maximize the total de-
lay budget assigned to the graph, assuming that larger total budget cor-
relates to larger improvements in the utility function. First column of the
table shown in Figure 1 (maximum budgeting) represents the result of
applying this cost function. A useful extension of this policy considers
different weights for the nodes and tries to maximize the total weighted
budget assignment.

Second column of the table (bounded maximum budgeting) illustrates
the node budgets when the cost function tries to maximize the total bud-

datapath level. We integrate the time budgeting and module selecwmt while maintaining some lower/upper bounds on the amount of delay
into the synthesis flow for mapping applications onto FPGA devicdsudget assigned to nodes. In this example, reodas a lower bound of
Efficient time budgeting allows us to choose the proper modules frdmand node$® andc have an upper bound of 3 on their delay budgets.
the library to obtain further quality improvements. Our results highligttower/upper bounds are useful for many application domains, due to
that along with the total weighted summation of delay budget, its distrien-linear relation of the utility function for each node to its delays.
bution throughout the design can significantly impact the design qualityAnother popular policy is to distribute the budget values fairly (min-



imizing the maximum budget value), while still trying to maximize thavithout violating the timing constraints of the application? The slowed-
total budget. The last two columns of the table (min-max) represent #h@vn blocks can be further optimized to improve any of the generic
result of applying this policy to the sample graph, where 25% and 4G%sign quality metrics depending on the application domain.
deviation from maximum budget is allowed for each case. Note thatAlthough constituting blocks are often modelled as nodes in a DAG,
minimizing the maximum budget value has trivial solutions if there ihe problem of delay budgeting for nodes is a special case of the more
no constraint on the total budget. general edge budgeting case. This fact will be discussed in Section 5 in
The technique that we present in this paper unifies all of the aforaere details. Therefore, we focus on the edge budgeting problem. We
mentioned budget assignment policies (plus a few others including massume that delay values and delay budgets are assigned to each edge
skew budget assignment) into one generic theoretical framework. ‘dlethe DAG and nodes do not impose any delay on application paths.
continue to present efficient combinatorial algorithms for solving all &dge budgeting has direct application in many areas such as routing and

the motivated problems. network optimization. Moreover, its special cases can solve node bud-
geting problem which applies to many other areas such as application
2. Rdated Works and architecture synthesis.

The concept of slack in a more general context has been address gg’en an application represented by a D&V, E), there is a non

; . - tive delay valuéij and a non negative delay budget variahle
the synthesis community, where negative slack for a node translate : ] ; ; Py
the timing constraint violation. The budgeting problem on a graph (b ociated to each edgg € E. There is a given valu that specifies

. . T he timing constraint of the application. Timing constraint implies that
temporal and spatial budgeting) has been studied in theory and prac Ppathsgfrom any primary ir?p?ut to any primgry output musrt) take no
and is widely used for many different applications. longer thanT. The delay of each path is calculated according to the

« Design timing closure- During design optimization flow, timing©!loWing definition.

budget is allocated to each node under a given timing constraint. ... . .
and optimization is applied. If timing constraint is not met, th& e Mton: The delay of a patfp from nodes to nodet is equal to

delay budget is re-allocated [4, 20]. Distribution of delay bud- Yeep (Gij +bij). We may use the terms delay of the path, cost of
get is applied to determine the wirelength under the given timing  the path and the distance between nagiasdt, interchangeably.

constraints. L . . .
For simplicity, we add a virtual super input nod# )to G that is only

« Timing-driven placement and floor planning- Delay budgeting dutennected to all of the primary inputs. Similarly, there is a virtual super
ing placement and floor planning has been extensively studied@ytput node $0) that takes only all of the primary outputs Gfas its
several researchers [1, 3, 16]. In [16, 18], placement and ri@nins (Figure 2). All of the edges connectifigor SO to any other node
re-budgeting are combined. In [26], a novel technique for ngtt G have zero delay. We still ud¢ andE to represent the set of nodes
weighting algorithm is proposed for timing optimization in placeand edges after adding andSO to G. The problem at hand can be
ment. Recently, in [6], a new technique for delay budgeting darmally formulated as maximizinge, < bij such that all paths from
sequential circuits is proposed. S to SO take no longer thaif.

L N . .. We assume that the problem input and output varibales are all non-

* Gate/wire sizing and power optimization- Under a given timingegative integers. This is particularly useful since for many application
constraint, budget management can be applied to find a selygnains only discrete integer values are meaningful. Examples include
nodes/edges in the netlist graph such that their physical S'Z%%?h-level synthesis that deals with discrete clock cycles, or grid routing

power dissipation can be reduced by mapping to smaller, or POWgfat can only handle discrete values for addressing grid coordinates.
efficient cell instances with larger delays from a target library [3,

13, 21].

e Exploiting slack in high-level synthesis- There are several related
work in the area of high-level synthesis where timing slack of the
nodes in the data flow graphs are considered for better optimiza-
tion in area and power. Examples are the algorithms and tech-
niques developed for area minimization in pipelined datapath [24]
and power minimization under timing constraint [14, 27].

e Layout compaction- Space budgeting has been studied in layout
compaction in the field of VLSI CAD [28, 15, 12]. The concept of
budgeting was first proposed by C.K.Wong et al. [28], for spatial
budgeting in layout compaction.

Almost all of the techniques employed in these works are suboptimal
heuristics such as Zero Slack Algorithm [23] and MISA [2]. In our
previous work [11], we solved the problem of integral delay budgeting
through LP relaxation. Due to the LP numerical instability and slow
runtime, combinatorial methods are often preferred. .

In this paper, we present an optimal combinatorial method for solvin )
the integral budgeting problem. Furthermore, we utilize our method '1_%9 2: A sample DAG with edge delay annotations. Nodes Sl and
solve the budgeting problem under many other objective functions, #2 and corresponding virtual edges are shown with dashed lines.
cluding weighted, bounded, and fair budgeting. Moreover, we presentrpe problem can be stated as the following ILP formulation:
potentials for tackling the incremental budgeting problem. Our method
is similar to the approach that Boros et. al have taken for the problem of

balancing the data-flow graphs [9, 10]. However, time budgeting prob- Max 5 b (1)
lem is fairly different from their problem at hand. Moreover, to the best 8j€E

of our knowledge, this technique is quite novel in EDA community. Z (ij+bij) <T VS — SOpaths @)
3. Problem Statement bij,dij,T€Zy Ve €k ®)

Intuitively, the problem of timing budget management can be statedDirected acyclic graphs (DAGSs) are usually utilized to model the ap-
in the following way: Given an application with distinct constitutingplications at different levels of abstraction. Examples include task graphs
blocks, what is the maximum tolerable slow down of individual blocksiodeling a high-level computation at the task level, data flow graphs



representing applications at the architectural level and netlists modelingvherein(v;) andout(v;) are the in-degree and out-degree of vertex
a gate level combinational circuit. The problem and techniques pkg- respectively. Note that the terfe ce dij is constant and can be

sented in this paper are valid on any DAG. Therefore, they are quéfiminated from the objective function. Definimg = out(v) —in(v),

generic and applicable at different levels of abstraction. equations 5-8 can be rephrased as:
3.1 Equivalent Formulations
The following lemma is a crucial observation that allows us to re- Max > piri ©)
formulate the problem. i€
_ _ ri—ri<-—dj VvVejeE (10)
Lemma 1. In an optimal budget assignment, the delay of all paths ez, Wiev (11)

fromS to OisT.
the dual problem to the LP equations 9-11 is:
It follows that for a given grapl®, the cost of a path from nodeto
SO does not depend on the choice of the path and is only a function of Min —divi: (12)
i. Letrj be a variable assigned to each notleat represents its distance Z 1]

to SO. Therefore: &icE

> Y- Y Yij=p VeV (13)
eicE ejcE
ri—rj—dij=hjj Vej€E ()] !
o ) o ] ) Vij€Zy VejcE (24)
Substituting this equation into the equations 1-3 leads to the following . . . .
; Interestingly, the equations 12-14 formulate a conventional min-cost
set of equations. )
flow problem on the DAG, whergj variables are the amount of flow
along edgesi j with cost—djj, andp; is the amount of demand at node
Max z bij (5) i. Equivalently,—p; can be interpreted as the amount of flow supply at
& that node. Note thelfjcy pi = 0 is satisfied as required in the min-cost
Crad b : flow problem [22, 9].
Fi=rj+dij+bij vaj €k (6) It follows that the original problem can be solved optimally in polyno-
rgs —rso <T (7)  mial time. Section 4 presents an algorithm that can determine the value
ri,bij€Z, VvvicVandgjcE (8) of bjj for each edge after solving the dual min-cost flow problem.

Note that the number of constraints in equations 1-3 can grow expgp- . ; :
nentially with respect to the number of nodes in the graph. Howev%g Efficient Optlmal Algorlthm

formulation 5 has polynomial number of constraints with respect to theAS shown in Subsection 3.1, the dual of the original edge delay bud-
problem size. Moreover, we can assume that there is a virtualedge 9€ting problem can be stated as a min-cost flow problem on a new graph
from SO to S with —T delay (Figure 2). The constraing —rsp < T calledG'(V,E). G' areG are the s_amcle in terms of nodes and edges.
can be represented as one of the regular edge constraints and cafayeever the cost of edge; is —d;j in G', and the amount of flow sup-
safely removed as a separate constraint. The example shown in Figupy &t nodev; is —p; = in(vi) —out(v;). The flow supply has to be satis-
assumes that the timing constraint for the application is 6 time units. fied at each node by a feasible flow solution. Note that the cos} &f

Utilizing equation 4, we can eliminat; variables from the objective T. Hence, there is no negative cycle in the graph and the dual problem
function by substitutings = r; — rj — dij. Note that the non negativity can be solved by any of the well-known min-cost flow algorithms [22].
constraint ot transforms to7ej € E : 1j —rj > dij. It follows that: Figure 3 |IIustrate_s th_e dual min-cost flow problem and its solution for

the graph shown in Figure 2.
) Oncey;j variables (the amount of flow along edgg) are figured out,
Y bij= 3 ri—rj—dj= Z/ri[out(vi) —in(vi)] = 3 dij we can construct the residual gra@(V,E’) from G'(V,E). For any
aicE aicE Vi€ &icE edgee in G’ with non-zero flow along it, there are two edggsand
gji in the residual graph. The cost of each backward eglgés dij,
which is equal to the complement of the forward edge cost.

Let §; be the shortest distance of nod® SO in the residual graph
Gy. There is no negative cost cycles in the residual gi@pand hence,

o; variables are well defined variables can be determined by utilizing
any well-known shortest path algorithm, such as Bellman-Ford algo-
rithm [25], that is applicable to graphs with negative edge costs. Figure
3 shows the residual graply) andg; variables for the example shown

in Figure 3.

Variablesr; andbj; of the primal problem can be easily calculated
by substituting; = —&; andbjj; = rj —rj —d;j. The following theorem
proves that this simple equation determines the primal variables cor-
rectly.

a)

Theorem 2. rj = —§; isan optimal solution to the equations 9, where
o isthe shortest path of node i to SO in the residual graph G;.

Proof: Corresponding to each flow variabjg on edges, there is
a constraint for that particular edge in the primal problem. According
to the complementary slackness condition [8], we only need to assign
values tor; variables such that the corresponding constraints become
) ) . . an equality for edges with non-zero flow. We now show that —;
Fig. 3: aThe dual Min-cost flow problem/solution for example in  satisfies this condition.
Figure 2. Each edgeisannotated with its cost and flow, respectively. Suppose thayij > 0 for an arbitrary edge in G'. Therefore, both
Supply at each nodei isin(vi) —out(v;). b) Thecorrespondingresid-  edgesaj andej; exist in Gy. Note that the cost of edgess; and ej;
ual graph and edge costs. Thenumber in each nodeshowstheshort-  are —d;j and djj in Gy, respectively. According to the shortest path
est path to SO (). definition both of the following equations hold:




Algorithm 1 Optimal assignment of budget values to edges of a DAGtribution policies are simple extensions of what we presented in Section

Input: G(V,E),dij, T 3.
Output: by
CreateG'(V, E") with appropriate edge costs and node supplies; 51 Weighted Budget Distribution
Solve min-cost flow o' and determingjj; A unit delay budget can lead to different amounts of savings in the
Create the residual grajiy; utility metric depending on the component that the budget is assigned
for all vi €V do _ to. In such cases, the budget assigned to different components of the
Let d; = length of the shortest path fromto SO inGy; application contributes to the cost function with differeveights. Let
Letr; = —9;; non-negativeni; variables denote the weight of edgg. The weighted
end for budget assignment problem can be formulated as:
for all §j € E do
Letbjj =ri —rj —dij;
end for
Returnbyj; Max 3o ceWijbij (15)
ri =rj+dij+bjj vVeje€E (16)
rg —ro<T 17)
0 < &) —dij ri,bij €Zy Vv €Vandej € E (18)
8j < & +Gij And similar to what we did in the previous section:

Consequentlyj —rj = 6j — & = d;j, which is exactly what comple-
mentary slackness condition implidil.

> Wijbij= % wij(ri—rj—dij)

Edge delay budgets are now easily calculatedipy= ri —r;j — dij. &k ajck
This process is depicted in Algorithm 1. Well-studied techniques includ-
ing min-cost flow and shortest path calculation are only used as a black _ Z/ri( wij — z Wig) — Z Wijchj
box. Vie vjeout(v;) kein(vi) 6j€E

For the graph shown in Figure 2, the amount of the budget assigned
to each edge of the graph is illustrates in Figure 4 utilizing Algorithm 1. which turns into the equations 9 after definipg= v, cout(v) Wij —
Note that the number on each node is its distance to SO, and doesyjot . w,;. Therefore, the algorithm described in Section 4 can han-

: in(vi)
depend on the choice of path (Lemma 1). The amount of budget on ef€q \yeighted version as well. The only required modification is the

&j is readily given bybij = ri —rj —dij. demand functiong) at each node for the dual min-cost flow problem.

An interesting special case of the weighted edge budgeting problem
can solve thenode budgeting problem, where each node has a delay
value and we would like to assign budget values to nodes instead of
edges. It is straight forward to see that a weighted node budgeting in-
stance can be transformed into a weighted edge budgeting problem. The
only required transformation is splitting each node into two other sub-
nodes that are connected to each other by an edge with weight equal to
the original node edge. All other regular edges should have zero weight.
The technique is similar to the implementation of node capacities in a
network flow instance that can handle only edge capacities. Note that
some edges with zero weight might be assigned delay budgets in order
to validate Lemma 1.

5.2 Bounded Budget Distribution

The delay budget assigned to each component can be exploited to
some specific extent. Extra budget assigned to a component would po-
L . . - tentially be wasted, i.e., it will not lead to any utility improvement. In
Fig. 4 Optimal budget assignment for theexamplein Figure2. The g ,ch cases, it is desirable to have a/an lower/upper bound on the delay
numbers on each edge denote the delay and the assigned budget. ot each edge. Budget lower bounds are easy to implement, since they

Nodes are annotated with their delay to SO (ri). can be added to the edge delay at the first place.
Upper bounds, however, are not as easy as the lower bounds to han-
5. Extensionsto Other Budgeting Policies dle. In this subsection, we address the problem of maximum budget

gignment under upper bound constraints on edges. We show that this

The timing budget assigned to each of the design components cal - h ey o
exploited to improve different design quality metrics such as area, po ?ilg rgrgﬁgfgovv\m;tov\fg g’;gg etﬂfemg ggittig?]"‘éon amodified network

dissipation, predictability or cost. The objective function presented Th . )
Section 3 queE bij) assumes that a unit of delay budget assigned ﬁ]’;\fg%rpee etzg%taiihoer:se é‘f’ﬁncﬁgﬁg; ?n‘;g?“’ for the delay of edg;.
any component will lead to the same amount of savings in the particular ' '

design quality metric of interest. This is not the case, however, in many

practical situations.

For example, the amount of utility improvement per unit budget for Max_ Pifi (19)
a particular component might be twice as much of another component. le
Moreover, a component might be able to utilize only a limited amount of ri—r<-dj VejecE (20)
extra delay budget. Similarly, designers might need a minimum amount H—rj<uj Vvaj€E (21)

of delay budget assigned to some component in order to optimize it for
some design metric.

In this section, we study the problem of delay budget assignment un-
der various cost functions. We will show that many natural budget dis-the dual problem to this problem is:

ez, wev (22)



In this section, we present some interesting properties of the problem
formulated in Section 3. These properties can be further exploited to

Min 5 uijzj —dijyij (23)  tackle other practical budgeting problems including incremental budget
&jcE assignment. Due to the page limitation, some proofs or details of the
z (Y — Zd) — Z (Vij—zj)=p WiEV (24) proofs are eliminated.
ei€E QjGE

Lemma 3. Flow variables of the dual LP problem will not change
Vij.4j €Z+ Veajck (25)  with the increase of the timing constraint T.

Equations 25 formulate a min-cost flow problem on a network thatProof: There is no negative cycle i@. Therefore, all paths that do
is built by the following rule: For every edgaj with cost—dij, there notincludee, have costs not less thasT (Figure 3). The min-cost flow
is a reverse edgej; with costu;j. yij andzj are the amount of flow algorithms work based on the augmenting path idea. In each iteration,
along edges | andejj, respectively. Note that by definitiaij < uij.  a path with minimum cost from a source to a sink is found and the flow
Hence, there is no negative cycle introduced into the network. Agailong that path is added to the solution. Therefore, increainas no
this problem can be solved using standard min-cost flow techniques. Efféct on the flows that run along paths that do not corggirNote that
solution to the primal problem will be easily determined after knowingl| such paths have negative cost.

Yij andzj values. However, edge,; is the onlybackward edge of the grapks’ and is
) S common among the rest of the flows. Hence, increasing its cost will
5.3 Min-Max Budget Distribution increase the cost for all such paths and will not change the choice of the

Fair distribution of the available budget to the application componemath for min-cost flow algorithms. It follows that the flow variables will
is another reasonable objectivEair distribution can be quantified by not change by increasing. B
minimizing the maximum budget assigned to the graph edges, or miniMoreover itis easy to update the shortest path varialfes(the new
mizing the budget skew (the difference between the maximum and theidual graph. If the shortest path from a nod&@mpasses througfo
minimum allotted budgets). in the originalGy, the value of the path is decreased by the amount of the

The problem of fair budgeting would have trivial ineffective solutionicrease iff. For other nodesy variables remain intact. It follow that if
that minimize the maximum assigned budget or budget skew, if faihe timing constraintX) is increased byt, the budget of a certain set of
ness was the only objective. For example, the zero budget assignnegitfes will be increased lyr. In other words we start from the original
minimizes the maximum assigned budget. Similarly, one might increadget assignment that has been carried out under timing confraint
ment the budget on each edge as long as the timing constraints areAjas then added to the budget of a particular set of edges.
violated, which leads to minimizing the budget skew. Therefore, fair
budget distribution has to be considered as a supplementary objectiv@ebnitions: In graphG(V,E), a subset of edges is callectat if and
maximizing the total budget. For example, one might look for fair bud-  only if every S to SO path contains exactly one edge of the set
get assignments among the solutions that have at least %80 of the total (Figure 5). GraptG*(V*,E*) is called the intersection graph (or
budget of an optimal solution. edge graph) o6(V,E), if there is a nodef; € V* for everygj €

In any case, the problem has to be initially solved using the algorithm  E: and there is an edg%k betweerv{j andvjfk. Note that a cut in
described in Section 3.1 to maximize the total budget. Assuming that & ¢, responds to amdependent set of the transitive graph o&*
minimizing the maximum assigned budget (min-max) is the objective, (G™). In the transitive graph, if there is an edge from negéo
we can perform binary search on the budget upper bounds to choose the vy and fromyy to v, there is also an edge from to v;. We use
best solution that has a reasonable total budget distribution. It follows Gt h " h@f
that the algorithm complexity is onl@(log(T)) times more than that to represent the transitive grap
of the Algorithm 1. Similarly, we can search on edge lower and up|or§rSﬁni
bounds at the same time to minimize the budget skew (the differenc delay budget that can be added to gr&binder timing constraint
between the maximum and minimum aSS|gned2bgdget). However, this T. Let GraphGy, be the new graph that is formed by adding the
can increase the time complexity by a factoQffT<) in the worst case. delay budgets to the edges®f

tions: Let Gain = OPT(G,T) denote the maximum amount of

6. Potentialsfor Incremental Budgetl ng cri{_ic;ezrilng];tlhﬂre.qt'jglrt?)gl'lyen instance of the edge budgeting problem with
In many practical situations, the delay of a component and hence, thesgjn — OPT(G,T +AT) =OPT(G,T)+OPT(Gp,At) =OPT(G,T) +
problem instance might change during the design flow iterations. Examy- | MIS(GL*) |= OPT(G,T) + At | MIS(G™) |
ples include, but are not limited to, library binding and physical design.j e if thebtim'ng constraint T is increased by Ar, the budget of the
Such problem instances can have millions of nodes in their represen@iiges that form a max-cut (a cut with the maximum cardinality) will be
graphs. Therefore, it is often impractical to re-execute the Algorithmjdcreased by Ar. Such edges correspond to the maximum independent
to find a new budget assignment for each local change. In such caggsn the transitive intersection graph of the problem instance and can
it is often required to transform the current solution to a new feasibj@ found using existing methods [7] (Figure 5). Therefore, incremental
solution by performing local, rapid and incremental calculations. calculation of the budget assignment and edge delay budgets for various
values of T can be performed optimally.

The following lemma assists in performing budget re-assignment and
incremental budget management.

Lemma 5. Let Gy denote the graph after budget assignment. Let ¢,
and ¢, represent two cuts in Gy, where all edges in ¢; are assigned at
least & units of budget. Decreasing the budget of all of the edges in ¢,
by &, and increasing the budget of all of the edges in ¢ by d leads to
another maximal feasible solution (one that does not violate the timing
constraint and all paths take exactly T).

7. Delay Budget Assignment DuringLibrary Map-
Fig. 5: a)A sample DAG and a sample cut are shown. b)The cor- ping
responding edge graph. The edges in the cut correspond to dark
nodes. c) The transitive graph of the edge graph. The cut corre-
spondsto the maximum independent set here.

Delay budget assignment is applied during different design tasks at
various stages of VLSI CAD flow. We apply delay budgeting during



library mapping on a given datapath. We experimented with some apusm budgeting reduced the design size by more than 10% on average
plications from MediaBench [5]. We generated the dataflow graphs faympared to ZSA algorithm. In this work, we apply the min-max (fair)
these applications using SUIF compiler [19] and Machine-suif [17]. budgeting using the algorithm described in Subsection 5.3.

In Figure 6, the synthesis flow of mapping an application on an FPGAThe objective function for this method is to maximize the minimum
device is illustrated. This is a core-based implementation in which tHelay budget assigned to the nodes. In this technique, the total budgeting
computational operations are directly mapped to the existing optimiziedcompromised with the upper bound on the delay budgets. In the first
cores in the libraries. We use Xilinx VirtexE FPGA device as the targset of experiments, we allow at most 10% degradation in the maximum
platform. Xilinx CoreGen tool is used to generate parameterizable cotetal budget. In the second set, we allow more fair distribution of delay
optimized for the target architecture. For a given functionality, a numbieadget among the nodes by allowing at most 25% of degradation in total
of cores can be generated to realize it with different characteristics sagtay budget.
as latency. Figure 7 demonstrates the trade-off between the latency anthe results are outlined in Table 2. We compare different budgeting
the area in a 16-bit multiplier generated by CoreGen and mappedabgorithms from two different perspectives: the objective value and the
FPGA VirtexE. number of nodes with non-zero delay budgets (fair budgeting). Also,
the impact of different techniques on total area is demonstrated. There
are four different implementations for each DFG. In the first set called
no_budgeting no delay budget assignment is applied and in the rest, dif-
ferent algorithms are applied for delay budget assignment.

SUIF compiler DFGs | Application description # of nodes| Latency
Datafiow graphs dfg0 DSP AR-lattice-filter 18 20
dfgl mesa matrix rotation 28 17
| Delay Budgeting Delay Budgeting g;gg T;)‘eaza Inve:ég:atrlx 15081 %g
l l Table 1: Characteristics of DFG benchmarks.
—>| Synplicity Synthesis Max Max-fair Fair The topology and connectivity in the applications affect the distribu-
budgeting Budgeting || Budgeting tion of delay budgets in the graph. If most of the paths in the graph are
critical, there is not much timing slack to be exploited. We assume that
the timing constraint at the output of each application is its minimum
Xilinx possible latency plus some excess delay budfyét=£ 4). Therefore,
~ " Place and Route more timing slack is injected to the graph before applying different de-
lay budgeting algorithms.
Fig. 6: Delay budgeting in core-based FPGA CAD flow. The results on the area of the implemented designs (both LUT and

slice count) show that the combination of fair and maximum budgeting

From mediaBench applications, we selected the large dataflow graphe greatly reduce the design size. For most of the benchmarks, in the
(DFGs) that could fit in the largest FPGA devices. The computationsdase of fair budgeting within 10% degradation in total budget the best
the selected DFGs are multiplication, addition, subtraction, division, aresults are obtained. Hence, the total injected budget, as well as the
shifting. We assume that all the data paths are 16-bit wide. Each catfistribution of delay budgets both have a significant impact on the design
putation is assigned to a resource generated from CoreGen tool baseguadity. In DFGO and DFG1 the total budget does not change but fair
delay budget allocated to the node. distribution outperforms the other max budgeting with no fairness. For

The characteristics of the selected DFGs are outlined in Table 7. TDEG2, the fair budgeting with more degradation in total budget leads
latency column is the DFG latency plus additional slow-down for furthéo better results. One reason is that the delay constraints for a larger
delay budget injection. We apply different delay budgeting algorithmstaimber of nodes are relaxed (better distribution).
allocate the delay budgets to the nodes (Figure 6). After library mappingrhe last two columns compare the quality of different delay bud-
and synthesis, the circuit is placed and routed on a FPGA device. ¥éting techniques. The colunWariation in quality metric illustrates
used the Synplify Pro 7.3 from Synplicity for synthesis and ISE 6.1 platee percentage of variation in the quality metric (area) among different
and route tool provided by Xilinx. budgeting policies. The last column compares the best value of qual-
ity metric vs. the value where no budgeting technique is applied. The
values in the last two columns are computed as the percentage of the
difference between the best and the worst value in the set over the best:

Area vs. Latency for 16-bit Multiplier

180 W"me;ba‘ x 100. On average, the area of designs after delay budgeting
160 - varies 18.08% in terms of LUT count (and 9.72% in terms of slice count)
140 1 from the best depending on the algorithms used for budgeting. Applying

delay budgeting improves the area by 53.66% (in terms of LUT count)
and 35.83% (in terms of slice count) on average, compared to no bud-
geting.

120 4
100 +
80
60 1

Number of Resources

8. Conclusion

We presented a theoretical framework that unifies a large class of
existing time-management paradigms. Our model can optimally han-

40 -
20

0 s s 1 . a1 . dle many time budgeting policies including maximizing total budget,
. "= LUT Count weighted, bounded and fair budgeting. In addition, our technique is ap-

atency (clk cycles) . . . . .
—~ Slice Count plicable to time management for edges, nodes and hybrid combination

of these two elements.

We have performed experimental results on mapping some applica-
Figure 7 demonstrates almost linear trade-offs between the area timials onto Xilinx FPGAs. We have generated the applications’ datap-
latency of the multiplier core in the library. Hence, maximizing the totath components using CoreGen IP cores. We have compared different
budget can lead to further optimization in the area. In our previous wdikie budgeting policies in terms of the design area under equal timing
[11], we theoretically and empirically showed that optimal maximuroonstraints. Experimental results exhibit significant savings in design

budgeting outperforms ZSA [23] in reducing the design size. Maxiuality (area in our experiments) and advocate our theoretical results.

Fig. 7: Areavs. Latency for a 16-bit CoreGen Multiplier.



Design Metric |

Delay Budgeting Algorithms

Variation among Delay Budgeting

Benchmark‘

| No-budget Max Max-fair (I0%)  Max-fair (Z5%) Budgeting policies(%) vs. no Budgeting (%
LUT count 1790 1342 1158 1478 27.63 35.30
DFGO Slice count 1232 1008 920 1104 8.73 33.91
Total budget - 66 64 53 20.7 -
Relaxed nodes - 8 8 8 0 -
LUT count 3856 2365 2168 2608 20.20 4377
DFG1 Slice count 2672 1930 1837 2090 13.77 31.72
Total budget - 66 64 53 24.52 -
Relaxed nodeg - 13 18 18 38.46 -
LUT count 8658 5149 5102 4837 6.40 78.99
DFG2 Slice count 6249 4525 4496 4355 3.90 43.49
Total budget - 138 122 109 26.60 -
Relaxed nodes - 28 38 40 42.85 -
LUT count 3168 2022 2075 2388 18.10 56.60
DFG3 Slice count 2224 1657 1686 1864 12.49 34.21
Total budget - 42 39 32 31.25 -
Relaxed nodeg - 11 12 12 9.09 -
LUT count 4368.00 27195 2625.75 2827.75 18.08 53.66
Average Slice count 3094.25 2280.00 2234.75 2353.25 9.72 35.83
Total budget - 78 72.25 61.75 25.76 -
Relaxed nodeg - 15 19 19.5 22.6 -

Table 2: Thequality of different delay budget assignment techniques.
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