IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

2465

Constraint-Driven Test Scheduling
for NoC-Based Systems

Erika Cota, Member, IEEE, and Chunsheng Liu, Member, IEEE

Abstract—On-chip integrated network, the so-called network-
on-chip (NoC), is becoming a promising communication paradigm
for the next-generation embedded core-based system chips. The
reuse of the on-chip network as test access mechanism has been
recently proposed to handle the growing complexity of testing
NoC-based systems. However, the NoC reuse is limited by the
on-chip routing resources and various constraints. Therefore,
efficient test-scheduling methods are required to deliver feasible
test time while meeting all the constraints. In this paper, the
authors propose a comprehensive approach to test scheduling
in NoC-based systems. The proposed scheduling algorithm is
based on the use of dedicated routing path that is suitable for
nonpreemptive test. The algorithm is improved by incorporat-
ing both preemptive and nonpreemptive tests. In addition, BIST,
precedence, and power constraints were taken into consideration.
Experimental results for the ITC’02 system-on-chip benchmarks
show that the nonpreemptive scheduling based on dedicated path
can efficiently reduce test application time compared to previous
work, and the improved method provides a practical solution to
the real-world NoC-based-system testing with both preemptive
and nonpreemptive cores. It is also shown that various constraints
can be incorporated to deliver a comprehensive test solution.

Index Terms—Network-on-chip (NoC), system-on-chip (SoC)
testing, test access mechanism (TAM), test scheduling.

1. INTRODUCTION

YSTEM-ON-CHIP (SoC) has become a successful very

large-scale integration (VLSI) design paradigm. The reuse
of predesigned embedded cores has significantly reduced over-
all design period and cost. However, as the number of em-
bedded cores in the system increases, the implementation of
an efficient and effective communication architecture among
cores is becoming the new bottleneck of SoC performance.
Traditional broadcasting or shared-bus architecture has been
shown unable to supply the new-generation SoC systems with
both sufficient bandwidth and low latency under a stringent
power-consumption limitation [8], [12], [23], [26].

Manuscript received May 24, 2005; revised September 27, 2005. The work
of E. Cota was supported in part by the Conselho Nacional de Desenvolvimento
Cientifico e Tecnolégico. The work of C. Liu was supported in part by
a University of Nebraska-Lincoln (UNL) faculty research fellowship and a
Layman award. This paper was presented in part at the International Test
Conference (ITC), pp. 1369-1378, 2004. This paper was recommended by
Associate Editor K. Chakrabarty.

E. Cota is with the Programa de Pos-Graduacao em Computagdo, Instituto de
Informatica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
(e-mail: erika@inf.ufrgs.br).

C. Liu is with the Department of Computer and Electronic Engineering, Uni-
versity of Nebraska-Lincoln, Lincoln, NE 68588 USA (e-mail: chunshengliu@
unlnotes.unl.edu).

Digital Object Identifier 10.1109/TCAD.2006.881331

As an alternative, integrated on-chip networks have been pro-
posed as the communication platform for complex core-based
system, the so-called network-on-chip (NoC) [7], [8], [12],
[23], [26], [28]. This new paradigm relies on an on-chip
network, e.g., packet switching, to provide high-performance
interconnection to embedded cores. It has been shown that
NoC is superior to other traditional architectures, especially
for systems containing a large number of cores with intensive
communications load [23]. In view of the increasing complexity
of the new designs, NoC can potentially become the preferred
interconnection scheme for the next-generation SoCs. In fact,
industrial NoCs have started to appear in literature [26], [28].

For the rest of this paper, we use the term “NoC” to denote
an on-chip interconnection network (in this paper, a packet-
switching network) consisting of routers, channels, and other
network components. We use the term “NoC-based system”
to denote the entire SoC system consisting of NoC and the
functional embedded cores.

As in other core-based systems, testing of embedded cores
remains a challenge in NoC-based systems. In traditional SoCs,
test data are transported through a dedicated test access mech-
anism (TAM). In an NoC-based system, however, the imple-
mentation of network components (routers, channels, etc.) has
already imposed a considerable amount of area overhead to the
system. Therefore, testing of cores in an NoC-based system
should rely on the reuse of the existing resources without
introducing new overhead.

Previous work [5], [13] has attempted to reuse the functional
interconnections as TAM. However, this leads to additional
hardware overhead. Reusing the on-chip network as TAM, on
the other hand, does not require extra hardware, hence, it pro-
vides a cost-efficient solution to the NoC-based system testing.

The reuse of on-chip network as TAM in NoC has been
first proposed in [24] and further improved in [29]. Through
the reuse method, testing time can be significantly reduced,
while other cost factors such as pin count and area overhead
are strongly optimized. Previous work has explored the use
of network to maximize the test parallelism, i.e., the available
communication resources (channels, I/O ports) are utilized to
maximize the test data throughput. In an NoC-based system,
test data are organized into test packets, which are routed
through the network. One test packet contains one test vector
or one test response. Packets are scheduled to maximize the
network usage and to reduce the system test application time.
The impact of core placement in the network and other design
characteristics has also been studied [29].

Previous work [24], [29] has assumed that core testing is
preemptive, where test packets can be scheduled individually

0278-0070/$20.00 © 2006 IEEE

2466

and core-testing pipeline can be interrupted. In practice, how-
ever, testing of some cores may be nonpreemptive, particularly
for BIST and sequential core test [19]. Therefore, a practical
test plan should be able to schedule both preemptive and
nonpreemptive of tests in a way that the overall testing time
is minimized. In addition, previous work has only studied
the scheduling under power constraints. A comprehensive test
solution should consider a more complex scenario where more
constraints and test schemes are incorporated.

In this paper, a comprehensive test-scheduling approach for
NoC-based systems is proposed. The contributions of this paper
are as follows.

1) We present a scheduling method based on the use of

a dedicated routing path for the test of each core. Test
pipeline is maintained, and preemption is not required.
We proved that both the packet-based scheduling and the
dedicated-path scheduling are NP-complete problems.

2) We improve the current scheduling methods by incorpo-
rating both preemptive and nonpreemptive tests to handle
the NoC-based systems consisting of both types of cores.

3) We incorporate the support for BISTed cores. The BIST
engines can be either dedicated to each core or shared by
several cores.

4) We include power constraints as well as precedence
constraints in the scheduling method.

5) We obtain optimized test application time of the NoC-
based system under the above conditions.

Note that this paper does not describe the test of the NoC
(channels and routers) itself; we, instead, focus on the test of the
functional cores, and we assume that the network components
have already been tested a priori as fault free. Testing the NoC
itself has been studied in [10] and [26].

This paper is organized as follows. In Section II, we review
some prior work. Section III presents some basics of NoC.
In Section IV, we briefly explain the concepts and notations
of the reuse techniques proposed in [24] and [29]. Section V
introduces the scheduling method for nonpreemptive test using
dedicated routing path. Then, in Section VI, we present a
method that allows both nonpreemptive and preemptive tests,
and includes BISTed core tests, power, and precedence con-
straints into the schedule. Finally, experimental results for the
ITC’02 SoC Test Benchmarks are presented in Section VII.
Section VIII concludes the paper.

II. PRIOR WORK

Efficient test scheduling has been the focus of many early
studies in core-based system testing. A number of scheduling
algorithms have been proposed in literature [6], [17], [20], [21],
[25], [31] assuming a dedicated TAM. The implementation of
a cost-effective test bus is proposed in [15] and [16], where
power, area, and system constraints are considered in addition
to the testing-time minimization. Other works propose the
approaches of using switching architectures to optimize the
usage of test bandwidth and test control [11], [14].

Previous works [5], [13] have also attempted to reuse the
functional interconnections as TAM for traditional SoCs. How-
ever, this leads to additional hardware, e.g., large number of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

multiplexers and special test registers, which are needed to
implement extra functions required for reuse. Moreover, they
are inflexible because any change on cores can lead to partial or
overall redesign of the TAM.

Test of embedded cores through a packet-switching archi-
tecture has been proposed in [9] and [10]. Aktouf proposes in
[10] a test strategy for an on-chip homogeneous multiprocessor
architecture, where the processors are interconnected through
an on-chip switching network. Nahvi and Ivanov propose in [9]
the use of a packet-switching communication-based TAM for
SoC. The proposed TAM model, the so-called NIMA, is defined
to allow modularity, generality, and configurability for the test
architecture. Such an architecture is very similar to a functional
NoC, but it is specifically designed for testing. Hence, routing
and addressing strategies are designed and optimized for test
mode instead of mission mode. The NIMA network is further
developed and presented in [30].

Industrial NoC-based systems have been introduced through
several implementations. Vermeulen et al. present an NoC-
based system in [26] and suggest some options for cores and
on-chip network components to be tested and verified. It is
shown that the NoC architecture can facilitate the access to
the network components and the embedded cores during both
manufacturing test and system verification. In [28], a methodol-
ogy for automatically generating energy models for a versatile
and parametric on-chip communication architecture (STBus) is
presented. A software simulator is developed and applied to a
real-world NoC-based multiprocessor system.

Reusing the on-chip network as TAM in NoC does not
require extra hardware, since the functional cores are already
adapted to the network by network interfaces. Therefore, the
reuse approach provides a cost-efficient solution to the NoC-
based system testing.

Recently, an NoC-based test method by reusing the on-chip
network was proposed in [24]. In this paper, test patterns and
corresponding test responses for each core are organized into
sets of packets. Cores are sorted in decreasing order of test
data size, and access paths to cores using the existing network
channels are sorted in increasing order of path length. The
algorithm schedules the packets using the available network
resources (channels, I/O ports) such that the overall test applica-
tion time is minimized. Since scheduling is performed on every
single packet, the test pipeline for a core can be interrupted,
and test preemption is allowed. This scheduling algorithm is
further augmented in [29] by increasing the parallelism of test
data transportation and including power constraints. However,
the algorithm is not directly applicable to cores for which test
preemption is either impossible or undesirable [19].

III. BACKGROUND: NoC

NoCs typically use the message-passing communication
model. Cores attached to the network communicate by sending
request and receiving response messages. To be routed by
the network, a message is typically composed by a header, a
payload, and a trailer. The header and the trailer frame the
packet, and the payload carries the data being transferred. The
header also carries the information needed to establish the path

COTA AND LIU: CONSTRAINT-DRIVEN TEST SCHEDULING FOR NoC-BASED SYSTEMS

router [> router [* — router
A y A
core core core
5 10 2
Y Y J
router [* > router [* —|router
A A A
core core
\ \
router [— router [— router
I Y y I 3
core core core
9 8 7
 § | \ J
router [—| router [—| router
Fig. 1. System d695 implemented in grid SoCIN NoC [27].

between the sender and the receiver. Depending on the network
implementation, messages can be split into smaller structures,
the so-called packets, which can be individually routed. Packet-
based networks present a better resource utilization, since pack-
ets are shorter and reserve a smaller number of channels during
transportation compared to a whole piece of message.

Besides its topology, an NoC can be described by the ap-
proaches used to implement the mechanisms for flow control,
routing, arbitration, switching, and buffering [3]. Flow control
deals with data traffic on the channels and inside the routers.
Routing is the mechanism that defines the path a message
takes from a sender to a receiver. The arbitration establishes
priority rules when two or more messages request the same
resource. Switching is the mechanism that accepts an incoming
message of a router and sends it to an output port of the router.
Finally, buffering is the strategy used to store messages when
a requested output channel is busy. Current cores usually need
to use wrappers to adapt their interfaces and protocols to the
on-chip network.

In this paper, we base our analysis on a packet-switching
network model, so-called SoCIN, introduced in [27]. It is
implemented in a two-dimensional mesh topology. Fig. 1 shows
the implementation of the system d695 from the ITC 02 SoC
Test benchmarks suite [22] in this topology. The communica-
tion channels between two adjacent routers are defined to be
32-bit wide. Each router in the SoCIN network is composed
of five input and five output ports, as shown in Fig. 2(a).
One pair of input/output ports is dedicated to the connection
between the router and the core, while the remaining four pairs
connect the router with the four adjacent routers, as depicted in
Fig. 2(b). An SoCIN router is implemented using from 3000 to
6000 gates, depending on the bitwidth of the network channel
and depth of the input buffers [27]. For simplicity of router
implementation, the channel between a router and its associated
core is similarly defined. The network uses credit-based flow-

2467
\L N
e
7i+'lﬁ'1 I
R 7NN VY B & N) =Y P >
N o
"m_'rrl —p i ——5000] Lin il
———Nin Nin e
S —>Ein Ei i
——i SV [l —‘ S p—-
— Win - - 7 Wi me—
() (b)

Fig. 2. Basic structure of SoCIN router: (a) interface and (b) architecture.

control and XY routing, where a packet is first routed on
the X -direction and then on the Y -direction before reaching
its destination. Switching is based on the wormhole approach,
where a packet is broken up into multiple flits (flow-control
units). Flit is the smallest unit over which the flow control is
performed, and its size equals the channel width.

IV. REUSING NOC As TAM

In order to reuse the on-chip network as the TAM for the
embedded cores, the test vectors and test responses of each core
must be expressed as a set of packets to be transported through
the network. In addition, the wrapper that adapts the core to
the network must be modified to correctly send/receive the test
data to/from the test interface of the core (scan controls, scan
data pins, functional pins).

NoC-based system requires additional functionalities on core
wrapper besides the original P1500 compliant architecture. In
order to impose a minimum effect on the original design to
reduce the cost, the test packets are designed in such a way that
each flit arriving from the network is unpacked in one cycle.
That is, each bit in a packet flit fills exactly one bit of the
wrapper scan chains of the core. Functional inputs and outputs
of the core, as well as the internal scan chains, are concatenated
into wrapper scan chains of similar length, such that the channel
width is adequate for transporting one bit to each scan chain.
Fig. 3(a) and (b) depicts a wrapper configuration during normal
operation and during test, respectively. The area overhead due
to the implementation of the test mode in the wrapper is com-
parable to the overhead of a basic P1500 compliant wrapper,
and the number of wrapper scan chains is determined by the
algorithm proposed in [18]. The new control signals of the NoC
wrapper are included in the input and output control of the basic
P1500 wrapper. Two additional registers are required to store
the address of the destination for test response and the delivery
time of the response packets, respectively.

Control information, such as scan shift and response capture
signals, is also delivered in packets, either in the test header
(to be interpreted by the wrapper) or as specific bits in the
payload (for direct connection to the target pins). In Fig. 3(b),
the latter approach is assumed. In both cases, a test enable signal
in the packet header indicates that a test configuration will take
place in the wrapper. The original buffer structure of the router,

2468

(Wrapper NOC-Core-NOC

*scan control

:

Core

(a)
Fig. 3. Wrapper configurations: (a) normal mode and (b) test mode.
which is designed based on the mission-mode requirements, is
reused as is to reduce the area overhead.

In this paper, we consider the scenario where an external
tester is connected to the functional interface of the system. The
input and the output ports of the network can be reused for the
transmission of test packets (test vectors and responses) to/from
all cores. Note that although testing the network components
(routers and channels) concurrently with testing the embedded
cores is possible, it is not addressed in this paper. We assume
here the on-chip network has been tested a priori as fault-
free by additional test process, hence, the network is in normal
mode while cores are in test mode. The same protocol used for
functional communication can be reused during test.

V. TEST SCHEDULING USING DEDICATED ROUTING PATH

If a core allows preemptive testing, each test vector or the
corresponding response for this core can be delivered as an
individual packet using any available path. In this packet-based
routing, test pipeline may be interrupted, as shown in [24] and
[29]. However, if the core does not allow preemptive testing,
e.g., BISTed cores, all the test vectors must be delivered as
a consecutive series of packets without being interrupted. We
discuss in this section the nonpreemptive test scheduling based
on the use of dedicated routing path.

A. Dedicated Routing Path

As discussed earlier, the test-scheduling algorithms proposed
in [24] and [29] assume that tests for the cores in NoC-based
systems are preemptive, hence, provide a high level of flexi-
bility to scheduling. However, preemptive testing is not always
possible in practice, especially for BIST and sequential core
test [19]. In addition, it is always desirable that the test pipeline
of the core is not interrupted, i.e., the nth test vector will be
shifted into the scan chains as the (n — 1)th test response is
shifted out. However, in case of preemption, the test pipeline
has to be halted if either the test vector or test response cannot
be scheduled due to the unavailability of test resources, i.e.,
channels and input/output ports. This may not only increase the
complexity of wrapper control but also cause potential increase
on test time.

The adverse effect on the test time can be explained by the
following example. Let core 1 has higher priority over core 2 in
the scheduler of [24], and test vector 1 of core 1 is first sched-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Wrapper NOC-Core-NOC

can control

Core

(b)

uled on an input port. We assume that the test vector 1 of core
2 cannot be scheduled because all inputs are now being used.
We also assume a case that after vector 1 of core 1 is scheduled,
vector 2 of core 1 cannot be scheduled on this input immedi-
ately because the test response of vector 1 cannot be scheduled
on any output port due to resource conflict. At this point, test
vector 1 of core 2 can be scheduled on this free input. However,
it is possible that immediately after this point, the output is
available for scheduling the test response of core 1, which is
ready. However, the next vector for core 1 cannot be scheduled
because the available input is being used by core 2. Hence, the
pipeline of core 1 is halted. It is easy to see that in the worst
case, the test of core 1 can always be interrupted by core 2,
which increases the test time of core 1. If this occurs on several
cores, the network parallelism may not overcome the individual
test-time increase, and the total test time is not well optimized.

Another disadvantage of preemptive scheduling is on its
complexity. The flexibility of handling every single packet leads
to a vast solution space for test-scheduling algorithms. In an
acceptable amount of simulation time, only a small portion of
the solution space can be explored. Therefore, highly optimized
solution may not be found, and test time may be compromised.

On the other hand, if the test pipeline is maintained, the
preemption is not required. Moreover, the test wrapper can
remain unchanged, and the test time can be potentially reduced.
Therefore, a nonpreemptive scheduling for NoC-based system
can be applied. In this approach, the scheduler will assign each
core a routing path, including an input port, an output port, and
the corresponding channels that transport test vectors from the
input to the core, and the test response from the core to the out-
put. Once the core is scheduled on this path, all resources (input,
output, channels) on the path will be reserved for the test of this
core until the entire test set is completed. Test vectors will be
routed to the core, and test responses to the output in a pipelined
fashion. Therefore, in this dedicated-path approach, the test of a
core is identical to a normal test, and the flow control becomes
similar to circuit switching. Fig. 4 shows the dedicated routing
path of the system in Fig. 1 using XY routing for core 10 and
core 8, respectively, using two input/output ports.

Note that compared to the preemptive scheduling, the
dedicated-path approach handles a whole test set instead of
every single packet, hence, creates a much smaller solution
space for test-scheduling algorithms. As a result, a significantly
larger portion of the solution space can be explored by the
algorithm, and the result can be better optimized.

COTA AND LIU: CONSTRAINT-DRIVEN TEST SCHEDULING FOR NoC-BASED SYSTEMS

|
| router [—| router
1 J -
@ A A

| router [*
J

router router router

Fig. 4. NoC-based d695 with two routing paths scheduled.

B. Problem Formulation

It can be seen that in this dedicated-path approach, the
problem of NoC-based scheduling is how to efficiently assign
input/output pairs to cores without resource conflicting, such
that the overall test time is minimized. It can be formally stated
as follows.

In an NoC-based system using dedicated routing path for
testing, given N, cores, IV; inputs, N, outputs, routing
algorithm, and the network topology, determine an assign-
ment of cores to input/output pairs such that the total test
time is minimized.

Note that this problem is equivalent to the well-known
resource-constraint multiprocessor scheduling problem. The
decision version of the resource-constraint multiprocessor
scheduling problem can be stated as follows.

Instance: Set T' of tasks, each having length I(¢), num-
ber m € ZT of processors, number r € ZT of resources, re-
source bounds B;, 1 < i < r, resource requirement R;(t), 0 <
R;(t) < B;, for each task ¢t and resource ¢, and an overall
deadline D € Z 7.

Question: Is there an m-processor schedule o for T' that
meets the overall deadline D and obeys the resource con-
straints, i.e., such that for all u > 0, if S(u) is the set of all
t € T for which o(t) < uw < o(t) + I(t), then for each resource
i, the sum of R;(t) over all t € S(u) is at most B;?

It can be easily proved using restriction that for m > 2, the
above general resource-constraints problem is NP-complete
[1], [2]. The equivalence between a decision version of
NoC-based scheduling problem and the resource-constraint
multiprocessor scheduling problem can be easily established by
observing the correspondence between processors and input/
output pairs, between tasks and test sets, and between resources
and routing resources including channels, input, and output
ports. The resource bounds in NoC-based scheduling are
B; =1, and the deadline D corresponds to the overall test
application time.

2469

It can be easily proved that the packet-based preemptive
scheduling can be reduced to dedicated-path scheduling and,
hence, is also NP-complete using the method of restriction [2].
We apply two restrictions on the packet-based preemptive
scheduling as follows. 1) For each core, its test-vector packets
must be sent continuously in order without being interrupted
by packets of other cores. This also implies that the response
packets will be sent in the same manner. This restriction corre-
sponds to a set of precedence constraints applied to the packets
of all cores. 2) For each core, all test-vector packets must use
the same input port, and all response packets must use the same
output port. This restriction also implies that the input and
output routing paths are deterministic for each core, given an
input/output pair. Under these strong restrictions, the packet-
based preemptive scheduling is reduced to the dedicated-path
scheduling and, hence, is NP-complete [2]. The latter is, in fact,
a special case of the former under restriction.

We have developed an integer linear-programming model to
solve the dedicated-path-scheduling problem exactly for NoC-
based systems of small size. (We have omitted the detailed
results in this paper.) However, the computation time of the
integer linear programming (ILP) solution is prohibitively long
due to the large number of constraints. We have observed in the
experiments on a Sun Blade2000 workstation that even a fairly
small instance of NoC-based system takes hours of CPU time
to solve. Although the computation time can be significantly
reduced by using enumeration [19], the ILP method can only
be used for small NoC-based instances. We have observed that
if the number of cores is larger than seven, the computation
time becomes unacceptable. This is in part due to the numerous
constraints representing the possible conflicting routing paths.
Since an NoC-based system usually contains a large number of
cores, efficient heuristic scheduling algorithms are necessary in
practice instead of ILP.

C. Efficient Scheduling Heuristic

Here, we present an efficient heuristic scheduling algorithm
based on the use of dedicated routing path. The algorithm is
similar to the one proposed in [29] in that it also sorts the cores
in decreasing order of test time. However, we do not try to
allocate the shortest path to the largest core as in [29]. This
is because in a dedicated-path approach, all tests are applied
with full pipeline, and the distance from I/O ports to cores
becomes less important. Instead, we assign larger cores to
the first available I/O pair, hoping that by finishing the larger
tests earlier, resources can be released, and more effectively
utilized by smaller cores. The algorithm maintains a time tag
on every resource (channels, input, and output ports) indicating
its availability. Once a routing path for a core is determined and
allocated, all related resources are reserved for the core, and the
time tags are updated.

The pseudo-code of the algorithm is sketched in Fig. 5. The
heuristic starts by creating an ordered core list as well as an
I/O-pair list (Lines 1 and 2). The orders of I/O pairs in the
list are permuted, and every permutation is attempted. Different
permutations represent different priorities of the I/O pairs when
more than one I/O pairs are free to be assigned to a core. For

2470

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Procedure NoC_schedule

1 Start with sorted cores in decreasing order of test time;

2 Permute all possible orders of I/O pairs;
3 For every permutation
4 While there arc unscheduled cores
For each unscheduled core
Find a free /O pair;

6
7 If no free I/O pair

8 Update current time, repeat from 4;
9

else
10 Check the corresponding routing path;
11 If path is blocked

12 If all cores have been attempted

13 Update current time, repeat from 4;

14 else . .

15 try next core in the list;

16 else .

17 assign core to the path, update time labels;

18 Repeat from 2 for a user-defined number of cores permutations;

Fig. 5. Pseudo code of heuristic scheduling algorithm.
5829 10434 11022 11047 13412
101| Core 4 | Core 8 |Core 2|Core 1
6206 10069 12576 13412
102| Core 5 |C0re 10| Core 3 |Core 9|
9869 13228 13412
103| Core 6 | Core 7 %

Fig. 6. Scheduling result of d695 using dedicated-path heuristic.

each permutation, we attempt to assign the core on top of the list
to the first available I/O pair (Line 6). The availability of I/Os is
examined by checking their time tags. If no I/O is available, the
current time has to be updated by the next most recent time tag
(Line 8), and the cores will be attempted once again; otherwise,
a routing path is created, and the algorithm will check if it
is blocked by other paths currently being used (Line 10), i.e.,
resources (channels, input, or output ports) conflict. If there
exist one or more conflicts, either the next core is attempted
(Line 15), or all unscheduled cores have to be attempted again
(Line 13). Otherwise, the core is scheduled on the I/O, and the
corresponding resources will be updated with new time tags
(Line 17). The core is then removed from the list, and the next
core is attempted for schedule. The whole procedure is repeated
for different permutations of the core list, and this number is
defined by the user.

The execution of this heuristic requires only a few millisec-
onds of CPU time even for the largest system. The complexity
of the algorithm is O(M!N.), where NV, is the number of cores
in the system, and M is the number of input/output ports. In
order to explore a larger portion of the solution space, we can
further apply a permutation on the order of cores on top of
the above pseudocode. In this paper, we limit the number of
such permutations to 200, and the execution takes only a few
seconds.

In Fig. 6, we illustrate the result given by the above algorithm
for benchmark d695 with three inputs and three outputs. Each
test requires a set of channels and a pair of I/Os, which are
denoted by 101, I0,, and I035. We show the cores that are
scheduled on the I/Os and the corresponding start times (not
drawn to scale). The shaded areas represent idle time. It can be
seen that the algorithm has successfully moved the idle time to
the end of the test procedure on each I/O, by which the test time
is optimized.

VI. SCHEDULING OF BOTH PREEMPTIVE AND
NONPREEMPTIVE TESTS UNDER CONSTRAINTS

Although the dedicated-path approach maintains test
pipeline, it suffers from the lack of flexibility, i.e., the minimum
manageable unit in test scheduling is the full test application
time of a core. In practice, however, it is more feasible to
assume that some cores require nonpreemptive scheduling for
maintaining test pipelines, while others can be tested preemp-
tively. This is important for a comprehensive test-scheduling
algorithm. One of the examples is that during test application,
excessive power dissipation and bad heat transfer can cause
some cores to be significantly hotter than others, the so-called
hot spots [32], [33]. Applying the entire test suite continuously
can lead to dangerous temperature on these cores and cause
damage. In this case, the test suite can be split into several
test sessions (or even single test vector in the extreme case)
that can be scheduled individually. We allow sufficient time
between test sessions so that the core can be cooled down via
heat conduction and convection.

It can be seen from the previous example that the nonpre-
emptive scheduling is not suitable for this case because it will
occupy the routing path during the entire test application of the
core, and extra time between test sessions will leave the path
idle without being used by other cores. However, preemptive
scheduling can easily handle this situation in nature [29].

Therefore, a more practical method should be able to handle
both types of cores in the same schedule. In this section, we first
discuss the inclusion of some practical factors such as multiple
test sets and constraints. We also introduce the calculation of
power dissipation when power constraint is considered. We then
present a new scheduling method that can handle both preemp-
tive and nonpreemptive tests simultaneously in the presence of
multiple test sets and constraints. It can be easily proved using
the method of restriction, the same as shown in Section V-B,
that this combined scheduling is also NP-complete.

A. Multiple Test Sets and Constraints

The algorithm presented in Section V-C is focused on ex-
ternal tests. In practice, multiple test sets are often needed to
test complex cores, e.g., cores are tested by both BIST and
external test sessions. In addition, some precedence constraints
may be required to impose a partial order among the tests

COTA AND LIU: CONSTRAINT-DRIVEN TEST SCHEDULING FOR NoC-BASED SYSTEMS

for various reasons [19]. For example, since BIST test can be
applied at a much higher speed than external test, it is com-
mon to first apply BIST to target the random-detectable faults
and then use external test to target the random-resistant faults. It
may also be desirable to test the memory cores earlier because
they can then be used to test logic cores. Moreover, since cores
that occupy larger chip area are more likely to have defects
caused by processing, it may be more desirable to test these
large cores first [19]. Therefore, including BISTs and vari-
ous precedence constraints can make the scheduling algorithm
more practical and potentially increase the efficiency of the
entire test procedure.

Another important consideration is power constraint.
Scheduling algorithm has to guarantee that the power dissipa-
tion at any particular time is under a predefined limit of safety.
We show the calculation of power dissipation in NoC-based
systems in the next section.

B. Calculation of Power Consumption

In the proposed NoC architecture, we consider power con-
sumption from four sources: cores, wrappers, routers, and
communication channels.

Equations (1) and (2) give the consumption per cycle of a
network router and a communication channel, respectively, for
the transmission of a single packet. Cr, T, and o represent
the load capacitance (technology-dependent constant), clock
period, and the switching factor, respectively. Variables nbg,
nby:, og, and o4 represent the number of active components
(either flip—flops or logic gates) and their corresponding switch-
ing factors in the router, respectively, when one packet is being
routed. Note that for the flip flops, there is a constant switching
factor caused by the clock in addition to the switching of the
flip—Aflop itself

1
Prouter = C'L * Vdd2 * T * [(Uﬁ + 1) * nbff + Ogt * nbgt}
(1)
1
Penannel = Cr, * Vdd? x T ¥ Ow (chy * wirey * chy). (2)

In (2), the load capacitance of the channel is given by the
product of the number of wires in the channel (chy,), the length
of the channel (ch;), and the width of the wire (wirey,). Variable
oy is the switching factor for the wire. In our approach, all
channels are assumed to have the same length, although this
may not be the case in real world. Since the power consumption
is calculated per cycle, the size of the packet is less important.

The total power consumed by transmitting a packet is calcu-
lated according to the path established in the network for the
packet. That is, for each router and each channel active in the
path, their corresponding power consumptions are summed up,
as shown in (3), where nb,oyuters 1S the number of routers, and
Nbchannels 1S the number of channels in the path.

Ppacket = nbrouters * Prouter + nbchannels * Pchannel~ (3)

The power consumption of a core during test depends on core
design, test vectors, and the order of test vectors. In this paper,

2471

we do not present any power-consumption model for cores.
Rather, we assume that the power consumption of each core
during test is provided by the core designer. Moreover, since
wrapper is usually developed for a specific core, we assume
that the wrapper power consumption is known as well.

Also, in this paper, we consider the peak power consumption
during test application for each core and its wrapper. In addi-
tion, the calculation of power can be performed on every cycle,
so that it becomes independent of the test clock frequency. We
note that if there is enough information for each core, a more
accurate power profile can be used in the proposed method.

C. Improved Scheduling With Both Preemptive and
Nonpreemptive Tests

We now present a scheduling algorithm that can handle both
preemptive and nonpreemptive tests. The algorithm is based on
the combination of packet-based and dedicated-path routing.
For practical purpose, we also take into account multiple test
sets, as well as precedence and power constraints, as discussed.

Let the input of the scheduling heuristic be the following.

1) A set C={i,1<i< N} of cores in an NoC-based
system.

2) Aset T={T};,1<j<Ng,,1<i<N} of test ses-
sions defined for all cores in C. Each core ¢ may have
a total of IV, test sessions. Each test session T}, can rep-
resent a BISTed, external, preemptive, or nonpreemptive
test for core 1.

3) A set of six tuples I = {(wc,cl,p,pwr, preemp,
payload), 1 < k < |T|}, representing the number of
wrapper scan chains, maximum length of the scan chains,
number of test patterns, power consumption during
test, type of testing (preemptive or nonpreemptive), and
payload size of the test packet, respectively, for each test
session k in T.

4) Aset Prec = {(p1,...,0n)k, 1 < n,k <|T|} of prece-
dence constraints for each test session k. The precedence
list indicates which test sessions must be finished before
test session k is scheduled.

5) A graph G = (V,E) with the set of vertices V repre-
senting the routers and the set of arcs E that connect
two vertices representing the communication channels of
the network. Each vertex has a list of associated cores,
representing the cores connected to the router. Note that
more than one core can be associated with a router,
indicating either a mega core or a cluster of cores. In
this case, each core can be tested independently, but all
of them are accessible through the same router. On the
other hand, a router can have no associated core when the
network has more routers than cores.

6) Alist of I/O ports corresponding to some vertices in graph
G, indicating that these cores can be used as I/O ports
during testing.

As in the dedicated-path-based scheduling, each channel in
the network is assigned a time tag, indicating the time when the
channel is free for use. However, since preemptive scheduling is
allowed here, the scheduler has to be able to handle each single
packet and the corresponding latency. Equation (4) defines the

2472

Pmax= 170
pkt t, core 5 Kt ¢ 5
kt u, core 3 | PKti core
gkt v,core 6 | Pktv, core 6 Pkt t, core 5
P1=90+50+34| P2=90+34 P3=90 |
slot 1 slot 2 slot 3
0 50 85 160 cycles

Fig. 7. Scheduling process considering power constraints [29].

time required to transmit a packet through a path. Tiouters
Nbrouterss Theaders, and payload represent the number of cycles
spent by the packet header in each router to establish the path,
the number of routers in the path, the clock cycles required to
pack and unpack the header, and the number of flits carrying
test data in the packet, respectively. In SOCIN network, we use
Trouter = 3 and Theaqer = 1, and a test header is assumed in
addition to the packet header

Tpacket == Theaders + Trouter * Nbrouters + Payload~ (4)

For each packet, two extra cycles are added to (4) during
which the test vector can be applied to the core, and the wrapper
is ready to pack and deliver the response packet. Packets
belonging to the preemptive test sessions have a payload with
the number of flits equal to the length of the longest wrapper
scan chain of the core under test. Payload of packets of nonpre-
emptive tests, on the other hand, have the size corresponding to
the sum of the flits of all test vectors defined in the test session.

The new test scheduling is an improved version of the list-
scheduling algorithm [4]. The main idea is to process the
available time instant in an increasing order (starting at zero)
and schedule as many packets as possible at a certain instant
before moving to the next. The ready list L, contains the
packets that can be scheduled at a given instant of time, and
the algorithm will associate each packet with an available path
for a certain amount of time. Initially, L; contains the packets
corresponding to the first test vector of each core, with the
consideration of precedence constraints and different types of
test sets allowed.

The schedule is defined as a set of time slots of different
sizes, as shown in Fig. 7 [29]. Each time slot contains a set
of packets being transmitted (each one associated to a core),
and the size of a slot is measured by the number of clock cycles
needed to apply the test vectors in the packets. P represents the
power dissipation caused by the packets scheduled in the corre-
sponding slot. The end of a slot indicates either the completion
of a packet or the beginning of a new packet. The transmission
of one packet may be distributed over several slots, and slots can
be modified as the schedule proceeds (one slot can be broken
up into two new slots, such that a new transmission can be
scheduled to start or finish in the middle of the original slot).
The schedule is initialized by a single time slot starting at cycle
zero, with ending time being infinite. For example, the schedule
depicted in Fig. 7 was generated as follows.

1) Packet ¢ associated to core 5 is allocated in the single
slot of the initial schedule. The duration of this packet,
calculated by (4), is 160 clock cycles. Thus, the original
single slot [0,...,00] is divided in two: Slot 1 is now

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

[0,...,160], and slot 2 is [161,. .., 0c0]. Next, the power
consumption of packet ¢ is added to slot 1.

2) Then, packet u associated to core 3 is scheduled with its
duration of 50 clock cycles. The total power consumption
of packets ¢ and u is within the specified power limit
(Pmax in Fig. 7), and packet u can be scheduled in the
same slot of packet {. However, since the duration of
packet v is smaller than the duration of slot 1, this slot
is again divided in two, creating a new slot 2 from cycle
51 to cycle 160. Power consumption of packet v is added
to the new slot 1.

3) Finally, packet v of core 6 is selected with its duration of
85 cycles. Its power consumption is added to that of slots
1 and 2. Therefore, packet v is scheduled to slots 1 and 2.
The ending time of slot 2 is modified to cycle 85, and a
third slot from cycle 86 to 160 is created.

In the proposed approach, we use t to represent one time slot
rather than a single clock cycle. Thus, ¢ corresponds to a range
[ti, ..., t;] of test cycles, and L, contains all packets that can be
delivered at time t' > ¢;.

Fig. 8 depicts the proposed test-scheduling heuristic. The al-
gorithm starts by setting the number of packets for each test ses-
sion and creating an ordered list of test sessions (Lines 1 and 2).
A list of I/O pairs is then defined (Line 3). The I/O pairs
will be used to create the routing paths for the nonpreemptive
tests. Similarly, for each core, a list of possible access paths is
created (Line 5), sorted by the number of routers on each path.
The list is used to find a path for packets in preemptive test
sessions. Lines 68 explore the solutions space, which will be
explained later.

The scheduling procedure starts at Line 9, the list L; of
packets that can be delivered is created (Line 10), and a packet p
(associated to core ¢) in list L, is selected (Line 11). A packet in
a test session with precedence constraint can only be included in
L, if all precedent test sessions have been completed (Line 10).
Since the duration of each packet in the NoC is deterministic,
a flag can be set when the last packet of a test session is
scheduled. In addition, we give BIST sessions higher priority
over all other test sessions.

Note that the packet selected in Line 11 has a delivery time
tq € t. There are three possibilities for this packet.

1) If this packet belongs to a nonpreemptive test, the first
available I/O pair m that can be used by this packet is
selected (Line 13). The I/O pair availability implies that
all channels between the input and the core, and between
the core and the output are free to be used. If there is no
available I/O pair for packet p, a packet of another core
in L; is selected, and the delivery time ¢4 of packet p is
set to the time when the first I/O pair in the list becomes
available (Line 15). Otherwise, if I/O pairs and routing
paths are available, the duration Tp,cket Of packet p in
this nonpreemptive session is determined based on (4)
(Line 20). Notice that this “super” packet now includes
all the flits of all test vectors in this test session. Next,
power consumption of this packet is calculated using (3)
(Line 21). If the addition of this packet in the current
time slot does not exceed the system power limit, the

COTA AND LIU: CONSTRAINT-DRIVEN TEST SCHEDULING FOR NoC-BASED SYSTEMS

Fig. 8.

2)

2473

Procedure NoC_schedule

1 UBP = Creatc ordered list of unscheduled BIST test packets.

2 UEP = Create ordered list of unscheduled external test packets.

3 TOP = Create list of I/O pairs.

4 For cach corc iin C

5 Create ordered list of all possible access paths;
6 For Ny permutation of UBP list

7 For Ns permutations of UEP list

8 For cvery permutation of 1OP list

9 While there are unscheduled packets in UBP | JUEP
10 L, = selected packets ready for schedule in UBP | JUEP according to precedence constraints and
delivery times.

11 Select test packet p of core ¢ in Ly.

12 If p is non-preemptive

13 Find a free I/O pair.

14 If no free I/O pair

15 Update packet delivery time, repeat from 11.
16 else If p is preemptive or p is BIST

17 Find a free access path to/from core i.

18 If no free access path

19 Update packet delivery time, repeat from 11.
20 Calculate duration of packet transmission.

21 Calculate power consumption for packet transmission.
22 If power constraint is met

23 Assign packet to the chosen path.

24 Update schedule and time tags.

25 If p is non-preemptive

26 Assign responsc packet to chosen 1/O pair.

27 Update schedule and time tags.

28 else If p is preemptive or p is BIST

29 Define delivery time of next packet of core 4;
30 Update L;

31 else

32 Update packet delivery time, repeat from 11.

33 If all packets have been attempted

34 Update current time, repeat from 9;

Pseudo code of heuristic scheduling algorithm with both preemptive and nonpreemptive tests.

packet is scheduled (Line 23). In this case, all network
channels in the routing path determined by I/O pair m
are set to be unavailable during the transmission time of
this packet, i.e., between cycles tq + Theaders + payload
and tq + Tpacket (Line 24). The corresponding response
packet is then automatically scheduled and removed from
the list of unscheduled packets (Lines 26 and 27).

If packet p belongs to a preemptive test, the shortest
available path £ that can be used by this packet is selected
(Line 17), and the transmission duration Tpacker Of this
packet is determined according to (4) (Line 20). If there is
no available path for packet p, a packet of another core in
L, is selected, and the delivery time ¢4 of packet p is set to
be the time when the first path in the list of possible paths
for the core becomes available (Line 19). Otherwise, if a
path is available, the power consumption of this packet is
calculated in Line 21. If the power limit is satisfied, the
packet is scheduled (Line 23), and all network channels
on path k are set to be unavailable during the transmission
time of this packet, i.e., between cycles tq4 + Theaders +
payload and tq + Tpacket (Line 24). If packet p carries
a test vector, the corresponding test response packet is
set to be ready at time tq 4+ Tpackes — 1 (Line 29), as
the wrapper takes one cycle to unpack the header of the
packet. If packet p carries a response vector, on the other
hand, the latency [of the shortest path from input to
the core is calculated as Theaders + Trouter * IV brouters-
The packet carrying the next test vector of core ¢ is set
to be ready at time tq — [(Line 29), ensuring that the
new vector will not arrive before the previous vector is

3)

processed. In both cases, the next packet of core ¢ is
inserted in L; (Line 30).

Finally, if packet p refers to an autonomous BIST test
session, a single flit containing the BIST enable signal
and other required information for BIST [e.g., reconfig-
uration values for programmable linear feedback shift
registers (LFSRs)] must be sent to the core. That is, we
assume that the payload of this packet contains only one
flit, and the test application time of each BIST session
is known. The real number of flits may vary in practice.
Under these assumptions, two cases are possible for
BIST-engine utilization. First, if each BISTed core has its
own BIST engine, the transmission of packet p is similar
to that of a preemptive test. The first available input path
is selected to deliver packet p (Line 17), and the chosen
path is occupied only for the transmission of a single
flit. If there is no available path for packet p, a packet
of another core in L; is selected, and the delivery tq of
packet p is set to be the time when the first path in the list
of possible paths for core ¢ becomes available (Line 19).
Similar to the previous cases, packet p has a delivery time
tq. The corresponding response packet (compacted signa-
ture) is set to be ready at time tq + test_time (Line 29),
where test_time is the number of cycles required by the
BIST session. Second, if several BIST engines are shared
among all BISTed cores, the BIST sessions are scheduled
as nonpreemptive tests with precedence constraints.

The power consumption per cycle is taken into account

by assigning power information to each time slot. During

2474

the scheduling of each slot, the total power consumption is
calculated based on (5), where n is the number of packets being
transmitted, and c is the number of cores being tested during
this time slot

TOtalpower = Z Ppacket (]) + Z Pcore (Z) (5)

1<j<n 1<i<c

The system power limit must be evaluated at each time
slot s, i.e., total,ower (S) < Prax, where Py, is the maximum
power consumption allowed for the system. Therefore, before
the scheduling of any packet, the total power required for the
transmission of this packet is calculated (Line 22 in Fig. 8).
If the total power consumed in the slot does not exceed Ppax,
the packet can be scheduled (Line 23). Otherwise, the packet is
postponed to be scheduled later (Line 32).

Finally, when no packets could be scheduled in the current
time slot, the current time is updated by the time slot cor-
responding to the shortest delivery time of all unscheduled
packets (Line 34), and the process is repeated until all packets
are scheduled.

D. Exploration of Solution Space

The initial order of the lists UBP and UEP of unscheduled
packets (see Fig. 8) determines the priority of packets to be
scheduled. Unscheduled packet on the top of the list is first
attempted. As a result, different order of the packets leads to
different usage of the network channels, hence, different test
application times. The order of I/O pairs being attempted for
nonpreemptive tests impacts the scheduling in the same manner.

Therefore, a better exploration of the solution space of test
scheduling can be achieved by varying the orders of packets
and I/O pairs in the lists. In the proposed algorithm, we perform
a permutation on a small number of packets in Lines 6, 7,
and all the I/O pairs in Line 8. This is because the number of
packets are several orders larger than the number of I/O pairs. A
complete permutation on all packets is apparently impractical.
As shown in Section V-C, a complete permutation on I/O pairs
is possible.

The complexity of the proposed heuristic is O(M!Ny),
where N, is the number of packets, and M is the number of
I/O pairs. The permutation on packets is not counted because
it is independent of the number of packets. Compared to the
dedicated-path approach, the routing of individual packet has
increased the complexity of the scheduling.

VII. EXPERIMENTAL RESULTS
A. Experimental Setup

In this section, we present simulation results on some
ITC’02 SoC Test Benchmarks [22] using the heuristic
algorithms presented in Sections V and VI. The simulation is
performed on a PC with a 1.8-GHz processor and 512M RAM.
In [29], several network configurations (distinct associations
between cores and routers, different NoC topologies, etc.) were
considered. For the sake of comparison, we defined an arbitrary
but single network configuration (network topology, core

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

assignment to grid, inputs/outputs, etc.) for each benchmark to
be used in this paper. Then, the original scheduling algorithm
proposed in [29], as well as the algorithms proposed in this
paper was performed over this single system configuration. For
the heuristic algorithms, we perform the exhaustive I/O order
permutations and a number of permutations, from 50 to 200,
on the order of cores. For all the simulations, the algorithms
can be concluded in less than 20 min. We note that the original
scheduling does not support permutation of the cores, and
allowing permutation on more cores in the improved heuristics
can lead to better solutions.

The power consumption of the cores during test is not
included in the ITC’02 benchmarks. Therefore, hypothetic data
are used in simulation. The power profile of each core is defined
as a function of the number of scan flip—flops, inputs, and
outputs and is evaluated using (1), with nbg and nby; replaced
by the estimated number of flip—flops and gates of the module,
respectively. Moreover, the core and wrapper power consump-
tion is considered as the peak value among all vectors. BIST and
nonpreemptive test sessions imply higher power consumption
of the core under test.

The power-consumption limit for the system is defined as
a percentage of the total power consumption of all cores under
test. For example, a power limit of 50% indicates that the power
limit equals to half of the sum of the power consumption of all
cores in test mode. Note that in practice, the power constraint
should be set by the designer. Moreover, in this paper, we do not
assume any specific type of test-set manipulation for reducing
the power consumption, which can be easily performed by
modifying the order of the test sessions and including addi-
tional precedence constraints. We also assume that the power
consumption of the network routers and channels is one order
of magnitude smaller than that of the cores.

B. Results for ITC’02 SoC Test Benchmarks

For each benchmark, we present results for different numbers
of interfaces with the tester, different configurations of test
sessions, with BIST and precedence rules, and for different
power constraints. For the sake of succinctness, we refer to
the packet-based preemptive test scheduling in [29] as the
base-case algorithm. We refer to the dedicated-path routing
for nonpreemptive test scheduling and the improved heuristic
for both preemptive and nonpreemptive tests scheduling as
Algorithms 1 and 2, respectively.

Tables I-III present the results for the original benchmarks,
with and without power constraints, for different numbers of
test interfaces (I/O ports). Column 1 gives the number of
I/O ports. Columns 2 and 3 give the results of the base-case
algorithm reported in [29], where only preemptive tests are
allowed. In Column 2, no power limit is assumed for the test,
whereas in Column 3, a power limit of 50% is considered.
Columns 4 and 5 show the results of Algorithm 1 using the
dedicated-path approach presented in Section V, where only
nonpreemptive tests are allowed. Columns 6 and 7 show the test
application time when both nonpreemptive and preemptive tests
exist, using Algorithm 2, i.e., the improved heuristic proposed
in Section VI-C. Preemptive and nonpreemptive test sessions

COTA AND LIU: CONSTRAINT-DRIVEN TEST SCHEDULING FOR NoC-BASED SYSTEMS

TABLE 1
TEST-SCHEDULING RESULT FOR d695 WITH POWER CONSTRAINTS
Base case Algorithm 1 Algorithm 2
INo powen50% PowerNo power}50% PowerNo power50% Power]
of /Os| limit limit limit limit limit limit
2/2 26012 27087 19909 19909 19128 19936
(-23.5%)| (-26.5%) ((-26.5%)| (-26.4%)
3/3 20753 20733 14373 16092 16286 16422
(-30.7%)| (-22.4%) ((-21.5%)]| (-20.8%)
4/4 14785 17623 10472 11963 10582 12917
(-29.2%)| (-32.1%) ((-28.4%)| (-26.7%)
TABLE 1I
TEST-SCHEDULING RESULT FOR p22810 WITH POWER CONSTRAINTS
Base case Algorithm 1 Algorithm 2
INo power50% PowerNo powen50% PowerNo power50% Power
of I/Os| limit limit limit limit limit limit
2/2 | 315708 | 315708 | 285911 | 285911 | 277494 | 277494
(-9.4%) | (-9.4%) |(-12.1%)| (-12.1%)
3/3 1222432 | 224411 | 199361 | 199361 | 207852 | 207852
(-10.4%)| (-11.2%) | (-6.6%) | (-6.6%)
4/4 | 170999 | 177330 | 140047 | 140047 | 148201 | 154322
(-18.1%)| (-21.0%) |(-13.3%)| (-13%)
TABLE III
TEST-SCHEDULING RESULT FOR p93791 WITH POWER CONSTRAINTS
Base case Algorithm 1 Algorithm 2
INo powenS0% PowerNo powen50% PowernNo power50% Power]
#of [/Os limit limit limit limit limit limit
2/2 1639443 | 639443 | 617115 | 617115 | 655123 | 655123
(-3.5%) | (-3.5%) |(+2.4%) | (+2.4%)
3/3 | 475311 | 470446 | 420459 | 420459 | 458397 | 458397
(-11.5%)| (-10.6%) | (-3.6%) | (-2.6%)
4/4 | 372615 | 366892 | 343312 | 343312 | 351102 | 343389
(-7.8%) | (-6.4%) | (-5.7%) | (-6.4%)

are chosen arbitrarily. In addition, Columns 4-7 present the
corresponding test-time reduction in percentage compared to
Columns 2 to 3, respectively.

It can be observed, from Columns 2 to 5, that Algorithm 1 is
more efficient than the base-case algorithm using packet-based
routing. A test-time reduction from 3% to 30% is achieved even
under power constraints. This can be explained from the aspects
of both resource conflict and solution space, as discussed in
Section V-A. However, we note that if more computational
power is available or more simulation time is allowed, the
base case can search a larger portion of the solution space and
may possibly yield shorter test time. This is because the base-

2475

TABLE 1V
TEST-SCHEDULING RESULT FOR d695 WITH VARIOUS
CONSTRAINTS USING ALGORITHM 1

With | BIST and BIST, precedence,
of I/Os | Algorithm 1 |BIST | precedence | and 50% power limit
2/2 19909 0567 19571 19571
3/3 14373 |15179] 14589 14589
4/4 10410 [10934| 10257 10123
TABLE V

TEST-SCHEDULING RESULT FOR p22810 WITH VARIOUS
CONSTRAINTS USING ALGORITHM 1

With | BIST and | BIST, precedence,
of I/Os| Algorithm 1| BIST |precedence | and 50% power limit
2/2 290080 2850106 1698115 1698115
3/3 199361 [1542591 1595492 1595492
4/4 140047 [1498765 1563397 1563397
TABLE VI

TEST-SCHEDULING RESULT FOR p93791 WITH VARIOUS
CONSTRAINTS USING ALGORITHM 1

With | BIST and | BIST, precedence,
of [/Os| Algorithm 1| BIST |precedence | and 50% power limit
2/2 486156 [7009102| 5873046 5873046
3/3 486152 3937061 4070465 4070465
4/4 344343 3035193 3024979 3024979

case algorithm provides a higher level of flexibility on packet
scheduling than Algorithm 1, which cannot handle individual
packet. We also note that there is a permutation on I/O pairs
in Algorithms 1 and 2, which is not available in the base
case. This permutation also makes a significant contribution
to the exploration of solutions space, since we have found in
experiments that varying the assignments of packets to I/O pairs
can cause dramatic change on the test time.

For systems with both preemptive and nonpreemptive tests,
we expect that Algorithm 2 using the proposed improved
heuristic can lead to test application time between those given
by the base case and Algorithm 1. This is intuitive because the
improved heuristic is a combination of the packet-based routing
and dedicated-path routing. The expectation is corroborated by
the results shown in Columns 6 and 7. We observe that in all the
cases, Algorithm 2 yields a shorter test application time than
the base case. In most cases, the time is slightly longer than that
given by Algorithm 1. However, in some cases, it yields even
further reduction on test application time than Algorithm 1,
indicating that a better solution could be potentially reached due
to the higher flexibility offered by Algorithm 2.

It can also be observed that adding a power constraint can
generally cause the increase on test application time. If the
constraint is loose, however, test time may not be affected, as
shown in some of the cases in the tables.

Tables IV-VI present the results when BISTed sessions,
precedence rules, and power constraints are considered in

2476

TABLE VII
TEST-SCHEDULING RESULT FOR d695 WITH VARIOUS
CONSTRAINTS USING ALGORITHM 2

With | BIST and | BIST, precedence,
of 1/0s | Algorithm 2 |BIST | precedence | and 50% power limit
2/2 19128 20049 19928 20001
3/3 16286 |15034 14889 14802
4/4 10582 |10574) 10621 11082
TABLE VIII

TEST-SCHEDULING RESULT FOR p22810 WITH VARIOUS
CONSTRAINTS USING ALGORITHM 2

With | BIST and | BIST, precedence,
of 1/Os| Algorithm 2| BIST |precedence | and 50% power limit
2/2 277494 |1584729| 1731596 1731596
3/3 207852 |1492644| 1604805 1604805
4/4 148201 [1472733| 1555656 1555656
TABLE IX

TEST-SCHEDULING RESULT FOR p93791 WITH VARIOUS
CONSTRAINTS USING ALGORITHM 2

With | BIST and | BIST, precedence,
of 1/0g Algorithm 2 | BIST | precedence | and 50% power limit
2/2 655123 5821302 5886746 5886746
3/3 458397 [3973691| 4103232 4103232
4/4 351102 [3040505] 3078347 3078347

Algorithm 1. Tables VII-IX present the results when BISTed
sessions, precedence rules, and power constraints are consid-
ered in Algorithm 2. For d695, we assume that less than 1 k
random test vectors are generated for BIST sessions. While for
other larger benchmarks, we assume that each BIST session
consists of 128 k random vectors. Column 1 gives the number
of I/O ports. Column 2 gives the test application time using
Algorithm 2 for both preemptive and nonpreemptive tests
without any constraint, as listed in Column 6 of Tables I-III.
Column 3 shows the results when some BISTed sessions with
shared BIST engines are arbitrarily added to the test. The
results in Column 4 show the impact of adding precedence
rules among test sessions, and Column 5 presents the results
when a 50% power limit is added on top of BIST sessions and
precedence constraints.

When these constraints are considered, it can be seen that
test application time is in most cases increased. For p22810 and
p93791, the increase on test time is primarily caused by the long
BIST sessions, which are dominant compared to the external
test sessions. The inclusion of precedence and power con-
straints usually causes an increase on the test time. However,
in some cases, they have indeed led to a test-time reduction.
This is because imposing the precedence and power constraints
can cause changes on schedule, e.g., different selection of cores,
interfaces or test patterns, etc., which could potentially yield a
better solution. Also, note that in many cases, the inclusion of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

precedence constraints has led to less power dissipation, and the
power constraints are automatically met, hence, adding power
constraints has not impact on the results.

Finally, we examine the performance of the two algorithms
under a more accurate power model to further explore and
explain the flexibility provided by Algorithm 2. Therefore, far
in the experiments, we assume that a core consumes the same
amount of power under either preemptive or nonpreemptive
testing. However, a more realistic model should consider that
the nonpreemptive testing actually consumes more power than
the preemptive testing, since the latter spreads over a longer
period of time than the former while the total energy of testing
a core is fixed.

We take this into account in the experiments presented in
Table X. As shown in the previous tables, the “base case” is
still the preemptive algorithm where all cores in the system
are preemptive, hence, we omit those results in this table. We
also assume the same system power limit. Since Algorithm 1
uses nonpreemptive testing for all cores, the corresponding
power consumption will increase compared to the base case.
For Algorithm 2, only the cores with nonpreemptive tests have
an increase in the power consumption. In Table X, we show the
scheduling results with only power constraints (Columns 3, 5),
and with power, BIST, and precedence constraints (Columns 4,
6) for the two algorithms, respectively.

For d695, we assume an increase of 20% on the power
consumption of nonpreemptive cores. It can be observed that
Algorithm 2 generates better results in two cases out of three,
with only power constraint. This is because out of the ten cores
in this system, five are using preemptive tests that yield less
power consumption compared to the Algorithm 1 where all ten
cores use nonpreemptive testing. When BIST and precedence
constraints are added, however, Algorithm 2 is outperformed
in two cases. This is due to the fact that BIST tests are
nonpreemptive, which make the nonpreemptive tests dominant
in the system. Thus, the advantage of less power consumption
from preemptive cores using Algorithm 2 is less noticeable.

For systems p22810 and p93791, we assume an increase of
40% on the power consumption of the nonpreemptive cores
over the preemptive cores, to account for the higher level of pre-
emption of the larger cores, compared to d695. Similar results
can be observed: Algorithm 2 leads to shorter test time when
only power constraint is considered, but Algorithm 1 does better
when BIST tests are added. Note that both systems contain
“parent” cores, which consist of lower level “child” cores, and
all these cores are assumed to be nonpreemptive. Therefore, in
these two systems, the nonpreemptive cores dominate.

Note that the above results indicate that Algorithm 2 is more
flexible than Algorithm 1. It allows the designer to determine
the test of each core, either preemptive or nonpreemptive, based
on its power consumption and other constraints, to yield a more
optimized test. This flexibility can lead to a less test time in
many cases, as shown in the experimental results.

VIII. CONCLUSION

This paper has proposed a comprehensive test-scheduling ap-
proach for embedded core-based systems in a NoC architecture.

COTA AND LIU: CONSTRAINT-DRIVEN TEST SCHEDULING FOR NoC-BASED SYSTEMS

2477

TABLE X
RESULTS WITH CONSTRAINTS USING NEW POWER MODEL
Algorithm 1 Algorithm 2
With power only | With BIST&precedence | With power only | With BIST&precedence

2/2 20526 19571 19395 20050

d695 3/3 16071 15179 14273 14526

4/4 13541 10754 13694 11346
2/2 280017 1698115 277494 1731596
p22810 | 3/3 206975 1595492 198237 1604805
4/4 165945 1564801 145794 1555656
2/2 626059 6130239 649327 6164302
p93791 | 3/3 423344 4257413 440173 4304847
4/4 345599 3024979 336125 3078347

A dedicated-path approach was first proposed to target the cores
that do not allow preemptive testing. The problem of optimal
test scheduling using the dedicated-path approach was proved
as NP-complete, and a heuristic was presented. The scheduling
approach was then improved by incorporating both preemptive
and nonpreemptive tests to handle the real-world problems.
Finally, BIST test session, precedence, and power constraints
were included in scheduling to deliver a comprehensive and
practical test solution for NoC-based system. Experimental
results on ITC’02 benchmarks have shown the effectiveness of
the proposed solution.

REFERENCES

[1] J. D. Ullman, “Complexity of sequencing problems,” in Computer and
Job/shop Scheduling Theory. New York: Wiley, 1976, pp. 139-164.

[2] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: Freeman, 1979.

[3] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An Engi-
neering Approach. Los Alamitos, CA: IEEE Computer Soc., 1997.

[4] S. H. Gerez, Algorithms for VLSI Design Automation. Chichester, U.K.:
Wiley, 1998.

[5] P. Harrod, “Testing reusable IP-A case study,” in Proc. Int. Test Conf.,
1999, pp. 493-498.

[6] K. Chakrabarty, “Test scheduling for core-based systems using mixed-
integer linear programming,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 19, no. 10, pp. 1163-1174, Oct. 2000.

[7] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-
switched interconnections,” in Proc. Design, Autom. Test Eur., 2000,
pp. 250-256.

[8] W. . Dally and B. Towles, “Route packets, not wires: On-Chip intercon-
nection networks,” in Proc. Des. Autom. Conf., 2001, pp. 684—689.

[9] M. Nahvi and A. Ivanov, “A packet switching communication-based test

access mechanism for system chips,” in Proc. IEEE Eur. Test Workshop,

2001, pp. 81-86.

C. Aktouf, “A complete strategy for testing an on-chip multiproces-

sor architecture,” IEEE Des. Test Comput., vol. 19, no. 1, pp. 18-28,

Jan. 2002.

S. Basu, I. Sengupta, D. R. Chowdhury, and S. Bhawmik, “An integrated

approach to testing embedded cores and interconnects using test access

mechanism (TAM) switch,” J. Electron. Testing: Theory Appl., vol. 18,

no. 4/5, pp. 475-485, Aug.—Oct. 2002.

[12] L. Benini and G. D. Micheli, “Networks on chips: A new SoC paradigm,”
1IEEE Comput., vol. 35, no. 1, pp. 70-78, Jan. 2002.

[13] E. Cota, L. Carro, A. Orailoglu, and M. Lubaszewski, “Test planning and
design space exploration in a core-based environment,” in Proc. Design,
Autom. Test Eur., 2002, pp. 478-485.

[14] M. Benabdenbi, W. Maroufi, and M. Marzouki, “CAS-BUS: A test ac-
cess mechanism and a toolbox environment for core-based system chip

[10]

(1]

testing,” J. Electron. Testing: Theory Appl., vol. 18, no. 4/5, pp. 455-473,
Aug. 2002.

[15] S. Goel and E. Marinissen, “Cluster-based test architecture design for
system-on-chip,” in Proc. IEEE VLSI Test Symp., 2002, pp. 259-264.

[16] ——, “Effective and efficient test architecture design for SoCs,” in Proc.
Int. Test Conf., 2002, pp. 529-538.

[17] Y. Huang et al., “Optimal core wrapper width selection and SoC test
scheduling based on 3-D bin packing algorithm,” in Proc. Int. Test Conf.,
2002, pp. 74-82.

[18] V.Iyengar and K. Chakrabarty, “Test wrapper and test access mechanism
co-optimization for system-on-chip,” J. Electron. Testing: Theory Appl.,
vol. 18, no. 2, pp. 213-230, Apr. 2002.

[19] ——, “System-on-a-chip test scheduling with precedence relationships,
preemption, and power constraints,” [EEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 21, no. 9, pp. 1088-1094, Sep. 2002.

[20] S. Koranne, “Formulating SoC test scheduling as a network transporta-
tion problem,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 21, no. 12, pp. 1517-1525, Dec. 2002.

[21] S. Koranne and V. Iyengar, “On the use of k-tuples for SoC test schedule
representation,” in Proc. Int. Test Conf., 2002, pp. 539-548.

[22] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A set of benchmarks
for modular testing of SoCs,” in Proc. Int. Test Conf., 2002, pp. 521-528.

[23] C. Zeferino, M. Kreutz, L. Carro, and A. Susin, “A study on communi-
cation issues for systems-on-chip,” in Proc. Symp. Integr. Circuits Syst.
Des., 2002, pp. 121-126.

[24] E. Cota, C. Zeferino, M. Kreutz, L. Carro, M. Lubaszewski, and A. Susin,
“The impact of NoC reuse on the testing of core-based systems,” in Proc.
IEEE VLSI Test Symp., 2003, pp. 128-133.

[25] W. Zou, S. Reddy, I. Pomeranz, and Y. Huang, “SoC test scheduling using
simulated annealing,” in Proc. IEEE VLSI Test Symp., 2003, pp. 325-330.

[26] B. Vermeulen, J. Dielissen, K. Goossens, and C. Ciordas, “Bringing com-
munication networks on a chip: Test and verification implications,” IEEE
Commun. Mag., vol. 41, no. 9, pp. 74-81, Sep. 2003.

[27] C.Zeferino and A. Susin, “SoCIN: A parametric and scalable network-on-
chip,” in Proc. Symp. Integr. Circuits and Syst. Des., 2003, pp. 121-126.

[28] A. Bona, V. Zaccaria, and R. Zafalon, “System level power modeling and
simulation of high-end industrial network-on-chip,” in Proc. Des., Autom.
Test Eur., 2004, pp. 318-323.

[29] E. Cota, L. Carro, and M. Lubaszewski, “Reusing an on-chip network for
the test of core-based systems,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 9, no. 4, pp. 471499, Oct. 2004.

[30] M. Nahvi and A. Ivanov, “Indirect test architecture for SoC testing,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 7,
pp. 1128-1142, Jul. 2004.

[31] C.Suand C. Wu, “A graph-based approach to power-constrained SoC test
scheduling,” J. Electron. Testing: Theory Appl., vol. 20, no. 1, pp. 45-60,
Feb. 2004.

[32] C.Liu, K. Veeraraghavan, and V. Iyengar, “Thermal-aware test scheduling
and hot spot temperature minimization for core-based systems,” in Proc.
Int. Symp. Defect Fault Tolerance VLSI Syst., 2005, pp. 552-560.

[33] E. Tafaj, P. Rosinger, and B. Al-Hashimi, “Improving thermal-safe
test scheduling for core-based system-on-chip using shift frequency
scaling,” in Proc. Int. Symp. Defect Fault Tolerance VLSI Syst., 2005,
pp. 544-551.

2478 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Erika Cota (S’01-A’03-M’04) received the B.S.
degree in computer science from the Universidade
Federal de Minas Gerais, Belo Horizonte, Brazil, in
1994, and the M.S. and Ph.D. degrees in computer
science from Universidade Federal do Rio Grande
do Sul, Porto Alegre, Brazil, in 1997 and 2003,
respectively.

She is currently an Adjunct Professor with the
Instituto de Informatica of Universidade Federal do
Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,
where she participates in the Group of Test and
Reliability of Integrated Systems and in the Embedded Systems Laboratory.
She has been working in the test domain since 1994 and has published on
the topics of analog and mixed-signal testing, BIST, system-on-chip testing
planning, and network-on-chip (NoC)-based testing. Her research interests
include the test and design for test of hardware and software systems, test of
embedded systems, test planning, and fault tolerance of integrated systems.

Chunsheng Liu (S’00-M’03) received the B.S.
and M.S. degrees in electronic engineering from
Tsinghua University, Beijing, China, in 1997 and
2000, respectively, and the Ph.D. degree in electrical
and computer engineering from Duke University,
Durham, NC, in 2003.

He is currently an Assistant Professor of computer
and electronics engineering with the University of
Nebraska-Lincoln, Lincoln, NE. His research inter-
ests include very-large-scale-integration design, test-
ing, and fault diagnosis. He is currently working in

the areas of NoC design and testing.
Dr. Liu is a member of Association for Computing Machinery (ACM) and
the ACM Special Interest Group on Design Automation.

