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Abstract—Transformations using retiming and resynthesis op-
erations are the most important and practical (if not the only)
techniques used in optimizing synchronous hardware systems.
Although these transformations have been studied extensively for
over a decade, questions about their optimization capability and
verification complexity are not answered fully. Resolving these
questions may be crucial in developing more effective synthesis
and verification algorithms. This paper settles the above two
open problems. The optimization potential is resolved through a
constructive algorithm which determines if two given finite state
machines (FSMs) are transformable to each other via retiming
and resynthesis operations. Verifying the equivalence of two FSMs
under such transformations, when the history of iterative trans-
formation is unknown, is proved to be polynomial-space-complete
and hence just as hard as general equivalence checking, contrary
to a common belief. As a result, we advocate a conservative
design methodology for the optimization of synchronous hard-
ware systems to ameliorate verifiability. Our analysis reveals some
properties about initializing FSMs transformed under retiming
and resynthesis. On the positive side, a lag-independent bound is
established on the length increase of initialization sequences for
FSMs under retiming. It allows a simpler incremental construc-
tion of initialization sequences compared to prior approaches.
On the negative side, we show that there is no analogous trans-
formation-independent bound when resynthesis and retiming are
iterated. Nonetheless, an algorithm computing the exact length
increase is presented.

Index Terms—Computational complexity, equivalence verifica-
tion, finite state machine (FSM), initialization sequence, resyn-
thesis, retiming.

I. INTRODUCTION

R ETIMING [9], [10] is an elementary yet effective tech-
nique in optimizing synchronous hardware systems. By

simply repositioning registers, it is capable of rescheduling
computation tasks in an optimal way subject to some design
criteria. As both an advantage and a disadvantage, retiming pre-
serves the circuit structure of the system under consideration.
It is an advantage in that it supports incremental engineering
change with good predictability and a disadvantage in that
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the optimization capability is somewhat limited. Therefore,
resynthesis [1], [13], [14] was proposed to be combined with
retiming, allowing modification of circuit structures. This com-
bination of retiming and resynthesis certainly extends the opti-
mization power of retiming, but to what extent remains an open
problem, even though some notable progress has been made
since [13], e.g., [18], [19] and [25]. Fully resolving this problem
is crucial in understanding the complexity of verifying the
equivalence of systems transformed by retiming and resynthesis
and in constructing correct initialization sequences. In fact, de-
spite its effectiveness, the transformation of retiming and resyn-
thesis is not widely used in hardware synthesis flows due to the
verification hindrance and the initialization problem. Progress
in these areas could enhance the practicality and application of
retiming and resynthesis, and advance the development of more
effective synthesis and verification algorithms.

This paper tackles three main problems regarding retiming
and resynthesis.

1) Optimization power:
What is the transformation power of retiming and

resynthesis? How can we tell if two synchronous systems
are transformable to each other with retiming and resyn-
thesis operations?

2) Verification complexity:
What is the computational complexity of verifying if

two synchronous systems are equivalent under retiming
and resynthesis?

3) Initialization:
How does the transformation of retiming and resynthe-

sis affect the initialization of a synchronous system? How
can we correct initialization sequences?

Our main results include the following.

1) Characterize constructively the transformation power of
retiming and resynthesis (Section III).

2) Prove the polynomial space (PSPACE)-completeness of
verifying the equivalence of systems transformed by re-
timing and resynthesis operations when the transforma-
tion history is lost (Section IV).

3) Demonstrate the effects of retiming and resynthesis
on the initialization sequences of synchronous systems.
Present an algorithm correcting initialization sequences
(Section V).

This paper is organized as follows. After Section II intro-
duces some preliminaries and notation, our main results are
presented in Sections III–V. In Section VI, a closer comparison
with prior work is detailed. Section VII concludes this paper
and outlines some future research directions.
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II. PRELIMINARIES

In this paper, to avoid later complications1 we shall not
restrict ourselves to binary variables and Boolean functions.
Thus, we assume that variables can take values from arbitrary
finite domains, and similarly functions can have arbitrary finite
domains and codomains. When domains and codomains are
immaterial in the discussion, we shall omit specifying them.
We introduce the following notational conventions. Let V1

be a set of variables. Notation [[V1]] represents the set of all
possible valuations over V1. Let V2 ⊆ V1. For x ∈ [[V1]], we use
x[V2] ∈ [[V2]] to denote the valuation over variables V2 which
agrees with x on V2. For instance, let V1 = {v1, v2, v3} and
V2 = {v2, v3} be two sets of Boolean variables. For valuations
x=(v1 =0, v2 =1, v3 =0) and y = (v1 = 1, v2 = 1, v3 = 0)
over V1, we have x[V2] = y[V2] = (v2 = 1, v3 = 0).

A. Synchronous Hardware Systems

Based on [9], a syntactical definition of synchronous hard-
ware systems can be formulated as follows. A hardware system
is abstracted as a directed graph, called a communication graph,
G = (V,E) with typed vertices V and weighted edges E.
Every vertex v ∈ V represents either the environment or a
functional element. The vertex representing the environment is
the host, which is of type undefined; a vertex is of type �f if
the functional element it represents is of function �f (which can
be a multiple-output function consisting of f1, f2, . . .). Every
edge e〈w〉 = (u, v)〈w〉 ∈ E with a nonnegative integer-valued
weight w corresponds to the interconnection from vertex u to
vertex v interleaved by w state-holding elements (or registers).
From the viewpoint of hardware systems, any component in a
communication graph disconnected from the host is redundant.
Hence, in the sequel, we assume that a communication graph
is a single connected component. A hardware system is syn-
chronous if, in its corresponding communication graph, every
cycle contains at least one positive-weighted edge. This paper is
concerned with synchronous hardware systems whose registers
are all triggered by the same clock ticks. Moreover, according
to the initialization mechanism, a register can be reset either
explicitly or implicitly. For registers with explicit reset, their
initial values are determined by some reset circuitry when the
system is powered up. In contrast, for registers with implicit
reset, their initial values can be arbitrary, but can be brought to
an identified set of states (i.e., the set of initial states)2 by apply-
ing some input sequences, the so-called initialization (or reset)
sequences [17]. It turns out that explicit-reset registers can
be replaced with implicit-reset ones plus some reset circuitry
[14], [21]. Doing so admits a more systematic treatment
of retiming synchronous hardware systems because retim-
ing explicit-reset registers needs special attention to maintain
equivalent initial states. Without loss of generality, this paper
assumes that all registers have implicit reset. In addition, we are

1This complication comes from encoding states in binary codes. When the
code size is strictly larger than the state size, the encoding may introduce an
additional unreachable state space. It complicates our discussion especially
when the initialization of synchronous hardware systems is concerned.

2When referring to “initial states,” we shall mean the starting states of a
system after initialization.

concerned with initializable systems, that is, there exist input
sequences which bring the systems from any state to some set
of designated initial states.

The semantical interpretation of synchronous hardware sys-
tems can be modeled as finite state machines (FSMs). An FSM
M is a tuple (Q, I,Σ,Ω, �δ, �λ), where Q is a finite set of states,
I ⊆ Q is the set of initial states, Σ and Ω are the input and
output alphabets, respectively, and �δ : Σ ×Q → Q (respec-
tively, �λ : Σ ×Q → Ω) is the transition function (respectively,
output function). Let VS, VI, and VO be the sets of variables
that encode the states, input alphabet, and output alphabet,
respectively. Then, Q = [[VS]], Σ = [[VI]], and Ω = [[VO]]. As a
convention, for a (current-)state variable s, its primed version s′

denotes the corresponding next-state variable.
To construct an FSM from a communication graph

G = (V,E), for the sake of convenience we build another com-
munication graph G′ = (V ′, E′) from G as follows. Initially,
let V ′ = V and E ′ = {e〈w〉 ∈ E|w = 0, 1}. For each
(u1, u2)〈w〉 ∈ E with w ≥ 2, we introduce w − 1 new vertices
of type identity mapping to V ′, say {v1, . . . , vw−1}, and add w
edges {(u1, v1)〈1〉, (v1, v2)〈1〉, . . . , (vw−2, vw−1)〈1〉, (vw−1,
u2)〈1〉} to E′. With the so-constructed G′, we can associate
a current-state variable and a next-state variable to each
(u, v)〈1〉 ∈ E′ to denote the output and input of the register
on this edge, respectively. Let the transitive fanin cone rooted
at a nonhost vertex v ∈ V ′, denoted as TFI(v), be the set of
nonhost vertices u ∈ V ′ such that either u = v or there exists
{(u, v1)〈0〉, (v1, v2)〈0〉, . . . , (vi−1, vi)〈0〉, (vi, v)〈0〉} ⊆ E ′.
The transition function of a state variable s is the overall
function defined by the vertices in TFI(t) for t the fanin vertex
of the register associated with state variable s. Similarly, an
output function is the overall function defined by the vertices
in TFI(t) for t the fanin vertex of the corresponding output
variable. Since any circuit implementing an FSM can be
abstracted as a communication graph, a communication graph
can be seen as a realization of an FSM.

The behavior of an FSM can be described in another graphi-
cal representation, the so-called state diagram [8] or state tran-
sition graph (STG). The STG Γ = (N,A) of an FSM (Q, I,Σ,

Ω, �δ, �λ) has nodes N representing states Q and labeled arcs
A representing transitions specified by �δ and �λ. A detailed
construction can be found, e.g., in [8].

We define a strong form of state equivalence which will
govern the study of the transformation power of retiming.
Definition 1: Given an FSM M = (Q, I,Σ,Ω, �δ, �λ), two

states q1, q2 ∈ Q are immediately equivalent,3 denoted as
q1

∼= q2, if �δ(σ, q1) = �δ(σ, q2) and �λ(σ, q1) = �λ(σ, q2) for any
σ ∈ Σ.

Notice that ∼= is reflexive, symmetric, and transitive, and
thus is an equivalence relation. Also, note that the immediate
equivalence differs from the standard state equivalence [8],
which says that two states of an FSM are equivalent if starting
from either of the two states the FSM is indistinguishable in its
input–output behavior.

3The definition of immediate equivalence corresponds to the “1-step equiva-
lence” definition of [18]. Since the latter is confusing with k-step distinguisha-
bility [6] of states in equivalence checking, we rename it differently.
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Fig. 1. In the STG (where labels on edges are omitted), states {q0, q1}
are dangling, and all others are nondangling. On the other hand, states
{q2, q3, q5, q6} are in strongly connected components. Therefore, state q4 is
nondangling but not in a strongly connected component.

Also, we define dangling states inductively as follows.
Definition 2: Given an FSM, a state is dangling if either

it has no predecessor state or all of its predecessor states are
dangling. All other states are nondangling.

Fig. 1 shows an example, where states {q0, q1} are dangling
and all others are nondangling. By the previous inductive defi-
nition, we know that states in a strongly connected component4

of an STG specified by an FSM are nondangling. However,
nondangling states need not to be in strongly connected com-
ponents as illustrated in Fig. 1.

The introduced three representations, communication
graphs, FSMs, and STGs, are used throughout this paper to
represent synchronous hardware systems. Although these
representations are interchangeable, their succinctness in
representing sequential systems may differ and affect the
measures in complexity analysis. To represent synchronous
hardware systems with FSMs, the input size is measured
mainly by the length of the formulas of transition and output
functions. For the communication graph representation, the
input size is measured by the length of representing typed
vertices and weighted edges. Since the translation between an
FSM and a communication graph is often linear, these two
representations of synchronous hardware systems are of similar
succinctness. On the other hand, STGs are graphs whose sizes
are measured by the number of vertices (states) and edges
(transitions). Translating an FSM or a communication graph
into an STG suffers the so-called state explosion problem since
the number of states is exponential in the number of state
variables. Therefore, STGs are not efficient in representing
synchronous hardware systems. However, they provide a
friendly data structure to conceptualize the transformation
power of retiming and resynthesis. In the sequel, complexity
analysis may be conducted over different representations. It
is important to notice the exponential gap between the STG
representation and the other two representations.

B. Retiming

A retiming operation over a synchronous hardware system
consists of a series of atomic moves of registers across func-
tional elements in either a forward or backward direction. The

4A component (or an induced subgraph) of a graph is strongly connected if
any (ordered or unordered) pair of vertices are connected with some path.

Fig. 2. Let v be a vertex in a communication graph and boxes on edges
be registers. In addition, registers to be added (respectively deleted) due to
retiming are in solid (respectively dotted) boxes. (a) An atomic backward move
of registers from the output edges of v to the input edges. The corresponding
lag of v is +1. (b) An atomic forward move of registers from the input edges
of v to the output edges. The corresponding lag of v is −1.

relocation of registers is crucial in exploring optimal synchro-
nous hardware systems with respect to various design criteria,
such as area, performance, power, etc. As is not our focus, the
exposition of retiming in the optimization perspective is omitted
in this paper. Interested readers are referred to [10]. Formally
speaking, retiming can be described with a retime function [9]
over a communication graph as follows.
Definition 3: Given a communication graph G = (V,E), a

retime function ρ : V → Z maps each vertex to an integer,
called the lag of the vertex, such that w + ρ(v) − ρ(u) ≥ 0 for
any edge (u, v)〈w〉 ∈ E. If ρ(host) = 0, ρ is called normal-
ized; otherwise, ρ is unnormalized.

Given a communication graph G = (V,E), any retime func-
tion ρ over G uniquely determines a “legally” retimed com-
munication graph G† = (V,E†) in which (u, v)〈w〉 ∈ E if,
and only if, (u, v)〈w + ρ(v) − ρ(u)〉 ∈ E†. By symmetry, the
retime function −ρ reverses the retiming from G† to G. Fig. 2
shows the retime functions of a vertex v in some communi-
cation graph corresponding to atomic backward and forward
moves of registers.

Retime functions can be naturally classified by calibrating
their equivalences as follows.
Definition 4: Given a communication graph G, two retime

functions ρ1 and ρ2 are equivalent if they result in the same
retimed communication graph.
Proposition 1: Given a retime function ρ1 with respect to a

communication graph, let ρ2 = ρ1 − c for some constant c ∈ Z.
Then, ρ1 and ρ2 are equivalent.

Hence, any retime function can be normalized. This equiva-
lence relation, which will be useful in the study of the increase
of initialization sequences due to retiming, induces a partition
over retime functions. Equivalent retime functions (with respect
to some communication graph) form an equivalence class.
Proposition 2: Given a communication graph G, any equiv-

alence class of retime functions is of infinite size; any equiva-
lence class of normalized retime functions is of size either one
or infinity (only when G contains components disconnected
from the host). Furthermore, any equivalence class of retime
functions has a normalized member.

C. Resynthesis

A resynthesis operation over a function f rewrites the
syntactical formula representation of f while maintaining its
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Fig. 3. Let v be a vertex of type (f1, . . . , fi) in some communication graph.
The registers on the i output edges of v are to be retimed backward to the j
input edges. Before retiming, variables {s1, . . . , si} and {s′1, . . . , s′i} are the
original current-state and next-state variables, respectively. After retiming, the
input variables {t1, . . . , tj} of v become the new current-state variables.

semantical functionality. Clearly, the set of all possible rewrites
is infinite (but countable, namely, with the same cardinality as
the set N of natural numbers). When a resynthesis operation is
performed upon a synchronous hardware system, we shall mean
that the transition and output functions of the corresponding
FSM are modified in representations but preserved in function-
alities. This modification in representations will be reflected in
the communication graph of the system. Again, such rewrites
are usually subject to some optimization criteria. Since this is
not our focus, the optimization aspects of resynthesis operations
are omitted. See, e.g., [1] for further treatment.

The effects of retiming and resynthesis on a communication
graph G = (V,E) are important for our later development and
worth emphasis. Retiming only alters the weights (i.e., numbers
of registers on edges) of edges E, whereas the vertices and their
connections of G are not affected by retiming. Resynthesis, on
the other hand, can change both the vertices and their connec-
tions. However, since it needs to preserve the functionalities
of transition and output functions, it can only modify a purely
combinational block (i.e., a set of vertices along with the zero-
weight edges connecting them). Therefore, edges E+ ⊆ E with
positive weights remain intact throughout resynthesis while
vertices V and edges E \ E+ can be completely changed.
The optimization capabilities of retiming and resynthesis are
complementary.

III. OPTIMIZATION CAPABILITY

The transformation power of retiming and resynthesis can be
understood best with STGs defined by FSMs. We investigate
how retiming and resynthesis operations can alter STGs.

A. Optimization Power of Retiming

Given a communication graph G = (V,E), we study how
the atomic forward and backward moves of retiming affect the
corresponding FSM M = ([[VS]], I,Σ,Ω, �δ, �λ).

To study the effect of an atomic backward move, consider
a normalized retime function ρ with ρ(v) = 1 for some vertex
v ∈ V as shown in Fig. 3, and ρ(u) = 0 for all u ∈ V \ {v}.
(Because a retiming operation can be decomposed as a se-
ries of atomic moves, analyzing ρ defined above suffices to
demonstrate the effect.) Let VS = {s1, . . . , sn} be the state
variables of M. Then, according to the atomic backward

move of retiming, VS can be partitioned into two disjoint
subsets: VS� = {s1, . . . , si}, those changed by retiming, and
VS∗ = {si+1, . . . , sn}, those unchanged. Thus, VS = VS� ∪
VS∗ . Moreover, suppose v is of type �f : [[{t1, . . . , tj}]] →
[[{s′1, . . . , s′i}]], where the valuation of next-state variables s′k is
defined by fk(t1, . . . , tj) for k = 1, . . . , i. Assume that M† =
([[V†

S]], I†,Σ,Ω, �δ†, �λ†) is the FSM after retiming, where state
variables V†

S = VT ∪ VS∗ with VT = {t1, . . . , tj}. For any two
states q†1, q

†
2 ∈ [[V†

S]], if q†1[VS∗ ] = q†2[VS∗ ] and �f(q†1[VT ]) =
�f(q†2[VT ]), then q†1 and q†2 are immediately equivalent. Because
q†1 and q†2 are mapped by �f to the same value on which the
transition and output functions of M† depend, they must have
the same next state and the same output.

Comparing state pairs between M and M†, we see that there
always exists a relation R ⊆ [[VS]] × [[V†

S]] such that a state pair
(q, q†) is in R if, and only if, q[VS∗ ] = q†[VS∗ ] and q[VS� ] =
�f(q†[VT ]). For any (q, q†) ∈ R and σ ∈ Σ, the next states
q′ = �δ(σ, q) and q†

′ = �δ†(σ, q†) satisfy q′[VS∗ ] = q†
′[VS∗ ] and

q′[VS� ] = �f(q†′[VT ]), and thus (q′, q†′) ∈ R; also, the valu-
ations of output functions are not affected by the retiming
move since �λ†(σ, q†) = �λ(σ, (q†[VS∗ ], �f(q†[VT ]))) = �λ(σ, q).
Therefore, relation R is closed under state transition, that
is, if (q, q†) ∈ R, then (�δ(σ, q), �δ†(σ, q†)) ∈ R and �λ(σ, q) =
�λ†(σ, q†) for any σ ∈ Σ. Moreover, since �f is a total function,
every state of M† has a corresponding state in M related by
R. It corresponds to the fact that backward moves of retim-
ing cannot increase the length of initialization sequences, the
subject to be discussed in Section V. On the other hand, since
�f may not be a surjective (or an onto) mapping in general, there
may be some state q of M such that ∀x ∈ [[VT ]]. q[VS� ] �= �f(x),
that is, no states can transition to q. In this case, q can be seen
as being annihilated after retiming. To summarize, we give the
following.
Lemma 1: An atomic backward move of retiming can:

1) split a state into multiple immediately equivalent states
and/or 2) annihilate states which have no predecessor states.

With a similar reasoning by reversing the roles of M and
M†, one can show the following.
Lemma 2: An atomic forward move of retiming can:

1) merge multiple immediately equivalent states into a single
state and/or 2) create states which have no predecessor states.
(Similar results of Lemmas 1 and 2 appeared in [19], where the
phenomena of state creation and annihilation were omitted.)

Note that two immediately equivalent states, say q1 and q2,
of an FSM may become not immediately equivalent when
their common successor state splits into multiple states due to
backward retiming. In this case, q1 and q2 may transition to
different successors and become not immediately equivalent. In
contrast, two nonimmediately equivalent states of an FSM may
possibly become immediately equivalent when their successor
states are merged due to forward retiming. Therefore, retiming
may not preserve the state relation of immediate equivalence.
That is, this equivalence relation is not an invariant under
retiming. However, the relation of standard state equivalence
[11] is an invariant even under retiming and resynthesis to be
discussed in Section III-B.
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Fig. 4. Subgraph of a communication graph, where the register can be moved
neither forwardly nor backwardly.

Also, notice that, in a single atomic forward move of
retiming, transitions among the newly created states are
prohibited. In contrast, when a sequence of atomic forward
moves m1, . . . ,mn are performed, the newly created states at
move mi can possibly have predecessor states created in later
moves mi+1, . . . ,mn. Therefore, all the newly created states
not merged with original existing states by immediate equiv-
alence are dangling. However, to be shown in Section V-A,
the transition paths among these dangling states cannot be
arbitrarily long.

Since a retiming operation consists of a series of commu-
tative5 atomic moves, Lemmas 1 and 2 set the fundamental
rules of all possible changes of STGs by retiming. Observe that
a retiming operation is always associated with some structure
(i.e., a communication graph). For a fixed structure, a retiming
operation has limited optimization power because the config-
urations of register positions are finite and confined to the
structure. That is, there may not exist a series of atomic moves
of retiming (over a communication graph) which meet arbitrary
targeting changes on an STG with respect to the manipulations
on immediately equivalent states. In fact, the converses of
Lemmas 1 and 2 are not true (that is, there may not exist atomic
moves of retiming achieving some designated state splitting,
merging, creation, and/or annihilation) since one can design a
communication graph in a way that the register positions are
fixed and thus immediately equivalent states cannot be manip-
ulated as desired. Fig. 4 shows an example where the register
position cannot be changed. Unlike a retiming operation, a
resynthesis operation provides the capability of modifying the
vertices and connections of a communication graph.

B. Optimization Power of Retiming and Resynthesis

A resynthesis operation itself cannot contribute any changes
to the STG of an FSM. However, when combined with retim-
ing, it becomes a handy tool. In essence, the combination of
retiming and resynthesis validates the converse of Lemmas 1
and 2 as will be shown in Theorem 1. Moreover, it determines
the transitions of newly created states due to forward retiming
moves, and thus has decisive effects on initialization sequences
as will be discussed in Section V-B. On the other hand, we shall
mention an important property about retiming and resynthesis
operations.
Lemma 3: Given an FSM, the newly created states (not

existing in the original STG) due to atomic moves of retiming

5This commutativity can be understood from the uniqueness of the final
communication graph regardless of the order of atomic moves. In other words,
for a retime function ρ = ρ1 + · · · + ρi on a communication graph G, the final
register positions are of no differences by applying ρ once to G or by applying
ρ1, . . . , ρi in a sequence of any order to G.

remain dangling throughout iterative retiming and resynthesis
operations if not merged with the original existing states due to
immediate equivalence.

Proof: Prove by induction on the structure of STGs mod-
ified by retiming. Notice that resynthesis is not capable of
modifying an STG but is useful in increasing retiming configu-
rations.

In the base case, there are no newly created states initially.
Thus, no newly created states can become nondangling. In the
inductive case, assume that, before and at the kth iteration of
retiming (and resynthesis), no newly created dangling states
become nondangling if not merged with the original existing
states. Suppose the (k + 1)th iteration is performed. Four cases
induced by retiming need to be analyzed: state annihilation,
creation, merge, and split. However, no dangling states can
become nondangling due to state annihilation and creation. We
only need to focus on state merge and split. For state merge,
merging two dangling immediately equivalent states yields no
nondangling state because the predecessor states of the new
merged state are all dangling. In other words, a state derived
from merging two immediately equivalent states is nondangling
only if at least one of its original two states is nondangling.
However, in the inductive hypothesis, we assume that no newly
created dangling states become nondangling before and at the
kth iteration. The nondangling states must exist in the original
STG. Consequently, no dangling states can become nondan-
gling without merging with the original existing states. For state
split, splitting a state q into multiple immediately equivalent
states q1 and q2 redistributes any incoming edge to q to either
q1 or q2. As a consequence, if q is dangling, then q1 and q2

must be dangling as well because all predecessor states of q
(and thus of q1 and q2) are dangling. That is, no dangling states
can become nondangling due to state split.

Therefore, the newly created states due to retiming remain
dangling throughout iterative retiming and resynthesis opera-
tions if not merged with the original existing states. �
Remark 1: As an orthogonal issue to our discussion on how

retiming and resynthesis can alter the STG of an FSM, the
transformation of retiming and resynthesis was shown [14]
to have the capability of exploiting various state encodings
(or assignments) of an FSM.

Notice that the induced state space of the dangling states
originating from atomic moves of retiming is immaterial in our
paper of the optimization capability of retiming and resynthesis
because an FSM after initialization never reaches such dangling
states. An exact characterization of the optimization power of
retiming and resynthesis is given as follows.
Theorem 1: Ignoring the (unreachable) dangling states cre-

ated due to retiming, two FSMs are transformable to each other
through retiming and resynthesis if, and only if, their STGs
are transformable to each other by a sequence of splitting a
state into multiple immediately equivalent states and of merging
multiple immediately equivalent states into a single state.

Proof: (=⇒) Since resynthesis does not change the tran-
sition functions of an FSM, the proof is immediate from
Lemmas 1 and 2.

(⇐=) Given a target sequence of merging and splitting of
immediately equivalent states, it can be accomplished by a
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Fig. 5. Given an FSM in (a), it can be resynthesized to the one in (b) and then forwardly retimed to the one in (c).

Fig. 6. Given an FSM in (a), it can be resynthesized to the one in (b) and then backwardly retimed to the one in (c).

sequence of retiming and resynthesis. Essentially, each merging
(respectively splitting) of states can be achieved with a resyn-
thesis operation followed by a forward (respectively backward)
retiming operation. To see why, let Σ and Q be the input
alphabet and state set of M, respectively. Without loss of
generality, assume that q1, q2 ∈ Q are immediately equivalent
states to be merged. (Merging more than two states can be
done similarly.) As illustrated in Fig. 5, an resynthesis operation
can rewrite the original transition functions �δ : Σ ×Q → Q
as a composition of two parts, �δ(σ, q) = �∆2(σ, �∆1(q)), where
�∆1 : Q → Q \ {q2} and �∆2 : Σ ×Q \ {q2} → Q. In addition,
�∆1(q2) = q1, and �∆1(q) = q for q �= q2. Retiming registers
forward to the positions in between �∆1 and �∆2 results in a new
state transition function �∆1 ◦ �∆2 ≡ �∆1(�∆2(σ, q)) as shown in
Fig. 5(c). The new transition function in effect merges imme-
diately equivalent states q1 and q2. Notice that the retiming
operation is always possible because the output functions can
be rewritten to depend on Q \ {q2} without affecting the global
behavior of M.

On the other hand, assume q′ ∈ Q is the state to be split into
multiple immediately equivalent states Q†, with Q† ∩Q = ∅.
As illustrated in Fig. 6, an resynthesis operation can again
rewrite the original transition functions �δ as a composition
of two parts, �δ = �∆4 ◦ �∆3, where �∆3 : Σ ×Q → Q† ∪Q \
{q′} and �∆4 : Q† ∪Q \ {q′} → Q. In addition, �∆3(σ, qi) ∈ Q†

for �δ(σ, qi) = q′, and �∆3(σ, qi) = �δ(σ, qi) for �δ(σ, qi) �= q′.
Moreover, �∆4(q†) = q′ for q† ∈ Q† and �∆4(q) = q for q �∈ Q†.
Retiming registers to the positions in between �∆3 and �∆4

results in a new state transition function �∆3(σ, �∆4(q)) as shown
in Fig. 6(c). The new transition function in effect splits q to
Q†. Notice that the retiming is always possible because the
output functions, originally depending on Q, can be rewritten
(by resynthesis) as functions depending on Q† ∪Q \ {q}.

Consequently, any sequence of merging and splitting of
immediately equivalent states is achievable using retiming and
resynthesis operations. �

A similar result of Theorem 1 appeared in [19], where,
however, the optimization power of retiming and resynthesis
was overstated as will be detailed in Section VI. Notice that the
statement of Theorem 1 is not constructive in the sense that no
procedure is given to determine if two FSMs are transformable
to each other under retiming and resynthesis. This weakness
motivates us to study a constructive alternative.

From Theorem 1, one can show that retiming and resynthesis
cannot alter the sequential (input–output) behavior of an FSM
in the induced state subspace consisting of nondangling states.
Corollary 1: Given two FSMs M = (Q, I,Σ,Ω, �δ, �λ) and

M† = (Q†, I†,Σ,Ω, �δ†, �λ†), if M and M† are transformable
to each other through retiming and resynthesis operations, then
there exists a relation R ⊆ Qnd ×Q†

nd, where Qnd and Q†
nd are

the nondangling subsets of Q and Q†, respectively, satisfying:

1) ∀(q, q†) ∈ R, ∀σ ∈ Σ.(�δ(σ, q), �δ†(σ, q†)) ∈ R;
2) ∀(q, q†) ∈ R, ∀σ ∈ Σ.�λ(σ, q) = �λ†(σ, q†).

Proof: Since M and M† are transformable to each other
through retiming and resynthesis, their STGs for nondangling
states can be transformed to each other by state merging and
splitting by Theorem 1. Because the initial state and thus the
reachable states of an implicitly initializable FSM must be
nondangling [17], we can concentrate on nondangling states.
Without loss of generality, assume M is the original FSM to
be transformed to M† through retiming and resynthesis. A
relation R satisfying the two criteria can be constructed below.
Initially, M† = M, let R = {(q, q′)} for any nondangling state
pair q and q′ immediately equivalent in M. (Note that q and q′

need not be distinct states.) In the following iterative updating,
suppose (q, q†1) ∈ R and q†1 is to be split as {q†2, q

†
3}. Then, R is

updated by removing (q, q†1) and adding {(q, q†2), (q, q
†
3)}. On

the other hand, suppose (q, q†4), (q, q
†
5) ∈ R and q†4, q

†
5 are to be

merged as q†6. Then, R is updated by removing {(q, q†4), (q, q
†
5)}
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and adding (q, q†6). The update process terminates when M†

is transformed into the final status (Q†, I†,Σ,Ω, �δ†, �λ†). Since
the so constructed R satisfies the two criteria along the state
merging and splitting transformations, the corollary follows. �

Since the relation R of Corollary 1 is a strict subset of
the general state equivalence relation [11], the input–output
behavior of an FSM in the nondangling state subspace is not
affected under retiming and resynthesis.
Remark 2: Peripheral retiming [14] generalizes standard

retiming in that edges with negative weights are temporarily
allowed. One might ask if this generalization increases the
optimization power of retiming and resynthesis. The answer to
this question is negative as we argue below.

Peripheral retiming and resynthesis work as follows. A pe-
ripheral retiming operation is performed on a communication
graph G = (V,E) such that edges with negative weights are
allowed to exist temporarily. A resynthesis operation is then
performed on the peripheral retimed communication graph,
yielding a new communication graph G† = (V †, E†). To ensure
that edges of negative weights will be recovered to possess
nonnegative weights later, the resynthesis operation needs to
preserve these edges in the modified communication graph. An-
other retiming operation on G†, yielding G‡ = (V †, E‡), must
ensure that all edges E‡ are of nonnegative weights. If the last
step fails, the entire transformation is illegal. We are concerned
with legal transformation only. Observe that the edges with
nonzero weights in E† survive throughout the above operations
(as discussed at the end of Section II). That is, these edges exist
in both E and E‡ as well, except for some weight changes
due to the retiming operations before and after resynthesis.
Valuations on state variables of G (respectively G‡) induce val-
uations on the variables of these edges in G (respectively G‡).
Let Q and Q‡ be the state sets of G and G‡, respectively.
State pairs (q ∈ Q, q‡ ∈ Q‡) yielding the same valuations on
these edges form a state relation of immediate equivalence,
similar to the arguments for Lemma 1. Even iterating peripheral
retiming and resynthesis cannot provide more transformation
power than that specified in Theorem 1. Hence, when combined
with resynthesis, peripheral retiming does not provide more
transformation power than standard retiming.

It is noteworthy that, although in theory peripheral retiming
combined with resynthesis does not increase the transformation
power of standard retiming combined with resynthesis, it is
useful in practice for design optimization.

C. Retiming–Resynthesis Equivalence and
Canonical Representation

Given an FSM, the transformation of retiming and resynthe-
sis operations can rewrite it into a class of equivalent FSMs
(constrained by Theorem 1). We ask if there exists a computable
canonical representative in each such class, and answer this
question affirmatively by presenting a procedure constructing
it. Rather than arguing directly over FSMs in terms of transition
and output functions, we simplify our exposition by arguing
over STGs.

Because retiming and resynthesis operations are reversible,
we know

Fig. 7. Algorithm: Construct quotient graph.

Proposition 3: Given STGs G, G1, and G2. Suppose G1

and G2 are derivable from G using retiming and resynthesis
operations. Then, G1 and G2 are transformable to each other
under retiming and resynthesis.

We say that two FSMs (STGs) are equivalent under retim-
ing and resynthesis if they are transformable to each other
under retiming and resynthesis. Thus, any such equivalence
class is complete in the sense that any member in the class
is transformable to any other member. To derive a canonical
representative of any equivalence class, consider the algorithm
outlined in Fig. 7. Similar to the general state minimization
algorithm [8], the idea is to seek a representative minimized
with respect to the immediate equivalence of states. However,
unlike the least-fixed-point computation of the general state
minimization, the computation in Fig. 7 looks for a greatest
fixed point.6 Given an STG, the algorithm first removes all
the dangling states, and then iteratively merges immediately
equivalent states until no more states can be merged.
Theorem 2: Given an STG G, Algorithm ConstructQuotient-

Graph produces a canonical state-minimized solution, which is
equivalent to G under retiming and resynthesis.

Proof: It is clear that the algorithm always terminates for
finite STGs.

Recall our assumption that FSMs are of implicit reset. Since
dangling states do not affect the normal operation of an FSM
(but affect its initialization), the algorithm can safely remove
the state space induced by the dangling states and consider only
the remaining state space. (See also Proposition 5.)

For the sake of contradiction, assume the algorithm produces
two different (nonisomorphic) quotient graphs G1/ and G2/ for
two given STGs G1 and G2, respectively, which are equivalent
under retiming and resynthesis. Because the algorithm merges
only immediately equivalent states, G1/ and G2/ must also be
equivalent under retiming and resynthesis (but not isomorphic
by assumption). Since G1/ and G2/ are not isomorphic, there
does not exist a bijection (a one-to-one and onto mapping)

6In the fixed-point computation of the general state minimization, there is
initially only one equivalence class, i.e., the universal state set. In the following
iterative computation, the state space is refined monotonically, and thus the
number of equivalence classes increases monotonically. It can be seen as a
least fixed-point computation in the sense that it is analogous to the least
fixed-point computation of reachability analysis, where the reached state set
increases monotonically. However, unlike the general state minimization, the
computation of Fig. 7 looks for a greatest fixed point in the following sense.
Initially, every equivalence class is a singleton set, consisting of one state. Thus,
the number of equivalence classes equals the state size initially. In the iterative
computation, equivalence classes are merged with respect to immediate equiv-
alence, and the number of equivalence classes decreases monotonically.

Authorized licensed use limited to: National Taiwan University. Downloaded on February 4, 2009 at 00:36 from IEEE Xplore.  Restrictions apply.



JIANG AND BRAYTON: RETIMING AND RESYNTHESIS: A COMPLEXITY PERSPECTIVE 2681

between states of G1/ and states of G2/ such that the bijec-
tion preserves immediate equivalence. Two cases need to be
considered. First, there exists an onto but not one-to-one map-
ping from one graph to the other which preserves immediate
equivalence. In this case, not both G1/ and G2/ are maxi-
mally reduced. It contradicts with the assumption that any two
states in a quotient graph cannot be immediately equivalent.
Second, there exists no mapping preserving immediate equiv-
alence. However, from Proposition 3, we know that G1/ is
transformable to G1, then to G2, and finally to G2/. Hence,
a mapping that preserves immediate equivalence must exist
between G1/ and G2/. Again a conflict arises. The theorem
follows. �

For a naïve implementation based on explicit graph enu-
meration, Algorithm ConstructQuotientGraph can be done in
time complexity O(kn2), where k is the size of the input
alphabet and n is the number of states. This complexity can
be obtained from the following analysis. Step 1 of Fig. 7
can be done in O(n2) by iterative removal of states without
predecessor states. More specifically, in each iteration, for
each state of G, if it has no predecessor states, it is removed
from the STG. The process terminates when no more states
can be removed. There are at most n iterations, each of time
complexity O(n). Therefore, the time complexity for Step 1
is of O(n2). On the other hand, Steps 2–4 of Fig. 7 can be
implemented as follows. For i = 1, . . . , n− 1, substitute state
qi for qj (j > i) in G if qi is not substituted before and qi, qj

are immediately equivalent. To analyze the complexity, there
are at most

∑n−1
i=1 (n− i) comparisons for state pairs qi and qj .

The time complexity of each comparison is O(k) for checking
immediate equivalence. The time complexity for Steps 2–4
of Fig. 7 is of O(k

∑n−1
i=1 (n− i)) = O(kn2). Therefore, the

overall time complexity for Algorithm ConstructQuotientGraph
is O(kn2).

Notice that the complexity is exponential when the input is
an FSM, instead of an STG, representation. (We distinguish
between an FSM, a tuple (Q, I,Σ,Ω, �δ, �λ), and its STG. For
an FSM, its behavior is described with transition and output
functions rather than in graph representation. The size (or
complexity measure) of an FSM is in terms of the size of binary
encodings of its transition and output functions. On the other
hand, the size of an STG is in terms of its number of nodes,
i.e., states, and edges, i.e., transitions.) For an implicit symbolic
implementation, the complexity depends heavily on the internal
symbolic representations. If Step 3 in Fig. 7 computes and
merges all immediately equivalent states at once in a breadth-
first-search manner, then the algorithm converges in a minimum
number of iterations.

From the proof of Theorem 2, an algorithm outlined in Fig. 8
can check if two STGs are transformable to each other under
retiming and resynthesis.
Theorem 3: Given two STGs, Algorithm VerifyEquivalence-

UnderRetiming&Resynthesis verifies if they are equivalent un-
der retiming and resynthesis.

Proof: A direct consequence of Theorem 2. �
Notice that the algorithm of Fig. 8 can be modified to

construct retiming and resynthesis steps translating one FSM
M1 to the other M2. For instance, G1 of M1 can be first

Fig. 8. Algorithm: Verify equivalence under retiming and resynthesis.

reduced to the quotient graph, from which we can reverse the
reduction procedure of G2 of M2 and thus bring G1 to G2.
As shown in the proof of Theorem 1, retiming and resynthesis
operations can be derived from these state manipulations.

Observe the specialty that FSMs are deterministic and with
known initial states. Hence, the complexity of the algorithm in
Fig. 8 is the same as that in Fig. 7 since the graph isomorphism
check for such STGs is O(kn), which is not the dominating
factor. With the presented algorithm, checking the equivalence
under retiming and resynthesis is not easier than general equiv-
alence checking. In the following section, we investigate its
intrinsic complexity.

As an example, Fig. 9 shows three STGs (a), (b), and (c).
Their equivalence under retiming and resynthesis can be
checked by Theorem 3. It can be verified that STGs (a) and (b)
are transformable to each other under retiming and resynthesis,
but they are not transformable to STG (c).

IV. VERIFICATION COMPLEXITY

We show some complexity results of verifying if two FSMs
are equivalent under retiming and resynthesis.

A. Verification With Unknown Transformation History

We investigate the complexity of verifying the equivalence
of two FSMs with unknown history of (iterative) retiming and
resynthesis operations.
Theorem 4: Determining if two FSMs are equivalent under

iterative retiming and resynthesis with unknown transformation
history is PSPACE-complete.

Proof: Certainly Algorithm VerifyEquivalenceUnderRe-
timing&Resynthesis can be performed in PSPACE (even with
inputs in FSM representations).

On the other hand, we need to reduce a PSPACE-complete
problem to our problem at hand. The following problem is
chosen.

Given a total function f : {1, . . . , n} → {1, . . . , n}, is
there a composition of f such that, by composing f k
times, fk(1) = n?
In other words, the problem asks if n is “reachable” from

1 through f . It was shown [7] to be deterministic7 LOGSPACE-
complete in the unary representation and, thus, PSPACE-
complete in the binary representation [16]. We show that the

7It is a well-known result by Savitch [20] that deterministic and nondeter-
ministic space complexities coincide.
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Fig. 9. STGs in (a) and (b) are equivalent under retiming and resynthesis transformation. Since states q0 and q1 in (a) are immediately equivalent, they can be
merged and thus the STG can be simplified to that in (b). On the other hand, although the STG in (c) is equivalent to the previous two in terms of input–output
behaviors, it is not equivalent to them under retiming and resynthesis transformation.

Fig. 10. STGs G1 in (a) and G2 in (b) are induced from functions f1 and
f2, respectively. These two graphs are identical except for the outgoing edges
of node n. The outgoing edges for nodes {1, . . . , n − 1} are determined by
function f and are omitted.

problem in the unary (respectively binary) representation is log-
space (respectively polynomial-time) reducible to our problem
with inputs in STG (respectively FSM) representations. We
further establish that the answer to the PSPACE-complete prob-
lem is positive if and only if the answer to the corresponding
equivalence verification problem (to be constructed) is negative.
Since the complexity class of nondeterministic space is closed
under complementation [4], the theorem follows.

To complete the proof, we elaborate the reduction. Given a
function f as stated earlier, we construct two total functions
f1, f2 : {0, 1, . . . , n} → {0, 1, . . . , n} as follows. Let f1 have
the same mapping as f over {1, . . . , n− 1} and have f1(0) = 1
and f1(n) = 1. Also let f2 have the same mapping as f with
f2(0) = 1 but f2(n) = 0. Clearly the constructions of f1 and f2

can be done in LOGSPACE. Treating {0, 1, . . . , n} as the state
set, functions f1 and f2 specify the transitions of two STGs
(with an empty input alphabet), say G1 and G2, respectively, as
shown in Fig. 10. In addition, let all the states of G1 and G2

have the same output observation. That is, the output functions
of the FSMs of G1 and G2 do not distinguish states. Under this
setting, observe that any state of G1 (similarly G2) has exactly
one next state. Thus, every state is either in a single cycle or
on a single path leading to a cycle. Observe also that two states
of G1 (similarly G2) are immediately equivalent if and only
if they have the same next state. An important consequence of

these two observations is that any dangling state (not in a cycle)
can eventually be merged, due to immediate equivalence, with
some nondangling state (in a cycle) which has the same next
state. By Theorem 1, this merging process can be achieved with
retiming and resynthesis over the FSMs defined by G1 and G2.

To see the relationship between reachability and the equiva-
lence under retiming and resynthesis, consider the case where
n is reachable from 1 through f . States 1 and n of G1 must
be in a cycle excluding state 0; states 1 and n of G2 must be
in a cycle including state 0. Hence, the state-minimized (with
respect to immediate equivalence) graphs of G1 and G2 are not
isomorphic. That is, G1 and G2 are not equivalent under retim-
ing and resynthesis. On the other hand, consider the case where
n is unreachable from 1 through f . Then, state n of G1 and state
n of G2 are dangling. From the mentioned observations, merg-
ing dangling states with nondangling states in G1 and in G2

yields two isomorphic graphs. The isomorphism can be estab-
lished by a mapping π from the set of nondangling states of G1

to that of G2, and vice versa, with π(i) = i. That is, G1 and
G2 are equivalent under retiming and resynthesis. Therefore,
n is reachable from 1 through f if, and only if, G1 and G2

are not equivalent under retiming and resynthesis. Notice that,
unlike the discussion of optimization capability, here we should
not ignore the effects of retiming and resynthesis over the
unreachable state space. �

B. Verification With Known Transformation History

By Theorem 4, verifying if two FSMs are equivalent under
retiming and resynthesis without knowing the transformation
history is as hard as the general equivalence checking problem.
Thus, we advocate a conservative design methodology optimiz-
ing synchronous hardware systems to ameliorate verifiability.

An easy approach to circumvent the PSPACE-completeness
is to record the history of retiming and resynthesis operations
as verification checkpoints, or alternatively to perform equiv-
alence checking after every retiming or resynthesis operation.
The reduction in complexity results from the following well-
known facts.
Proposition 4: Given two synchronous hardware systems,

verifying if they are transformable to each other with retiming
is of the same complexity as checking graph isomorphism (for
communication graphs without edge weights), which is within
NP ∩ coNP; verifying if they are transformable to each other
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with resynthesis is of the same complexity as combinational
equivalence checking, which is coNP-complete.

Therefore, if transformation history is completely known, the
verification complexity reduces to coNP-complete.

V. INITIALIZATION SEQUENCES

To discuss initialization sequences, we rely on the following
proposition of Pixley [17].
Proposition 5: [7] The initial states of an initializable FSM

cannot be dangling. Moreover, any nondangling state of an
initializable FSM can be used as an initial state by suitably
modifying initialization sequences.

By Corollary 1, the behavior of an FSM in nondangling
states cannot be altered by retiming and resynthesis. Also, by
Lemma 3, newly created states by retiming (and resynthesis)
not immediately equivalent to any nondangling states remain
dangling throughout iterative retiming and resynthesis oper-
ations. Adding dangling states does not affect initializability
because prefixing an original initialization sequence with a long
enough input sequence can drive an FSM to some nondangling
state, which is a legitimate initial state by Proposition 5. (Note
that any dangling state will eventually reach some nondangling
state after a long enough input sequence is applied, regardless
of the input patterns.) As a result, we have the following.
Corollary 2: The initializability of an FSM is an invariant

under retiming and resynthesis.
Hence, we shall assume that the given FSM M is initializ-

able. Furthermore, we assume that its initialization sequence
is given as a black box. That is, we have no knowledge on
how M is initialized. Under these assumptions, we study how
the initialization sequence is affected when M is retimed (and
resynthesized). As shown earlier, the creation and annihilation
of dangling states are immaterial to the optimization capability
of retiming and resynthesis. However, they play a decisive role
in affecting initialization sequences. In essence, the longest
transition path among dangling states determines how long the
initialization sequences should be increased.

A. Initialization Affected by Retiming

1) Lag-Dependent Bounds: Effects of retiming on initial-
ization sequences were studied by Leiserson and Saxe in [9],
where their Retiming Lemma can be rephrased as follows.
Lemma 4: [9] Given a communication graph G = (V,E)

and a normalized retime function ρ, let # = maxv∈V −ρ(v) and
let G† be the corresponding retimed communication graph of G.
Suppose M and M† are the FSMs specified by G and G†,
respectively. Then, after M† is initialized with an arbitrary
input sequence of length #, any state of M† has an equivalent8

state in M.
That is, prefixing the original initialization sequence of M

with an arbitrary input sequence of length no less than # results
in a valid initialization sequence for M†. Thus, # (nonnegative
for normalized ρ)9 gives an upper bound of the increase of

8A state q of FSM M is equivalent to a state q† of FSM M† if M starting
from q, and M† starting from q† have the same input–output behavior.

9Recall that a normalized retime function ρ is with ρ(host) = 0.

initialization sequences under retiming. This bound was fur-
ther tightened in [2], [22] by letting # be the maximum of
−ρ(v) for all v of functional elements whose functions define
nonsurjective mappings. Unfortunately, this strengthening still
does not produce an exact bound. Moreover, by Proposition
1, a normalized retime function among its equivalent retime
functions may not be the one that gives the tightest bound. A
derivation of exact bounds will be discussed in Section V-B.
2) Lag-Independent Bounds: Given a synchronous hard-

ware system, a natural question is if there exists some bound
which is universally true for all possible retiming operations.
Even though the bound may be looser than lag-dependent
bounds, it discharges the construction of new initialization
sequences from knowing what retime functions have been
applied. Indeed, such a bound does exist as exemplified in the
following.
Proposition 6: Given a communication graph G = (V,E)

and a normalized retime function ρ, let r(v) denote the min-
imum number of registers along any path from the host to
vertex v. Then, r(v) sets an upper bound of the number of reg-
isters that can be moved forward across v, i.e., r(v) ≥ −ρ(v).
Note that ρ(v) is negative for forward retiming. Similarly, r(v)
on G with reversed edges sets an upper bound of ρ(v).

Thus, maxv r(v), which is intrinsic to a communication
graph and is independent of retiming operations, yields a lag-
independent bound.

When initialization delay is not a concern for a synchronous
system, one can even relax the above lag-independent bound by
saying that the total number of registers of the system is another
lag-independent bound. As an example, suppose a system has
one million registers and its retimed version runs at 1-GHz
clock frequency. Then, the initialization delay increased due to
retiming is less than a thousandth of a second.

B. Initialization Affected by Retiming and Resynthesis

Thus, far we have focused on initialization issues arising
when a system is retimed only. Here, we extend our study
to issues arising when a system is iteratively retimed and
resynthesized.

A difficulty emerges from directly applying Lemma 4 to
bound the increase of initialization sequences under iterative
retiming and resynthesis. Interleaving retiming with resynthesis
makes the union bound

∑
i ui the only available bound from

Lemma 4, where ui denotes the lag-dependent bound for the
ith retiming operation. Essentially, inaccuracies accumulate
along with the summation of the union bound. Thus, the
bound derived this way can be far beyond what is neces-
sary. In the light of lag-independent bounds discussed earlier,
one might hope that there may exist some constant which
upper bounds the increase of initialization sequences due to
any iterative retiming and resynthesis operations. (Notice that,
when no resynthesis operation is performed, the transforma-
tion of a series of retiming operations can be achieved by
a single retiming operation. Thus, a lag-independent bound
exists for iterative retiming operations.) Unfortunately, such a
transformation-independent bound does not exist as shown in
Theorem 5.
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Fig. 11. Given an FSM in (a), it can be resynthesized to the one in (b) and then backwardly retimed to the one in (c).

Lemma 5: Any dangling state of an FSM (with implicit
reset) is removable through iterative retiming and resynthesis
operations.

Proof: By Proposition 5, the initial states of an FSM M
with implicit reset must be nondangling. Removing dangling
states cannot affect the behavior of M. Essentially, states
without predecessor states can be eliminated with a resynthesis
operation followed by a retiming operation. To see why this
is the case, let Σ be the input alphabet, Q be the set of states
of M, and Q† ⊆ Q be the subset of states with predecessors.
As illustrated in Fig. 11, a resynthesis operation can rewrite
the original transition functions �δ : Σ ×Q → Q as a com-
position of three parts �δ = �∆−1 ◦ �∆ ◦ �δ, where �∆ : Q → Q†,
�∆−1 : Q† → Q, and �∆−1 ◦ �∆ is an identity mapping. (Notice
that �∆−1 exists because states Q \Q† have empty preim-
age.) Retiming registers backward to the positions in between
�∆ and �∆−1 eliminates states with no predecessors. (The retim-
ing operation is possible because the output functions of M can
take the intermediate valuation after �δ and before the identity
mapping �∆−1 ◦ �∆ as its state input.) Therefore, with iterative
retiming and resynthesis, dangling states are removable. �
Theorem 5: Given a synchronous hardware system and an

arbitrary constant c, there always exist retiming and resynthesis
operations on the system such that the length increase of the
initialization sequence exceeds c.

Proof: Any dangling state of an FSM can be removed by
iterative retiming and resynthesis by Lemma 5. On the other
hand, since the transformation of retiming and resynthesis is
reversible, a path over dangling states can be made arbitrary
long through iterative retiming and resynthesis operations.
Therefore, the theorem follows. �

Since the mentioned union bound is inaccurate and re-
quires knowing the applied retime functions, it motivates us
to investigate the computation of exact10 length increase of
initialization sequences without knowing the history of re-
timing and resynthesis operations. The length increase can
be derived by computing the length, say n, of the longest
transition paths among the dangling states because applying an
arbitrary11 input sequence of length greater than n drives the
system to a nondangling state. The length n can be obtained
using a symbolic computation. By breadth-first search, one
can iteratively remove states without predecessor states until

10The exactness is true under the assumption that the initialization sequence
of the original FSM is given as a black box. If the initialization mechanism is
explored, more accurate analysis may be achieved.

11Although exploiting some particular input sequence may shorten the length
increase, it complicates the computation.

Fig. 12. STG in (a) is transformable to the STG in (b) by a two-way switch
operation while the reverse direction is not transformable. Since the operation
is not reversible, it falls beyond the transformation power of retiming and
resynthesis. In these two STGs, only input labels are shown while output labels
are omitted.

a greatest fixed point is reached. The number of the performed
iterations is exactly n.

VI. RELATED WORK

A. Optimization Capability

The closest to this paper on the optimization power of
retiming and resynthesis is [19], where the optimization power
was unfortunately overstated contrary to the claimed exactness.
The mistake resulted from the claim that any two-way switch
(redirecting a transition to another immediately equivalent next
state) operation is achievable using two-way merge (merging
two immediately equivalent states into a single state) and two-
way split (splitting a state into two immediately equivalent
states) operations; see [19] for detailed illustrations. Fig. 12
shows a counterexample illustrating a two-way switch oper-
ation that is not achievable with two-way merge and split
operations. The overstated optimization power results from the
overlooked fact that, under any input assignment, the next states
of immediately equivalent states split from a current state must
be the same. In fact, only two-way merge and split operations
are essential. Aside from this minor error, no constructive algo-
rithm was known to determine if two given FSMs are equivalent
under retiming and resynthesis. In addition, not discussed were
the creation and annihilation of dangling states, which we show
to be crucial in initializing synchronous hardware systems.

B. Verification Complexity

Ranjan in [18] examined a few verification complexities for
cases under one retiming operation and up to two resynthesis
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operations with unknown transformation history. The complex-
ity for the case under an arbitrary number of iterative retiming
and resynthesis operations was left open, and was conjectured
in [25] to be easier than the general equivalence checking
problem. We disprove the conjecture.

C. Initialization Sequences

For systems with explicit reset, the effect of retiming on
initial states was studied in [3], [21], and [24]. In the explicit
reset case, incorporating resynthesis with retiming does not
contribute additional difficulty. Note that, for systems with
explicit-reset registers, forward moves of retiming are prefer-
able to backward moves in maintaining equivalent initial states,
contrary to the case for systems with implicit-reset registers.
To prevent backward moves, Even et al. in [3] proposed an
algorithm to find a retime function such that the maximum
lag among all vertices is minimized. Interesting enough, their
algorithm can be easily modified to obtain minimum lag-
dependent bounds on the increase of initialization sequences
(by avoiding forward retiming instead of backward retiming).
As mentioned earlier, explicit reset can be seen as a special case
of implicit reset when reset circuitry is explicitly represented
in the communication graph. Hence, the study of the implicit
reset case is more general, and is subtler when considering
resynthesis in addition to retiming.

Pixley in [17] studied the initialization of synchronous
hardware systems with implicit reset in a general context.
Leiserson and Saxe studied the effect of retiming on initial-
ization sequences in [9], where a lag-dependent bound was
obtained and was later improved by [2] and [22]. We show a
lag-independent bound instead. In recent work [15], a different
approach was taken to tackle the initialization issue raised by
retiming. Rather than increasing initialization sequence lengths,
a retimed circuit was further modified to preserve its original
initialization sequence. This modification might need to pay
area/performance penalties and could nullify the gains of retim-
ing operations. In addition, the modification requires expensive
computation involving existential quantification, which limits
the scalability of the approach to large systems. In comparison,
prefixing the original initialization sequence with an arbitrary
input sequence of a certain length provides a much simpler
solution (without modifying the system) to the initialization
problem.

On the other hand, we extend our study to the unexplored
case of iterative retiming and resynthesis, and show the un-
boundability of the increase of initialization sequences. Finally,
our exact analysis on the increase of initialization sequences is
applicable to the case of iterative retiming and resynthesis and
improves the bound of [2] and [22].

VII. CONCLUSION AND OPEN PROBLEMS

This paper demonstrated some transformation invariants un-
der retiming and resynthesis. Three main results about re-
timing and resynthesis were established. First, an algorithm
was presented to construct a canonical representative of an

equivalence class of FSMs transformed under retiming and
resynthesis. It was extended to determine if two FSMs are
transformable to each other under retiming and resynthesis.
Second, a PSPACE-complete complexity was proved for the
above problem when the transformation history of retiming and
resynthesis is unknown. Hence, to reduce complexity (from
PSPACE-complete to coNP-complete), it is indispensable to
maintain transformation history, or to check intermediate equiv-
alence after every retiming or resynthesis operation. Third,
the effects of retiming and resynthesis on initialization se-
quences were studied. A lag-independent bound was shown on
the length increase of initialization sequences of FSMs under
retiming; in contrast, unboundability was shown on the case
under retiming and resynthesis. In addition, an exact analysis on
the length increase was presented. We believe our results may
reveal some directions enhancing the practicality of retiming
and resynthesis for the optimization of synchronous hardware
systems.

For future work, it is important to investigate more efficient
computation, with reasonable accuracy, for the length increase
of initialization sequences for FSMs transformed under retim-
ing and resynthesis. On the other hand, it may seem that our lag-
independent bound can be used to improve retiming algorithms
by pruning out spurious linear constraints, similar to [12].
Moreover, as the result of [3] can be modified to obtain a retime
function targeting area optimization with minimum increase of
initialization sequences as discussed in Section VI, it would be
useful to study retiming under other objectives while avoiding
increasing initialization sequences.

While verifying the equivalence of two sequential circuits
transformed by an unbounded number of retiming and resyn-
thesis iterations was shown to be PSPACE-complete, it is open
when the number is bounded by some constant. In particular, it
is not known if the complexities parametric upon this constant
follow the polynomial-time hierarchy [23].
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