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Abstract
In this paper, we describe a placement-level decap insertion
technique whose objective is to reduce power-noise, taking into
account circuit timing. Our approach consists of prediction and
correction steps. Before placement, we estimate the power noise of
each cell considering switching frequency of cells which, after
placement, will most likely be in the neighborhood. If a frequently
switching cell has neighbors that switch infrequently, it is unlikely
that this cell will suffer from a power noise problem. Based on the
cell power noise estimation, we add decap padding to each cell.
Then we invoke a standard cell placement tool and perform power
grid analysis. We eliminate the power grid noise by gate sizing.
Our technique can allocate decaps to improve power noise, power
consumption, and timing. We propose two gate-sizing algorithms.
The first one uses a Sequence of Linear Programs (SLP)
formulation, and the second one uses a budgeting-based heuristic
algorithm. The SLP algorithm can produce better power noise
results than the heuristic, at the expense of run time. Experimental
results show that our techniques can effectively reduce power
noise and still meet timing constraints.

1. INTRODUCTION
Modern designs manufactured in advanced technologies are
very sensitive to power noise. Aggressive technology scaling
increases average current density and power noise magnitude.
Reduced supply voltage causes power voltage drop to consume
an increased portion of the ideal voltage supply level, which
affects timing of CMOS gates. It is therefore important to
address timing issues related to power noise.

Decoupling capacitance (decap) insertion is an effective way
to reduce power noise. Decaps are intentionally inserted in the
layout and attached to the power grid. Decap locations are
important to ensure effectiveness in reducing power noise, so it
is usually desirable to move them closer to the noisy areas.

In [5][6][14][19] decap allocation optimization is addressed at
the floorplan level. In [5], the authors use iterative transient

analysis and optimize decap locations. In [6], the authors
formulate the decap placement as a network flow optimization
problem. In [14], the authors distribute decaps proportionally
to the values of currents drawn in each region. In [19], the
authors observe that an effective way to allocate decaps is to
distribute them to all grid nodes, assigning more decaps to grid
nodes of the blocks with high switching rates. Some previous
works [4][13] propose to reduce power noise by spreading the
frequently switching cells evenly across the chip to eliminate
hot spots. In [4], the authors include thermal cost function in a
partition-based placer. In [13], the authors modify a quadratic
placer to optimize both total power consumption and heat
dissipation. Post-layout decap reallocation algorithms are
proposed in [15][16]. Both [15][16] use power-noise
sensitivity analysis to decide decap locations in the layout. In
[16], the authors compute the sensitivity and conduct decap re-
allocation only once. In [15], the authors compute sensitivity
and move decaps many times for further improvement.

If in a certain area after the initial placement the power noise is
severe, significant decap re-allocation is required. However,
drastic changes of decap locations after placement should be
avoided because timing, wire length, and other circuit
properties might be significantly changed. Combining decap
allocation with placement increases the number of placeable
objects, which in turn increases the complexity of placement.
The quality of decap allocation will also be seriously impacted
by the early placement partition decision which usually relies
on incomplete layout information. No previous works on decap
allocation have considered timing, even though voltage drop
may seriously impact a chip’s timing. 

In this paper, we address the decap allocation problem at the
placement level. The floorplanner distributes the available
decaps among the macro-blocks. Our goal is to find the final
locations for decaps inside the individual blocks. We propose a
timing-aware power-noise reduction scheme consisting of
prediction-based decap allocation and gate-sizing algorithms.
The flow of our noise-reduction methodology is shown in
Figure 1. First we execute the prediction step. The goal of this
step is to select the right amount of decap to be placed in the
neighborhood of a cell. For each cell, prior to placement, we
predict the size of the required decap and pad the cell
accordingly (as shown in Figure 2). The better we can predict
power-noise-affected cells before placement, the fewer decap
re-allocations will be required after placement, and the better
use we can make of the available decap area. The decap size
prediction is based on the cell’s current consumption and the
expected placed-cell neighborhood. If a cell has high current
consumption and its placement neighbors also have high
current consumption, it is likely that this cell will suffer from
excessive power noise. It will be less accurate to predict this
cell’s need for decap based only on its switching while



ignoring its neighbors. We predict a cell’s neighborhood based
on the wire length prediction and circuit structure analysis.
Mutual contraction is utilized as the wire length prediction
metric [7]. Previous work on wire length prediction will be
explained in later sections. Although we focus on cell-level
decap padding in this paper, our prediction-based padding
method can also be applied to mixed-size or macro-cells
netlists.   

After the cell padding, we perform placement followed by the
power grid analysis to obtain new circuit delay information.
The second optimization step is correction. We propose gate-
sizing algorithms to improve power noise, power consumption,
and timing after placement. Cell power noise is not only
affected by placement of its neighbors, but also greatly
influenced by the grid design and power pad location.
However, these factors are not easily predictable. We need a
gate-sizing step to help us meet power noise and timing goals.
Our gate-sizing algorithms also consider decap-location
optimization. Because the total chip area is fixed, if a gate area
is changed, the decap area will be changed accordingly. We
need to consider gate-sizing and decap-location optimization
together. 

We propose two new gate-sizing algorithms. The first
algorithm linearizes the original non-linear expressions for
gate-delay calculation and uses a Sequence-of-Linear-
Programs (SLP)-based gate-sizing approach. The optimization
is done by solving a linear program (LP) in each optimization
iteration. The second gate-sizing algorithm is an iterative
budgeting-based heuristic. In each iteration, cell sizes are
adjusted in a way that no timing violation occurs. The heuristic
algorithm can achieve results close to those of the SLP
method; however, the runtime is much smaller. In our gate-
sizing algorithms, we do not compute noise sensitivity as in
[15][16], because we include the grid simulation in the
optimization process. The voltage-drop simulation results are
used to measure cell power noise sensitivity.

The contributions of this work are as follows. We point out
that decap assignment should not be limited only to in-
placement and post-layout optimization. Pre-layout decap
prediction can significantly improve the results. We derive
gate-sizing algorithms that take into account decap allocation
and timing. Experimental results show that our power noise
reduction techniques are effective. The gate-sizing formulation
is also applicable to reducing power consumption and meeting
timing constraints.

This paper is organized as follows. In Section 2, we show the
background for modeling power grid, quantifying power noise,
and predicting wire length. In Section 3, we discuss decap
prediction and cell padding. In Section 4, we describe the gate-
sizing correction process. In Section 5, we show the
experimental results. We conclude the paper in Section 6. 

2. BACKGROUND 
In this section, we describe the models used in this paper. We
also explain the mutual-contraction metric, which is used for
pre-layout wire length prediction. 

2.1 Modeling power grid, decap, cell delay 
and power noise measurement metrics

Power grid can be modeled as a mesh composed of resistors,
capacitors, current sources, and voltage sources, as shown in
Figure 3(a). The chip layout is divided evenly into regular
blocks. One grid node corresponds to a partition block. One
current source connected to a grid node models the current
drawn by the cells in the corresponding block. For simplicity,
the current source waveforms are modeled as triangles, as
shown in Figure 3(b). The current drawn by a current source is
determined by a summation of currents drawn by those cells
within its block. The average switching current of a cell is
determined by its switching frequency and switching
capacitance. In our experiments, the time between ts to te (refer
to Figure 3(b)) is set to 1ns. During other times, the currents
flowing through a cell are very small. Our modeling of the
power grid and current sources is similar to that of [16].

All decoupling capacitors in a block are lumped and
represented by a capacitor connected to the grid node. The
decoupling capacitance (decap) comes from two sources. The
first are intentionally inserted decaps, and the second are
background decaps from the standard cells. Standard cell
decaps can be computed from cell types and sizes using
information in a cell library. If a decap is inserted far away
from a noisy area, it may not be helpful to ease the power noise
(as explained in [16]).   Decap efficiency-degradation effects
will be considered naturally in the grid simulation. If cells in a
block switch more frequently, the block current drawn will be
larger, the block voltage drop will increase, and the block will
require more decaps to reduce power noise. A simulator will
determine how serious the voltage drop is for each block. 

Power pads are connected to certain grid nodes. They are
modeled as voltage sources. Using flip-chip packaging, pads
can be inserted at internal grid nodes. Their locations are not
limited to grid periphery; they can also be inserted in the
interior of the chip. For simplicity, in our model we insert
power pads uniformly on the grid. By performing transient
analysis, we can calculate the voltage profile of each grid
node. 

Because of the grid resistance, when a large current is drawn, a
big voltage-drop may follow, as illustrated in Figure 3(c).
Power grid voltage-drop affects chip performance. We assume
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that a tolerable voltage drop threshold value is known. A
voltage drop lower than the threshold is considered safe, not
likely to cause timing violations or system malfunction. In our
experiments, the voltage margin threshold is set at 5% from the
ideal voltage. A typical noise margin can be set between
5~10%. 

When voltage drop occurs in the power grid, the delay of cells
connected to it changes. As described in [2], the pin-to-pin cell
delay can be modeled as an inverse-linear function of supply
voltage. The slope of the linear function can be characterized
by simulation. This is the model we use. In our experiments,
for all cells we set the growth rate of the delay with respect to
voltage-drop to the same value. 

We use three metrics to measure the power noise. The first
metric is the deepest voltage drop on all grid nodes. This
metric tells us the magnitude of the worst voltage drop on the
chip. The second metric is the number of grid nodes that have a
voltage drop greater than the threshold value. This metric
reveals the overall power noise condition of the chip. We
define the excess-noise-drop-area (ENA) for a node as the size
of the area between the voltage margin threshold and the
voltage drop. In Figure 3(c), ENA is the shaded area above the
voltage drop curve. The third metric is the summation of ENA
for all grid nodes. This third metric complements the second
metric and gives us a better picture of the chip power noise.
These three metrics quantify the local and global power noise.
In the section on experiments, we will show the values of these
three metrics.

2.2  Mutual-contraction-based wire-length 
prediction

Mutual contraction introduced in [7] is a metric to predict
relative wire lengths before placement. A circuit is modeled by
a graph with cells corresponding to nodes, and nets are
represented as cliques with connections for each pair of nodes
in a net. A weight is assigned to each connection. If a net k is
connected with  nodes, then every connection c in this
clique is assigned a weight given by (EQ 1). Other connection
weighting methods have been discussed in [7], but (EQ 1)
produces the best results.

(EQ 1)

For a pair of nodes ,  is a weight of the
connection between them.  denotes the sum of all
weights on connections incident to u. A relative weight of a
connection incident to u is defined as a ratio of the weight of
this connection over the weight of all connections incident to
u, as shown in (EQ 2).

(EQ 2)

For a connection linking nodes x and y, the mutual contraction
 is computed using (EQ 3). This measure allows us to

predict the relative wire lengths of connections.

(EQ 3)

Placers can be implemented using various methods and cost
functions. Most placers try to minimize the total wire length.
Mutual contraction is derived based on this assumption. In
Figure 5, we show two graphs demonstrating the relationship
between mutual contraction and distance among cells placed
by two state-of-the-art academic placers, Dragon [18] and
FengShui [1]. The results for six MCNC benchmarks (bigkey,
frisc, s38584, clma and frisc) are combined and shown in
Figure 5. First we compute the contraction value for each
connection and then we perform placement. After placement,
individual connection lengths are normalized by the chip
dimension. In Figure 5, the x-axis measures the mutual
contraction values, and the y-axis measures the normalized
connection lengths. All benchmarks follow the same trend. 

Both placers produce results in which the cell-pairs with larger
mutual contraction tend to be closer. For the cell-pairs with
smaller contraction, the variation of their distances is quite
large.    

From the placement results, we extracted the wire lengths and
evaluated the correlation between the wire length and the
contraction strengths. We refer to the nets with the top 30%
highest contraction values as strong connections (Strong_Co).
We compared the average wire length for strong connection
nets (Strong_Co) to the overall average wire lengths (All_Co).
For each benchmark we normalized these lengths with respect
to its chip size (half perimeter). These results are shown in
Table 1.

From the table we can see that the average strong connection
length is only 4.85% of the chip dimension. However, the
average connection length is about 38.06% of the chip’s
dimension. The last column shows the wire length standard
deviation for strong connections. We can see that standard
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deviation for strong connections are also very small. These
results show that contraction can give a good prediction of the
node neighborhood. Our extensive experiments suggest that as
long as a placer minimizes the total wire length, the mutual
contraction as a wire-length predictor is very effective. 

3. PREDICTION STEP: 
NEIGHBORHOOD-AWARE DECAP 
ALLOCATION

We decide decap allocation based on noise and timing weights
for each cell. If we predict that a cell may experience excessive
power noise, we assign a larger noise-weight to it and
consequently we allocate more decap padding. We also
estimate cell delay and interconnect delay. From the delay
estimations and slacks, we compute cell timing criticality. If a
cell has high timing criticality, we reduce its decap weight and
decrease the allocated decap padding. Timing weights help us
enforce timing constraints for the circuit.

3.1 Noise weights
The likelihood that a cell might have a large amount of power
noise is estimated by its average current and by the currents of
its neighbors. Neighborhood prediction is important, because
even if a cell consumes much power, but most of its neighbors
are quiet, this cell is not likely to suffer from extensive power
noise. The neighborhood is defined in terms of layout distance.
In this case, the neighborhood cells act as decaps. Using the
pre-layout wire length estimates discussed in the previous
section, we can predict the neighborhood of each cell.

Cell current consumption (CC) is a function of the cell’s
switching frequency and switching capacitance. Cell switching
frequency can be estimated by feeding the circuit with input
vectors and performing functional simulation. Another way to
calculate the switching frequency is to calculate the switching
probability. For a quick analysis, in our experiments, we use a
probabilistic method as suggested in [17].

Cell-switching capacitance consists of a cell’s intrinsic
capacitance, input capacitance of fanout nodes, and wire
capacitance. The intrinsic and input capacitances can be
obtained from the netlist. Wire capacitance is unknown before
placement, so we use a simple statistical wire-load model to
predict it. The average lengths for nets of various degrees can
be extracted from previous placements of similar designs. In

our case, wire length statistics are averaged over all our
benchmark circuits.
 In the (EQ 4)-(EQ 5) we use the following notation:

 denotes the cell ’s switching frequency,
 is the wire loading capacitance for ,

 is the total input capacitance of ’s fan-out
cells,  is ’s junction capacitance.  is
the total loading capacitance of .  is ’s current
consumption. The expressions for computing cell current
consumption (CC) are shown in (EQ 4) and (EQ 5). 

(EQ 4)
(EQ 5)

Recall, that the connections whose mutual contraction values
are among the top 30% are classified as strong connections that
are expected to be short after placement. The cells connected
by strong connections are expected to be in close proximity
after placement. Those connections not classified as strong are
deleted from the circuit graph and thus have no impact on
neighborhood current-consumption computation. We define
the 0-th level neighbors of a cell n is the cell itself. The (i+1)-
th level neighbors of n include ’s i-th level neighbors and all
the nodes linked by strong connections to its i-th level
neighbors. 
We measure the neighborhood current consumption by
computing the neighborhood-CCs (NCC). If a cell has a high
NCC, we predict its power noise to be more serious. The
neighborhoods and NCCs are defined for various levels. When
using a higher level neighborhood, the neighborhood size will
increase, so more neighbors of  will be involved when
computing ‘s NCC. The 0-th level NCC of  is its CC.
Computing cell ’s i-th level NCC involves the lower-CC
cells in ’s i-th level neighbors. The NCC function is designed
such that to compute consecutive levels of NCCs, a cell needs
to remember only its 1-st level neighbors. This helps us save
computation time and memory. The reason that we only
consider those lower-CC cells in ‘s neighbors during the
computation is that those cells may act as decaps and will bring
down the current consumption in that area. The NCC of cells in
a low-noise neighborhood will quickly decrease; however
NCC for cells in noisy area will decrease less rapidly. This
helps us filter out the noisy areas.
The i-th level NCC of a node n depends on the switching of its
i-th level neighbors. In the first iteration, we compute the first
level NCC of every node from the initial cell CC values. Based
on the first level cell NCC results, we compute the second
level NCC of every node. Higher level NCC can be computed
following this iteration. Let  denote the 1-st level
neighbors of n.  is the i-th level NCC of n.  is
the set of nodes that are in  and have i-th level NCC not
larger than . The (i+1)-th level NCC of n is the
average of the i-th level NCC of nodes in . The
expression for computing  is defined by (EQ 6) and
(EQ 7).

(EQ 6)

 (EQ 7)
For example, in Figure 6(a), we show a small netlist. The
edges drawn are all strong connections. The number beside
each node is the CC. The cells involved in n’s second level
NCC computation are shown in Figure 6(b). L_i stands for the

Table 1. Wire length statistical results

Strong_Co All_Co Strong_Co
Deviation

bigkey 10.91% 38.47% 0.142

apex2 4.62% 35.53% 0.087

clma 2.01% 38.44% 0.083

s38584 2.86% 36.91% 0.081

frisc 3.19% 37.73% 0.117

ex1010 5.53% 41.28% 0.073

AVG 4.85% 38.06% 0.097
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i-th level NCC. The numbers beside and below each node are
their level NCCs. For the 0-th level NCC, only those cell
NCCs no bigger than the target cell NCC are shown. For
instance, we compute  by averaging the 0-th level
NCC of {a, b, n}, because ,  are all smaller
than . However, to compute , only

 and  are averaged, because among b’s 1-st
level neighbors, only  is smaller than . The

 is computed by averaging ,  and
, because  and  are all smaller

than . As the NCC level increases, and more low-CC
cells are involved in the computation, the cell’s NCC
decreases. If a cell has many low-CC neighbors, its NCC
decreases rapidly. However, from this example, we can also
see that although higher-level NCC could involve many cells,
those cells in the lower level neighbors still play a significant
role in the NCC computation.   

The purpose of the NCC computation is to determine the noisy
areas. The high-CC cells with few switching neighbors will be
filtered out. Only the clustered high-CC cells will retain their
high NCC.
The noise weight for a cell is computed from the normalized
cell NCC.  is the neighborhood level to compute NCC.
Suppose that the  is the maximum -th level
NCC over all the cells. The normalized cell NCC for  is
computed by dividing  by .  is
the noise weight for the cell n. The noise weight function of a
cell is shown in (EQ 8). In Section 5, we experiment using
different ‘s and observe their impact on the distribution of
noise weighting. We find that setting =4 leads to best noise
weight distribution.

(EQ 8)

3.2 Timing weights
Besides considering the power noise factor, we also need to
account for the timing factor. If cells are timing-critical, we do
not add large decaps to them. Adding a large decap padding
area to cells on a critical path may increase distances between
the cells and consequently increase the interconnect delay. The
criticality of a cell is computed using its slack. 
denotes the slack of a node n. Slack for each cell can be
computed from its input signal arrival and required times.

 is the maximum slack of all the nodes. 
is normalized by the .  is the timing weight
exponent.  is the criticality of a node.  is the
timing weight of a node n. If a node has a smaller slack, it is
more timing-critical and its  will be higher. The
timing criticality of a node is computed from (EQ 9). With
bigger , the criticality difference between the highly

critical and non-critical cells will be larger. The same
criticality function has been used in [12]. Based on their
experiments, we set  to 4.

(EQ 9)

The timing weight function is shown in (EQ 10).
(EQ 10)

3.3 Decaps allocation
The decap area weight function is a summation of the noise
and timing weights.  is the decap weight for
a node n.  is the timing cost scale.  and  are
all normalized to a value in the range . Setting 
higher will increase the timing weight and assign less decap to
a timing-critical area. Decap weight function is shown in
(EQ 11). In the experimental results of Section 5, we will
evaluate the impact of setting  to different values. 

(EQ 11)
We allocate decap area according to the node’s decap weights.
Since we use the standard cell flow, the cell height and decap
height are both fixed. The total decap width is computed by
multiplying the total cell width by a decap ratio. Let 
denote the total cell width and  denote the decap ratio: the
total decap width is . A default value for  is
0.2. Bigger  may reduce power noise more, but at a cost of
increased chip area, increased power consumption, or degraded
chip timing. The portion of decap allocated to a cell n will be
the ratio of decap weight of n and the summation of decap
weights for all nodes.  is the decap width of node
n. The decap weight function is shown in (EQ 12).

(EQ 12)

3.4 Experiments
In this subsection, we demonstrate the results of our
neighborhood-aware decap allocation algorithm. We use the
benchmark circuit ex1010 in this demonstration. The
quantitative results for all benchmarks will be shown in
Section 5.
First we perform the neighborhood prediction and compute
various level-NCCs. Then we do placement using Dragon. In
Figure 7 we show the cell NCC distribution for various NCC
levels. In this example, we set =0, showing only the effect
of power noise. In Figure 7(a), we show the top 55% current-
consuming cells with neighborhood level 0. Neighborhood
level 0 means that in computing a cell’s NCC, only the current
consumed by this cell is accounted for. We observe that in
Figure 7(a) the upper-left and lower-left areas are very dense
and could be power-noisy. Other areas also have numerous
highly switching cells. In Figure 7(b), we show the cell NCC
distribution considering their first-level neighborhoods. We
use the minimum NCC of those cells shown in Figure 7(a) as
the threshold value, showing in Figure 7(b)(c)(d) only those
nodes with NCC greater than the threshold value. From (b), we
can see that the cells in the right and center areas become more
sparse, which means that number of high-NCC cells decreases
in those areas. However, the power-noisy areas in the upper-
left/lower-left corners are still dense and become more visible.
Figure 7(c) and (d) show the results with neighborhood levels
2 and 4. As the NCC level increases, the sparse area becomes
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even sparser. The number of high-NCC cells keeps decreasing
in those areas. This experiment shows that the iterative NCC
computation scheme is effective for isolating the noisy areas.
The high-CC cells with low-CC neighbors are filtered out.
More decaps can be allocated to those expected noisy areas to
reduce power noise.

The power-grid simulation result is shown in Figure 8 for the
case where the NCC level is equal to 4. The power voltage is
1.8V. The grid granularity is 20x20. The unit in the x and y
dimension is mm. There are several power pads in the middle
and on the periphery of the grid. We assume the chip switching
frequency is 100MHz. Grid node decaps and current profiles
are determined as described in Section 2.1. The worst grid
voltage drop is recorded for each grid node. Figure 8(a) shows
the result when decaps are distributed uniformly for all cells,
and our weighting technique has not been applied. Figure 8(b)
shows the result of decaps distributed according to our
prediction-based weighting method. We use the same cell
placement for (a) and (b), so it is easier to compare the
difference in power noise. We observe that, in both figures, the
biggest voltage-drop occurs at the upper-left and lower-left
parts of the chip, which is just as predicted in Figure 7(d). The
lowest grid node voltage is 1.66V in Figure 8(a) and 1.72V in
(b). The results show that our prediction-based decap
weighting method is effective in reducing the power noise.
Figure 8(b) uses the same placement as (a), so this placement
contains overlaps. Figure 8(c) shows the result after running a
new placement. This placement is legalized and the power
noise reduction is similar to (b). In this subsection, we show
only part of the experimental results, more results will be
shown in Section 5.        

4. CORRECTING STEP: GATE-SIZING 
FOR POWER NOISE AND TIMING

After assigning decap padding to cells, we carry out placement
and power grid analysis. There are several placers which
attempt to spread out highly-switching cells across the chip
[4][13]. In our experiments we use the publicly available

academic placer Dragon [18], which does not have the
capability of spreading the frequently switching cells. After
placement, long interconnect delays can be reduced by
buffering or gate-sizing to meet timing constraints and further
reduce power noise. In this section, we describe gate-sizing
algorithms to optimize power noise and timing. The first
algorithm is based on a Sequence-of-Linear-Programs (SLP),
and the second algorithm uses a budgeting-based heuristic.
Both gate-sizing algorithms take into account power-noise
optimization.

4.1 Correcting step: a SLP optimization
The first algorithm uses an SLP technique, which solves a
linear program (LP) in each iteration. In each iteration the
coefficients of the LP are updated and a new LP is derived for
the next iteration. In each linear program formulation, three
types of constraints are considered: timing, area, and power
noise. The objective of each linear program is to minimize the
total power consumption and to reduce the power noise. We
will discuss each type of constraint separately.

4.1.1 Timing constraints
The circuit is modeled as a graph, G. Nodes in the graph
correspond to the cells, and edges represent the source-sink
relationships in the circuit. Note that the graph model
employed here uses edges rather than connections as in
Section 2.2. 

We model cell delay using a gain-based model.  is the fan-in
arrival time of .  is the node delay of . The timing
constraints are stated in (EQ 13):

, . (EQ 13)

When calculating node delays, we include the IR-drop effect
on delay and loading capacitance.  is the ideal power
supply voltage.  is the actual supply voltage after power
grid simulation.  is the intrinsic cell delay.  is the delay
slope per unit of loading capacitance.  is the gate size of a
cell u.  is the set of fan-out nodes for a cell u.  is the
size-1 input capacitance for a cell w.  is the wire
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Figure 7. Neighborhood-aware power noise prediction for
Dragon (a) cell current consumption with neighborhood
level 0 (b) cell current consumption considering the 1st level
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capacitance loading for cell u. The node delay function is
computed according to (EQ 14). The part of equation in the
bracket is contributed by the traditional gain-based delay
model (EQ 21).  is the delay scaling from supply
voltage. In general  is not constant, but the load dependence
of the delay can be assumed linear in the neighborhood of the
size .

(EQ 14)

The non-linear timing constraints like those in (EQ 14) cannot
be used directly in a linear programming formulation. We
apply the first order Taylor’s expansion to transform (EQ 14)
into a linear equation. 

We calculate the derivatives of a node delay with respect to the
gate size for all the fan-out nodes and the node itself. 
denotes the node delay when gate size vector  equals to .

 denotes the node u and its fan-out nodes.
 is the derivative of  function with

respect to  for the gate size vector .  is the
difference between the new gate size and the current gate size.
Using Taylor’s expansion, (EQ 14) is transformed to (EQ 15).

(EQ 15)

,  and  can be computed using
(EQ 16), (EQ 17) and (EQ 18). 

(EQ 16)

(EQ 17)

, (EQ 18)

Since the linear approximation of (EQ 14) by (EQ 15) is
effective only for the gate sizes close to the initial values, we
add the gate size change boundary constraints.  and  are
the lower and upper bounds for the new gate sizes. 
is the gate scale limit allowed in each iteration. The gate size
boundary constraint is stated in (EQ 19). The upper and lower
gate size bound can be calculated using (EQ 20). If we select a

 too small, the number of SLP iterations will be
large before the optimization converges. If we select a

 too large, the convergence will be very difficult.
We perform several experiments to select the scaling value that
can lead to efficient convergence. We use =1.2
as default. In a typical standard cell library, most of the gates
are available in sizes between 1 and 4 (inverters are in sizes
between 1 and 8). Gate determined by the sizing algorithm
should be in the range provided by the cell library.

 , (EQ 19)

, (EQ 20)

4.1.2 Area constraints
In the gate-sizing optimization, we add constraints to
guarantee that the summation of the gate and decap areas does
not change after the optimization, so that the chip area remains
the same. We try to avoid a large decap re-allocation. Large
decap area re-allocation might cause displacement of a large
number of cells, which in turn could affect design
convergence. Our idea is to divide the chip area into several
equal-sized blocks. The summation of gate area and decap area
in each block stays the same during the sizing optimization. 
is the set of all blocks.  is the cell area increase ratio when
its size increases by .  is the decap padding area for the
cell u.  is the summation of the cell and decap areas in a
block after the first placement. The area constraints are stated
in (EQ 21).

, (EQ 21)

4.1.3 Power noise constraints
The effectiveness of a decap to reduce power noise depends on
its size and distance from the power-noisy area. We need a
sufficient amount of decap in the power-noisy area to reduce
the noise. To handle the power noise constraints, we divide the
chip area into several equal-sized blocks. The power-noise
constraints guarantee that the summation of decaps in a block
is greater than the summation of switch currents of all the gates
in the block multiplied by a scalar value for power noise
improvement. 
Suppose that  is the average current drawn by a cell u.

 can be computed using the cell switching frequency and
loading capacitance.  is the largest ratio of block decap
over block current consumption among all the blocks in the
current solution.  is an improvement factor for power
noise.  is the lower bound ratio between the block current
drawn and decap in the optimization.  is computed as a
product of  and . The power noise constraint is
stated in (EQ 22), and the formula for  is shown in (EQ 23).
We set the default value of  to 1.2, which means the
expected improvement of block decap over block current
consumption is 20%.  can be set higher for more
improvement.

, (EQ 22)

(EQ 23)

4.1.4 The gate-sizing formulation
Constraints for the gate-sizing formulation include timing,
power noise, and area. The optimization objective consists of
two parts: the total power consumption and the weighted total
decap area summation.  is the power consumption for a
cell u.  is the voltage-drop experienced by a cell
u. Those cells whose voltage  differs more from  will
be assigned more decap.  is the balancing factor.  is
computed using (EQ 24).  is a normalizing factor between
the power and noise cost function, enabling them to be
compared appropriately.  is the noise weighting in the
objective function. Its default value is 5, because we put
greater effort on optimizing power noise. When 
increases, more optimization effort will be put on reducing
power noise. 

(EQ 24)
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The gate-sizing objective function is shown in (EQ 25). The
complete gate-sizing formulation is as follows: 

Gate-sizing optimization for timing and power noise:

Min 
(EQ 25)

 

Subject to:

, (EQ 26)

(EQ 27)

, (EQ 28)

, (EQ 29)

(EQ 26) and (EQ 27) capture the timing constraints. (EQ 28)
states the area constraints, and (EQ 29) expresses the power
noise constraints.

After setting up the initial linear programming (LP)
formulation and solving it, we obtain a new gate-size
configuration that can improve the LP objective function.
Using the new solution, we update the coefficients of the linear
equations and solve the LP problem again. We can continue
this iteration until the optimization converges. The SLP
iteration is stopped when improvement becomes insignificant.
In our implementation, if the total decap area increment in the
current iteration is less than 10% of the decap area increment
in the previous iteration, the SLP optimization is stopped. In
the experiments, we will evaluate the improvement gained
when applying different numbers of iterations.

4.2 Correcting step: budgeting-based 
heuristic

The SLP-based gate sizing algorithm can produce very high-
quality results if we continue the iteration. Although SLP is
efficient, the run time might still be too high for big circuits. In
this section, we propose a heuristic gate-sizing algorithm that
takes timing, power noise, and current consumption into
account and that can achieve good results in a short time. In the
following paragraphs, we discuss the case in which the critical-
path timing constraint is larger than the current critical-path
delay. In this case, we need only to down-size the gates. For
the case in which the current critical-path delay exceeds the
path-delay constraint, we can first uniformly increase the size
of every gate until the path-delay constraint is satisfied. Next,
our gate-sizing heuristic can be applied to reduce the gate
sizes.

The gate-sizing heuristic is based on an iterative scheme. In
each iteration, we resize gates a little according to weights
assigned to them. We first compute the timing, power noise,
and current consumption weight for each cell. Power noise
weight  is computed using (EQ 30).  is the current
consumption of n. Timing weight  is from (EQ 10). The
sizing weight, , is shown in (EQ 31). 

(EQ 30)

(EQ 31)

We define a cell’s gate level as the maximum level of gates for
all paths from primary inputs or FFs to this cell. To guarantee
that the resized gates will not cause timing violations, we
resize gates level-by-level following the reverse gate-level
order. As we resize the gates, the new cell-required-time will
be updated. We make sure that the increase of delay is less
than the cell’s original slack. For example, as shown in
Figure 9, cell a is at a gate-level (i-1) and cells b,c are at the
level i. The original arrival and required times for a are 5 and
6, respectively. The original slack of a is 1. If we reduce the
size of a, its delay will increase whereas its required time will
decrease. The maximum delay increase for a will be equal to
its slack, which is 1. In our program, we define the amount of
cell delay increment budget, , as the minimum of the
cell slack and cell sizing-weight multiplied by a cell-delay-
increment-unit, . 

(EQ 32)
If we assign  to a large value, cell-required-time will
decrease quickly in the first few reverse-levels, and only cells
in those levels will be resized. However, if we assign  to a
value too small, we will need many resizing iterations to finish
the optimization. From our experiments, we observe that
setting  (which is a value of about the same order
as the cell’s intrinsic delay) can strike a good balance between
the run time and quality. 

After the node sizing-weight is computed, we update the cell
delay and arrival times. Then we check to see if there is room
for gate-sizing optimization. This is done by noting whether
the reduction of a total slack in this iteration is greater than
10% of the slack reduction of the previous iteration. If the
criterion for improvement is satisfied, we will continue the
optimization; otherwise the algorithm stops. 
After the optimization, many cells may have smaller sizes. We
increase and relocate decaps in each partition area according to
the updated current consumption, . The partitions are as
described in Section 4.1.2 and Section 4.1.3. The reason for
relocating decaps only within a partition is to reduce the circuit
performance disturbance.
The flow of the heuristic gate-sizing algorithm is shown in
Figure 10. 

5. EXPERIMENTS
We conduct our experiments using 0.18um technology. Several
middle- and large-size benchmark circuits are selected from
the MCNC benchmark suite. Columns 1 and 2 in Table 2 show
the circuit information. Benchmark circuits have sizes ranging
from 4199 to 23362 cells. The 3rd and 4th columns in Table 2
show the number of grid nodes and power pads for each
circuit, respectively. TCW denotes the summation of all cell
widths. For each benchmark, the available total decap width is
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given as a percent of the total cell width. We will experiment
with varying total decap percentages. Since we assume a
standard cell design style, the heights of the cells and decaps
are the same. The sum of the decap and cell areas defines the
total chip area. Circuits are placed using the fixed-die mode in
Dragon. The default chip voltage is 1.8V and the voltage
margin threshold is 5% of the ideal voltage. The experiments
are run on a Linux Intel 2.4GHz machine. 

Figure 11 shows the experimental flow. We first run SIS [20]
technology mapper with optimization objective for timing
performance. SIS also does gate-sizing during synthesis. Based
on the netlist characteristics of the input circuits, we perform
the decap allocation prediction using the algorithm discussed
in Section 3. Afterwards we change the cell widths to include
decap padding, and perform the placement. We do not need to
modify the placer to take decap allocation into account. After
placement, we update wire capacitance and gate delay, and
then perform the power grid analysis. Next, we determine
voltage drops for all cells, update cell delay according to the
new grid voltage, and do timing analysis with the new node
delays. These are the results, after the prediction step, which
form the input for the gate sizing. After the sizing
optimization, we perform the grid analysis again. Cell delays
are also updated to reflect the new grid voltages and then we
perform timing analysis. These are the results after power
noise correction. 

.

5.1 Prediction scheme evaluation
To evaluate the decap prediction methods, we conduct
experiments applying various strategies. First, we allocate no
decaps to cells (NOC). Second, we distribute evenly decaps to
all cells (EVEN). Third, we perform the prediction-based

decap allocation (WGT) ignoring timing cost (T_S=0). Fourth,
we perform prediction-based allocation including timing cost
(T_S=1). When T_S=1, the decap allocation considers noise
and timing weights as equally important. A graphic illustration
of different strategies are shown in Figure 12.

The experimental results are shown in Table 3.  is the
timing cost scale in (EQ 11). DD denotes various methods of
decap distribution. IRD is the voltage-drop. SENA denotes the
summation of excess noise area for all grid nodes in units of

. vioC is the number of grid nodes that have
voltage drop greater than the voltage margin threshold. CritP is
the critical path delay. IRD, SENA and vioC are all computed
from the actual current waveform profiles. The last four rows
show the normalized average results for all 6 circuits. The
results are normalized with respect to the second strategy
(EVEN). 

From the average results in Table 3, we can see that for T_S =
0, the power noise, timing and total slack results are all
improved when DD changes from NOC to EVEN and to WGT.
Comparing the cases of EVEN and WGT, the IRD (IR-drop)
decreases 27%, SENA (summation of excess-noise-area)
decreases 51%, and vioC (grid node noise violence count)
decreases 28%. This shows that our prediction-based decap
allocation method is effective, and decaps are useful in
reducing power noise. The timing also improves because
voltage-drop decreases and node delays become shorter. When
we increase timing weights and change T_S from 0 to 1 using
prediction-weighting (WGT), timing results improve by 4%;
however, power noise results become worse. The timing
improvement is only minor when increasing the timing scale
T_S.  

Table 2. Benchmark information & wire length prediction

#GN #PN TCW
(um)

bigkey 4199 169 16 6983.6

apex2 4675 169 16 6956.9

clma 23362 1600 196 33515.0

s38584 13080 441 36 15100.4

frisc 7851 289 25 10665.9

ex1010 5838 289 9 11050.4

Figure 10. Heuristic gate sizing flow
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Table 4 shows the total wire length comparison for four cases
NOC, EVEN, (T_S=0,WGT) and (T_S=1,WGT). The last row
shows the normalized wire lengths. For each benchmark the
chip size is the same for all experiments. The wire length in
NOC is smaller than in other experiments, because with decaps
absent, cells can be placed closer. For the other three
experiments, the total wire lengths results are similar.   

5.2 Decap ratio effect evaluation
In the experiment reported in Table 3, we use decap ratio (DR)
as 0.2 of the total cell area. It is interesting to observe how the
decap ratio affects power noise. We conduct additional

experiments using DR=0.1 and 0.3. We obtain placement from
experiments in Table 3, scaling the chip width accordingly to
scale the decap area. The number of rows and columns in the
power grid do not change. We experiment with the case
T_S=0, and the decap allocation methods EVEN and WGT.
The normalized average results from all benchmarks are shown
in Table 5. Those results are normalized to the case T_S=0 and
the EVEN decap distribution in Table 3. From the results, we
can see that as the decap ratio increases, the power noise
results improve, although the timing results degrade slightly.
Comparing DR=0.3 and 0.1 at DD=WGT, the IRD reduces
23%, the SENA improves 91%, the vioC improves 65% and
the timing degrades 2.8%.  

5.3 NCC level effect evaluation
The power noise results depend also on the NCC-levels and
how the neighbors of a cell are predicted. If too few NCC-
levels are used, many decaps will be allocated to those cells
having a high-CC but a small neighborhood current
consumption. However, since such cells are unlikely to suffer
from a power noise problem, they should not be allocated
decaps. If its NCC levels are too large, a neighborhood will
cover too much chip area and will lose its meaning. According
to (EQ 6) and (EQ 7), NCC computation depends strongly on a
cell’s neighbors at a particular level. The effect of remote
neighbors on a cell’s NCC is small. When the NCC-level
exceeds a certain value, far-away-neighbors will not have
significant impact on a cell’s NCC. In the first four rows of
Table 6, we show the results when using varying NCC levels.
The results for all the benchmarks are averaged and normalized
with respect to the case of NCC level being equal to 4. We
show the results for NCC levels 0, 1, 4, and 8. From the results,
we can see that NCC level 4 gives the best results. When NCC

Table 3. Experimental results after prediction, DR=0.2, 
different timing scale (T_S) and delay distribution methods 

(DD)

DD IRD(V) SENA vioC CritP(ns)

bigkey

NOC 0.23 1261 0.88 4.43

EVEN 0.17 457 0.62 4.34

T_S=0,WGT 0.14 339 0.65 4.28

T_S=1,WGT 0.19 478 0.61 4.15

apex2

NOC 0.34 2954 0.86 5.61

EVEN 0.26 1646 0.74 5.41

T_S=0,WGT 0.21 1439 0.76 5.37

T_S=1,WGT 0.27 1747 0.74 5.17

clma

NOC 0.28 137 0.16 10.56

EVEN 0.25 108 0.12 10.52

T_S=0,WGT 0.17 40.5 0.08 10.49

T_S=1,WGT 0.22 106 0.12 10.50

s38584

NOC 0.37 2121 0.90 9.01

EVEN 0.29 937 0.76 8.81

T_S=0,WGT 0.23 789 0.80 8.85

T_S=1,WGT 0.23 849 0.77 8.31

frisc

NOC 0.17 282.23 0.58 17.90

EVEN 0.12 42.9 0.15 17.67

T_S=0,WGT 0.10 5.32 0.09 17.65

T_S=1,WGT 0.22 78.67 0.14 17.20

ex1010

NOC 0.16 57.67 0.09 6.30

EVEN 0.13 16.5 0.03 6.26

T_S=0,WGT 0.07 0 0 6.23

T_S=1,WGT 0.15 38.31 0.04 5.85

AVG

NOC 1.27 3.02 1.89 1.01

EVEN 1 1 1 1

T_S=0,WGT 0.73 0.49 0.72 0.99

T_S=1,WGT 1.14 1.36 1.04 0.96

Table 4. Total wire length (um)

NOC EVEN T_S=0,WGT T_S=1,WGT

bigkey 349090 365035 361499 371117

apex2 502633 540598 537984 569483

clma 2319435 2555250 2572195 2540234

s38584 604227 657091 648058 649950

frisc 380906 412766 426334 394830

ex1010 900959 986241 936920 1009425

Avg 0.93 1.01 1 1.01

Table 5. Average experimental results after prediction T_S = 0 
for different decap ratios (DRs) 

DR DD IRD(V) SENA vioC CritP(ns)

0.1
EVEN 1.03 1.48 1.30 0.99

WGT 0.86 0.98 1.09 0.98

0.3
EVEN 0.80 0.57 0.65 1.013

WGT 0.60 0.26 0.55 1.008



levels are too small or too great, the power noise results
become worse. 

As stated in Section 3.1, we consider those connections to be
strong whose mutual contraction comes within the top 30%.
We computed cell neighborhoods based on those strong
connections. We also experimented with differently defined
neighborhoods. For example, instead of using only the strong
connections to determine neighborhoods, we used all the
connections. As long as there was a connection between a pair
of nodes, we considered them to be first-level neighbors. In
this case, cell NCCs could be influenced by cells which have
been placed far away. In Table 6, we refer to the case of using
only strong connections as Strong_Co. The case for using all
connections to find neighbors is referred to as All_Co. From
the results, the NCC level-4 with neighborhood defined by
strong connections gives much better results than the NCC
level-4 and neighborhood defined by all connections. When
using strong connections, the IRD improves 30%, the SENA
improves 3.1 times, and the vioC improves 1.7 times. Using
too few NCC-levels may not cover enough neighbors and may
not capture the neighborhood effect on power noise. However
using too many NCC-levels may cover too much area which in
turn may increase the estimation errors. Therefore, choosing a
good neighborhood size is important.  

5.4 Grid design effect evaluation
The power grid design also has a big impact on power noise. In
this experiment, we show noise results for various granularity
grid and pad designs. Gnode# denotes the number of grid mesh
nodes. PAD# denotes the number of power pads. x1 refers to
using the original design. x4 stands for increased node or pad
count by 4 times. For this experiment, the total grid area is
fixed. If we use twice the number of the vertical and horizontal
grid lines, the number of grid nodes increases 4 times. The
width of the power grid lines will be reduced by half, and their
resistance will double. Table 7 shows the normalized results
for all benchmarks with respect to the case in the first row.
From the results, we can see that power noise is less dependent
on the grid size than on the pad number. The improvement on
SENA and vioC, when increasing the pad number, is
significant. 

5.5 Results after power noise correction
Table 8 shows the experimental results after power noise
correction. The second column shows various types of
optimization. si0 denotes the experiment in which T_S = 0, DD
= WGT for weighting prediction, and no SLP gate-sizing

optimization after placement. si2 and si4 denote the
experiments in which we run 2 and 4 SLP gate sizing iterations
after placement. si* denotes the case in which we repeat SLP
iterations until the stop criterion is met. hur denotes the results
for a heuristic sizing algorithm. 

TDW is the total decap width. TCC is the total chip current
consumption. RT is the run time for the SLP and hur
optimization. The last five rows are the normalized average
results for all the circuits, with respect to the case si0. 

We observed that as we conducted more SLP optimization
iterations, the results showed improvements in power noise,
timing, and chip power consumption. The decap width
increased substantially. Note that the summation of the decap
width and cell width remains fixed. The total cell width
decreases by the same amount as the total decap width
increases. Comparing si0 with si*, voltage-drop improves by
43%, SENA becomes almost 0, decap area increases 3.4 times,
and current consumption improves by 43%. The results from
the heuristic sizing algorithm are close to si* and require much
less run time. The heuristic iteration number ranges from 18
(for bigkey) to 71 (for clma). The average of si* iteration
number is 15.  

Table 6. Average experimental results after prediction T_S = 0 
for different NCC levels and neighbor definitions

NBR NCC 
level IRD(V) SENA vioC CritP

Strong_Co

8 0.992 1.084 1.012 0.999

4 1.0 1.0 1.0 1.0

1 1.015 1.034 1.116 1.001

0 1.055 1.692 1.172 1.002

All_Co 4 1.299 3.094 1.716 1.001

Table 7. Average experimental results after prediction T_S = 0 
for different power grid and pad granularity

Gnode# PAD# IRD (V) SENA vioC CritP 
(ns)

x1 x1 1.0 1.0 1.0 1.0

x4 x1 1.057 2.387 1.611 1.005

x4 x4 0.66 0.002 0.02 0.978

Table 8. Experimental results after correction, different gate-
sizing algorithms

TDW IRD 
(V) SENA vioC TCC 

(uA) RT(s)

bigkey

si0 6983 0.14 339 0.65 7659  

si2 12211 0.11 2.97 0.15 6911 16

si4 16526 0.09 0.08 0.02 6363 33

si* 21813 0.06 0 0 4831 181

hur 21349 0.06 0 0 5519 4

apex2

si0 6956 0.21 1439 0.76 9316

si2 14415 0.11 33.7 0.38 7368 154

si4 20717 0.09 6.26 0.16 6336 313

si* 27759 0.06 0.05 0.01 4650 1503

hur 26047 0.06 0.38 0.01 5239 5

clma

si0 33515 0.17 40.5 0.08 35168

si2 68814 0.18 24.6 0.04 26635 2572

si4 98250 0.16 11.3 0.02 23592 5332

si* 127134 0.12 2.47 0.01 18247 22860

hur 120047 0.13 3.86 0.01 19839 51



5.6 Voltage drop profile
Figure 13 shows the voltage profiles for different optimization
schemes at a grid node for the benchmark bigkey. In this
experiment T_S is set to 0, so the optimization targets only the
power noise reduction. WGT-si2 denotes using prediction-
based weighting (WGT) and two iterations of SLP. si0 denotes
the case with no SLP optimization. We can see that the voltage
drop decreases as we do more SLP optimization and use our
prediction-based weighting scheme. 

6. CONCLUSIONS
In this paper we addressed the power-noise problem
considering timing constraints. Decap padding was added to
each cell. We proposed a decap allocation flow which consists
of prediction and correction steps. First we allocated decap to
each cell based on predictions. Decaps were allocated to cells
which were most likely to have large voltage drops. We also
considered timing criticality in decap allocation so that the
added decap area would not increase the critical path delay. A
possible extension to improve timing is to include timing
weights in the neighborhood decap computation. Currently our
neighborhood-based decap allocation method only considers
power weighting. For a cell in the critical path, its neighbors
should have larger decap padding to reduce regional voltage
drop. The delay for that critical cell can be decreased, if its
voltage drop is reduced.
In the decap correction step, we performed gate sizing and re-
allocated decaps based on a more complete information after
placement and power grid analysis. For gate-sizing
optimization, we proposed two algorithms. The first algorithm
is based on the Sequence-of-Linear-Programs (SLP) method,
and the second is a heuristic. 
Both gate-sizing algorithms assume continuous sizing.
However, in practice, it may not be possible. Our algorithms
need to be adapted to discrete gate sizing. Our gate sizing
algorithms also require interaction with grid simulation. After
the gate sizing is done, we perform power grid simulation
again and determine the new voltage drop profile. If necessary,
gate sizing may be repeated. We think that the iteration scheme
between gate-sizing and simulation is more practical than
trying to solve both problems together, because of
computational complexity.
Comparing the results achieved for uniformly assigned decaps
against decaps assigned using our prediction-based weighting
method, our method shows that the maximum voltage drop
decreases by 27%, the sum of excess noise area decreases by
51%, and the grid voltage violations decrease by 28%. We
found that changing the timing weight from 0 to 1 improved
timing by 4%. The power noise results also showed
improvement when the decap ratio was increased. Comparing
decap ratio equals to 0.3 and 0.1 using prediction-based
weighting (WGT), the IR-drop (IRD) reduces 23%, the total
excess noise improves 91%, the grid violation count (vioC)
improves 65%, and the timing degrades 2.8%. 
Cell power noise was also affected by the extent of
neighborhood levels that we used and how we defined
neighbors. Our results showed that using contraction-predicted
neighborhoods can produce 30% better results on IR-drop,
rather than just using connections to estimate the
neighborhoods. Different grid designs were shown to have
impact on power noise. Power noise appears to be especially
sensitive to power pad numbers.
For post-layout gate sizing, when using SLP, comparing si0
with si*, voltage-drop improves by 53%, total excess noise
becomes almost 0, decap area increases 3.4 times, and current
consumption improves by 53%. The gate-sizing heuristic
algorithm produces results similar to si*; however the runtime
is one-order of magnitude less. Even our biggest benchmark
can be finished in 51 seconds.
These results show that our techniques are very effective and
efficient for power noise reduction. For future more advanced
design, power noise will become a more severe problem.

s38584

si0 15100 0.23 789 0.8 16635  

si2 28465 0.15 49.5 0.27 14045 22

si4 37772 0.12 7.27 0.09 12440 43

si* 46976 0.08 0 0 8990 164

hur 46531 0.09 0.09 0.01 10215 12

frisc

si0 10665 0.10 5.32 0.09 7329

si2 18543 0.09 0.06 0.02 6113 43

si4 24323 0.07 0 0 5485 84

si* 29345 0.04 0 0 3943 328

hur 28936 0.04 0 0 4594 8

ex1010

si0 11050 0.07 0 0 4248

si2 22145 0.07 0 0 3849 379

si4 29390 0.06 0 0 3584 742

si* 42437 0.03 0 0 2780 3513

hur 41135 0.06 0 0 3096 8

AVG

si0 1 1 1 1 1

si2 1.9 0.83 0.11 0.27 0.84 1

si4 2.6 0.75 0.05 0.10 0.76 1.9

si* 3.4 0.57 0.01 0.01 0.57 8.9

hur 3.3 0.64 0.01 0.02 0.64 0.14

Table 8. Experimental results after correction, different gate-
sizing algorithms
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Figure 13. Power grid voltage-drop for bigkey



Although a good decap allocation scheme is an important part
of reducing power noise, other steps like grid design, package
design, and placement are also important. A more integrated
approach is necessary to maintain power integrity. In advanced
designs leakage power becomes a serious problem. Decaps
contribute to leakage. In a case when leakage power is a
limiting factor, our decap allocation method can be used to
spread out highly switching cell clusters. Our method can be
applied without decap insertion and can still improve power
noise.

7. REFERENCES
[1] A. R. Agnihotri, S. Ono, and P. H. Madden, “Recursive 

Bisection Placement: Feng Shui 5.0 Implementation Details”, 
Proceedings of the 2005 International Symposium on 
Physical Design, Pages 230 - 232, 2005. 

[2] G. Bai, S. Bobba, and T. N. Hajj, “Static Timing Analysis 
Including Power Supply Noise Effect on Propagation Delay 
in VLSI Circuits”, Proceedings of Design Automation 
Conference, Pages 295-300, June 2001. 

[3] A. E. Caldwell, A. B. Kahng, S. Mantik, I.L Markow and A. 
Zelikovsky, “On wire length estimation for row-based 
placement”, IEEE Transactions on Computer-Aided Design 
of Integrated Circuits and Systems, Pages 1265 - 1278, Sep 
1999. 

[4] G. Chen, S. Sapatnekar, “Partition-driven standard cell 
thermal placement”, Proceedings of the 2003 International 
Symposium on Physical Design, Pages 75 - 80, 2003. 

[5] H. H. Chen, “Minimizing chip-level simultaneous switching 
noise for high-performance microprocessor design”, IEEE 
International Symposium on Circuits and Systems, ISCAS 
'96, vol.4, Pages 544 - 547, May 1996. 

[6] H.-M. Chen, L.-D. Huang, I-Min Liu, M. Lai, and D.F. 
Wong, “Floorplanning with Power Supply Noise Avoidance,” 
Proc. of IEEE Asia and South Pacific Design Automation 
Conference, Pages 427 - 430, January 2003 (ASPDAC-03). 

[7] B. Hu, M. Marek-Sadowska, “Wire Length Prediction based 
Clustering and its Application in Placement”, Proceedings of 
Design Automation Conference, Pages 800 - 805, June 2003.

[8] B. Hu, Y. Watanabe, A. Kondratyev, M. Marek-Sadowska, 
“Gain-based technology mapping for discrete-size cell 
libraries”, Proceedings of Design Automation Conference, 
Pages 574 - 579, June 2003 

[9] S. Hauck and G. Borriello, “An evaluation of bipartitioning 
techniques”, IEEE Transactions on Computer-Aided Design 
of Integrated Circuits and Systems, Vol 16, No. 8, Pages 849 - 
866, 1997.

[10] T. Hamada, C.-K. Cheng, P. M. Chau, “A Wire Length 
Estimation Technique Utilizing Neighborhood Density 
Equations”, Proceedings of Design Automation Conference, 
Pages 57 - 61, 1992.

[11] M. A. B. Jackson and E. S. Kuh, “Performance-driven 
placement of cell-based ic’s”, Proceedings of Design 
Automation Conference, Pages 370 - 375, 1989.

[12] A. Marquardt, V. Betz and J. Rose, ``Timing-Driven 
Placement for FPGAs,'' ACM/SIGDA International 
Symposium on Field Programmable Gate Arrays, Pages 203 - 
213, February 2000.

[13] B. Obermeier, F. M. Johannes, “Temperature-aware global 
placement”, Proceedings of the 2004 conference on Asia 
South Pacific design automation: electronic design and 
solution fair 2004, January 27 - 30, 2004, Yokohama, Japan.

[14] M. D. Pant, P. Pant, D. S. Wills, “On-chip decoupling 
capacitor optimization using architectural level prediction”, 
IEEE Transactions on Very Large Scale Integration (VLSI) 
Systems, Vol. 10, No. 3, Pages 319 - 326, June 2002.

[15] Z. Qi, H. Li, S.X.-D. Tan, L. Wu, Y. Cai, X. Hong, “Fast 
Decap Allocation Algorithm For Robust On-Chip Power 
Delivery”, Sixth International Symposium on Quality of 
Electronic Design (ISQED), Pages 542 - 547, March 2005. 

[16] H. Su, S. S. Sapatnekar and S. R. Nassif, “Optimal 
Decoupling Capacitor Sizing and Placement for Standard-
Cell Layout Designs”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol 22, No 
4, Pages 428 - 436, April 2003. 

[17] H.-C. Tsai, K.-T. Cheng, and V. Agrawal, “A Testability 
Metric for Path Delay Faults and Its Application,” in Proc. 
Asia and South Pacific Design Automation Conf., pp.593-
598, Jan. 25-28, 2000.

[18] M. Wang, X. Yang and M. Sarrafzadeh, “Dragon2000: 
Standard-cell Placement Tool for Large Industry Circuits”, 
Proceedings of the IEEE/ACM International Conference on 
Computer-Aided Design, Pages 260 - 263, November 2000.

[19] S. Zhao, K. Roy, and C.-K. Koh, ``Decoupling Capacitance 
Allocation and Its Application to Power Supply Noise Aware 
Floorplanning'', IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems (Special Issue on 
Physical Design), Vol 21, No 1, Pages 81 - 92, January 2002. 

[20] SIS: A System for Sequential Circuit Synthesis”, Report 

M92/41, University of California, Berkeley, May, 1992. 


