UC Irvine
UC Irvine Previously Published Works

Title
A framework for cosynthesis of memory and communication architectures for MPSoC

Permalink
https://escholarship.org/uc/item/2dm3n54gf

Journal
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(3)

ISSN
0278-0070

Authors

Pasricha, S
Dutt, N D

Publication Date
2007-03-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2dm3n5qf
https://escholarship.org
http://www.cdlib.org/

408 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

A Framework for Cosynthesis of Memory and
Communication Architectures for MPSoC

Sudeep Pasricha, Student Member, IEEE, and Nikil D. Dutt, Senior Member, IEEE

Abstract—Memory and communication architectures have a
significant impact on the cost, performance, and time-to-market
of complex multiprocessor system-on-chip (MPSoC) designs. The
memory architecture dictates most of the data traffic flow in a
design, which in turn influences the design of the communication
architecture. Thus, there is a need to cosynthesize the memory and
communication architectures to avoid making suboptimal design
decisions. This is in contrast to traditional platform-based design
approaches where memory and communication architectures are
synthesized separately. In this paper, the authors propose an au-
tomated application-specific cosynthesis framework for memory
and communication architecture (COSMECA) in MPSoC designs.
The primary objective is to design a communication architecture
having the least number of buses, which satisfies performance
and memory-area constraints, while the secondary objective is to
reduce the memory-area cost. Results of applying COSMECA to
several industrial strength MPSoC applications from the network-
ing domain indicate a saving of as much as 40 % in number of buses
and 29% in memory area compared to the traditional approach.

Index Terms—Communication system performance, digital
systems, high-level synthesis, memory architecture.

I. MOTIVATION

ODERN multiprocessor system-on-chip (MPSoC) de-

signs are rapidly increasing in complexity. These de-
signs are characterized by large bandwidth requirements and
massive data sets, which must be stored and accessed from
memories, especially for applications in the multimedia and
networking domains. The communication architecture in such
systems, which copes with the entire intercomponent traffic,
not only impacts performance considerably but also consumes
a significant chunk of the design cycle [1], [2].

Another major factor influencing performance is the memory
architecture, which can occupy up to 70% of the die area [3].
Estimates indicate that this figure will go up to 90% in the com-
ing years [4]. Since memory and communication architectures
have such a significant impact on system cost, performance, and
time-to-market, it becomes imperative for designers to focus on
their exploration and synthesis early in the design flow, with the
help of efficient design-flow concepts such as those proposed in
platform-based design [6].

Manuscript received March 17, 2006; revised June 28, 2006. This work was
supported in part by grants from Semiconductor Research Corporation (SRC)
(2005-HJ-1330) and in part by a Center for Pervasive Communications and
Computing (CPCC) fellowship. This paper was recommended by Guest Editor
D. Sciuto.

The authors are with the Center for Embedded Computer Systems,
University of California, Irvine, CA 92697 USA (e-mail: sudeep@cecs.uci.edu;
dutt@cecs.uci.edu).

Digital Object Identifier 10.1109/TCAD.2006.884487

(b)

100 (mem4)| = 6

memory area = 25.93 mm?’, \busl=9

(©)

Fig. 1. Comparison of traditional (separate synthesis) approach and co-
synthesis approaches for MPSoC example. (a) MPSoC system. (b) Result
of performing memory synthesis before communication-architecture syn-
thesis. (c) Result of performing cosynthesis of memory and communication
architectures.

Traditionally, in platform-based design, memory synthesis
is performed before the communication-architecture-synthesis
step [7]-[11]. While treating these two steps separately is
done mainly due to tractability issues [5], [12], it can lead
to suboptimal design decisions. Consider the example of a
networking MPSoC subsystem shown in Fig. 1(a). The figure
shows the system after HW/SW partitioning, with all the in-
tellectual properties (IPs) defined, including memory, which
is synthesized based on data size and high-level bandwidth

0278-0070/$25.00 © 2007 IEEE

PASRICHA AND DUTT: FRAMEWORK FOR COSYNTHESIS OF MEMORY AND COMMUNICATION ARCHITECTURES 409

constraint analysis. Fig. 1(b) shows the traditional approach
where communication-architecture synthesis is performed after
memory synthesis, while Fig. 1(c) shows the case where mem-
ory and communication architectures have been cosynthesized
using the cosynthesis framework for memory and communica-
tion architecture (COSMECA) approach. Now, let us consider
the implications of using a cosynthesis framework. First, the
cosynthesis approach is able to detect that the data arrays
stored in Mem1 and Mem?2 end up sharing the same bus, and
automatically merges and then maps the arrays onto a larger
single physical memory from the library, thus saving area.
Second, the cosynthesis approach is able to merge data arrays
stored in Mem3 and Mem5 onto a single memory from the
library, saving not only area but also eliminating two buses, as
shown in Fig. 1(c). However, Mem5 cannot share the same bus
as Mem3 (or Mem4) in Fig. 1(b) because the access times of
the presynthesized physical memories are such that they cause
traffic conflicts that violate bandwidth constraints. Third, due
to the knowledge of support for out-of-order (OO) transaction
completion [14] by the communication architecture, the cosyn-
thesis approach is able to add an OO buffer of depth 6 to Mem4,
which enables it to reduce the number of ports from 2 to 1,
thus saving area, while still meeting bandwidth constraints. It is
thus apparent that the COSMECA cosynthesis approach is able
to make better synthesis decisions by exploiting the synergy
and interdependence between the memory and communication-
architecture design spaces to reduce the overall cost of the
synthesized system.

In this paper, we propose an automated application-specific
COSMECA in MPSoC designs. The primary objective is to
design a communication architecture having the least number
of buses, which satisfies performance and memory-area con-
straints, while the secondary objective is to reduce the memory-
area cost. We consider a bus-matrix (sometimes also called
crossbar switch) [18] type of communication architecture for
synthesis, since it is increasingly being used by designers in
high-bandwidth designs today.

COSMECA tailors the memory and communication archi-
tectures to the application being considered to reduce the
system cost. Using a combination of an efficient static branch
and bound hierarchical clustering algorithm and heuristics,
we are able to quickly prune the uninteresting portion of the
design space, while using fast transaction-based bus cycle-
accurate SystemC [19] simulation models to capture dynamic
system-level effects accurately and verify the results. In its
essence, COSMECA is a novel memory and communication-
architecture cosynthesis framework, which improves upon
existing synthesis approaches by: 1) automatically generating
bus topology and parameter values for arbitration schemes, bus
speeds and OO buffer sizes, while considering dynamic sim-
ulation effects and 2) simultaneously determining a mapping
of data arrays to physical memories while also deciding the
number, size, ports, and type of these memories from a memory
library. To the best of our knowledge, no previous work has
performed automated cosynthesis considering so many explo-
ration parameters. Results of applying COSMECA to several
industrial strength MPSoC networking applications indicate
a saving of as much as 40% in number of buses and 29% in

memory area compared to the traditional approach of separate
synthesis.

II. RELATED WORK

Communication architectures have been the focus of much
research over the past several years because of their significant
impact on system performance [12], [24]. Hierarchical shared
bus communication architectures such as those proposed by
AMBA [15], CoreConnect [16], and STbus [17] can cost effec-
tively connect few tens of IPs but are not scalable to cope with
the demands of modern MPSoC systems. Network-on-Chip
(NoC)-based communication architectures [20] have recently
emerged as a promising alternative to handle communication
needs for the next generation of high-performance designs, but
research on the topic is still in its infancy, and few concrete
implementations of complex NoCs exist to date [21]. Currently,
designers are increasingly making use of bus-matrix [18] com-
munication architectures to meet the bandwidth requirements of
modern MPSoC systems. The need for bus-matrix architectures
in high-performance designs and its superiority over hierar-
chical shared buses has been emphasized in previous work
[22]-[24]. Accordingly, we focus on the synthesis of bus-matrix
communication architectures.

Although a lot of work has been done in the area of hier-
archical shared bus-architecture synthesis (e.g., [2], [25], [26],
[36]-[40]) and NoC architecture synthesis (e.g., [27], [28],
[41]-[43]), few efforts have focused on bus-matrix synthesis.
Ogawa et al. [29] proposed a transaction-based simulation
environment that allows designers to explore and design a
bus matrix. But, the designer needs to manually specify the
communication topology, and arbitration scheme, which is too
time consuming for today’s complex systems. The automated
synthesis approach for STBus crossbars proposed in [30] gen-
erates crossbar topology but does not consider generation of pa-
rameters such as arbitration schemes, bus speeds, and OO buffer
sizes, which have considerable impact on system performance
[12], [26], [44]. COSMECA overcomes these shortcomings by
automatically synthesizing both topology and communication
parameters for the bus matrix.

Previous research in the area of memory and communication-
architecture synthesis has either ignored the cosynthesis as-
pect or focused on a small subset of the problem. Typically,
high-level synthesis approaches perform memory allocation
and mapping before communication-architecture synthesis
[7]-[11], ignoring the overhead of the communication protocol
during synthesis. While treating these two steps separately
is mainly due to tractability issues [5], [12], the merits of
integrating communication synthesis with memory synthesis
are clearly demonstrated in [13]. Only a few approaches have
attempted to simultaneously explore memory and communi-
cation subsystems. Shalan er al. [31] present a tool to au-
tomatically generate a full crossbar and a dynamic memory
management unit (DMMU). Grun et al. [32] consider the con-
nectivity topology early in the design flow in conjunction with
memory exploration, for simple processor-memory systems.
Kim et al. [33] deal with bus topology and static priority-
based arbitration exploration to determine the best memory

410 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

matrix arbiters slaves

masters [Decode
Input
stage
@ Input
stage

@ Input
stage

uPl1

matrix

masters
Input A
stage

Input
stage

O-=
stage

UP1

(b)

Fig. 2. Bus-matrix communication architecture. (a) Full bus-matrix architec-
ture. (b) Partial bus-matrix architecture.

port-to-bus mapping for presynthesized memory blocks. More
recently, Srinivasan et al. [47] present an approach to simulta-
neously consider bus-topology splitting and memory bank par-
titioning during synthesis. While they consider a limited design
space compared to our approach (they do not consider the effect
of communication parameters or different memory types), their
focus is on the problem of system energy reduction, which is
not currently addressed by our approach. Other approaches that
deal with memory synthesis make use of static estimations of
communication architectures such as those proposed in [34]
and [35]. Such approaches are unable to capture dynamic
effects such as contention and address only a limited explo-
ration space. More importantly, none of the aforementioned
approaches attempts to perform cosynthesis. COSMECA
is a novel memory and communication-architecture cosynthesis
framework that improves upon existing synthesis approaches
by: 1) automatically generating bus topology and parameter
values for arbitration schemes, bus speeds, and OO buffer sizes,
while considering dynamic simulation effects and 2) simul-
taneously determining a mapping of data arrays to physical
memories while also deciding the number, size, ports, and type
of these memories from a memory library. Results of applying
the COSMECA approach to several industrial strength case
studies (presented in Section VI) emphasize the usefulness and
need of such an approach for MPSoC designs.

III. BUS-MATRIX COMMUNICATION ARCHITECTURES

This section describes bus-matrix architectures. Fig. 2(a)
shows a three-master five-slave full AMBA bus matrix. A bus
matrix consists of several buses in parallel that can support
concurrent high-bandwidth data streams. The Input stage is
used to handle interrupted bursts, and to register and hold

incoming transfers if receiving slaves cannot accept them im-
mediately. Decode generates select signals for slaves. Unlike in
traditional shared bus architectures, arbitration in a bus matrix
is not centralized but distributed so that every slave has its
own arbitration. Also, typically, all buses within a bus matrix
have the same data bus width, which usually depends on the
application.

One drawback of the full bus-matrix structure shown in
Fig. 2(a) is that it connects every master to every slave in the
system, resulting in a prohibitively large number of buses. In the
AXI [14] specification for instance, each bus consists of read
address, write address, read data, write data, write response,
and control signals. The excessive wire congestion can make
it practically impossible to route and achieve timing closure for
the design [1], [2]. Fig. 2(b) shows a partial bus matrix, which
has fewer buses and consequently uses fewer components (e.g.,
decoders, arbiters, buffers), has a smaller area, and also utilizes
less power. The basic idea here is to group slaves/memories
on shared buses as long as performance constraints are met.
Points A and B in Fig. 2(b) are referred to as slave access
points (SAPs). The communication-architecture synthesis in
COSMECA attempts to generate a partial bus matrix tailored
to the target application, with a minimal number of buses in
the matrix. Additionally, we generate arbitration schemes at the
SAPs, bus-clock-speed values, and OO buffer size values.

IV. MEMORY SUBSYSTEM

There are a variety of different memory types available to
satisfy memory requirements in applications. Typically, design-
ers have used off-chip DRAMs for larger memory require-
ments and on-chip embedded SRAMs for smaller memory
requirements. Lately, on-chip embedded DRAMs are gaining
in popularity as they eliminate I/O signals to separate memory
chips, boosting performance and reducing noise, as well as
pin count, which ends up lowering the system cost. Although
SRAMs have smaller access times than DRAMs, they also
take up a larger area, requiring a tradeoff between area and
performance between the two memory types during synthesis.
There is also a need for nonvolatile memories such as EPROMs
and EEPROMs to typically store read-only data in a system.
The memory synthesis in COSMECA uses a memory library
populated by on-chip SRAMs, on-chip DRAMs, EPROMs, and
EEPROMs having different capacities, areas, ports, and access
times. We assume that the word size of these memories is equal
and fixed, based on the application. Data arrays and groups
of scalars in the application are grouped together into virtual
memories (VMs) based on certain rules, before being mapped
onto the appropriate physical memories from the library, which
allow the application to meet its area and performance con-
straints. Note that, since the focus of this paper is not on system-
level energy reduction, we do not perform fine grain application
level data reuse analysis to cluster frequently accessed data onto
a smaller memory like in [47] and [48]. The grouping of data
blocks (DBs) in our approach allows us to reduce the number
of memories in the design, thus reducing area. We also try to
avoid multiport memories because of their excessive area and
cost overhead.

PASRICHA AND DUTT: FRAMEWORK FOR COSYNTHESIS OF MEMORY AND COMMUNICATION ARCHITECTURES 411

Fig. 3.

Communication throughput graph (CTG).

V. COSMECA COSYNTHESIS FRAMEWORK

This section describes the COSMECA cosynthesis frame-
work. First, we state our assumptions and present the prob-
lem definition. Next, we describe our simulation engine
and elaborate on the communication-memory constraint set,
which guides the cosynthesis process. Finally, we describe the
COSMECA cosynthesis flow in detail.

A. Assumptions and Problem Definition

We are given an application for which we assume that the
HW/SW partitioning has already been performed. The resulting
MPSoC design has possibly several hardware and software IPs
onto which application functionality has been mapped. Memory
in this model is initially represented by abstract DBs, which
are collections of scalars or arrays accessed by the applica-
tion, similar to basic groups in [10]. Generally, this MPSoC
design will have performance constraints, which is dependent
on the application. The throughput of communication between
components is a good measure of the performance of a system
[25]. To represent performance constraints in COSMECA, we
define a communication throughput graph CTG = G(V, A)
[2] which is a directed graph, where each vertex v represents an
IP (or DB) in the system, and an edge a connects components
that need to communicate with each other. A throughput
constraint path (TCP) is a subgraph of a CTG, consisting
of a single component for which data throughput must be
maintained and other masters, slaves, and DBs which are in the
critical path that impacts the maintenance of the throughput.

Fig. 3 shows a CTG for a network subsystem, with a TCP
involving the ARM2, DB2, DMA, and “Network I/F” com-
ponents, where the rate of data packets streaming out of the
“Network I/F” component must not fall below 1 Gb/s.

Problem definition: A bus B can be considered to be a parti-
tion of the set of components V in a CTG, where B C V. Then,
our primary objective is to determine an optimal component
to bus assignment for a bus-matrix architecture, such that the
partitioning of V onto N buses results in a minimal number of
buses N and satisfies memory-area bounds while meeting all
performance constraints in the design, represented by the TCPs
in a CTG. As a secondary objective, we attempt to reduce the
memory-area cost of the solution.

B. Simulation Engine

Since communication behavior in a system is characterized
by unpredictability due to dynamic bus requests from IPs,
contention for shared resources, buffer overflows etc., a simu-
lation engine is necessary for accurate performance estimation.
COSMECA uses a hybrid approach based on static estimation
as well as dynamic simulation. For the dynamic simulation
part, we capture behavioral models of IPs and bus architec-
tures in SystemC [19], [26], [45] and keep them in an IP
library database. SystemC provides a rich set of primitives for
modeling concurrence, timing and synchronization—channels,
ports, interfaces, events, clocks, signals, and wait-state inser-
tion. Concurrent execution is performed by multiple threads
and processes (lightweight threads), and execution schedule is
governed by the scheduler. SystemC also supports capture of
a wide range of modeling abstractions from high-level specifi-
cations to pin and timing accurate system models. Since it is a
library based on C++, it is object oriented, modular, and allows
data encapsulation—all of which are essential for easing IP
distribution, reuse, and adaptability across different modeling
abstraction levels.

Since simulation speed is important, we chose a fast
transaction-based bus cycle-accurate modeling abstraction,
which averaged simulation speeds of 150-200 kHz [26], [44],
while running embedded software applications on processor
instruction set simulator (ISS) models. The communication
model in this abstraction is extremely detailed, capturing de-
lays arising due to frequency and data width adapters, bridge
overheads, interface buffering, and all the static and dynamic
delays associated with the standard bus-architecture protocol
being used.

C. Communication-Memory Constraint Set ¥

In the interest of generating a practically realizable system,
we allow a designer to specify a discrete set of valid values
(referred to as a constraint set ¥) for communication parame-
ters such as bus clock speeds, OO buffer sizes, and arbitration
schemes. Additionally, W allows the specification of constraints
on the type of memory to allocate for DBs, for instance, in
the case of a DB, which the designer knows must be read
from an EEPROM memory. We allow the specification of two
types of constraint sets for components—a global constraint set
(P) and a local constraint set (¥1,). The presence of a local
constraint overrides the global constraint, while the absence
of it results in the resource inheriting global constraints. For
instance, a designer might set the allowable bus clock speeds
for a set of buses in a subsystem to multiples of 33 MHz, with a
maximum speed of 166 MHz, based on the operation frequency
of the cores in the subsystem, while globally, the allowed bus
clock speeds are multiples of 50 MHz up to a maximum of
250 MHz. This provides a convenient mechanism for the de-
signer to bias the cosynthesis process based on knowledge of
the design and the technology being targeted. Such knowledge
about the design is not a prerequisite for using our cosynthesis
framework, but informed decisions can help avoid the synthesis
of unrealistic system configurations. The size of the constraint

412 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

>
w mem preprocess IP
library
< v
DBDG matrix map =
and analyze LIRS
¢ template
©
Branch and bound]
clustering algorithm constraint
v set (‘P)

®

ranked matrix
solution database

output synthesized
architecture(s)

Fig. 4. COSMECA cosynthesis flow.

memmap heuristic

v

optimize design

©

set directly affects the time taken for cosynthesis. The larger the
number of values for the communication parameter constraints
in the set (e.g., larger number of allowed bus speeds), the longer
it takes for the cosynthesis framework to arrive at a solution
since a larger design space has to be considered. However, the
larger the number of memory mapping constraints in the set, the
lesser is the amount of time taken to arrive at a solution, since
the memory mappings to be considered during cosynthesis are
now reduced.

D. COSMECA Cosynthesis Flow

We describe the COSMECA cosynthesis flow in more de-
tail in this section. Fig. 4 gives a high-level overview of the
flow. The inputs to COSMECA include a CTG, a library of
behavioral IP models (IP library) and memory models (mem
library), a DB dependence graph (DBDG), a target bus-matrix
template (e.g., AMBA [15] bus matrix) and a communication-
memory constraint set (¥)—which includes (V) and (Wrp,).
The general idea is to first preprocess the memory (represented
by DBs in the CTG) in the design by merging the nonconflicting
DBs into VM blocks to reduce memory cost. Then, we map the
modified CTG to a full bus-matrix template and optimize the
matrix by removing unused buses. Next, we perform a static
branch and bound hierarchical clustering of slave components
in the matrix, which further reduces the number of buses,
and store prospective matrix architecture solutions in a ranked
matrix solution database. We then use a heuristic (memmap),
which first merges VMs at each SAP in the bus matrix to
further reduce memory cost and then maps these VMs to
physical-memory modules from the memory library. The output
of memmap is a set of N valid solutions, which meet the
memory area and performance constraints. Finally, we optimize
the output solutions to reduce bus speeds, arbitration costs, and
prune OO buffer sizes. We now elaborate on the five phases in
the COSMECA flow (shown in Fig. 4).

Phase 1. Mem preprocess: In the first phase, we merge DBs
in the CTG into VMs to reduce the memory-area cost by poten-
tially reducing the number of memory modules in the system.
Only DBs satisfying the two criteria of having: 1) similar edges
(i.e., edges from the same masters) and 2) nonoverlapping

access are merged, so as not to constrain the mapping freedom
and eliminate useful channel clustering possibilities later in the
flow. Fig. 5(a) shows a CTG for an example MPSoC system,
with the following groups of DBs having similar edges: (DB,
DB2) and (DB4, DB5, DB6). We use a DBDG to determine
if DBs have nonoverlapping access. The DBDG is a directed
graph, which shows the dependence of DB accesses on each
other. It can either be created manually or derived automatically
from a control data flow graph (CDFG). A node in a DBDG
represents a DB access while an edge represents a dependence
between DBs—A DB cannot be accessed until the source DBs
of all its input edges have been accessed. Fig. 5(b) shows the
DBDG for the example in Fig. 5(a). If two DBs have similar
edges and nonoverlapping access, they are eligible for merger
[e.g., DB1, DB2 in Fig. 5(b)]. The size of the VM created after
merger depends on the lifetime analysis of merged DBs—It is
the sum of the sizes of the merged DBs, unless the lifetimes do
not overlap, in which case, it is the size of the larger DB being
merged. Fig. 5(b) shows the lifetime of DB1. It is possible for
DB2 to overwrite DB1, thus saving the memory space.

Phase 2. Matrix map and analyze: In the second phase, the
modified CTG is mapped onto a full bus-matrix template. The
full bus matrix is subsequently pruned by removing unused
buses on which there are no data transfers. Dedicated slave
and memory components are also migrated to the local buses
of their corresponding masters to further reduce the buses in
the matrix. Fig. 5(d) shows the bus matrix after these steps
[for the example in Fig. 5(a)]. Finally, we perform a fast high-
level transaction-level (TLM) simulation [26] of the application
using communication protocol-independent channels for com-
munication and assuming no arbitration contention to obtain
application-specific data traffic statistics such as the number of
transactions on a bus and average transaction burst size on a
bus. Knowing the bandwidth to be maintained on a bus from
the TCPs in the CTG, we can also estimate the minimum clock
speed at which any bus in the matrix must operate, in order to
meet its throughput constraint, as follows. The data throughput
(Priayp) from the TLM simulation, for any bus B in the
matrix, is given by

Provy g = (numTp x sizeTp x widthg x Qp)/o

where num7 is the number of data transactions on bus B, sizeT
is the average data transaction size, width is the bus width, €2 is
the clock speed, and o is the total number of cycles of TLM
simulation for the application. The values for num7', sizeT’,
and o are obtained from the TLM simulation. To meet the
throughput constraint I'vcp /B for bus B

Trimy 2 T'rep/n

Qp > (0 x T'repyp)/(numTp x sizeTp x widthp).

The minimum bus speed thus found is used to create (or update)
the local bus speed constraint set W, (speeq) for bus B.

Phase 3. Branch and bound-clustering algorithm: In the
third phase, a static branch and bound hierarchical clustering al-
gorithm is used to cluster slave/memory components to reduce
the number of buses in the matrix even further. Note that we do

PASRICHA AND DUTT: FRAMEWORK FOR COSYNTHESIS OF MEMORY AND COMMUNICATION ARCHITECTURES 413

P DBI lifetime

uP1 | [DBO

[DB1B[DB1H[DR2

uP2 | [DB1]}P{DB4]-[DB3s[——~(DB6]2[DB6
uP3 4|D%|—®‘|Dm

{DB4]
[DB4

(d)

(b)
(©)

(e)

Fig. 5. COSMECA cosynthesis example. (a) CTG. (b) DBDG. (c) VM access trace. (d) Reduced matrix. (e) Best synthesized solution.

not consider clustering masters in the matrix in our approach.
While clustering masters can result in some savings for some
SoC systems, for the highly parallel high-performance multi-
processor SoC applications that we target, clustering masters
can drastically degrade the system performance. This is because
master clustering adds two levels of contention: one at the
master end and another at the slave end, in a data path, which
lengthens the completion time for transactions issued by any
of the clustered masters. Additionally, clustering masters also
severely limits the parallelism in the system, since if one master
in a “master cluster” is active with a transaction, none of the
other masters in that cluster can issue transactions. In our expe-
rience, even increasing the bus clock frequency to compensate
for the reduced parallelism and longer transaction latency in the
system is unable to resolve the resulting throughput constraint
violations.

Before describing the algorithm, we present a few defini-
tions. A slave cluster SC = {s1, ..., s, } refers to an aggrega-
tion of slaves that share a common arbiter. Let Mgc refer to
the set of masters connected to a slave cluster SC. Next, let
Msci/sc2 be a superset of sets of buses, which are merged
when slave clusters SC1 and SC2 are merged. Finally, for a
merged bus set 3 = {bl,...,bn}, where 3 C llgc1/sc2, K5
refers to the set of allowed bus speeds for the newly created bus
when the buses in set 3 are merged, and is given by

Kﬁ = \PL(speed)(bl) n \I/L(speed)(b2) N \IIL(speed) (bn)-

The branching algorithm starts by clustering two slave clus-
ters at a time and evaluating the gain from this operation.
Initially, each slave cluster has just one slave. The total number
of clustering configurations possible for a bus matrix with
n slaves is given by (n! x (n —1)!)/2(»~1)_ This creates an
extremely large exploration space, which is too time consuming

Step 1: if (exists lookupTable(SC1,SC2)) then
discard duplicate clustering
else

updatelookupTable(SC1, SC2)
if (Mge; N Mgy == @) then
bound clustering
else
cum_weight = cum_weight + | Mgy M Mg

Step 2:

Step3: foreachset f € 17 goy500 do

1}
if (Kp—=@)| (X Iieps > (widthy X max_speed))) then
i=1
bound clustering

Fig. 6. Bound function.

to traverse. In order to consider only valid clustering configura-
tions, we make use of a bounding function.

Fig. 6 shows the pseudocode for the bound function, which is
called after every clustering operation of any two slave clusters
SC1 and SC2. In Step 1, we use a lookup table to see if the
clustering operation has already been considered previously,
and if so, we discard the duplicate clustering. Otherwise, we
update the lookup table with the entry for the new clustering. In
Step 2, we check to see if the clustering of SC1 and SC2 results
in the merging of buses in the matrix, otherwise, the clustering
is not beneficial, and the solution can be bounded. If the cluster-
ing results in bus mergers, we calculate the number of merged
buses for the clustering and store the cumulative weight of the
clustering operation in the branch solution node. In Step 3, we
check to see if the allowed set of bus speeds for every merged
bus is compatible or not. If the allowed speeds for any of the
buses being merged are incompatible (K3 == ¢ for any (),
the clustering is not possible, and we bound the solution.
Additionally, we also calculate if the throughput requirement of
each of the merged buses can be theoretically supported by the
new merged bus. If this is not the case, we bound the solution.
The bound function thus enables a conservative pruning

414 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

1: procedure memmap()

2: while (num_sol <N) do

3 select next candidate from ranked matrix solution database
4 simulate design; //to generate memory trace

5: for each SAP do

6 merge VMs with overlap < 1%

7 for each VM do

8

if (VM data overlap < 1 %)

9: map to single port physical mem with best size match, max. port b/w
10: else

11: map to dual port physical memory with best size match, max. port b/w
12 simulate design; //to verify mem area, performance constraint satisfaction
13. if (performance constraint violation) then

14; remove candidate from ranked matrix solution database; goto 3

15: elseif ((perf. constraint satisfied)&&(mem area constraint satisfied)) then
16: add to final solution database; num_sol++

17 area_improvement_possible = true

18: while ((num_sol < N) && (area_improvement_possible)) do
19: for each SAP do

20; randomly select eligible VM

21: map physical memory with best size, port match, lower area

22: simulate design; //to verify area, performance constraint satisfaction
23: if ((perf constraint satisfied)&&(mem area constraint satisfied)) then
24: add to final solution database; num_sol++

25: else

26: undo mapping for VM with port bandwidth violation

27: make VM with violation ineligible for further selection

28: if (all VMs ineligible) then

29: area_improvement possible = false

30: end memmap

Fig. 7. Memmap heuristic.

process, which quickly eliminates invalid solutions and allows
us to rapidly converge on the optimal solution. The solutions
obtained from the algorithm are ranked from best (least number
of buses) to worst and stored in a ranked matrix solution
database. Fig. 5(e) shows the best solution after this phase [for
the example, in Fig. 5(a)]. For each of the solutions, we set OO
buffer sizes to the maximum allowed in ¥ for the components
that support it. For the arbitration scheme at the SAPs, we
initially use a possible more expensive-to-implement arbitration
strategy such as the TDMA/RR scheme to proportionally grant
accesses to masters based on the magnitude of throughput
requirements. Our previous work has shown the effectiveness
of TDMA/RR for this purpose [26]. More details on the branch
and bound-clustering algorithm can be found in [46].

Phase 4. Memmap heuristic: In the next phase, we use the
memmap heuristic to guide the mapping of VMs to physical
memories in the memory library. Fig. 7 shows the pseudocode
for the memmap heuristic. The goal is to find N solutions that
satisfy memory area and performance constraints of the design.
We begin by selecting the best solution from the ranked matrix
solution database, populated in the previous phase, and simulate
the design (lines 3—4), with the simulation engine described
earlier (in Section V-B). The output of this simulation is a
set of memory-access traces, which are used to determine the
extent of access overlap of VMs at each SAP. If the overlap is
below a user defined overlap threshold 7, we merge the VMs
(lines 5-6). Fig. 5(e) shows how we merge VM2 and VM3, as
their memory-access trace shown in Fig. 5(c) has an overlap
less than the chosen value for 7. The size of the merged VM
is the sum of the memory sizes, unless the lifetimes do not
overlap, in which case, it is the size of the larger of the two
VMs being merged. This VM-merge step further reduces the
number of memories and, consequently, the memory-area cost.

Next, we proceed to map the VMs in the design to physical
memories from the memory library (lines 8—11). We choose the
best memory from the library, which fits the size requirement
and has the maximum port bandwidth (i.e., combination of
access time and operating frequency, which determines perfor-
mance, expressed in terms of port bandwidth). The mapping
step takes into consideration any memory mapping constraints
in W. It is possible that a VM has self-conflict greater than 7, in
which case, we map a dual port memory if possible, otherwise,
we use single-port memories. The type of port (R,W,R/W) is
determined by the maximum simultaneous reads/writes from
the memory trace. The reason for using physical memories with
the best performance is that we want to check the feasibility
of the matrix solution being considered and eliminate a solution
quickly if it is not a good match. Once the mapping is complete,
we simulate the design. If throughput constraints are not met,
even for the memory mapping with best performance, we
discard the matrix solution and go back to select the next best
matrix solution from the ranked matrix solution database. If
performance constraints are met, we check if the memory-area
constraints are met. If the area constraint is also met, we add the
solution to the final solution database (lines 12-16). Next, we
attempt to lower memory area, while still meeting performance
constraints, by changing the memory mapping for the current
matrix solution (lines 17-29). We do this by selecting one
eligible VM at each SAP randomly and replacing the mapped
physical memory with one that meets the size (capacity) re-
quirements but has a lower area. All VMs are initially eligible
for this mapping optimization. Next, we simulate the design.
If we find a performance violation at one or more SAPs, we
undo the change in mapping for the VM at each violated SAP
and make it ineligible for further mapping optimization. The
reason for selecting just one VM per SAP is that it makes it
easier to determine which physical memory to VM mapping
caused a performance violation, if one is found. If there is no
performance violation and if the area bounds are met, we have
found a solution. We keep repeating this process until all VMs
become ineligible for mapping optimization, or if the required
N solutions have been found. If we encounter the former case
and the number of solutions found is less than N, we proceed
to select the next best solution from the ranked matrix solution
database (line 3) and repeat the process.

Phase 5. Optimize design: Finally, we call the optimize
design procedure for each of the IV solutions obtained in the
last phase. This simple procedure attempts to further reduce the
system cost by minimizing: 1) the bus speeds; 2) the arbitration-
scheme implementation cost; and 3) fix OO buffer sizes. The
procedure first iterates over the buses in a solution, reducing
the bus speed to the lowest possible allowed, simulating the
design to ensure that no performance constraints are violated.
Similarly, the procedure attempts to iteratively replace an ar-
bitration scheme that is more expensive to implement (e.g.,
TDMA/RR) with one that is less expensive to implement (e.g., a
static priority-based scheme with priorities assigned depending
on bandwidth requirements) at each SAP. Finally, we fix the OO
buffer sizes wherever applicable to the maximum number of
buffers used during simulation of the application, if the number
is less than the maximum allowed buffer size.

PASRICHA AND DUTT: FRAMEWORK FOR COSYNTHESIS OF MEMORY AND COMMUNICATION ARCHITECTURES 415

TABLE 1
CORE DISTRIBUTION IN MPSOC APPLICATIONS

PYTHON 2 3 8
SIRIUS 3 5 10
VIPER2 5 7 14
HNETS8 8 13 17

Watchdog

<

§
\\. "" GPIO
XL MFESU

SIE|E
i o I
SE
N =

M

Fig. 8.

PYTHON CTG.

VI. CASE STUDIES

We applied the COSMECA approach to four industrial
strength MPSoC applications—PYTHON, SIRIUS, VIPER2,
and HNET8—from the networking domain. PYTHON and
SIRIUS are variants of existing industrial strength designs;
VIPER2 and HNETS are larger systems, which have been de-
rived from the next generation of MPSoC applications currently
in development. Table I shows the number of components in
each of these applications after HW/SW partitioning. Note that
the Masters column includes the processors in the design, while
the Slaves column does not include the memory blocks, which
will be cosynthesized with the communication architecture
later. While this simulation speed of our system-level modeling
abstraction (Section V-B) is fast for the amount of detail that
it captures, modern MPSoC applications such as the ones we
consider can still take several hours to simulate in their entirety.
In order to reduce this overhead, we make use of representative
testbenches for each of these applications, which capture the
critical portions of the application functionality in a shorter
execution time.

We will first consider the PYTHON MPSoC and make
use of the COSMECA cosynthesis framework to synthesize
memory and communication architectures for it. Fig. 8 shows
the CTG for the PYTHON application, after the initial memory
preprocessing phase in which DBs are merged into VMs. Not
shown in the CTG, but included in our memory-area analysis,
are the 32-kB instruction and data caches for each of the two
processors. For clarity, the TCPs are presented separately in
Table II.

1 P1 is used for overall system control, generating data cells
for signaling, operating and maintenance, communicating and
controlling external hardware and to setup and close data stream

TABLE 1II
PyTHON TCPS

uP2, VM2, VM3, Network I/F1, DMA, VM6 400 Mbps
uP2, VM2, VM6, VM7, DMA, Network I/F2 960 Mbps
uP1, MFSU, VM3, VM4, DMA, Network I/F1 400 Mbps
uP2, VM4, VM35,VM7, DMA, Network I/F1, Network I/F2 | 600 Mbps

TABLE 1II
PYTHON GLOBAL CONSTRAINT SET ¥

25, 50, 100, 200, 300, 400

bus speed

arbitration strategy static, RR, TDMA/RR
00 buffer size 1-8

mem mapping VMI1=>EEPROM

AXI Matrix (32 bit
uP1

GPIO
100

v
EEPROM1

128 KB
2

memory area = 115.81 mm?

Fig. 9. Synthesized output for PYTHON.

connections. P2 interacts with data streams from external
interfaces and performs data packet/frame encryption and com-
pression. These processors interact with each other via shared
memory and a set of shared registers (not shown here). The
DMA engine is used to handle fast memory to memory and
network interface data transfers, freeing up the processors for
more useful work. PYTHON also has several peripherals such
as a multifunctional serial port interface, a universal asynchro-
nous receiver/transmitter block (UART), a general purpose 1/O
block, timers (Timer, Watchdog), an interrupt controller (ITC),
and two proprietary external network interfaces.

Table III shows the global constraint set ¥ for PYTHON.
For the synthesis, we target an AMBA3 AXI [14] bus matrix.
We assume a fixed bus width of 32 bits, as per application re-
quirements. The memory-area constraint is set to 120 mm?, and
the estimated memory-area numbers are for a 0.18-um tech-
nology. We assume the value for overlap threshold 7 = 10%
for this example. Fig. 9 shows the best solution (least number
of buses) with the least memory area for PYTHON. The figure
also shows bus speeds, memory sizes, number of ports, and
OO buffer sizes.

Fig. 10 shows the variation in memory area and number of
buses in the matrix for the ten best solutions (N = 10), for
PYTHON. From the figure, we can see that no solution having
seven buses in the bus matrix exist for PYTHON. The dotted

416 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

125

120
115 N

110 W
105

100 T T T T T T T T T
6 6 8 8 8 9 9 10 10 10

buses in matrix

mem area (mm sq.)

Fig. 10. PYTHON final solution space (for N = 10).
16

14+
121

6 — |
4] |
2 |
0 T T T T T T
0 5 10 15 20 25 30

threshold value

buses in matrix
™
1

Fig. 11. Effect of varying threshold value on solution quality for PYTHON.
line indicates the solution shown in Fig. 9. We can see that there
is a significant variation of combinations of memory area and
number of buses in the solution space. COSMECA thus allows
a designer to tradeoff memory area and bus count during the
solution selection process.

During the course of the COSMECA cosynthesis flow, we
made use of a threshold factor 7 (Fig. 7; memmap heuristic)
to determine the extent to which VMs are merged at SAPs in
the bus matrix. This parameter is specified by the designer. To
understand the effect of this threshold factor 7 on the quality
of solution, we varied the threshold value and repeated our
COSMECA cosynthesis flow for the PYTHON MPSoC. The
result of this experiment is shown in Fig. 11.

It can be seen that for very low values of 7 (e.g., < 10%), the
number of buses in the matrix for the best solution is high. This
is because low values of 7 discourage merger of VMs, which
ends up creating a system with several physical memories
that exceed memory-area bounds due to their excessive area
overhead. For larger values of 7 (e.g., > 20%), the number
of buses for the best solution is also high, because it becomes
harder to meet application throughput constraints with the large
overlap. There might be slight variations to this trend, depend-
ing upon a complex amalgamation of factors such as stringency
of throughput requirements, allowed maximum bus speeds,
available memory port bandwidths, and data traffic schedules
for the application. Typically, however, for the COSMECA
cosynthesis framework, our experience shows that lower values
around 10%-20% for overlap threshold 7 give the best quality
solutions.

Next, we consider a more complex application: the SIRIUS
MPSoC, and go into more detail of how it was used as another
driver for the COSMECA framework. Fig. 12 shows the CTG
for the SIRIUS application, after the initial memory preprocess-
ing phase in which DBs are merged into VMs. Not shown in the
CTG, but included in our memory-area analysis, are the 32-kB
instruction and data caches for each of the three processors.

Watchdog

ITC1
ITC2

H| - =
<SHSHGLE B IS

2| B
H%%%!!%%IIEI

N

S
e

SRk
5

%

v’,’n SR
9%

o

Z
(0}
g
o
5
3

| Network I/F2 |
Network I/F3

Z
a
g
o
-
T
§

Fig. 12. SIRIUS CTG.

TABLE 1V

SIRIUS THROUGHPUT TCPs

uP1, VM3, VM4, DMA, VM16, VM17, VM18 640 Mbps
uP1. VM5, VM6, VM 14, VM15, DMA, Network I/F2 480 Mbps
uP2, Network I/F1, VM8, VM9 5.2 Gbps
uP2, VM10,VM11,VM12, DMA, Network I/F3 1.4 Gbps
ASICI, uP3, VM16, VM17, VM8, Accl, VMI13, Network I/F2 | 240 Mbps
uP3, DMA , Network I/F3, VMI3 2.8 Gbps

For clarity, the TCPs are presented separately in Table IV. P1
is a protocol processor (PP) while ©P2 and puP3 are network
processors (NP). The . P1 PP is responsible for setting up and
closing network connections, converting data from one protocol
type to another, generating data frames for signaling, operating
and maintenance, and exchanging data with NP using shared
memory. The P2 and pP3 NPs directly interact with the net-
work ports and are used for assembling incoming packets into
frames for the network connections, network port packet/cell
flow control, assembling incoming packets/cells into frames,
segmenting outgoing frames into packets/cells, keeping track
of errors and gathering statistics. ASIC1 performs hardware
cryptography acceleration for DES, 3DES and AES. The DMA
is used to handle fast memory to memory and network interface
data transfers, freeing up the processors for more useful work.
SIRIUS also has a number of network interfaces and peripherals

PASRICHA AND DUTT: FRAMEWORK FOR COSYNTHESIS OF MEMORY AND COMMUNICATION ARCHITECTURES 417

TABLE V
SIRIUS GLOBAL PATH CONSTRAINT SET ¥V

bus speed 25, 50, 100, 200, 300, 400

arbitration strategy | static, RR, TDMA/RR
00 buffer size 1-8
mem mapping VM16,VM17=>DRAM, VM1,VM2=>EEPROM

- bus speed
AXI Matrix (32 bit)

@ 200

50
200
static

@He— 400
64 KB 200
EEPROMI < B

@D

100
128 KB 200
EEPROM?2 TDMA/RR| | MB (1 r/w)
100 SRAM3
<—>]
@ i Network I/F2
% 1200
100 Network I/F3
memory area = 219.42 mm?2
Fig. 13. Synthesized output for SIRIUS.

such as [Ts (ITC1, ITC2), a UART, timers (Watchdog, Timer1,
Timer2), and a packet accelerator (Accl).

Table V shows the global constraint set ¥ for SIRIUS. For
the synthesis, we target an AMBA3 AXI [14] bus matrix. We
assume a fixed bus width of 32 bits, as per application require-
ments. The memory-area constraint is set to 225 mm?, and
the estimated memory-area numbers are for a 0.18-um tech-
nology. We assume the value for overlap threshold 7 = 10%
for this example. Fig. 13 shows the best solution (least number
of buses) with the least memory area for SIRIUS. The figure
also shows bus speeds, memory sizes, number of ports, and
OO buffer sizes.

It should be noted that while COSMECA allows a designer
the flexibility to assign variable bus clock frequencies for
the buses in the matrix, this entails an overhead in the form
of frequency converters at the interfaces (which might use
buffering for timing isolation). As an alternative, a single low
frequency for all the buses in the matrix is usually practically
insufficient to meet high-throughput requirements. In contrast,
a higher fixed frequency for the entire matrix can end up
dissipating excessive power in the bus logic and bus wires.
Therefore, a designer needs to be aware of this tradeoff. Note
that COSMECA can be made to synthesize a matrix with either
different or one fixed bus clock frequency for the buses in the
matrix.

Fig. 14 shows the variation in memory area and number of
buses for the ten best solutions (N = 10) for SIRIUS. The
dotted line indicates the solution shown in Fig. 13. It can be seen
that the memory-area cost varies dramatically, not only when
the bus-matrix configuration is changed (by changing number

—

mem area (mm sq.)

9 9 9 0 10 10 10 10 11 11

buses in matrix

Fig. 14. SIRIUS final solution space (for N = 10).

0 5 10 15 20 25 30

threshold value

N
o
|

-
[&)]
1

buses in matrix
_.
[$)] o
1 1

o

Fig. 15. Effect of varying threshold value on solution quality for SIRIUS.

TABLE VI
COSYNTHESIS TIME FOR MPSOC APPLICATIONS

PYTHON 13 3.5
SIRIUS 19 8.6
VIPER2 26 17.8
HNETS 38 28.5

of buses), but also for the same configuration, for different
memory mapping decisions. Again, the key observation from
this experiment is that COSMECA enables a designer to select
a solution having the desired tradeoff between memory area and
bus count in the matrix.

To determine the impact of varying the threshold factor 7 on
the quality of solution for the SIRIUS MPSoC, we varied the
threshold value and repeated our COSMECA cosynthesis flow
for SIRIUS. The result of this experiment is shown in Fig. 15.
The trend for this experiment is similar to our observation for
Fig. 11, which showed the results for this experiment on the
PYTHON MPSoC. As observed earlier, lower values around
10%—-20% for overlap threshold 7 give the best quality solutions
for the SIRIUS application.

We now present results for the number of simulation runs
and total time taken during cosynthesis. Table VI shows the
total number of simulation runs and total simulation time in
hours for the MPSoC applications. Note that the contribution
of the static estimation phases such as the branch and bound
clustering is almost negligible, and simulation takes up most
of the time during cosynthesis. It can be seen that the entire
COSMECA flow took in the order of hours to generate the best
solution for each of the four MPSoC applications considered.
This is in contrast to the traditional semi-automated (or manual)
communication-architecture-synthesis techniques, which can
take several days [2], and would take even longer with the added
complexity of handling memory synthesis.

418 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

EBMSYN
mS(10)
0S(20)
OS(30)
m S(40)

no. of buses

1 2 3 4 5
max. no of slaves/cluster

Fig. 16. Comparison of bus-matrix-synthesis approach (BMSYN) used in
COSMECA with a threshold-based approach for SIRIUS MPSoC.

30 ~
25 4
20 A
15 4
10 4

traditional
ECOSMECA

buses in matrix

PYTHON

SIRIUS VIPER2 HNETS8

Fig. 17. Comparison of best solution bus count.

Next, we will compare the quality of the results obtained
from the bus-matrix communication-architecture-synthesis ap-
proach used in COSMECA, with the closest existing piece of
work that deals with automated matrix synthesis with the aim
of minimizing number of buses [30]. Since their bus-matrix-
synthesis approach only generates matrix topology (while we
generate both topology and parameter values), we restricted
our comparison to the number of buses in the final synthesized
design. The threshold-based approach proposed in [30] requires
the designer to statically specify: 1) the maximum number of
slaves per cluster and 2) the traffic overlap threshold, which
if exceeded prevents two slaves from being assigned to the
same bus cluster. The results of our comparison study are
shown in Fig. 16. BMSYN is the name given to the bus-
matrix-synthesis approach used in COSMECA, while the other
comparison points are obtained from [30]. S(z), for = 10,
20, 30, 40, represents the threshold-based approach where no
two slaves having a traffic overlap of greater than x% can be
assigned to the same bus, and the X -axis in Fig. 16 varies the
maximum number of slaves allowed in a bus cluster for these
comparison points. The values of 10%—40% for traffic overlap
are chosen as per recommendations from [30]. The number of
slaves in a cluster has been limited to five in the figure, because
no reduction in bus count was apparent for higher values of
clustering. This is because of the inherent limitations in [30],
which prevent critical data streams from sharing a bus, and
also because the effect of communication parameters, such as
arbitration strategies and bus speeds on performance during
synthesis, is not considered. It is clear from Fig. 16 that our
bus-matrix-synthesis approach used in COSMECA produces
a lower cost system (having lesser number of buses) than
approaches, which force the designer to statically approximate
application characteristics.

Finally, Figs. 17 and 18 compare the number of buses and
memory areas for the best solution (having least number of

= 4001 [4 traditional
—a— COSMECA

PYTHON SIRIUS VIPER2 HNET8

Fig. 18. Comparison of best solution memory area.

buses, minimum memory area for the solution) obtained with
COSMECA and the traditional approach (where memory syn-
thesis is done before communication-architecture synthesis) for
the four applications. It can be seen that COSMECA performs
much better for each of the applications, saving from 25%-40%
in the number of buses in the matrix and from 17%-29%
in memory area, because it is able to make better decisions
by taking the communication architecture into account while
allocating and mapping DBs to physical-memory components.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an automated application-
specific framework to cosynthesize memory and communi-
cation architectures (COSMECA) in MPSoC designs. The
primary objective is to design a communication architecture
having the least number of buses, which satisfies performance
and memory-area constraints, while the secondary objective
is to reduce the memory-area cost. COSMECA couples the
decision-making process during memory and communication-
architecture synthesis, which enables it to generate a lower cost
system. Results of applying COSMECA to several industrial
strength MPSoC applications from the networking domain
indicate a saving of as much as 40% in number of buses and
29% in memory area compared to the traditional approach,
where memory synthesis is performed before communication-
architecture synthesis. Our ongoing work is trying to integrate
more detailed memory-access protocol models for the mem-
ories in the library. Future work will deal with incorporating
power as another metric to guide the cosynthesis and including
cache customization in the memory synthesis process.

APPENDIX A
ACRONYMS

In this section, we present a list of the acronyms used in this
paper and their corresponding expanded full forms.

Acronym Expanded form

BMSYN Bus-Matrix SYNthesis framework.

CDFG Control data flow graph.

CTG Communication throughout graph.

DB Data block.

DBDG Data block dependence graph.

DMA Direct memory access.

DMMU Direct memory management unit.

DRAM Dynamic random access memory.

EPROM Erasable programmable read-only memory.

PASRICHA AND DUTT: FRAMEWORK FOR COSYNTHESIS OF MEMORY AND COMMUNICATION ARCHITECTURES 419

EEPROM Electrically erasable programmable read-only

memory.
1P Intellectual property block.
ISS Instruction set simulator for processors.
MPSoC MultiProcessor system-on-chip.
NOC Network-on-chip.
0o Out of order.
RR Round robin arbitration.
SC Slave cluster.
SAP Slave access point.
SRAM Static random access memory.
TCP Throughput constraint graph.
TDMA Time division multiple access arbitration.
TLM Transaction level model.
VM Virtual memory.
APPENDIX B
SYMBOLS

In this section, we present a list of the major symbols
introduced in this paper and their corresponding connotations.

Symbol Connotation

v Communication-memory constraint set.

Vg Global communication-memory constraint set.

Uy, Local communication-memory constraint set.

U7 (speed) Bus speed constraint in set Wr,.

I'rimyp Data throughput for bus B in matrix obtained from
TLM simulation.

Frep/B Throughput constraint for bus B in matrix.

Qp Clock speed for bus B.

o Total number of cycles for application execution
from TLM simulation.

Msc Set of masters connected to slave cluster SC.

sci/sc2 Superset of sets of buses, which are merged when
slave clusters SC1 and SC2 are merged.

8 Set of buses that are merged during a clustering
operation.

¢ Null set.

T Overlap threshold.

REFERENCES

[1] D. Sylvester and K. Keutzer, “Getting to the bottom of deep submicron,”
in Proc. ICCAD, 1998, pp. 203-211.

[2] S.Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane, “Floorplan-
aware automated synthesis of bus-based communication architectures,” in
Proc. DAC, 2005, pp. 565-570.

[3] S.Meftali, F. Gharsalli, F. Rousseau, and A. A. Jerraya, “An optimal mem-
ory allocation for application-specific multiprocessor system-on-chip,” in
Proc. ISSS, 2001, pp. 19-24.

[4] A. Allan et al., “2001 Technology roadmap for semiconductors,” Com-
puter, vol. 35, pp. 42-53, Jan. 2002.

[5] J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface based design,”
in Proc. DAC, 1997, pp. 178-183.

[6] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli,
“System-level design: Orthogonalization of concerns and platform-based
design,” in Proc. IEEE TCAD, Dec. 2000, pp. 1523-1543.

[7] J-M. Daveau, T. B. Ismail, and A. A. Jerraya, “Synthesis of system-level
communication by an allocation-based approach,” in Proc. ISSS, 1995,
pp. 150-155.

[8] S. Narayan and D. Gajski, “Protocol generation for communication
channels,” in Proc. DAC, 1994, pp. 547-551.

[9] I. Madsen and B. Hald, “An approach to interface synthesis,” in Proc.
ISSS, 1995, pp. 16-21.

[10] S. Wuytack, F. Catthoor, G. De Jong, and H. J. De Man, “Minimizing
the required memory bandwidth in VLSI system realizations,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 7, no. 4, pp. 433-441,
Dec. 1999.

[11] L. Cai, H. Yu, and D. Gajski, “A novel memory size model for variable-
mapping in system level design,” in Proc. ASP-DAC, 2004, pp. 813-818.

[12] K. Lahiri, A. Raghunathan, and S. Dey, “System-level performance analy-
sis for designing system-on-chip communication architecture,” in Proc.
IEEE TCAD, Jun. 2001, pp. 768-783.

[13] P. Knudsen and J. Madsen, “Integrating communication protocol selection
with partitioning in hardware/software codesign,” in Proc. ISSS, 1998,
pp. 111-116.

[14] ARM AMBA AXI Specification rev 1.0. (2004, Mar.). [Online]. Available:
www.arm.com/products/solutions/axi_spec.html

[15] ARM AMBA Specification rev 2.0. (1999, May). [Online]. Available:
www.arm.com/products/solutions/AMBA_Spec.html

[16] IBM On-chip CoreConnect Bus Architecture. [Online].
www.chips.ibm.com

[17] “STBus communication system: Concepts and definitions,” in Reference
Guide, STMicroelectronics, Geneva, Switzerland, May 2003.

[18] M. Nakajima et al., “A 400 MHz 32b embedded microprocessor core
AM34-1 with 4.0 Gb/s cross-bar bus switch for SoC,” in Proc. ISSCC,
2002, pp. 274-504.

[19] SystemC Language Reference Manual, ver 2.1. (2005, May). [Online].
Available: www.systemc.org/web/sitedocs/Irm_2_1.html

[20] L. Benini and G. D. Micheli, “Networks on chips: A new SoC paradigm,”
in Proc. IEEE Comput., Jan. 2002, pp. 70-78.

[21] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks: A scalable,
communication-centric embedded system design paradigm,” in Proc.
VLSI Des., 2004, pp. 845-851.

[22] V. Lahtinen, E. Salminen, K. Kuusilinna, and T. Hamalainen, “Compar-
ison of synthesized bus and crossbar interconnection architectures,” in
Proc. ISCAS, 2003, pp. 433-436.

[23] K. K Ryu, E. Shin, and V. J. Mooney, “A comparison of five
different multiprocessor SoC bus architectures,” in Proc. DSS, 2001,
pp. 202-209.

[24] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon, “Analyzing
on-chip communication in a MPSoC environment,” in Proc. DATE, 2004,
pp. 752-757.

[25] M. Gasteier and M. Glesner, “Bus-based communication synthesis on
system level,” in Proc. ACM TODAES, Jan. 1999, pp. 65-70.

[26] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Fast exploration of bus-
based on-chip communication architectures,” in Proc. CODES+ISSS,
2004, pp. 242-247.

[27] K. Srinivasan, K. S. Chatha, and G. Konjevod, “Linear programming
based techniques for synthesis of network-on-chip architectures,” in Proc.
ICCD, 2004, pp. 422-429.

[28] D. Bertozzi et al., “NoC synthesis flow for customized domain spe-
cific multiprocessor systems-on-chip,” in Proc. IEEE TPDS, Feb. 2005,
pp. 113-129.

[29] O. Ogawa et al., “A practical approach for bus architecture optimization
at transaction level,” in Proc. DATE, 2003, pp. 176-181.

[30] S. Murali and G. De Micheli, “An application-specific design
methodology for STbus crossbar generation,” in Proc. DATE, 2005,
pp. 1176-1181.

[31] M. Shalan, E. Shin, and V. Mooney, “DX-Gt: Memory management and
crossbar switch generator for multiprocessor system-on-a-chip,” in Proc.
SASIMI, 2003, pp. 357-364.

[32] P. Grun, N. Dutt, and A. Nicolau, “Memory system connectivity
exploration,” in Proc. DATE, 2002, pp. 894-901.

[33] S. Kim, C. Im, and S. Ha, “Efficient exploration of on-chip bus
architectures and memory allocation,” in Proc. CODES+ISSS, 2004,
pp. 248-253.

[34] P. V. Knudsen and J. Madsen, “Communication estimation for hardware/
software codesign,” in Proc. CODES, 1998, pp. 55-59.

[35] A. Nandi and R. Marculescu, “System-level power/performance analysis
for embedded systems design,” in Proc. DAC, 2001, pp. 594-604.

[36] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli, “Constraint-driven
communication synthesis,” in Proc. DAC, 2002, pp. 783-788.

[37] K. K. Ryu and V. J. Mooney, III, “Automated bus generation for multi-
processor SoC design,” in Proc. DATE, 2003, pp. 1531-1549.

[38] M. Gasteier and M. Glesner, “Bus-based communication synthesis on
system level,” in Proc. ACM TODAES, Jan. 1999, pp. 65-70.

[39] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya, “Automatic
generation of application-specific architectures for heterogeneous
multiprocessor system-on-chip,” in Proc. DAC, 2001, pp. 518-523.

Available:

420 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

[40] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Automated throughput-
driven synthesis of bus-based communication architectures,” in Proc.
ASPDAC, 2005, pp. 495-498.

[41] U. Ogras and R. Marculescu, “Energy- and performance-driven NoC
communication architecture synthesis using a decomposition approach,”
in Proc. DATE, 2005, pp. 352-357.

[42] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Efficient
synthesis of networks on chip,” in Proc. ICCD, 2003, pp. 146—150.

[43] A. Jalabert, S. Murali, L. Benini, and G. De Micheli, “XpipesCompiler:
A tool for instantiating application specific networks on chip,” in Proc.
DATE, 2004, pp. 884-889.

[44] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Extending the trans-
action level modeling approach for fast communication architecture
exploration,” in Proc. DAC, 2004, pp. 113-118.

[45] S. Pasricha, “Transaction level modeling of SoC with systemC 2.0,” in
Proc. SNUG, 2002, pp. 55-59.

[46] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Constraint-driven bus
matrix synthesis for MPSoC,” in Proc. ASPDAC, 2006, pp. 30-35.

[47] S. Srinivasan, F. Angiolini, M. Ruggiero, L. Benini, and N. Vijaykrishnan,
“Simultaneous memory and bus partitioning for SoC architectures,” in
Proc. SOCC, 2005, pp. 125-128.

[48] I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt, “Data reuse analysis
technique for software-controlled memory hierarchies,” in Proc. DATE,
2004, pp. 202-207.

Sudeep Pasricha (S’02) received the B.E. degree in
electronics and communication engineering in 2000
from Delhi Institute of Technology, Delhi, India, and
the M.S. degree in computer science in 2004 from
the University of California, Irvine, where he is cur-
rently working toward the Ph.D. degree in computer
science.

His research interests include design space explo-
ration and synthesis of SoC communication archi-
tectures, design automation, and CAD for embedded
systems, system modeling languages and method-
ologies, middleware for distributed systems, and computer architectures. He
has filed for a U.S. patent, presented a tutorial on the topic of on-chip
communication architectures at the Asia and South Pacific Design Automation
Conference (ASPDAC) 2006, and coauthored over 20 technical papers.

Mr. Pasricha received a Best Paper Award Nomination at DAC 2005 and the
Best Paper Award at ASPDAC 2006. He is a member of the Association for
Computing Machinery (ACM).

Nikil D. Dutt (S’84-M’89-SM’96) received the
Ph.D. degree in computer science from the Univer-
sity of Illinois at Urbana—Champaign in 1989.

He is currently a Chancellor’s Professor of com-
puter science (CS) and electrical engineering and
computer science (EECS) with the University of
California, Irvine (UCI), and is affiliated with the fol-
lowing centers at UCI: Center for Embedded Com-
puter Systems, CPCC, and CAL-IT2. His research

. interests are in embedded systems design automa-
tion, computer architectures, optimizing compilers,
system specification techniques, and distributed embedded systems.

Dr. Dutt received Best Paper Awards at CHDL89, CHDL91, VLSI-
Design2003, CODES+ISSS 2003, and the Asia and South Pacific Design
Automation Conference (ASPDAC)-2006. He currently serves as Editor-in-
Chief of the ACM Transactions on Design Automation of Electronic Systems
and as an Associate Editor of the ACM Transactions on Embedded Computer
Systems. He serves or has served on the advisory boards of ACM SIGBED and
ACM SIGDA, and is Vice-Chair of the International Federation for Information
Processing Working Group (IFIP WG) 10.5. He has served on the steering,
organizing, and program committees of several premier CAD and embedded
system design conferences and workshops, including ASPDAC, Compilers,
Architecture and Synthesis for Embedded Systems, CODES+ISSS, Design
Automation and Test in Europe, International Conference on Computer Aided
Design (ICCAD), International Symposium on Low Power Electronics and
Design (ISLPED), and Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES). He was an ACM Special Interest Group on Design Automation
(SIGDA) Distinguished Lecturer during 2001-2002 and an IEEE Computer
Society Distinguished Visitor in 2003-2005.

