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Abstract

As CMOS transistor feature size shrinks, sub-threshold leakage power dissipation

begins to dominate the total power consumption of a chip. A drowsy technique

was introduced to reduce sub-threshold leakage power significantly. However,

with the introduction of the drowsy cache design technique,new fault behaviors

appear and more restrictive design rules must be concerned.

In this research, we implement a drowsy SRAM cache with peripheral circuits

in layout level and simulate all possible spot defects (SDs)under normal mode

and drowsy mode in different resistance regions. Six new fault models appear

with the introduction of drowsy mode for memory arrays. We develop a march

algorithm which can detect all SDs in either data caches or instruction caches. A

built-in self-repair (BISR) scheme is developed. By utilizing BISR, the cache can

still work even if some cache lines fail to work in drowsy mode.
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Chapter 1

Introduction

In the past, dynamic power dominated the total power consumption of CMOS

transistors. When CMOS transistors are not switching, theyare in OFF state and

leakage power is negligible. However, as feature sizes shrink, leakage power in-

creases much faster than dynamic power does. As shown in Fig.1.1, in current0:13�m - 0:09�m technologies, leakage power is already considerable when com-

pared with the active power dissipation. When technology moves below0:09�m,

leakage power consumption is approaching over 50% of the total power, which is

not practical. Suppressing leakage current is hence critical.

On-chip memories, especially large cache memories, provided high perfor-

mance with very low power-density than logic circuits before. As a result, larger

and larger portion of the die area has been occupied by cache memories. For

instance, 50% of PentiumR4 chip area and 60% of StrongARM chip area are al-

located to the cache structure [4, 21]. On-chip memories hadlower power-density,

because typically only a small portion of the memories are needed to be accessed
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Figure 1.1: Leakage power increasing v.s. dynamic power increasing [3].

every clock cycle. It is no longer true when leakage has become a problem for

transistors. Due to a large number of storage cells and lack of stacking effect

[22] to reduce leakage current, leakage power will dominatethe cache power con-

sumption and thus the total power of a chip. According to the projection in [1],

for 70-nm process, more than 60% of power can be consumed in L1caches if

left unchecked. Reducing leakage power of on-chip caches can decrease the total

power consumption of a chip significantly.

Several techniques have been presented on leakage reduction. In [6], a dual-Vt technique uses transistors with high threshold voltage in non-critical part of

memory cells, since sub-threshold leakage current reducesexponentially with the

increase ofVt. But, high-Vt transistors have lower switching speed, and hence

it is not suitable for caches. The gated-Vdd technique inserts a high-Vt transistor

between the circuit and one of the power supply trails (Vdd/GND) [7]. The circuit

will be detached from its power supply when it does not tend tobe used, and the

state of the circuit is lost. Thus, this technique is not appropriate for caches either.
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A multi-threshold CMOS (MTCMOS) technique has also been presented to lower

the threshold voltage and to reduce the leakage power [13]. However, MTCMOS

will also detach SRAM cells from power supply trails instand-bymode, and

hence it cannot preserve the SRAM state. A simple but effective drowsy technique

is proposed in [1]. This method implements caches with drowsy/standby mode

and normal mode, where different supply voltages can be selected. The SRAM

cells consume significantly less leakage power when placed into drowsy mode by

supplying lower voltage. Due to thespatial localityandtemporal localityof on-

chip caches, a large portion of cache lines can be placed intodrowsy mode to cut

down power consumption.

Many faults in memory circuits are caused by spots of extra, missing or unde-

sired material in a small area. These defects are called spot-defects (SDs) and are

the primary testing target. In [2], a complete analysis of spot defects for industrial

SRAMs is presented.Functional fault models (FFMs)are defined to describe the

fault behaviors, and march tests are developed based on these FFMs. All elec-

trical faults are transformed into functional fault models, which consist of nine

single-cell faults (e.g., stuck-at fault) and five couplingfaults (e.g., deceptive read

destructive fault). A March SRD algorithm with test length 14n is developed to

detect all FFMs with deterministic data outputs at sense amplifiers [2]. Recently,

a similar defect injection and circuit simulation technique has also been used to

derive the fault behaviors of embedded DRAMs [8]. Built-in self test (BIST) is

a technique that integrated circuits can perform testing without an automatic test

equipment (ATE) [9]. BIST methods based on patterns generated by march tests

are dominant for testing memories nowadays [10]. The work in[11] has found
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that the symmetrical structure of a march test will make it easier to implement the

corresponding BIST technique. As a result, many march algorithms (e.g., March

SRD in [2]) have been developed as symmetrical structures. As the complexity

and the size of embedded caches/memories increase, built-in self repair (BISR) is

used to improve the overall yield. BISR begins with applyingmemory test pat-

terns and collecting the test response. Traditionally, thedefective addresses are

eliminated and substitued with redundant memory circuits [12], so the memory

yield can be dramatically increased.

Unfortunately, new fault behaviors can appear with the introduction of drowsy

mode caches or memories. In this research, we implement a drowsy SRAM cache

with peripheral circuits like sense amplifier, address decoder, write circuit, etc.

All possible spot-defects are simulated in both normal modeand standby/drowsy

mode using HSpice. We find new fault behaviors in standby mode. These fault

behaviors are transformed into functional fault models anda march algorithm is

developed. We demonstrate that all drowsy faults can be detected by our proposed

march algorithm. In this work, our march algorithm is divided into two parts, and

each of them has a symmetrical structure. Further, if a cell functions properly in

normal mode but manifests its defect in drowsy mode, the entire cache line that

this cell locates will be marked as a non-drowsy cell (using aregister), and will

not be subject to drowsy operation. Thus, no redundant memory cells are required

for the BISR circuit, and drowsy defects can be tolerated if the power budget is

not exceeded.

The thesis is organized as follows:

Chapter 2 reviews the background of leakage currents, drowsy technique, mem-
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ory testing terms and notations, and spot defects definitions.

Chapter 3 shows the design and implementation of a drowsy SRAM cache. De-

tailed analysis of drowsy state and minimum standby voltageare presented

thereafter.

Chapter 4 performs simulation of all possible spot defects (SDs) in both nor-

mal mode and standby mode. Then, fault behaviors are transformed into

functional fault models (FFMs).

Chapter 5 derives a march algorithm to detect the drowsy SRAM cache, and a

built-in self-repair circuit is suggested to tolerate drowsy defects.

Chapter 6 concludes this thesis and discusses future work.
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Chapter 2

Background

This chapter provides a brief introduction for the drowsy memory technique and

memory testing. First, leakage currents existing in SRAM cells are presented, and

sub-threshold leakage is identified as the dominant part. A simple voltage scaling

method (drowsy technique) is then introduced, and memory fault definition and

fault model notation are presented finally.

2.1 Sub-threshold Leakage

According to different physical mechanisms, leakage currents are categorized as

follows:� Sub-threshold leakageIsub. When gate-to-source voltageVGS is smaller

than threshold voltageVTH , Isub exists from drain to source.Isub increases

exponentially with respect to threshold voltage reduction[14] and tempera-

ture increase [15].
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� Gate direct-tunneling leakageIEDT . According to quatum mechanism, char-

ged carriers can pass through the gate oxide potential barrier into the gate

[15], and this causes gate direct-tunneling leakage current. IEDT will be a

major issue for nanometric electronics.� Gate-induced drain-leakageIGIDL flows from drain-gate overlap to sub-

strate of a transistor. This leakage current arises in the high electric field un-

der gate/drain overlap region causing deep depletion. BothIEDT andIGIDL
increases exponentially with the reduced gate oxide thickness [18, 19].� Reverse-biased pn junction leakageIRBJL. It consists of two components:

one is the minority-carrier drift near the edge of the depletion region, and

the other is due to electron-hole pair generation in the depletion region of

the reversed junction. For present technology, leakage current induced by

reverse-biased pn junction leakage is lower thanIsub, and thus can be ne-

glected [15].

All these leakage currents are shown in Fig. 2.1. For submicron technologies

below0:5�m, sub-threshold leakage is the dominant component of leakage power

[4, 15], and can be modeled as [23, 24]:

Isub = Is0 expVGS�VTH=(nkT=q)(1� exp�VDS=(nkT=q))(1 + �VDS) (2.1)

where� is a parameter modeling the pseudo-saturation region in theweak inver-

sion region,Is0 is the process-specific current of a transistor whenVGS = VTH , T

is chip temperature, and n is process dependent, typically 1.4-1.5 [30].
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Figure 2.1: Leakage currents in a NMOS transistor.

Figure 2.2: Sub-threshold leakage current in an SRAM cell.

2.2 Drowsy Technique

This section first presents the drowsy technique of a single SRAM cell. Then, a

drowsy control architecture for data cache and instructioncache are introduced

separately [1].

2.2.1 Dynamic Voltage Scaling (DVS)

Fig. 2.2 shows the relationship between supply voltage and leakage current in a

6T SRAM cell. The two pass transistors are not included, since they are turned off
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when the cell is not accessed. As shown in Fig. 2.2, there are two off-state leakage

current paths in a stand SRAM cell. The ON transistors are in strong inversion

and have negligible resistance. Derived from Equation 2.1,the overall leakage of

the SRAM cell can be modeled as [1]:

IL = ((ISN + ISP ) + (ISN�N + ISP�P )VDD)(1� exp�VDD=(nkT=q)) (2.2)

whereISN and ISP are nMOS and pMOS off-transistor current factors, which

are independent ofVDS in Equation 2.1. Since the leakage current reducessuper

linearly with VDD, the dynamic voltage scaling (DVS) technique is used in [1] to

reduce leakage power significantly.

Fig. 2.3(a) illustrates the simple drowsy technique with a supply voltage con-

trol mechanism. By selectingLowV olt/LowV olt, the SRAM cell can be placed

into two modes: active/normal mode and standby/drowsy mode. In normal mode,

the SRAM cell is supplied with standard voltageVDD (1V, under the 70nm-

technology [1]). In drowsy mode, the SRAM cell is only supplied withVDDLow
(0.3V), while the logic value of the cell can still be retained. When a cell is not to

be accessed for a period of time, it can be placed into drowsy mode and its leakage

power can be reduced significantly. However, in drowsy mode,the cell is not al-

lowed to be accessed, because the precharged bitline voltage (VDD) is higher than

the storage cell core voltage, which can destroy the state ofthe cell. In addition,

during the read operation, the sense amplifier may not operate properly at the low

storage cell voltage [1]. When the cell is to be accessed,LowV olt is set to ’0’ and
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Figure 2.3: Drowsy SRAM control and leakage power reduction[1].

the cell is charged back by the standard supply voltage for read/write operations.

As shown in Fig. 2.3(b), the leakage power of 6T and 4T SRAM cells reduce

significantly as we scale the supply voltage down. Accordingto the result in [1],

the leakage power of the 4T and 6T SRAM cells can be reduced by 92% and 77%

respectively at 300mV standby voltage. However, the standby voltage cannot be

reduced unlimitedly, and the reason will be presented in Chapter 3.2.

Since data caches tend to have bettertemporallocality while instruction caches

tend to have betterspatial locality, by using proper cache management policies,

the drowsy cache technique can reduce the total leakage power significantly with

trivial increase in runtime [1]. The drowsy control architecture and corresponding

cache management policies are introduced in the following two sub-sections.

2.2.2 Drowsy Data Caches

Fig. 2.4 shows an implementation of drowsy cache line designfor a data cache.

The drowsy bit is used to control the supply voltage of cache lines. Whendrowsy

10



Figure 2.4: An implementation of drowsy cache line for data cache [1].

is set to be logic ’1’, the whole cache line is placed into drowsy state. Theword-

line gateis used to prevent access of the cache line when it is in drowsymode.

Due to thetemporal localityof data caches, when a location is accessed, it is very

likely that it will be accessed again soon [16]. Hence, a simple policy is that all

the cache lines are placed into drowsy mode periodically, and a line is woke up

only when it is accessed. In [1], a 2000-cycle update window is used to place all

cache lines into drowsy mode every 2000 cycles. The impact ofincreased wake-

up latency is negligible. By putting an average of 90% cache-lines into drowsy

mode, roughly 85% of leakage power can be saved and runtime only increases by

0.64%.
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2.2.3 Drowsy Instruction Caches

The simple policy works well for data caches but it is not effective for instruction

caches, due to thespatial localityof instruction caches. It is found that for drowsy

instruction caches, the worst case runtime increase is 10.3% and the average is

2.4% if it uses the simple policy of data caches [1]. This is much worse than the

simple policy for drowsy data caches, which causes 1.2% worst case increase and

only 0.6% average.

A subbank-based drowsy technique is adopted in [1] for instruction caches

based on the work of [17]. The cache is divided into several subbanks, and only

a limited number of subbanks are checked for their contents during each access.

By using additional decoder logic to index the subbanks as shown in [17], the

access latency increases slightly. In [1], a 16KB direct-mapped instruction cache

is divided into four 4-kB subbanks, and only one subbank needs to be activated on

each access. Each subbank consists 128 cache-lines, and allthe lines together are

controlled by a single drowsy bit. By setting the drowsy bit,the whole subbank

can be placed into drowsy mode. In [1], several subbank prediction techniques

(e.g., Next Subbank Prediction Buffer) are used to wake up a subbank before an

instruction really use it. As a result, the drowsy instruction cache can save the

total leakage power dissipation by more than 77% with trivial runtime increase

(0.79% in average).
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2.3 Memory Testing

2.3.1 Spot Defects

Defects in SRAM memory chips can be categorized asglobal defectsand local

defects[32]. Global defectsaffect a large part of the silicon;Local defectsaffect

only a small (local) area of an IC, and are called spot defects(SDs). SDs can

be modeled as spots of extra, missing or undesired material (resistance), and can

cause undesired connections or disconnections in circuits. SDs can be introduced

during any one of the many steps in the IC fabrication process, and are the primary

test target since they are much harder to be detected than global defects [26]. In

this study, only SDs will be considered. Depending on their conductivities in

memory chips, they can be categorized to the following threegroups [2]:� Open: an extra resistance (Rop) within a connection, where0 < Rop � 1.� Short: an undesired resistive path (Rsh) between a node andVdd/GND,

where0 < Rsh � 1.� Bridge: an undesired resistive path (Rbr) between two connections which

are notVdd/GND, where0 < Rbr � 1.

There will be more than 22 defects when considering defect locations between

cells. But, due to the symmetric structure of the 6T SRAM cell, it has been demon-

strated in [2] that only a subset of these defects needs to be simulated by intro-

ducing the following notations. Fig. 2.6 shows the arrangement of four adjacent

cells.

13



Figure 2.5: Possible defect positions within an SRAM cell [2].� Complementary behavior: the locations of SD1 and SD2 in a SRAM cell

are symmetrical, so the fault behavior of SD1 is similar to that of SD2.

The only difference is that all 1’s are replaced with 0’s and vice versa. For

example, a possible SD at location OC6 of Fig. 2.5 (SD1) can cause the

cell stuck-at ’0’, then at the presence of a SD at location OC6c of Fig. 2.5

(SD2), the cell will be stuck-at ’1’.� Interchanged behavior(two cells involved): the fault behavior of SD1 is

similar to that of SD2, except that the aggressor and the victim cells are

interchanged. For example, we assume that SD1 is a bridge fault between

T0 and BL1 in Fig. 2.6, where cell 0 is the aggressor and cell 2 is the victim.

Then a SD between BL0 and T2 will have the similar fault behavior, except

that cell 0 will be the aggressor and cell 2 will be the victim.� Interchanged Complementary behavior: SD2 shows a complementary and

interchanged behavior of SD1. Take the SD1 which has a bridgebetween

T0 and BL1 in Fig. 2.6 as an example again. To make it clear, we denote

SD1 as (T0-BL1). Assume SD2 has a bridge betweenBL0 and F2. SD2 has

14



Table 2.1: List of opens [2]
Name Description

OC1/OC2 Source/drain of pull-up at true side broken
OC3/OC4 Drain/source of pull-down at true side broken

OC5 Gate of pull-up at true side broken
OC6 Cross coupling at true side broken
OC7 Gate of pull-down at true side broken
OC8 Pass transistor connection to T broken
OC9 Pass transistor connection to bit line broken
OC10 Gate of pass transistor at true side broken

OC11/OC12 V/Vss path of the cell brokenOBw The bit line BL at the write side brokenOBr The bit line BL at the read side broken
OW The word line WL broken

the similar fault behavior as SD1. To derive it, we first get the interchanged

fault behavior of SD1, which is (BL0-T2), then get its complementary fault

behavior (BL0 - F2).

2.3.2 Definition and Location of Open Faults

Opens in an SRAM cell are categorized as opens within a cell (OC), opens at bit

lines (OB) and word lines (OW). As shown in Fig. 2.5, opens at location OCx

and OCxc show acomplementarybehavior, so only defects at OCx need to be

simulated, and the fault behavior at opens at OCxc can be derived from that of

OCx. Table 2.1 gives a detailed description of these open defects. Opens at bit

lines and word lines affect many cells in same column/row of the memory. Thus,

only the first cell affected by opens will be studied.

2.3.3 Definition and Location of Short Faults

Short defects can be classified as shorts within a cell (SC), shorts at bit lines (SB)

and shorts at word lines (SC). As shown in Table 2.2, for example, a short at F
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Table 2.2: List of shorts [2]
Name Behav. Comp. behav.
SC1 T-Vdd F-Vdd
SC2 T-GND F-GND
SB1 BL-Vdd BL-Vdd
SB2 BL-GND BL-GND
SW1 WL-Vdd
SW2 WL-GND

Table 2.3: List of bridges within a cell [2]
Name Behav. Comp. behav.
BC1 T-F
BC2 T-BL F-BL
BC3 T-BL F-BL
BC4 T-WL F-WL
BC5 BL-BL
BC6 BL-WL BL-WL

will show a complementary behavior to the short at T. SBs and SCs affect many

cells, and, again, the first cell affected will be concerned.

2.3.4 Definition and Location of Bridges

Assume that bridges can exist between nodes located close toeach other. Thus, all

bridge faults can be classified asbridges within a cellandbridges between cells.

Table 2.3 shows all possible bridge defects within a cell (denoted as BCx),

while Fig. 2.6 is used to illustrate relative cell locationsin a memory. Depending

on different layout implementations, all possible bridgesbetween cells are listed

in Table 2.4. Here, rBCCx denotes the bridges between cells in the same row,

cBCCx denotes the bridges between cells in the same column, and dBCCx denotes

the bridges between cells in near diagonal cells.

16



Figure 2.6: Four-cell configuration.

Table 2.4: Bridges between adjacent cells [2]
Name Behav. Comp. behav. Inter. behav. Inter. Comp. behav.
rBCC1 T0-T2 F0-F2
rBCC2 T0-F2 F0-T2
rBCC3 T0-BL1 F0-BL1 BL0-T2 BL0-F2
rBCC4 T0-BL1 F0-BL1 BL0-T2 BL0-F2
rBCC5 BL0-BL1 BL0-BL1
rBCC6 BL0-BL1 BL0-BL1
cBCC1 T0-T1 F0-F1
cBCC2 T0-F1 F0-T1
cBCC3 T0-WL1 F0-WL1 WL0-T1 WL0-F1
cBCC4 WL0-WL1
dBCC1 T0-T3 F0-F3
dBCC2 T0-F3 F0-T3

2.3.5 Faults Notation

To describe the fault behaviors involving SRAM cells,fault primitives(FPs) with

compact notation are introduced [2]. Each FP represents thefault behavior, and

all FPs can be divided into following categories:� < S=F=R >: This FP involves faults in a single cell. Here, S is thesen-

sitizingoperation;S 2 fdr0; dr1; 0; 1; w0; w1; w "; w #; r0; r1; 8g, where

dr0 (dr1) describes the drowsy operation on the cell with logic value ’0’

(’1’). Further, 0/1 denotes logic value ’0’ and ’1’ separately; w0/w1/r0/r1

denotes write/read operation;w " (w #) denotes an up (down) transition

write operation. If the fault behavior of S appears after time T, the sensi-

tizing operation is denoted asST . 8 can be ’0’ or ’1’. F describes the fault
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behavior of the cell,F 2 f0; 1; "; #; Xg, where" (#) denotes an up (down)

transition; ’X’ denotes an undefined logic value. R denotes the output value

of an SRAM cell, if the sensitizing operation applied to the cell is read. We

haveR 2 f0; 1; X;�g, where ‘-‘ means the output is not available. For

example, when S is a write operation, R can be denoted as ‘-‘. For the eas-

iness of discussion, FPs involving in a single cell are called FP1s, and FPs

involving two cells are called FP2s.� < Sa;Sv=F=R >: This FP involves two cells.Sa denotes the sensitizing

operation or state of theaggressorcell (a-cell), whileSv denotes the sen-

sitizing operation or state of thevictim cell. The a-cell sensitize a fault of

v-cell. We haveSa; Sv 2 fdr0; dr1; 0; 1; X; w0; w1; w "; w #; r0; r1; 8g,
whereby X is thedon’t carevalue,X 2 f0; 1g. The definitions of ’F’ and

’R’ are the same as those of< S=F=R > above.� wF (weak fault): A fault is partially sensitized by a read/write operation [2];

e.g., if a defect can only cause a small disturbance within the noise margin,

it can not be detected by an operation. In other words, in the presence of awF , all operations pass correctly [2].
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Chapter 3

Drowsy Cache Design and

Simulation

This chapter first presents the detail of circuit implementation for the drowsy

cache design. With the introduction of drowsy mode, two problems arise: one

is how small the standby voltage can be; the other is how long (i.e., circuit delay)

it needs to simulate for the drowsy state. The minimum standby voltage and the

minimum simulation time for drowsy mode are then derived. Since the simulation

is conducted using HSpice and it is complex to modify the HSpice file directly,

an instruction-level model is established and a C++ programis implemented to

convert the high-level code to the HSpice file. As a result, weneed only to deal

with the high-level code to perform testing algorithms, instead of digging into the

details of HSPICE files.
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3.1 Drowsy Cache Circuit Implementation

In this research, cache line is adopted as the major component of the cache archi-

tecture, and multiple bytes in a cache line are accessed simultaneously. The cache

structure is implemented based on 6T SRAM cells, and includes the correspond-

ing peripheral circuits like sense amplifier, address decoder, pre-charge circuit,

etc. Magic is used to generate the layout with the TSMC 0.18�m technology,

which is the most up-to-date technology available in our department; HSpice is

used for simulation. The diagram of the drowsy cache is shownin Fig. 3.1, and

each component of the cache is introduced in the following discussion. For cur-

rent 0.18um technology, Vdd is 1.8v. VddLow is derived from Chapter 3.2. The

details ofwrite circuit, pre-charge circuitandcell of Fig. 3.1 are shown in Fig.

3.2.

SRAM cell: Fig. 3.2 shows the design diagram of the drowsy cache. Each

cell is a typical 6T SRAM. The only special feature of the SRAMcells is that

they can be supplied by two different voltages. In Fig. 3.1,M is a mux-like

module where its output can be Vdd or VddLow depending on the selecting bit.

Its output (e.g.,Vdd0) provides the power supply of SRAM cells (e.g.,Vd in Fig.

3.2). For instance, cells in first row (row0) can be placed into drowsy mode by

settingdrowsy0to ’1’. At this time, all these cells are supplied with VddLow

(0.36V) and cannot be accessed; In normal mode, these cells are supplied with the

standard voltage (1.8V) and hence can be accessed.

Write and pre-charge circuit: In Fig. 3.2, the circuit labeled asA is for write-

control. The write-enable signal (WE) is set to ’1’ to connect the write circuit to

bit lines. The one labeled asB is the pre-charge circuit. The pre-charge clock is set
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Figure 3.1: Drowsy SRAM cache architecture.
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Figure 3.2: Write and pre-charge control.

to ’0’ when cells are not accessed, and hence each bit line is charged to standard

voltage (1.8V). The P-transistor on the horizontal direction in B is for equalizing

bitlines, which is needed by sense amplifier. For example, towrite a value into

cell C, the write-enable signal (WE) is set to ’1’ and pre-chargingis disabled by

setting pre-charge clock (preclk) to ’1’. It is similar to read a cell, except that

WE is also ’0’ and sense amplifier is enabled. When the cells ina column are not

accessed, preclk is ’0’ and both bitlines are charged toVdd (1.8V). Since cells are

isolated by disabling the corresponding cache line, it is possible that one cache

line is accessible when other cache lines are in drowsy mode,e.g., row1 can be

accessed if it is in normal mode and row0 is in drowsy mode.

Sense amplifier: A double-ended current-mirror amplifier shown in Fig. 3.3

is used in this work as the differential sense amplifier.BL andBL are connected

to the corresponding bit lines. A read operation will set signalSAen (SAen) to
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Figure 3.3: Sense amplifier.

Figure 3.4: Address decoder.

’1’ (’0’), and hence the corresponding SRAM cell is sensed and its value appears

at out. Note that when there is no read operations,SAen is set to ’0’, and sense

amplifier will be disconnected with memory cells.

Address decoder: To speed up the accessing time, a dynamic NAND decoder

is used. The decoder clock (decclk) periodically charge the address signals to

Vdd. Signalctl in Fig. 3.4 enables/disables the decoder block. Fig. 3.4 shows a

1-to-2 decoder design. To make word lines WL0, WL1 to logic ’1’ when selected,

inverters are used. By settingdecclk = Read+Write, all the word lines are ’0’

when there is no Read/Write operation.

Drowsy operation control unit: Read, Write, drowsy0 and drowsy1 are the

major control signals of the drowsy SRAM cell array in Fig3.1. They are gener-

ated by a finite state machine (FSM), where the FSM schedules which cache lines
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are to be placed into drowsy state. The FSM also ensures the timing restriction

between Read/Write signal and the drowsy signals (drowsy0,drowsy1,: : : ). In

general, the FSM determines which cache lines are placed into drowsy mode ac-

cording to a pre-defined strategy and keeps a record of them. When a cache linen
is to be accessed, the FSM first checks if it is in drowsy mode. If so, the FSM first

sets the drowsy control bitdrowsyn to ’0’, and performs the read/write operation

right after the cache line has been waked. If the cache line isin normal mode,

then the FSM directly read/write this cache line. The FSM implementation differs

based on different drowsy prediction strategies mentionedin Chapter 2. However,

since the FSM implementation does not affect the fault behavior of cell arrays,

in this study, it is simplified by modifying the HSpice file directly to achieve the

timing/logic restrictions between these control signals.

SRAM layout: Two close current paths can introduce SDs more easily. For

example, given the cell layout (Fig. 3.5) used by this work, the possibility of BC2

(bridge fault between nodeT and bitlineBL) is much higher than the possibility

of BC3 (bridge fault between nodeT and bitlineBL). As a result, different lay-

out implementation causes different probability distribution of spot defects (SDs).

The probability distribution can be derived by the Inductive Fault Analysis (IFA)

technique [31]. To get a ’general’ testing algorithm for arbitrary SRAM layout, all

possible SDs (BC1-BC6, OC1-OC12, etc) are considered in this research. Typi-

cally, the read/write time of the cache is set to 5ns in this work.
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Figure 3.5: SRAM layout and possible bridge faults.

3.2 Data Retention Voltage

Since the leakage power reduces super-linearly with the reduced standby volt-

age (Equation 2.2), the minimum standby voltage (Date Retention Voltage, DRV)

hence can achieve the minimum leakage power while preserving the data stored in

an SRAM cell. This section exploits the limit of SRAM low voltage data preser-

vation.

The cell stability is often characterized usingstatic noise margin(SNM) where

noises like mismatches and disturbances are modeled as DC offsets [27, 28, 29].

When these DC offsets exceeds the SNM of an SRAM cell, the cellis caused

a false switch. SNM can be visualized by superimposing the voltage transfer

curves (VTC) of both cross-coupled inverters within an SRAMcell. Its value is
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Vdd=0.10V

Vdd=0.36V

Figure 3.6: Deterioration of inverter VTC under low-Vdd.

defined as the edge of the maximum square that can fill into the two VTC curves

[29]. In Fig. 3.6,VT andVF denote the voltages of nodes T and F in the SRAM

cell mentioned in Fig. 3.1.V TCT denotes the VTC resulting from the inverter

whose input is T and output is F, whileV TCF denotes the VTC resulting from

the inverter whose input is F and output is T. When Vdd is 0.36v, the resulting

SNM is around 100mv. WhenVdd reduces to 0.1v, the voltage transfer curves

(VTC) degrades such that the noise margin degrade to 0. IfVdd reduces further,

the SRAM cell can not retain the stored data any more. But, thereal noise margin

comes not only with reducedVdd, but with temperature, process variation, etc. So,

the standby voltage cannot be reduced all the way down to 0.1v. In [25], it is

found that a guard band over 100mv of the minimum voltage (theone with zero

SNM) is sufficient to overcome these noise effects. In this work, 0.36v is used as

the DRV for our0:18�m technology.
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3.3 Drowsy State

To illustrate how the drowsy cache works, the SRAM cell in Fig. 3.7 is used as an

example. The absolute value of both P-transistor and N-transistor threshold volt-

ages is 0.53v, which is denoted in the technology file (TSMC SCN6M SUBM).

It is assumed that the cell contains logic ’1’ before being placed into drowsy

state. Hence,VT (VF ) equals to 1.8v (0v) in the beginning. The memory cell

goes through three phases to enter into drowsy state, as illustrated in Fig. 3.7 and

Fig. 3.8. Fig. 3.7 consists of four procedures: (a) shows theinitial status of the

cell, at this time, Vdd (1.8v) is supplied; (b) when Vdd is reduced to 0.53v, the

voltage of T reduces all the way down to 0.53v immediately; (c) when Vdd is

reduced to 0.36v, the voltage of T reduces very slowly because of the leakage cur-

rent; (d) the voltage of T reduces to 0.36v, the cell enters into a stable state. In Fig.

3.8,VT (VF ) denotes the voltage of node T (F) in an SRAM cell (Fig. 3.1), Vdd

denotes that supply voltage to the cell. The regions denotedby number (1,2,3)

shows different phases when cell is placed in drowsy state. Phases 1 and 2 are

divided based on the Vdd value, which is denoted as point (2.18e-08,5.53e-01).

Note that this point represents 21.8ns and 0.553 volt.

In phase one(region 1 in Fig. 3.8), the supply voltageVdd is reduced but is

still above the absolute value of threshold voltage (VTH , 0.53v) of P1. During this

period, the gate-to-source voltageVGS of P1 (0-Vdd) is less thanVTH (-0.53v),

transistor P1 is ON (P2, N1 are OFF, and N2 is ON), andVT reduces immediately

with Vdd (Fig. 3.7(b)). This phase can also be presented as (a)!(b) in Fig. 3.7.

In phase two(region 2 in Fig. 3.8), we haveVdd < jVTH j, henceVGS >VTH , and transistor P1 is OFF (P2, N1, and N2 are OFF). At this time, all the 6
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transistors are in sub-threshold region. A leakage currentexists from node T to

nodeVdd, which is shown in Fig. 3.7(c). During this time,VT reduces slowly

when compared to the change inVdd. This phase can be denoted as (b)!(c) in

Fig. 3.7.

In phase three, VT equals toVdd (shown in Fig. 3.7(d)). As derived from

Equation 2.1, leakage current is around 0.

It can be seen that the drowsy time (the time needed for a cell to enter into

drowsy mode) and the wakeup time (the time needed to charge the cell to stan-

dard voltage) depend on the slope ofVdd. But the time needed for a cell to enter

into ’stable’ drowsy state (the voltage of node with logic ’1’ reduces to standby

voltage) is much larger. In Fig. 3.8, the cell enters into steady drowsy state only

after around 280ns. In following discussion, we define region 2 in Fig. 3.8 as

’early’ drowsy state, while region 3 as ’static’ drowsy state. Fortunately, to detect

all the faults in a drowsy cell, the cell only needs to enter into ’early’ drowsy state

which is only several nano-seconds. This will be presented in following chapters.

3.4 High-level Simulation Code

Since all possible SDs (39 SDs in this work) in different resistance ranges have

to be simulated, a C++ programtbt.cppis implemented to convert the high-level

simulation code to all corresponding HSpice files. Herein, the high-level code

consists of six operations: W(rite), R(ead), I(dle), D(rowsy), C(harge) and E(nd).

The operationW adr i0 i1 i2 : : : writesi0; i1; i2; : : : to cache lineadr; R
adr reads the contents of cache lineadr, and outputs can be observed from the
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Figure 3.7: Drowsy procedure in an SRAM cell.
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Vdd
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F

32
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(2.18e−08, 5.53e−01)

x=2.18e−08

Figure 3.8: Drowsy state of an SRAM cell.
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Table 3.1: A high-level code for HSpice simulation
W 0 0 1 (1)
W 1 1 1 (2)
R 1 (3)
D 0 -1 (4)
W 1 1 0 (5)
R 1 (6)
C 0 -1 (7)
I (8)
E (9)

simulation result;I stands for idle, and the whole cache is not accessed during

this time;D adr0 adr1 : : : -1 places cache lineadr0, adr1, : : : to drowsy

mode, and delimiter -1 denotes the end of this operation;C adr0 adr1, : : :,
-1 wakes up cache lineadr0, adr1, : : : , and -1 is also used as delimiter. Finally,

E ends the code translation and writes all results to the HSpice file. Table 3.1 is

an example based on the assumption that each cache line is two-bit wide. AfterD

0 -1 operation, cache line 0 (cell 0,1) is in standby mode until itis woke up by

C 0 -1. During the drowsy time, cache line 1 can still be accessed (operation

(5),(6) in Table 3.1). The C++ code for tbt.cpp is included inAppendix A.
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Chapter 4

Fault Modeling

Based on the cache implementation of Chapter 3, we simulatedall possible SDs

in both standard mode and drowsy mode. FFM1 and FFM2 fault models are then

derived from the simulation results.

4.1 Modeling Strategy

In this work, it is assumed that SDs can only exist either within a cell or be-

tween two adjacent cells in the same row/column/diagonal. Therefore, four single

SRAM cells are scheduled as a 2-by-2 array to model all possible SDs. In Fig.

4.1, these four SRAM cells are labeled from 0 to 3. Further, In0 and In1 are the

two bits of inputs; d0 and d1 are the corresponding outputs. Different rows of

cells can be placed into drowsy mode separately. For example, cells 0, 2 and cells

1, 3 can be placed into drowsy mode separately. However, cells in the same row

(e.g., cells 0, 2) must be placed into drowsy mode simultaneously.

To simulate theshortandbridge faults, we manually insert an additional re-
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Figure 4.1: Fault modeling architecture
Fault modeling architecture.

sistance in the HSpice file between any two nodes where possible faults might

occur. For instance, a BC1 fault can be simulated by a lineRbc1 T F re-

sist value in the HSpice file, where theresistvalue ranges from 0 to1.

However, the circuit layout has to be modified to simulate theopenfaults. Take

the OC1 fault in Fig. 2.5 as an example, the connection at position OC1 in

the layout needs to be broken into two sections labeled as a, bseparately; the

OC1 fault can then be represented byRoc1 a b resist value, where0 <resist value < 1. By changing the resistance value from0
 to 1
 gradu-

ally, all possible SDs are simulated and the corresponding fault behaviors can be

observed.

As mentioned in Chapter 2, data caches and instruction caches have different

drowsy control strategies and architectures. The subbanksintroduced by instruc-

tion caches are relatively isolated with each other, and hence the possibility of SDs

between two subbanks is much lower. All cache lines within a subbank of an in-

struction cache are placed into drowsy mode or normal mode all together, which is
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not same as those in data caches. As a result, a smaller numberof fault behaviors

will be derived from instruction caches. In the following work, all fault behaviors

but one can be derived from both data caches and instruction caches. As it will be

mentioned in Chapter 4.3, faultCFwdtf (drowsy coupling write destructive Fault)

and some ofCFdtf andCFtdtf only exist in data caches. It will be analyzed when

we derive the testing algorithm for both data caches and instruction caches.

The fault primitives (FPs) introduced in Chapter 2 can be translated intofunc-

tional fault models(FFMs). A FFM is defined as a non-empty set of fault primi-

tives (FPs) [2]. The functional fault models (FFMs) are categorized as FFM1 and

FFM2, where FFM1 consists all FP1s and FFM2 consists of all FP2s.

4.2 FFM1 Fault Class

The simulation results of FFM1 are listed in Tables 4.1, 4.2,4.3, 4.4, and 4.5. By

default, all SDs are simulated at cell 0 in Fig. 4.1. Hence, inthese tables, FP1s

without sub-script show the simulation result of cell 0, while those with sub-scriptx (< S=F=R >x) show the observed fault behavior of cellx.

In the following tables, column ’Comp.behavior’ shows thecomplementary

behavior of a specific fault. Column ’Name’ denotes each SD fault according to its

type and position. Forbridgeandshort faults, notation (A-B) within the ’Name’

column shows that abridge(short) exists between nodesA andB; for eachopen

fault, the open position can be found in Fig. 2.5. ’Resistance’ column denotes the

different resistance regions (in increasing order, from 0
 to1
) where different

fault behaviors occur. Note that different SDs have different number of resistance
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Figure 4.2: Fault behavior of BC1 in normal mode and drowsy mode.

regions. For example,BC1 has four resistance regions whileBC2 has six of

them. The values of different resistance regions might alsobe different. TakeBC1 andBC2 as an example. The regionII of BC1 is 40K
 or above, while

the regionII of BC2 is 2k
 or above. ’Fault behavior’ shows the fault behavior

of each SD, where ’-’ denotes there is no fault behavior for the current setting.

Further,wF denotes that the defect can only cause a small disturbance and does

not affect the cell function. Column ’FFM’ shows the name of that functional

fault model defined in this section. FP2s mentioned in Table 4.1 will be explained

in next section.

The simulation time for drowsy operation (the time a cell being placed into

drowsy mode) ranges from 5ns (’early’ drowsy state in Fig. 3.8), to 300ns (’static’

drowsy state in Fig. 3.8). We found that different drowsy operation time units can

get the same simulation results, which means that ’early’ drowsy state is enough

for simulation. As a result, the simulation time for each drowsy operation can be

5ns, which will save much time for testing. To save space, thesimulation results

of different drowsy times will not be shown in following tables.
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Figure 4.3: Simulation of BC1 in drowsy mode.

New fault behavior appears with the introduction of drowsy state. Take Fig.

4.2 as an example. Assume there is an extra resistance (25k) between T and F.

When the cell is operated with standard voltage, current goes through fromVdd
to T, F,GND (shown in Fig. 4.2(a)). Due to the large resistance, the voltage of

T is 1.36v, and hence the cell can retain its value (logic ’1’). When the cell goes

into drowsy state, all six transistors are OFF, and the voltages of T and F become

the same. At this time, no current path exists. The cell can nolonger retain its

value when waking up. This can be observed from the waveform of Fig. 4.3. As

a result, when bridge defect BC1 (25k
) exists, the cell operates properly under

the standard voltage. But, once it enters the drowsy mode, the voltages of both

T and F nodes become the same (0.226v). Thus, when it is accessed after being

woke up, the cell returns an undefined state (0.58v). This fault can be represented

as< dr1=X=� > in Table 4.1. This fault model is defined asDrowsy Undefined

Fault (DUF) here.

Another new fault behavior introduced by the drowsy technique is Drowsy

Data Retention Fault(DDRF), where a drowsy operation applied to a cell will

change the cell value to its inversion. Take the bridge faultBC2 in Table 4.1 as an

example. Assume that a resistance (bridge fault) of 40k
 exists between nodes T
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and BL0 in the cell C of Fig. 3.1. The cell C stores a ’1’ in the beginning state.

The cell can retain its original state when it is woke up from the drowsy state.

Then, the cell is written a logic ’0’. When it enters into drowsy mode, because of

the bridge between T and BL0, node T will be charged when BL0 ispre-charged

to 1.8v. After a certain delay time (8ns as shown in Fig. 4.4),the cell value is

inversed. When it is woke up, the cell contains a ’1’ now. Thiscan be seen in

Fig. 4.4. This fault can be modeled as< dr0T=1=� >. We found that when

the resistance of a bridge defect becomes larger, the corresponding simulation

time for DDRF increases up to 2us. In region V of BC2 in Table 4.1, the dagger

sign (y) afterDDRF shows the drowsy operation time (i.e., test application time)

needed to detect all possibleDDRFs.

Note that FP1 can still exist even if there is a SD between two cells, as shown in

Tables 4.4, 4.6. Take the stuck-at fault (SAF) in region II ofcBCC3 as an example.

Assume that a bridge fault (5000
) exists between the true side node (T0) of cell

0 and the write line (WL1) of cell 1 in Fig. 4.1. In Fig. 4.5,VT0/VF0 andVT1/VF1
denote the voltage of T/F node in cells 0, 1 separately.VWL0 andVWL1 are the

write line (WL) signals of cells 0, 1. Inregion 1, a write ’1’ operation (input is

not shown here) applies to cell 0, but cell 0 is still in logic ’0’ after thiswrite

operation. In other hand, cell 1 was written a ’1’ inregion 2and then a ’0’ in

region 3. As is shown by the curves ofVT1/VF1, cell 1 works well. This fault is

denoted as< 8=0=� >0, which is a FP1 fault.

Based on the fault simulation results of opens, shorts, bridges within a single

cell, the following FP1s in FFM1 are derived.� Stuck-at fault (SAF): the logic value of a cell is always ’0’ or ’1’. SAF
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Figure 4.4: Drowsy data retention fault (DDRF) at BC2.
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Figure 4.5: Stuck-at fault (SAF) at cBCC3 (5000
).
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consists of two FPs:< 8=0=� > and< 8=1=� >. It can be caused by: (a)

opens within a cell (OC6, OC7, OBw), (b) shorts (SC1, SC2, SB1, SB2),

and (c) bridges (BC4, BC6, cBCC3).� Stuck-open fault (SOF): < w " =0=� >, < w # =1=� >, < rx=x=X >
defines an unaccessible cell. It can be caused by: (a) bridge between a node

of a cell and write line (BC4), and (b) short between write line and GND

(SW2).� Undefined state fault (USF): a read/write operation performed to a cell

brings the cell into an undefined state, and hence a rx operation returns a ran-

dom value. The USF consists of four FPs:< w0=X=� >, < w1=X=� >,< r=X=X >. It can be caused by (a) bridge between T and F nodes of a

cell (BC1), (b) bridge between bitlines within a cell (BC5),and (c) bridge

between two adjacent write lines (cBCC4).� Transition fault (TF): the cell fails to undergo a transition (0! 1 or 1! 0)

when it is written:< w " =0=� >, < w # =1=� >. It can be caused by (a)

pass transistor connection of the cell broken (OC8, OC9), and (b) Gate of

pass transistor broken (OC10).� Data retention fault (DRF): the cell fails to retain its logic value after a pe-

riod of time. DRF consists of< 1T=0=� >, < 0T=1=� >, < 1T=X=� >,< 0T=X=� >. It can be caused by (a) source/drain/gate of the pull-up

transistor of a cell broken (OC1, OC2, OC5), and (b)V/Vss path of a cell

broken (OC11, OC12).

39



� Read destructive fault (RDF): a rx operation performed on a cell changes the

cell value intox while returnsx. RDF consists of two FPs:< r0= " =1 >
and< r1= # =0 >. It can be caused by: (a) short between bitline andVss
(SB2), (b) bridge between a bitline and write line within a cell (BC6), and

(c) drain/source of the pull-down transistor of a cell broken (OC3, OC4).� Deceptive read destructive fault (DRDF): a rx operation performed to a cell

changes the cell state tox while returns valuex. DRDF consists of two FPs:< r0= " =0 > and< r1= # =1 >. It can be caused by drain/source of the

pull-down transistor of a cell broken (OC3, OC4).� Incorrect read fault (IRF): a rx operation applied to a cell returnsx or an

undefined value, while retains the state of the cell. IRF consists of two FPs:< r0=0=1 > and< r1=1=0 >. Open at the read side bitline (OBr) can

cause this fault.� Drowsy transition fault (DTF): a drowsy operation applied on a cell with

valuex changes the value tox, when the cell is waken up. DTF consists of

two FPs:< dr0=1=� > and< dr1=0=� >. It can be caused by: (a) bridge

between one node of a cell and bitlineBL/BL or writeline WL within a cell

(BC2, BC3, BC4), (b) gate of pull-up at true side broken (OC5), (c) short

between node of cell andVss/Vdd (SC1, SC2), (d) bridge between a node of

a cell and bitlinesBL/BL (rBCC3, rBCC4), and (e) bridge between node

of a cell and its adjacent write line (cBCC3).� Drowsy undefined state fault (DUF): a drowsy operation performed on a cell

brings the cell into an undefined state (< dr0=X=� >, < dr1=X=� >). It
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can be caused by bridge between the T and F nodes of a cell (BC1).� Drowsy data retention fault (DDRF): a cell fails to retain its value after a

period of time under drowsy state. DDRF consists of four FPs:< dr0T= "=� >, < dr1T= # =� >, < dr0T=X=� > and< dr1T=X=� >. It can

be caused by (a) opens within a cell (OC1, OC2, OC5, OC11, OC12), (b)

bridges within a cell (BC1, BC2, BC3, BC4), and (c) bridges between cells

(rBCC3, rBCC4, cBCC3).

Three new fault models (DTF, DUF, DDRF) are introduced by bridging faults

in drowsy state (Table 4.1). For opens within a cell, only thesource/drain of pull-

up open defects (OC1, OC2, OC5, OC11, OC12) introduce new fault behavior

(DDRF in Table 4.2). The cell needs to be placed into drowsy mode for at least

2ms to observe the fault behavior (Table 4.2). For shorts, drowsy state does not

introduce any new fault model (Table 4.3).

4.3 FFM2 Fault Class

Cells in same row/column/diagonal are simulated to derive FFM2. To save space,

their interchanged(complementary) behavior will not be listed in Tables 4.4, 4.5,

and 4.6. The fault notation< Sa;Sv=F=R >i;j indicates cellsi, j are aggres-

sor/victim to each other.

New coupling faults also exist with the introduction of drowsy operation. Take

the rBCC2 defect (bridge between two cells in the same row, Table 4.4) shown in

Fig. 4.6 as an example. The resistance between F0 and T2 is 15k
. Assume that
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Table 4.1: Bridge defects in a cell
Name Resistance Fault behavior Comp. behavior Class FFM

BC1(T � F ) I < wx=X=� >< r=X=X > - FP1 USF

II < drx=X=� > - FP1 DUF
III < drxT=X=� > - FP1 DDRF y
IV wF - - -

BC2 I < dr0=1=� > < dr1=0=� > FP1 DTF(T � BL) < w0; 1= # =� >1;0< r0; 1= # =� >1;0 < w0; 0= " =� >1;0< r0; 0= " =� >1;0 FP2 CFds< 0;w " =0=� >0;1 < 1;w " =0=� >0;1 FP2 CFiw
II < dr0=1=� > < dr1=0=� > FP1 DTF< w0; 1= # =� >1;0< r0; 1= # =� >1;0 < w0; 0= " =� >1;0< r0; 0= " =� >1;0 FP2 CFds< 0; r1= # =0 >0;1 < 1; r0= " =1 >0;1 FP2 CFrd
III < dr0=1=� > < dr1=0=� > FP1 DTF< w0; 1= # =� >1;0< r0; 1= # =� >1;0 < w0; 0= " =� >1;0< r0; 0= " =� >1;0 FP2 CFds< 0; r1= # =1 >0;1 < 1; r0= " =0 >0;1 FP2 CFdrd
IV < dr0=1=� > < dr1=0=� > FP1 DTF
V < dr0T=1=� > < dr1T=0=� > FP1 DDRF y
VI wF wF - -

BC3 I < dr0=1=� > < dr1=0=� > FP1 DTF(T � BL) < w1; 1= # =� >1;0< r1; 1= # =� >1;0 < w1; 0= " =� >1;0< r1; 0= " =� >1;0 FP2 CFds< 0;w # =1=� >0;1 < 1;w # =1=� >0;1 FP2 CFiw
II < dr0=1=� > < dr1=0=� > FP1 DTF< w1; 1= # =� >1;0< r1; 1= # =� >1;0 < w1; 0= " =� >1;0< r1; 0= " =� >1;0 FP2 CFds< 0; r0= " =1 >0;1 < 1; r0= " =1 >0;1 FP2 CFrd
III < dr0=1=� > < dr1=0=� > FP1 DTF< w1; 1= # =� >1;0< r1; 1= # =� >1;0 < w1; 0= " =� >1;0< r1; 0= " =� >1;0 FP2 CFds< 0; r0= " =0 >0;1 < 1; r0= " =0 >0;1 FP2 CFdrd
IV < dr0=1=� > < dr1=0=� > FP1 DTF
V < dr0T=1=� > < dr1T=0=� > FP1 DDRF y
VI wF wF - -

BC4(T �WL) I < r0=0=X >< w " =0=� > < r1=1=X >< w # =1=� > FP1 SOF< r1=1=X >2< w # =1=� >2 < r0=0=X >2< w " =0=� >2 FP1 SOF

II < 8=0=� > < 8=1=� > FP1 SAF
III < dr1=0=� > < dr0=1=� > FP1 DTF
IV < dr1T=0=� > < dr0T=1=� > FP1 DDRF y
V wF wF - -

BC5 I < rx=x=X > - FP1 USF(BL� BL) II wF - - -

BC6 I < 8=1=� > < 8=0=� > FP1 SAF(BL�WL) < r1= # =0 >1 < r0= " =1 >1 FP1 RDF
II wF - -y: T is at least 2us
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Table 4.2: Open defects in a cell
Name Resistance Fault behavior Comp. behavior Class FFM

OC1,OC2 I wF wF - -
II < 1T= # =� > < 0T= " =� > FP1 DRF y< dr1T= # =� > < dr0T= " =� > FP1 DDRF z

OC3,OC4 I wF wF - -
II < r0= " =0 > < r1= # =1 > FP1 DRDF
III < r0= " =1 > < r1= # =0 > FP1 RDF

OC5 I wF wF - -
II < dr0=1=� > < dr1=0=� > FP1 DTF< 1T= # =� > < 0T= " =� > FP1 DRF y< dr1T= # =� > < dr0T= " =� > FP1 DDRF z

OC6 I wF wF - -
II < 8=0=� > < 8=1=� > FP1 SAF

OC7 I wF wF - -
II < 8=1=� > < 8=0=� > FP1 SAF

OC8 I wF wF - -
II < w # =1=� > < w " =0=� > FP1 TF

OC9 I wF wF - -
II < w # =1=� > < w " =0=� > FP1 TF

OC10 I wF wF - -
II < w # =1=� > < w " =0=� > FP1 TF

OC11,OC12 I wF wF - -
II < 1T=X=� >< 0T=X=� > - FP1 DRF z< dr1T=X=� >< dr0T=X=� > - FP1 DDRF zOBw I wF wF - -
II < 8=1=� > < 8=0=� > FP1 SAFOBr I wF wF - -
II < r1=1=0 > < r0=0=1 > FP1 IRFOW I wF wF - -
II < rx=x=X > < rx=x=X > FP1 USFy: T is at least 600usz: T is at least 2ms
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Table 4.3: Short defects in a cell

Name Resistance Fault behavior Comp. behavior Class FFM

SC1(T � V) I < 8=1=� > < 8=0=� > FP1 SAF
II < dr0=1=� > < dr1=0=� > FP1 DTF
III wF wF - -

SC2(T � Vss) I < 8=0=� > < 8=1=� > FP1 SAF
II < dr1=0=� > < dr0=1=� > FP1 DTF
III wF wF - -

SB1(BL� V) I < 8=1=� > < 8=0=� > FP1 SAF
II wF wF - -

SB2(BL� Vss) I < 8=0=� > < 8=1=� > FP1 SAF
II < r1= # =0 > < r0= " =1 > FP1 RDF
III wF wF - -

SW1(WL� V) I wF - - -

SW2(WL� Vss) I < w # =1=� >< rx=x=X > - FP1 SOF

II wF - - -

originally both cells store logic ’0’. When both cells enterinto drowsy state, be-

cause of the resistance path between F0 and T2, the voltage ofF0 will be reduced.

When cell 0 is woke up, both nodes (T0, F0) are charged. But, atthis time the volt-

age of T2 is 0 and there is a bridge between F0 and T2, so node F0 will be charged

much slower. As a result, cell 2 will manifest its defect whenwoke up. This fault

is denoted as< dr0; dr0=1=� >2;0, and it is calledcoupling drowsy transition

fault (CFdtf ). The simulation results are shown in Fig. 4.7, whereVT0/VF0 andVT2/VF2 denote the voltage of T/F node of cell 0 and cell 2 separately.Due to the

bridge between node F0 and T2,VF0 is forced to around 0v when cells 0, 1 are

placed into drowsy mode. When cell 0 is woke up, it is inversed.

Note that even when a SD exists within a cell, it might affect other cells. In

this work, we found that a SD between either node (T or F) of a cell and either

(BL or BL) of its bit-lines can cause FP2 faults. These faults are listed in BC2

and BC3 section of Table 4.1. Take thedeceptive read destructive coupling fault
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Figure 4.6: Bridge fault between two adjacent cells.
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Figure 4.7: Coupling drowsy transition fault (CFdtf ) caused by the bridge fault
in Fig. 4.6.
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(CFdrd) in resistance region II of BC2 as an example. We assume that abridge

fault (5000
) exists between node T and bitline BL in cell 0 of Fig. 4.1. In Fig.

4.8,VT0/VF0 andVT1/VF1 denote the voltage of T/F node of cells 0, 1.Write/Read

denotes the write/read operation applied to cells 0, 1. Curved0denotes the output

of the read operation of cell 0 or 1. As is shown in Fig. 4.8, cell 0 and cell 1 are

successfully written a logic ’0’ and ’1’ separately after the write cell 0andwrite

cell 1 operations. Then aread operation is applied to cell 1. It can be seen from

curvesVT1/VF1 that cell 1 manifest its defect during thereadoperation. The FP2

fault is then be abstracted as< 0; r1= # =1 >0;1. This fault affects all other cells

in the same column with cell 0. During testing procedure, we only consider its

adjacent cell, since the detection of one can derive the detection of other cells.

Based on simulations of SDs between two neighbor cells in same row (or

column, diagonal), the FFM2s have been derived as following:� Disturb coupling fault (CFds) : the v-cell undergoes a transition due to

a write or read operation performed to the a-cell. TheCFds consists of

eight FPs:< w0; 0= " =� >, < w0; 1= # =� >, < w1; 0= " =� >,< w1; 1 # =� >, < r0; 0= " =� >, < r0; 1= # =� >, < r1; 0= " =� >,< r1; 1= # =� >. It can be caused by bridge between a node of a cell and

bitline within a cell (BC2, BC3).� State coupling fault (CFst) : the v-cell is forced to a certain logic value (’0’

or ’1’) when the aggressor has a specific logic value.CFst consists of four

FPs: < 1;X=0=� >, < 1;X=1=� >, < 0;X=0=� >, < 0;X=1=� >.

It can be caused by defects like: (a) bridge between nodes of two adjacent

cells in a row (rBCC1, rBCC2), (b) bridge between nodeds of two adjacent
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Figure 4.8: Deceptive read destructive coupling fault (CFdrd) at BC2 (5000
).
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cells in a column (cBCC1, cBCC2), and (c) bridge between nodes of two

adjacent cells within a diagonal (dBCC1, dBCC2).� Read destructive coupling fault (CFrd) : when the aggressor cell is in a

specific state, a rx operation applied to the v-cell causes a transition in the v-

cell and returns an incorrect valuex. CFrd consists of four FPs:< 0; r0= "=1 >, < 0; r1= # =0 >, < 1; r0= " =1 >, < 1; r1= # =0 >. It can be caused

by: (a) bridge between a node of a cell and bitline within a cell (BC2, BC3),

and (b) bridge involving a bitline (rBCC3, rBCC4, rBCC5, rBCC6).� Deceptive read destructive coupling fault (CFdrd) : when the a-cell has a

specific logic value, a rx operation applied to the v-cell causes a transition

in the cell while returns the correct valuex. CFdrd consists of four FPs:< 0; r0= " =0 >, < 0; r1= # =1 >, < 1; r1= # =1 >, < 1; r0= " =0 >.

It can be caused by: (a) bridges within a cell (BC2, BC3), and (b) bridge

between cells (rBCC3, rBCC4).� Incorrect write coupling fault (CFiw) : when a write operation is applied to

the a-cell, the v-cell in same cache line will fail to undergoa transition. It

consists of four FPs:< w0;w # =1=� >, < w1;w # =1=� >, < w1;w "=0=� > and< w0;w " =0=� >. CFiw can be caused by bridges involving

bitlines (rBCC3, rBCC4, rBCC5, rBCC6).� Drowsy coupling transition fault (CFdtf ) : a drowsy operation performed

on the v-cell causes a transition in the v-cell.CFdtf consists of eight FPs:< 0; dr0=1=� >, < 0; dr1=0=� >, < 1; dr0=1=� >, < 1; dr1=0=� >, <dr0; dr0=1=� >, < dr0; dr1=0=� >,< dr1; dr0=1=� >, < dr1; dr1=0=
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� >. It can be caused by defects like: (a) bridge between two cells of same

row (rBCC1, rBCC2), (b) bridge between two adjacent cells insame column

(cBCC1, cBCC2), and (c) bridge between nodes of two adjacentcells in

same diagonal (dBCC1, dBCC2).< 0; dr0=1=� >, < 0; dr1=0=� >,< 1; dr0=1=� >, and< 1; dr1=0=� > can only exist in data caches, since

in instruction caches, all the cache lines in a sub-bank enter into drowsy

mode simultaneously.� Drowsy coupling write destructive fault (CFwdtf ): a write operation ap-

plied to the a-cell caused a transition in the v-cell which isin drowsy mode.CFwdtf consists of four FPs :< w1; dr0=1=� >, < w0; dr0=1=� >,< w1; dr1=0=� >, < w0; dr1=0=� >. It can be caused by bridges be-

tween nodes of two adjacent cells in the same column (cBCC1, cBCC2),

or two adjacent cells in the same diagonal (dBCC1, dBCC2). Obviously,

this fault can only exist in data caches, because all caches lines within an

instruction cache enters into drowsy mode at the same time.� Drowsy coupling destructive transition fault (CFtdtf ) : the v-cell contains

valuex before changes tox after some period of time.CFtdtf consists

of six FPs:< 1; dr0T=1=� >, < 0; dr1T=0=� >, < dr0; dr1T=0=� >,< dr1; dr1T=0=� >, < dr0; dr0T=1=� >, < dr1; dr0T=1=� >. It can be

caused by bridge between nodes of two adjacent cells (rBCC1,rBCC2,

cBCC1, cBCC2, dBCC1, dBCC2).< 1; dr0T=1=� >, < 0; dr1T=0=� >,< dr0; dr1T=0=� >, and< dr1; dr1T=0=� > can only exist in data

caches, since in instruction caches, all the cache lines in asub-bank enter
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into drowsy mode simultaneously.

50



Table 4.4: Bridge defects between cells in the same row
Name Resistance Fault behavior Comp. behavior Class FFM

rBCC1(T0� T2) I < 0; 8=0=� >i;j < 1; 8=0=� >0;2< 0; 8=1=� >2;0 FP2 CFst
II < dr0; dr1=0=� >i;j < dr1; dr1=0=� >0;2< dr0; dr0=1=� >2;0 FP2 CFdtf
III wF wF - -

rBCC2(T0� F2) I < 0; 8=1=� >i;j < 1; 8=1=� >0;2< 0; 8=0=� >2;0 FP2 CFst
II < dr0; dr0=1=� >0;2< dr1; dr1=0=� >2;0 < dr1; dr1=0=� >0;2< dr0; dr0=1=� >2;0 FP2 CFdtf
III wF wF - -

rBCC3 I < dr0=1=� > < dr1=0=� > FP2 DTF(T0� BL1) < w0;w " =0=� >0;2 < w1;w " =0=� >0;2 FP2 CFiw< r0; r1= # =0 >2;0 < r0; r0= " =1 >2;0 FP2 CFrd
II < dr0=1=� > < dr1=0=� > FP2 DTF< r0; r1= # =0 >2;0 < r1; r0= " =1 >2;0 FP2 CFrd
III < dr0=1=� > < dr1=0=� > FP2 DTF< r0; r1= # =1 >2;0 < r1; r0= " =0 >2;0 FP2 CFdrd
IV < dr0=1=� > < dr1=0=� > FP1 DTF
V < dr0T=1=� > < dr1T=0=� > FP1 DDRF y
VI wF wF - -

rBCC4 I < dr0=1=� > < dr1=0=� > FP1 DTF(T0� BL1) < w0;w # =1=� >0;2 < w1;w # =1=� >0;2 FP2 CFiw< r1; r1= # =0 >2;0 < r0; r0= " =1 >2;0 FP2 CFrd
II < dr0=1=� >0 < dr1=0=� >0 FP1 DTF< r1; r1= # =0 >2;0 < r1; r0= " =0 >2;0 FP2 CFrd
III < dr0=1=� >0 < dr1=0=� >0 FP1 DTF< r1; r1= # =1 >2;0 < r1; r0= " =0 >2;0 FP2 CFdrd
IV < dr0=1=� >0 < dr1=0=� > FP1 DTF
V < dr0T=1=� >0 < dr1T=0=� > FP1 DDRF y
VI wF wF - -

rBCC5 I < w0;w " =0=� >0;2 < w1;w " =0=� >0;2 FP2 CFiw(BL0�BL1) II < r0; r1= # =0 >0;2 < r1; r1= # =0 >0;2 FP2 CFrd
III wF wF - -

rBCC6 I < w1;w " =0=� >0;2 < w0;w " =0=� >0;2 FP2 CFiw(BL0�BL1) II < r0; r0= " =1 >0;2< r1; r1= # =0 >2;0 < r1; r0= " =1 >0;2< r0; r1= # =0 >2;0 FP2 CFrd
III wF wF - -y: T is at least 2us
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Table 4.5: Bridge defects between cells in the same column

Name Resistance Fault behavior Comp. behavior Class FFM

cBCC1(T0� T1) I < 0; 8=0=� >i;j < 1; 8=0=� >0;1< 0; 8=1=� >1;0 FP2 CFst< w1; dr0=1=� >i;j < w0; dr0=1=� >0;1< w1; dr1=0=� >1;0 FP2 CFwdtf< w0; dr1=0=� >i;j < w1; dr1=0=� >0;1< w0; dr0=1=� >1;0 FP2 CFwdtf
II < 1; dr0=1=� >i;j < 0; dr0=1=� >0;1< 1; dr1=0=� >1;0 FP2 CFdtf< 0; dr1=0=� >i;j< dr0; dr1=0=� >i;j < 1; dr1=0=� >0;1< 0; dr0=1=� >1;0< dr1; dr1=0=� >0;1< dr0; dr0=1=� >1;0 FP2 CFdtf
III < 1; dr0T=1=� >i;j < 0; dr0T=1=� >0;1< 1; dr1T=0=� >1;0 FP2 CFtdtf y< 0; dr1T=0=� >i;j< dr0; dr1T=0=� >i;j < 1; dr1T=0=� >0;1< 0; dr0T=1=� >1;0< dr1; dr1T=0=� >0;1< dr0; dr0T=1=� >1;0 FP2 CFtdtf y
IV wF wF - -

cBCC2(T0� F1) I < 0; 8=1=� >i;j < 1; 8=1=� >0;1< 0; 8=0=� >1;0 FP2 CFst< w0; dr0=1=� >1;0< w1; dr1=0=� >0;1 < w0; dr1=0=� >1;0< w0; dr1=0=� >0;1 FP2 CFwdtf< w0; dr0=1=� >0;1< w1; dr1=0� >1;0 < w1; dr0=1=� >0;1< w1; dr0=1=� >1;0 FP2 CFwdtf
II < 0; dr0=1=� >1;0< 1; dr1=0=� >0;1 < 0; dr1=0=� >1;0< 0; dr1=0=� >0;1 FP2 CFdtf< 0; dr0=1=� >0;1< 1; dr1=0=� >1;0< dr0; dr0=1=� >0;1< dr1; dr1=0=� >1;0 < 1; dr0=1=� >0;1< 1; dr0=1=� >1;0< dr1; dr0=1=� >0;1< dr1; dr0=1=� >1;0 FP2 CFdtf
III < 0; dr1T=0=� >1;0< 1; dr1T=0=� >0;1 < 0; dr0T=1=� >1;0< 0; dr1T=0=� >0;1 FP2 CFtdtf y< 0; dr0T=1=� >0;1< 1; dr1T=0=� >1;0< dr0; dr0T=1=� >0;1< dr1; dr1T=0=� >1;0 < 1; dr0T=1=� >0;1< 1; dr0T=1=� >1;0< dr1; dr0T=1=� >0;1< dr1; dr0T=1=� >1;0 FP2 CFtdtf y
IV wF wF - -

cBCC3(T0�WL1) I < 8=0=� >0< 8=0=� >1 < 8=1=� >0< 8=0=� >1 FP1 SAF

II < 8=0=� >0 < 8=1=� >0 FP1 SAF
III < dr1=0=� > < dr0=1=� > FP1 DTF
IV < dr1T=0=� > < dr0T=1=� > FP1 DDRF y
V wF wF - -

cBCC4(WL0�WL1) I < wx=X=� >< rx=x=X > - FP1 USF

II wF - - -y:T is at least 2us
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Table 4.6: Bridge defects between cells in the same diagonal

Name Resistance Fault behavior Comp. behavior Class FFM

dBCC1(T0� T3) I < 0; 8=0=� >i;j < 1; 8=0=� >0;3< 0; 8=1=� >3;0 FP2 CFst< w1; dr0=1=� >i;j < w0; dr0=1=� >0;3< w1; dr1=0=� >3;0 FP2 CFwdtf< w0; dr1=0=� >i;j < w1; dr1=0=� >0;3< w0; dr0=1=� >3;0 FP2 CFwdtf
II < 1; dr0=1=� >i;j < 0; dr0=1=� >0;3< 1; dr1=0=� >3;0 FP2 CFdtf< 0; dr1=0=� >i;j< dr0; dr1=0=� >i;j < 1; dr1=0=� >0;3< 0; dr0=1=� >3;0< dr1; dr1=0=� >0;3< dr0; dr0=1=� >3;0 FP2 CFdtf
III < 1; dr0T=1=� >i;j < 0; dr0T=1=� >0;3< 1; dr1T=0=� >3;0 FP2 CFtdtf y< 0; dr1T=0=� >i;j< dr0; dr1T=0=� >i;j < 1; dr1T=0=� >0;3< 0; dr0T=1=� >3;0< dr1; dr1T=0=� >0;3< dr0; dr0T=1=� >3;0 FP2 CFtdtf y
IV wF wF - -

dBCC2(T0� F3) I < 0; 8=1=� >i;j < 1; 8=1=� >0;3< 0; 8=0=� >3;0 FP2 CFst< w0; dr0=1=� >3;0< w1; dr1=0=� >0;3 < w0; dr1=0=� >3;0< w0; dr1=0=� >0;3 FP2 CFwdtf< w0; dr0=1=� >0;3< w1; dr1=0=� >3;0 < w1; dr0=1=� >0;3< w1; dr0=1=� >3;0 FP2 CFwdtf
II < 0; dr0=1=� >3;0< 1; dr1=0=� >0;3 < 0; dr1=0=� >3;0< 0; dr1=0=� >0;3 FP2 CFdtf< 0; dr0=1=� >0;3< 1; dr1=0=� >3;0< dr0; dr0=1=� >0;3< dr1; dr1=0=� >3;0 < 1; dr0=1=� >0;3< 1; dr0=1=� >1;0< dr1; dr0=1=� >0;1< dr1; dr0=1=� >3;0 FP2 CFdtf
III < 0; dr1T=0=� >3;0< 1; dr1T=0=� >0;3 < 0; dr0T=1=� >3;0< 0; dr1T=0=� >0;3 FP2 CFtdtf y< 0; dr0T=1=� >0;3< 1; dr1T=0=� >3;0< dr0; dr0T=1=� >0;3< dr1; dr1T=0=� >3;0 < 1; dr0T=1=� >0;3< 1; dr0T=1=� >3;0< dr1; dr0T=1=� >0;3< dr1; dr0T=1=� >3;0 FP2 CFtdtf y
IV wF wF - -y: T is at least 2us
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Chapter 5

March Algorithm and Built-in Self

Repair (BISR)

Based on the fault models, we first use a voltage window detector circuit to iden-

tify defects that result in undefined state. A few simplification rules are then de-

veloped to reduce the number of faults that must be dealt with. A drowsy march

algorithm is proposed to detect all traditional faults and drowsy faults. Finally,

a built-in self-repair circuit is designed to tolerate drowsy defects occurring in

drowsy cache devices.

5.1 March DWOM

Since cache line design is used in the cache architecture, the cache we imple-

mented can be treated as aword-oriented memory (WOM)for the testing algo-

rithm. A word-oriented memory containsB bit per word, where B is greater than
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2 and is usually a power of two. Many memory test algorithms are based onbit-

orienteddesign, i.e.,readandwrite operations access only one bit in the memory.

It is mentioned that word-oriented memories can be tested byrepeated applica-

tion of a test forbit-oriented memories, whereby a different data background is

used during each iteration [35]. The new march algorithm referred as Drowsy

Word-Oriented Memory (DWOM) march algorithm is introducedin Table 5.1.

To describe March DWOM, the traditional march notation willbe used. A

completemarch testconsists of a finite sequence ofmarch elements[33]. A march

testcan be delimited by a pair of parentheses ’f� � � g’. A march elementis com-

posed of a finite sequence of operations applied to every cellin memory before the

next cell can be proceeded. Amarch elementcan be denoted by a pair of brackets

’( � � � )’, and it can be done in two address orders: an increasing (*) address order

(from address 0 to address n-1), or a decreasing (+) address order. The test shown

in Table 5.1 is based on the assumption that SDs can only exists within one cell or

between two adjacent cells. It detects all FFMs with a deterministic output at the

sense amplifier.

For FFMs with an undefined state output (X), i.e., the output voltage is be-

tween HI and LOW, the proposed march algorithm can also detect these FFMs

by using avoltage window detector circuitshown in Fig. 5.1. Note thatA and

B in Fig. 5.1 are both operational amplifiers (op-amps), and wehaveVref1 =R3R1+R2+R3 , andVref2 = R2+R3R1+R2+R3 . The outputVout is HIGH when we haveVref1 < Vin < Vref2, and is LOW otherwise. As a result, by configuring R1,

R2, and R3 properly, this circuit can detect the undefined state.

In the following discussions,SDi is used to describe the SDs mentioned in
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Figure 5.1: Voltage window detector circuit [34].

Chapter 4, whereSD 2 fBC1; � � � ; dBCC2g, andi 2 fI; II; � � � g denotes the

resistance region. For example,BC1I denotes the FFM of BC1 defect in resis-

tance regionI, which is anUSF .

5.2 Fault Model Simplification

Chapter 4 gives a detailed description for FFMs of each SD in different resistance

regions. However, the complexity of our march testing algorithm can be further

reduced by the followingsimplification rules.

Rule (a) SDs with both drowsy FPs and normal FPs. We found that many SDs

have both drowsy FPs and normal FPs within the same resistance region.

Either of them (drowsy FPs and normal FPs) can be used to detect the

SD. However, drowsy fault behavior can only be observed whena cell is

placed into drowsy mode. Since each drowsy operation needs extra cir-

cuit operations (setting drowsy bits, switching supply voltages,etc.), in this
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Table 5.1: March DWOMf+ (w0); M1* (r0; w1; r1; w0); M2+ (r0; r0); M3drT ; M4* (r0); M5* (w1); M6+ (r1; w0; r0; w1); M7* (r1; r1); M8drT ; M9+ (r1); M10+ (w0(odd); w1(even)); M11drT ; M12+ (r0(odd); r1(even)); M13+ (w1(odd); w0(even)); M14drT ; M15+ (r1(odd); r0(even)); g M16
work, when a SD has both drowsy FPs and normal FPs within a specific

resistance region, march test will be developed mostly based on the normal

FPs. For example,rBCC3II in Table 4.5 has two FPs (< dr0=1=� >
and< r1; r1= # =0 >2;0), so our march algorithm is develped based on< r1; r1= # =0 >2;0. Further,CFwdtf only comes withCFst in all cases,

so our march algorithm detects SDs with bothCFwdtf andCFst (cBCC1,

cBCC2, dBCC1, dBCC2) by testingCFst only. Thus,CFwdtf does not need

to be considered when deriving the march test in this work.

But, it is different for SDs with data retention fault in normal state (DRFs)

and those in drowsy mode (DDRFs). In Table 4.2, we found that if a

defect causes DRF (< xT=x=� >), definitely it will also cause DDRF

(drxT=x=� >). On the other hand, some SDs have only DDRF faults. In

this work, therefore, a march algorithm will be developed based on DDRF
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(drxT=x=� >) to detect these SDs within one march test step.

Rule (b) SDs with different normal FPs. Some SDs have more than one normal FP

within a specific resistance region. The march can be developed based on

either of them. For example, in Tables 4.1 and 4.4, if a SD hasCFiw (e.g.,< 0;w " =0=� >) fault, it will definetly haveCFds (e.g.,< w0; 1= # =� >)

fault orCFrd (e.g.,< r0; r1= # =� >) fault. Thus,CFiw is not required

to derive our march algorithm, since eitherCFds or CFrd will be used to

detect this fault.

Rule (c) SDs with drowsy and non-drowsy aggressors. In this research, onlyCFdtfs andCFtdtfs belong to this category. ForCFdtfs, if a SD has<x; drz=z=� >, it will also have< drx; drz=z=� >. CFtdtfs have the

same fault behavior in that if a SD has< x; drzT=z=� >, it will also

have< drx; drzT=z=� >. Since each drowsy operation needs extra cir-

cuit operations (setting drowsy bits, switching supply voltages,etc.), it is

better to use as small number of drowsy steps as possible. In this work,

march test is based on drowsy aggressor testing such as< drx; drz=z=� >
and< drx; drzT=z=� >, since the whole memory can be placed into

drowsy state to detect this fault, after specific logic values to x andz are

assigned. This strategy is especially useful when a circuitdelay is needed,

i.e., < x; drzT=z=� > and< drx; drzT=z=� >. If march test is based

on < x; drzT=z=� >, each line must be placed into drowsy state for T

time units (T is usually 2us) with its aggressor in normal mode, and the

testing time will be excessive. Nevertheless, if march testis based on<
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drx; drzT=z=� >, the entire memory needs only to be placed into drowsy

state for T time units, which can save a lot of testing time.

Rule (d) SDs with or without data retention fault in drowsy mode. In this re-

search, we found that DTF (< drx=x=� >) and DDRF (< drxT=x=� >
are similar, except that DDRF can only be observed after T delay time units.

It is obvious that march element based on DDRF can also detectDTF, since

the DTF fault can also be observed after T delay time units. The case ofCFdtf (< drx; drz=z=� >) andCFtdtf (< drx; drzT=z=� >) is similar.

As a result, DTF (CFdtf ) can be treated as DDRF (CFtdtf ) when we devel-

ope our march algorithm.

5.3 Fault Coverage of March DWOM

In this research, we observed 13 kinds of fault behaviors in normal mode, and 6

fault behaviors in drowsy mode for all possible SDs.� All SDs which have FPs in normal mode can be detected by March DWOM

proposed in this research, because our DWOM includes all operations of

the march algorithm in [2].� All DTFs,DUFs andDDRFs are detected by March DWOM. Since for

each single cell, a ’0’ and a ’1’ is read after thedrT drowsy operation.

Thanks to the introduction of the voltage window detector circuit, DUFs

(< drx=X=� >) can be detected byM5 andM6. According to the simplifi-

cation rule (d) of the previous section (Section 5.2),DTFs can be treated as
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DDRFs (< drxT=x=� >) when developing a march element, and DDRFs

can be detected by march elementM5 or M10. As a result, all SDs withDTFs,DUFs orDDRFs can be detected by march operationM5 orM10.� ALL CFdtfs andCFtdtfs are detected. Based on the simplification rule (c)

of the previous section (Section 5.2), SDs with fault behavior< x; dry=y=� > also have< drx; dry=y=� >. Due to simplification rule (d), SDs

with CFdtfs can be detected by test operation forCFtdtf (< drxT ; dryT=y=� >). So,< drx; dryT=y=� > can be used to represent all fault behaviors

of bothCFdtfs andCFtdtfs. As mentioned in Chapter 4, we assumed that

all SDs can only exist either within a cell or between twoadjacentcells. The

march operationsM2, M7, M11 andM14 can generate all required patterns

to detect (observe) allCFdtfs andCFtdtfs byM5, M10, M13 andM16.� All CFwdtfs (< wx; dry=y=� >) are not required to be detected. From the

simplification rule (a) of the previous section (Section 5.2), we can see thatCFwdtf faults always co-exist withCFst faults together. Thus, a SD withCFwdtf fault behavior can be detected by the test operation which detects

the correspondingCFst.� All faults in data caches and instruction caches are detected. As mentioned

before,CFwdtfs (< wx; dry=y=� >), some ofCFdtfs (< x; dry=y=� >),

and some ofCFtdtfs (< x; dryT=y=� >) are the difference between the

fault behaviors of data caches and instruction caches. Fortunately, base on

simplification rule (d), SDs withCFwdtf are detected; based on simplifica-

tion rule (c), allCFdtfs andCFtdtfs can be detected by< drx; dryT=y=� >.
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In conclusion, March DWOM can detect all the faults in data caches and in-

struction caches.

5.4 Buit-in Self Repair

It is found that, for some defects, the cell manifests itselfonly under the drowsy

mode. For example, in the resistance regions IV, and V of the BC3 defect in Table

4.1, the cell works properly under normal mode, but its valueis inversed when it

is placed into drowsy mode. Instead of discarding a chip whena fault is detected,

we can still use it if it is only a drowsy-mode defect.

The basic idea is that during thetestingmode, adrowsy mask[i] register

bit will be set to ’0’ if cache linei only manifests itself in drowsy mode. This

can be done in march elementsM5, M10, M13 andM16 in Table 5.1. During the

working mode of the cache, the FSM checksdrowsy mask[i] when issuing

the drowsy control signal to cache linei. This can be done by an AND gate, and

the BISR architecture is shown in Fig. 5.2.

The BISR differs for data caches and instruction caches. Fordata caches,

the drowsy control circuit has a register bit (i.e.,drowsy mask[i]) for each

cache line. Instruction caches are divided into several sub-banks to implement the

drowsy control. Each sub-bank needs only onedrowsysignal. To utilize the BISR

feature, each cache line within a subbank is also connected to adrowsy mask[i]

register as shown in Fig. 5.2. Hence, a subbank can still be placed into drowsy

mode even when a cache-line within this subbank fails in drowsy mode. When the

subbank is placed into drowsy mode, all it cache lines are in drowsy mode except
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Figure 5.2: BISR solution of drowsy cache

the faulty one. As a conclusion, this BISR works well for bothdata caches and

instruction caches.
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Chapter 6

Conclusions and Future Work

In this research, we implemented a full-functional drowsy SRAM cache with pe-

ripheral circuits like address decoder, sense amplifier, etc. Since the sub-threahold

leakage power decreases significantly with the decreasing supply voltage, we de-

rived the minimum stand-by voltage which can still retain the state of each cell.

Based on the assumption that spot-defects (SDs) can only exist either within a

cell or between two adjacent cells in the same row/column/diagonal, we simulate

all possible SDs with different resistance region (from 0 to1) in standard mode

and drowsy mode separately. Six new faults (DTF, DUF, DDRF,CFdtf , CFwdtf ,

andCFtdtf ) appear with the introduction of drowsy operations.Drowsy coupling

write destructive fault(CFwdtf ) can only exist in data caches, since data caches

and instruction caches tend to have different architectures and scheduling strate-

gies. However, during the simplification process of all fault behaviors, we found

thatCFwdtf always comes withCFst in all cases. As a result,CFwdtf can be

negligible, and hence the test algorithm we derived can detect SDs in both data
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caches and instruction caches. A data-background based march algorithm March

DWOM has been developed. A voltage window detector circuit is used to detect

faults with undefined state. With the benefit of the detectionof undefined state,

March DWOM can detect all SDs in the drowsy cache we implemented, and thus

it has 100% fault coverage.

Traditionally, march test for word-oriented memories can be derived from

march test for bit-oriented memories, where a different data background is used

in each iteration [35]. Because of this, March DWOM is based on the bit-oriented

march test of [2] in this research. However, this method is not efficient and time

consuming. The work of [35] already presented a method to reduce the number

of iterations and number of background data. In the future, we will work on the

simplification of March DWOM to reduce the testing time.
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Appendix A

C++ code

/*
* tbt.cpp -- 2x2 SRAM cell spice file (tbt.mag) generator
*
* by: Wei Pei
* wei.pei@gmail.com
* Last modified: 06/03/2005
*/

/*
* Input file format (I,W,C,R,D,E)
* Idle, Write, Charge, Read, Drowsy,End
* ------------------------------------
* I
* W 0 0 1
* I
* R 1
* I
* D 0 -1
* I /------------------------------------------
* W 1 0 0 / When some cachelines in drowsy mode,
* I / others can be accessed within drowsy time
* R 0 /
* I /------------------------------------------
* C 0 -1
* I
* E
* ------------------------------------
* $>: tbt < input.ptn >> output.sp
*
*/

#include <iostream>
#include <string>

#define HI 1.8
#define LO 0.36

#define U "n"
#define D_TIME 75
#define RW_TIME 5 // read/write time
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#define STEP 0.5
#define C_TIME 2
#define I_TIME 5
#define DA_TIME 10 // data access time
#define RW_DELAY 2

using namespace std;

void op_print( char opr, float val, int counter, int i, float &time, float &t_tag )
{
if( i==0 ) {
cout << "0" << U << " " << val << ’ ’;
}
else {
if( opr!=’D’ ) {
cout << time+STEP << U << " " << val << ’ ’;
}
}

if( (opr == ’W’) || (opr == ’R’) ) {
cout << time+RW_TIME << U << ’ ’ << val << ’ ’;
cout << time+RW_TIME+STEP << U << " 0 ";
time += DA_TIME;
cout << time << U << " 0";
}
else {
if( opr == ’D’ ) {
t_tag = time + D_TIME;
}
else if( opr == ’C’ ) {
// finish drowsy phase
cout << t_tag << U << " 0 ";
time = t_tag+C_TIME;
cout << t_tag+STEP << U << ’ ’ << val << ’ ’;
t_tag = 0;
}
else if( opr == ’I’ )
time += I_TIME;

if( opr!=’D’ ) {
cout << time << U << " " << val;
}
}

if( (i+1) % 6 == 0 ) cout << " \n+";
else if( opr!=’D’ ) cout << ’ ’ ;
}

void data_print( char opr, float val, int counter, int i, float &time, float &t_tag )
{
if( i==0 ) {
cout << "0" << U << " " << val << ’ ’;
}
else {
if( opr!=’D’ ) {
cout << time+STEP << U << " " << val << ’ ’;
}
}
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if( (opr == ’W’) || (opr == ’R’) )
time += DA_TIME;
else if( opr == ’D’ )
t_tag = time+D_TIME;
else if( opr == ’C’ ) {
cout << t_tag << U << " 0 ";
cout << t_tag+STEP << U << ’ ’ << val << ’ ’;
time = t_tag+C_TIME;
t_tag = 0;
}
else if( opr == ’I’ )
time += I_TIME;

if( opr!=’D’ ) {
cout << time << U << " " << val;
}

if( (i+1) % 6 == 0 ) cout << " \n+";
else if( opr!=’D’ ) cout << ’ ’ ;
}

void vd_print( char opr, float val, int counter, int i, float &time, float &t_tag )
{
if( i==0 ) {
cout << "0" << U << " " << val << ’ ’;
}
else {
if( t_tag==0 ) {
cout << time+STEP << U << " " << val << ’ ’;
}
}

if( (opr == ’W’) || (opr == ’R’) )
time += DA_TIME;
else if( opr == ’D’ ) {
t_tag = time+D_TIME;
cout << t_tag << U << ’ ’ << val;
}
else if( opr == ’C’ ) {
cout << t_tag+STEP << U << ’ ’ << val << ’ ’;
time = t_tag+C_TIME;
t_tag = 0;
}
else if( opr == ’I’ )
time += I_TIME;

if( t_tag==0 ) {
cout << time << U << " " << val;
}

if( (i+1) % 6 == 0 ) cout << "\n+";
else cout << ’ ’ ;
}

int main()
{
string ro, In0, In1, Vd0, Vd1, s_opr;
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float t_time = 0;
char c_tmp;
int i_tmp,counter=0;
int i;
int j;
int v[2];
float f_tmp = 0;
char c_bf;
float t_tag = 0;

cin >> c_tmp;
while( c_tmp != ’E’ )
{
s_opr.append( &c_tmp );
counter++;
/* addr val0 val1
* W(rite) 0/1 0/1 0/1
* R(ead) 0/1
* D(rowsy) 0 1 -1
* C(harge) 0 1 -1
* I(dle)
* E(nd)
*/

if( c_tmp == ’W’ ) // w 0 0/1 0/1
{
cin >> i_tmp;
ro.append( (i_tmp==0) ? "0" : "1" );
cin >> i_tmp;
In0.append( (i_tmp==0) ? "0" : "1" );
cin >> i_tmp;
In1.append( (i_tmp==0) ? "0" : "1" );
}
else if( c_tmp == ’R’ ) // R 0
{
cin >> i_tmp;
ro.append( (i_tmp==0) ? "0" : "1" );
}
else if( c_tmp == ’D’ ) // D 0 1 -1
{
for( i=0; i<2; i++ ) {
v[i] = 1;
}

cin >> i_tmp;
while( i_tmp != -1 )
{
v[ i_tmp ] = 0;
cin >> i_tmp;
}

Vd0.append( ( v[0] == 0 ) ? "0" : "1" );
Vd1.append( ( v[1] == 0 ) ? "0" : "1" );
}
else if( c_tmp == ’C’ ) // C 0 1 -1
{
cin >> i_tmp;
while( i_tmp != -1 )
{
v[ i_tmp ] = 1;
cin >> i_tmp;
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}

Vd0.append( ( v[0] == 0 ) ? "0" : "1" );
Vd1.append( ( v[1] == 0 ) ? "0" : "1" );
}
cin >> c_tmp;
}

/* pre */
cout << "\n.include ../spice_para.def" << endl;
cout << "VDD Vdd Gnd " << HI << endl;

/* print out Write*/
cout << "\n* Write Signal" << endl;
cout << "VWrite W Gnd PWL(";
t_time = 0;
t_tag = 0;
for( i=0; i<counter; i++ ) {
c_tmp = s_opr.at(i);
i_tmp = ( c_tmp == ’W’) ? 1 : 0 ;
op_print( c_tmp, i_tmp*HI, counter, i, t_time, t_tag );
if( i==(counter-1) ) {
cout << " TD=" << RW_DELAY << U << ")" << endl;
}
}

/* Read */
cout << "\n* Read Signal" << endl;
cout << "VRead R Gnd PWL(";
t_time = 0;
t_tag = 0;
for( i=0; i<counter; i++ ) {
c_tmp = s_opr.at(i);
i_tmp = ( c_tmp == ’R’) ? 1 : 0 ;
op_print( c_tmp, i_tmp*HI, counter, i, t_time, t_tag );
if( i==(counter-1) ) {
cout << " TD=" << RW_DELAY << U << ")" << endl;
}
}

/* In0 */
cout << "\n* In0" << endl;
cout << "VIn0 In0 Gnd PWL(" ;
t_time = 0;
t_tag = 0;
j = 0;
for( i=0; i<counter; i++ )
{
i_tmp = 0;
c_tmp = s_opr.at(i);
if( c_tmp == ’W’ )
{
if( In0.at(j) == ’1’ ) i_tmp = 1;
j++;
}
data_print( c_tmp, i_tmp*HI, counter, i, t_time, t_tag );
if( i==(counter-1) ) {
cout << ’)’ << endl;
}
}
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/* In1 */
cout << "\n* In1" << endl;
cout << "VIn1 In1 Gnd PWL(" ;
t_time = 0;
t_tag = 0;
j = 0;
for( i=0; i<counter; i++ )
{
i_tmp = 0;
c_tmp = s_opr.at(i);
if( c_tmp == ’W’ )
{
if( In1.at(j) == ’1’ ) i_tmp = 1;
j++;
}
data_print( c_tmp, i_tmp*HI, counter, i, t_time, t_tag );
if( i==(counter-1) ) {
cout << ’)’ << endl;
}
}

/* row */
cout << "\n* row" << endl;
cout << "Vro ro Gnd PWL(" ;
t_time = 0;
t_tag = 0;
j = 0;
for( i=0; i<counter; i++ )
{
i_tmp = 0;
c_tmp = s_opr.at(i);
if( (c_tmp == ’W’) || (c_tmp == ’R’) )
{
if( ro.at(j) == ’1’ ) i_tmp = 1;
j++;
}
data_print( c_tmp, i_tmp*HI, counter, i, t_time, t_tag );
if( i==(counter-1) ) {
cout << ’)’ << endl;
}
}

/* Vd0 */
cout << "\n* Vd0" << endl;
cout << "Vvd0 Vd0 Gnd PWL(" ;
t_time = 0;
t_tag = 0;
j = 0;
c_bf = ’N’;
for( i=0; i<counter; i++)
{
c_tmp = s_opr.at(i);
f_tmp = HI;
if( (c_tmp == ’D’) || (c_tmp == ’C’) )
{
if(Vd0.at(j) == ’0’) f_tmp = LO;
j++;
}
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vd_print( c_tmp, f_tmp, counter, i, t_time, t_tag );
c_bf = c_tmp;
if( i==(counter-1) ) {
cout << ’)’ << endl;
}
}

/* Vd1 */
cout << "\n* Vd1" << endl;
cout << "Vvd1 Vd1 Gnd PWL(" ;
t_time = 0;
t_tag = 0;
j = 0;
c_bf = ’N’;
for( i=0; i<counter; i++)
{
c_tmp = s_opr.at(i);
f_tmp = HI;
if( (c_tmp == ’D’) || (c_tmp == ’C’) )
{
if(Vd1.at(j) == ’0’) f_tmp = LO;
j++;
}
vd_print( c_tmp, f_tmp, counter, i, t_time, t_tag );
c_bf = c_tmp;
if( i==(counter-1) ) {
cout << ’)’ << endl;
}
}

cout << "\n.option post" << endl;
cout << ".tran 1" << U << ’ ’ << t_time << U << endl;
cout << ".end" << endl;

return(0);
}
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