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Optimality Study of Logic Synthesis
for LUT-Based FPGAs

Jason Cong and Kirill Minkovich

Abstract—TField-programmable gate-array (FPGA) logic syn-
thesis and technology mapping have been studied extensively over
the past 15 years. However, progress within the last few years
has slowed considerably (with some notable exceptions). It seems
natural to then question whether the current logic-synthesis and
technology-mapping algorithms for FPGA designs are produc-
ing near-optimal solutions. Although there are many empirical
studies that compare different FPGA synthesis/mapping algo-
rithms, little is known about how far these algorithms are from
the optimal (recall that both logic-optimization and technology-
mapping problems are NP-hard, if we consider area optimization
in addition to delay/depth optimization). In this paper, we present
a novel method for constructing arbitrarily large circuits that
have known optimal solutions after technology mapping. Using
these circuits and their derivatives (called Logic synthesis Exam-
ples with Known Optimal (LEKQO) and Logic synthesis Exam-
ples with Known Upper bounds (LEKU), respectively), we show
that although leading FPGA technology-mapping algorithms can
produce close to optimal solutions, the results from the entire
logic-synthesis flow (logic optimization + mapping) are far from
optimal. The LEKU circuits were constructed to show where the
logic synthesis flow can be improved, while the LEKO circuits
specifically deal with the performance of the technology map-
ping. The best industrial and academic FPGA synthesis flows
are around 70 times larger in terms of area on average and, in
some cases, as much as 500 times larger on LEKU examples.
These results clearly indicate that there is much room for further
research and improvement in FPGA synthesis.

Index Terms—Circuit optimization, circuit synthesis, design
automation, field-programmable gate arrays (FPGAs), optimiza-
tion methods.

I. INTRODUCTION

IELD-PROGRAMMABLE gate arrays (FPGAs) have

been gaining momentum as an alternative to application-
specific integrated circuits (ASICs). FPGAs consist of program-
mable logic, input-output (I/O), and routing elements, which
can be programmed and reprogrammed in the field to customize
an FPGA, enabling it to implement a given application in a
matter of seconds or milliseconds. The most common type
of programmable-logic element used in an FPGA is called a
K-LUT, which is a K-input one-output lookup table (LUT),
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Fig. 1. Possible area-minimal mapping solutions. (a) Original circuit.
(b) Mapping solution without logic optimization. (c) Mapping solution with
logic optimization.

capable of implementing any K-input one-output Boolean
function.

Given a register transfer level (RTL) design, the typical
FPGA synthesis process consists of RTL elaboration, logic syn-
thesis, and the physical design (layout synthesis) [11]. In this
paper, we will focus on logic synthesis, which can be broken
down into two main steps: logic optimization and technology
mapping. Logic optimization transforms the current gate-level
network into an equivalent gate-level network more suitable for
technology mapping. Technology mapping transforms the gate-
level network into a network of programmable cells (in our
case, these cells are LUTs) by covering the network with these
cells. Several algorithms perform logic optimization during
technology mapping. As an example, Fig. 1 shows the differ-
ence between mapping algorithms that use logic optimization
and those that do not. By examining the logic function of f, we
can see that it just takes the logical AND of all its inputs; thus, by
manipulating the circuit, we can reduce the mapping solution
by one 4-LUT. Since the size of the circuit will be directly
proportional to the price of an FPGA that can implement
it, the logic-synthesis step will play an integral role in the
design flow.

As FPGA technology gained popularity throughout the
1990s, a large amount of work was published that dealt with
logic synthesis and/or technology mapping of FPGAs, includ-
ing Chortle-crf [20], XMap [24], TechMap [31], DAG-map [9],

0278-0070/$25.00 © 2007 IEEE
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FlowMap [13], Zmap [16], Cutmap [12], BoolMap [27], and
many others. More comprehensive surveys of FPGA synthe-
sis and mapping algorithms are available from [8] and [11].
These mapping algorithms employ many different techniques
to achieve their solutions, including dynamic programming, bin
packing, BDD-based logic simplification, and cut enumeration,
just to name a few. Some of these algorithms focused on delay
minimization [14], [20], [24], [29], [31], [35], while others
focused on area minimization possible under delay or depth
constraints [9], [10], [12], [13], [16], [27], [31], [36]. All of
these algorithms were developed over a ten-year period in the
1990s but, after this influx, the amount of new published work
began to decrease steadily with only a few novel algorithms
emerging in the past few years—such as IMAP [3], Hermes
[19], DAOmap [7], and the ABC mapper [1], [38]. To many
people, this signaled that FPGA synthesis algorithms had prob-
ably hit a plateau. It is natural to then question whether the
current logic-synthesis and technology-mapping algorithms for
FPGA designs are producing near-optimal solutions. Although
there are many empirical studies that compare different FPGA
synthesis/mapping algorithms, little is known about how far
these algorithms are from the optimal (recall that both logic-
optimization and technology-mapping problems are NP-hard
if we consider area optimization in addition to delay/depth
optimization).

In fact, a similar question was raised a few years ago when
placement research slowed down. However, using a set of
cleverly constructed examples, called placement examples with
known optimal (PEKO), the study in [6] showed surprising re-
sults: Wirelengths produced by state-of-the-art placement tools
at that time were 1.66-2.53 times the optimal solutions in the
worst cases. These results generated a renewed interest in place-
ment research; within two to three years, a large body of papers
was published on placement optimality studies (e.g., [15], [17],
[18], and [23]), as well as novel placement algorithms (e.g.,
[4]1, [5], [22], [30], and [34]). Within three years, the optimality
gap on the PEKO examples was reduced to roughly 20% on
average [4]. The actual improvement on the IBM (ISPD04)
benchmarks was 24% by the mPL placer [33]. This leads one
to believe that the improvement on the artificially constructed
PEKO examples correlates to some extent the improvement
on the “real” (more realistic) examples. This might be due to
the fact that a small suboptimality of an algorithm on the real
benchmarks often gets magnified into a significant optimality
gap on the PEKO benchmarks.

Unfortunately, there is no simple way to extend the ideas
of testing placement optimality to logic synthesis because of
the inherent differences in the two problems. Therefore, little
progress has been made on testing the optimality of logic-
synthesis algorithms. The research in [28] presented a method
that could only create very small structureless test cases, and
they were used to test very primitive mappers. Another method,
described in [2], used a SAT solver as an exact logic-synthesis
tool for LUT-based FPGAs to determine how much more the
circuit area could be reduced by postprocessing the mapping
solutions produced by existing mappers. But, the results sug-
gested that current mappers could not be easily improved. This
is largely due to the highly localized search algorithm used in

this approach (SAT-based optimal logic optimization is applied
to logic cones of up to ten inputs).

In this paper, we present a novel method for constructing
arbitrarily large circuits that have known optimal solutions after
technology mapping, or known upper bound solutions after
logic optimization and technology mapping for LUT-based
FPGAs. Using these circuits [called Logic synthesis Examples
with Known Optimal (LEKO) and Logic synthesis Examples
with Known Upper bounds (LEKU)], we show that although
leading FPGA technology-mapping algorithms can produce
close to optimal solutions, the results from the entire logic-
synthesis flow (logic optimization + mapping) are far from op-
timal. The best industrial and academic FPGA synthesis flows
are around 70 times larger in terms of area on average and, in
some cases, as much as 500 times larger on LEKU examples.
These results clearly indicate that there is much room for further
research and improvement in FPGA synthesis.

II. CONSTRUCTION OF BENCHMARKS
A. Construction of LEKO Examples

We present an algorithm for constructing a network G,, (with
n inputs and outputs) of an arbitrarily large size that has a
known optimal technology mapping solution. Gy, is constructed
in a special way by replicating a small circuit with a known
optimal mapping solution into a circuit of any size that also has
a known optimal mapping solution. These circuits are called
LEKO examples. The building block of our construction is a
“core graph” named C,,, with the following properties.

1) It has n inputs and n outputs.

2) Every output is a function of all n inputs.

3) Each internal node of C, has exactly two inputs.

4) There exists an optimal (in terms of area/depth) mapping
of C, into a 4-LUT mapping solution, denoted as M,,
such that M,, only has 4-LUTs (no 3-LUTs or 2-LUTs).
For the Cy shown in Fig. 2, M5 has exactly seven 4-LUTs.

This general method can be used to create core graphs
of arbitrary size, although in this paper, we will only present
how Cs and Cg are constructed. These core graphs target the
4-LUT architecture, because it is the simplest of those currently
in use. But, the ideas behind our construction can be extended to
Altera’s Adaptive Logic Module or any sized LUT architecture
by only adapting the fourth property to reflect an optimal
mapping in that architecture.

The specific C5 we used to construct our LEKO and LEKU
benchmarks is shown in Fig. 2, and the optimality of its tech-
nology mapping solution is stated in Theorem la and verified
in its proof. The core graph Cg was made similarly to Cs
by following the four properties and slowly modifying the
structure until it was hard for the structural-based mappers to
map [ABC and DAOmap]; then, the logic was modified to make
it difficult for the logic-synthesis tools, like ISE and Quartus,
to map. The optimality of Cg’s depth is extracted from the
DAOmap result, and the optimality of the ten 4-LUTs needed
to map it is proven in Theorem 1b.

Theorem la: Cy has an area-optimal technology mapping
solution of seven 4-LUTs.
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Fig. 2. Example of Cs.

Proof: This is proved using the binate-cover technique,
which is able to compute the minimum-area technology map-
ping solution. In particular, we use the binate-covering solver in
SIS [32] using the command “x1_cover - h 0.” The binate solver
in our case returned a seven 4-LUT solution. The reason that
this method cannot be used to prove the optimality of the larger
LEKO circuits is because this tool is computationally infeasible
for returning an optimal binate-covering solution for any graph
with more than 100 logic gates. ]

Theorem 1b: Cg has an area-optimal technology mapping
solution of ten 4-LUTs.

Proof: This can also be proved using the binate cover
provided in SIS. But for testing any core graphs with more
than six inputs, the binate-cover algorithm would have to be
implemented using a current SAT solver. ]

Q Internal Node
O

Input Node

Node Values

0O1=N1-N10
02=N13-N14
03=N12+N17

04 =N13-N16
05=N9+N11
N1=11-12"+12
N2=N1-13"+N1"- 13
N3 =N1'-N7'

N4 =N1 + N6

N5 = N3' + N4'

N6 =12' + 15

N7 =N1-N6
N8=13-14'+13"- 14
N9 = N8 - N2
N10=N9-I15'+N9'- 15
N11=15-N5
N12=N18- 15
N13=11+11"-12
N14 =N15+12
N15=N17-15
N16=N17-15+N17"- |5’
N17=N20 - N19
N18 = N23' + N24'
N19=N13+N13"-13
N20 =13 + 14
N21=12"'+15'

N22 =N13 - N21

N23 =N13'- N22'
N24 = N13 + N21

Using this newly created C,, a LEKO circuit G is created
by stacking up C,s in such a way that from the outputs of G,
there is only one way to traverse C,, to get to the inputs. The
exact algorithm is presented in Fig. 3, where createLEKO (L)
creates a LEKO example with L - n%~! Cys in L layers. In the
algorithm, the | (union) operator does not disturb the order of
the inputs or outputs. For example, when looking at the A | J B,
we can think of the inputs and outputs as an array of nodes.
Then, the index of every input node from A appears before any
input node from B in A | J B; likewise, the property holds for the
output nodes. The Copy operator creates a copy of the network
renaming all the nodes, createEdge(x, y) just creates an edge
from x to y, and GO"*PU[j] is the i*® output of G (Fig. 3).

Logically, the createLEKO algorithm works as follows. It
builds up the graph using layer upon layer of C,s in order to
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algorithm create LEKO (L)
input: the number of layers L, output: network G

nT-W

G= U copy(C,):
fori=23,....Ldo

currLayer = nU copy(C,);
forj=0.1.....n"2 do
createEdge( G [(n - j) mod (n"-1)] ].
currLayer™"[j]);
end-for
createEdge( G [n"-11,
currLayer™[n"-1]);
G=G U currLayer;
end-for
output G;

Fig. 3. createLEKO algorithm.

4-LUT

layer i+1

layer i

Fig. 4. LUT spanning two layers.

get a LEKO example of L layers. It first creates the bottom
layer of n¥=1 C,s, then for each additional layer, it makes
n"~! copies of C,, and proceeds to connect the outputs of graph
G to the inputs of the newly created layer. It spreads out the
connections in such a way that for an arbitrary C,, at the top
layer, there exists a path to it from every C,, at the bottom layer
(i.e., every C, at the top level is connected to every C,, at the
bottom level). Thus, using this algorithm and any number m,
one can create a LEKO circuit having more than m nodes and a
known optimal technology mapping solution whose optimality
is proved in Theorem 2. By using this method, we were able to
construct Gos (Fig. 5) by calling createLEKO with two layers
and a Cy. Gsg (Fig. 6) was constructed the same way but used

Fig. 5. LEKO(Gg25).

Fig. 6. LEKO(G3e).

Cg instead of Cs. We similarly constructed G125 (Fig. 7) with
three layers, and we constructed Ggas with four layers.

Theorem 2: The optimal mapping solution of an arbitrarily
sized LEKO circuit without logic optimization is achieved
when every C, in the circuit is mapped optimally without
overlapping any other C,,.

Proof: Now that we have the ability to construct arbitrar-
ily sized LEKO circuits, we can show that this construction
creates a circuit G with a known optimal binate cover, which
we proved in Theorem 1. Assuming we have an arbitrary LEKO
circuit G with L layers, we prove Theorem 2 by induction over
the layers of G. Claim 1 will be used in almost all of the
other claims as it proves that there are no reconverging paths
of Cys. Claims 2 and 3 will help prove the base case, while
Claim 4, working with Claims 2 and 3, helps prove the induc-
tive step. ]

Claim 1: Treelike structure of C,s (no reconverging paths
of Cps).

Given an arbitrary C,,, X, on the top layer and a LEKO G,
starting at any C,, at the bottom layer, there is only one way to
traverse the C,s to get to x.

Proof: Assume we start at an arbitrary C,,, call it x, on the
top layer. From the construction it should be obvious that a path
exists from any C,, at the bottom layer to x (i.e., X is connected
to every C, on the bottom layer). Now, let us consider the
maximum number of C,s we are connected to after one layer,
which is n (since x has n inputs). Similarly, after two layers
the maximum number of C,s that are connected to x is n?
(since x has n inputs and the nC,s that feed x’s inputs also
have n inputs), and the maximum number of Cys that can reach
x at layer L (after L-1 layers) is 1. Now, if there were any
reconverging paths connecting x to the rest of the Cys, there
would be strictly less than n~! Cys at the bottom layer that
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D@D @@ @@ -

Fig. 7. Partial view of LEKO(G125).

can reach x. By construction, it should be obvious that every
C, at the bottom layer can reach X, therefore, there are no
reconverging paths. |

Claim 2: Mapping upward (layer 1).

Mapping the nodes in C,, at layer i so that the resulting LUT
takes nodes from layer i and i + 1 (i.e., mapping upward across
a layer) requires one more LUT than mapping within the layers.

Proof: Assuming that the inputs to C,, on layer i are
already LUTs, we know that the optimal mapping of each
C, has everything packed as tightly as possible (it only uses
4-LUTs), so in order to extend into layer i+ 1, one of the
LUTs (in the optimal mapping of a C,) has to split into two
separate LUTs, thereby creating one additional LUT. This is
because every output of a particular Cy, in layer i will never be
combined with another output from that C,, in any layer above i
(Claim 1). ]

Claim 3: Mapping upward (layer i + 1).

Any extensions of LUTs from layer i into layer i + 1 will
not result in layer i + 1 being mapped with fewer LUTs than
mapping within the layers.

Proof: Assume that the number of LUTs to map a C,,
optimally is N, and the LUT that spans layer i and layeri + 1 is
called x. Since LUT x is partially in layer i and partially in layer
i+ 1, the LUT has at most three inputs in layer i + 1. Since this
LUT in layer i + 1 has only three inputs to choose from, and
we know the optimal mapping for C,, in layer i + 1 is strictly
made up of LUTSs with exactly four inputs. This will result, in
the best case, in a mapping for the C, in layer i + 1 with NV
LUTs plus one spanning the two layers. Another way to look at
this is to consider the question: Can you map the C,, on layer
i+ lusing N — 14-LUTs and one 3-LUT? Consider Fig. 4 for
a pictorial representation of the question proposed. The answer
to this question is clearly no because of the optimality of the N
LUTs needed to map C,,. |

Claim 4: Mapping downward (layer i).

Any extensions of LUTs from layer i into layer i — 1 will not
result in layer i being mapped with fewer LUTs.

Proof: Assume that the inputs to C,, at layer i are already
LUTs. We know that in the optimal mapping of each C,
everything is already packed as tightly as possible (it only uses
4-LUTs), so extending into layer i — 1 will not be possible
unless there are reconverging paths at some layer below i.

However, this is impossible. Due to the tree structure of G,
every input into every C,, at layer i will never meet again; this
was proven in Claim 1. |

Proof of Theorem 2: Let G be an arbitrary LEKO circuit
with L layers constructed using the previous construction.

Let us define a property that we will use in the proof.

Property P(n): Let P(n) mean that the optimal mapping
for all nodes up to layer n is the optimal mapping of each C,,
separately.

It is then enough to show that P(1) is true, and if P(m — 1) =
P(m), where 2 < m < L (which will show by induction that
the optimal mapping of our arbitrary G is just the optimal
mapping of each C,, separately). |

Base Case: P(1) is true.

Proof: Before we begin the proof, this is what “all nodes
up to layer 17 looks like:

QORMOIE),

Now, that we have an understanding of what this looks like,
let us consider all the possible ways to map all nodes up to
layer 1.

(a total of nh Cps)

Case 1) Mapping exactly all the nodes of layer 1 and not
mapping any nodes of layer 2.

Since there is no overlap between the Cys (thus
trying to pack nodes from different C,s into one
LUT cannot possibly reduce the area) and we know
the optimal mapping of C,,, the optimal mapping of
this layer will result in mapping each C,, separately.
Mapping exactly all the nodes of layer 1 and possi-
bly mapping some nodes of layer 2.

Now, we have to consider the case where the
optimally mapped 4-LUT solution for layer 1 maps
some nodes in layer 2. But from Claim 2 (its as-
sumption holds since we are at the lowest layer
and all the inputs are primary inputs) and Claim 3,
we see that it will not help mapping if LUTSs span
across layer 1 and into layer 2; thus, Case 2) cannot
happen and Case 1) must happen. From Case 1), we
can see that P(1) must hold; thus, the base case is
proved. ]

Case 2)
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Inductive Step: P(m — 1) = P(m).

Proof: Recall that P(m) is saying that the optimal mapping
for all nodes up to layer m is the optimal mapping of each
C,, separately. Since P(m — 1) is assumed, we know that the
optimal mapping for all nodes up to layer m — 1 is the optimal
mapping of each C,, separately. Now, all we need to know to
prove P(m) is that any LUTSs spanning two separate layers will
not result in a better mapping solution (Claim 4). With Claim 2,
which uses the inductive hypothesis P(m — 1) to uphold the
assumption that all the inputs to layer m are already LUTs, and
Claim 3, we know that the mapping of nodes up to layer m will
not intrude on layer m + 1. Moreover with Claim 4, we know
that the mapping will not create LUTs that intrude into any layer
below m. Thus, the optimal mapping for layer m is to map each
C, separately, and the inductive step is proven. Therefore, by
induction, the optimal mapping of G is that which maps every
C,, optimally and separately. |

B. Construction of LEKU Examples

A LEKU example LEKU(G) is derived from the LEKO ex-
ample G after collapsing and gate decomposition of G. Clearly,
the optimal optimization + technology mapping solution of
G provides an upper bound on the area of the corresponding
LEKU(G) example due to the functional equivalence of G and
LEKU(G). In this paper, we focus on constructing LEKU(G5),
which may already result in over 1 million gates after collapsing
and decomposition. It is not reasonable to require the existing
FPGA synthesis tools to handle larger examples beyond such
sizes.

In fact, after collapsing of Gos, we tried different decom-
position algorithms. LEKU-CD(Gg5) was constructed by first
collapsing LEKO(Ggs) into a two-level network, then decom-
posing the result into an equivalent two-bounded simple-gate
network (using SIS [32] commands collapse and tech_decomp);
LEKU-CB(G) was constructed by first collapsing the network,
then balancing was done using the collapse and balance com-
mands of the ABC system [38]. From the circuit-size profile
shown in Table II, one can see that ABC’s internal canonical
AND-INV representation leads to the removal of a large number
of functionally equivalent gates.

Since Xilinx’s mapper could not accept a circuit as large as
LEKU-CD(Gss), we broke LEKU-CD(Go5) up into a collec-
tion of nonoverlapping circuits; one circuit for each primary
output. The resulting collection of circuits is clearly equivalent
to LEKU-CD(Gg5) and denoted as LEKU-CD(Gas).

C. LEKO and LEKU Properties

The LEKO circuit can exhibit a multitude of properties based
on which core graph is used to construct it. In this paper, we
constructed our core graph Cjs to be as hard as possible for the
industrial tools (Quartus and ISE) to map, while C¢ was made
with special properties that made it difficult for the academic
tools (ABC and DAOMap) to map. Both of these core graphs
were constructed by hand to show that the heuristics used in all
of these tools can be easily subverted.

It is interesting to note that core graphs can be constructed
from pre-existing benchmarks or complex logic blocks like

adders, multipliers, and shifters. To construct a core graph
from a pre-existing benchmark, all one has to do is extract a
piece of logic that has an equal number of input and output
and is hopefully hard to map. The problem is that it can be
quite difficult to trick the tools into performing the wrong thing
with a simple circuit. For example, every mapper managed to
optimally map, in terms of depth and area, an 8-bit adder and
an 8 x 8 multiplier.

Since these circuits were constructed by hand, it is inter-
esting to see how similar they are to existing benchmarks.
We will show this by comparing the LEKO and LEKU to
Microelectronics Center of North Carolina (MCNC) bench-
marks in terms of their Rent’s exponent, I/O to node count,
and maximum fanout free cone (MFFC) size. The MCNC
benchmarks were processed through standard simplification
scripts including decomposition into two input gates (for a fair
comparison to the LEKO and LEKU circuits) but remained
unmapped. Rent’s rule [26] shows the relationship between the
number of external I/O connections to a logic block and the
number of logic gates in the logic block. It is estimated to be
the slope of the regression line comparing the size versus
number of I/O on the log—log scale. Higher Rent’s exponent
values correspond to a higher topological complexity, with a
Rent’s exponent value of zero corresponding to a simple logic
chain and a value of one corresponding to a clique. In this paper,
we estimate Rent’s exponent using a top—down partitioning
with hMetis [25] similar to the method described in [37]. The
Rent’s exponents of the MCNC benchmarks in Table I(b) range
from 0.51 to 0.87 with an average of 0.74. When comparing
our LEKO and LEKU circuits to the MCNC benchmarks, we
can see that the range of the Rent’s exponent falls perfectly in
line with the MCNC benchmarks with an average exponent of
0.7. From this view, there is little structural difference between
the two sets of benchmarks.

Another way to examine these circuits is by analyzing their
MFEFC sizes. Using the SIS platform, we were able to calculate
the average MFFC size [Table I(a)] of the MCNC circuits to
be six. Once again, the LEKO and most of the LEKU circuits
match the MCNC benchmarks very well in terms of the average
MFFC sizes. The LEKU-CD(Ggjs) circuit is the exception; it
has an extremely high average MFFC size which makes it
quite different from the MCNC benchmarks but not entirely
unrealistic (a similar MFFC size shows up when examining
an error checking circuit with only one output). But instead of
trying to reflect a real circuit, it can be used as a tool to evaluate
how well your algorithm finds duplication.

III. RESULTS

The results of this paper will be presented in two parts. We
first discuss the LEKO circuits created by create LEKO (Gas,
G125, and Ggos were created by using Cs, and Gsg, Goig,
and Gig9¢ were created using Cg), and we then discuss the
LEKU examples which are functionally equivalent circuits of
LEKU(G25)—LEKU-CD(Gs5), LEKU-CD(Gs5), and LEKU-
CB(Ggs). The details of these circuits are shown in Table II.
Using these examples, we present the results of running state-
of-the-art academic FPGA mappers DAOmap [7], ABC [38],
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TABLE 1
(a) RENT’S EXPONENT AND MFFC ANALYSIS OF THE
MCNC BENCHMARKS. (b) RENT’S EXPONENT AND
MFFC ANALYSIS OF THE LEKO/LEKU EXAMPLES

o ' Average
Circuits Rent's Exponent # MFFC MFEC égize
alud 0.77 272 8
apex2 0.61 2 8
apex4 0.78 462 4
bigkey 0.87 588 5
clma 0.51 2aT 17
des 0.77 634 5
diffeq 0.71 578 4
dsip 0.83 250 10
elliptic 0.84 1253 4
ex1010 0.67 888 5
exSp 0.80 438 3
frisc 0.77 1286 4
misex3 0.72 385 5
pic 0.67 873 4
§298 0.78 230 8
$38417 0.65 2019 4
538584 0.72 1981 4
- 0.75 500 5
apli 0.70 704 6
feeng 0.81 519 3
Average 0.74 731 6
(@)
Circuits R;I:)tr;iftx- #MEFC Mfl\;l/:ccrasg{cze
Gos 0.66 95 -
Gis 0.79 700 3
LEKO S i w2 :
G 0.64 150 5
Gate 0.79 1332 5
G296 0.83 10584 5
CD(Gas) 0.54 25 46682
LEKU |  CB(Gys) 0.58 = .
CB(G30) 0.61 245 3
(b)

and the leading-edge FPGA synthesis systems from Altera [39]
and Xilinx [40] on each of the circuits. DAOmap from the
SIS [32] and RASP [16] environments was used with op-
tions allowing only the use of LUTs with four or less in-
puts (DAOmap—k 4). Berkeley’s ABC mapper [38] was also
used for mapping into 4-LUTs (using the “FPGA” command
which targets 4-LUTs). Note that DAOmap produces a depth-
optimal mapping solution as FlowMap [13] but uses 29% less
LUTs on average as calculated from [7]. ABC mapper also
produces depth-optimal mapping solutions, but uses 7% less
LUTs than DAOmap on average, as reported in [1]. Altera’s
logic-synthesis tool was run from Quartus 5.0 [39] using Stratix

TABLE 1I
LEKO AND LEKU EXAMPLES USED FOR OPTIMALITY STUDY
Circuits Core # Nodes |Depth| #1/0O |# Nodes | Depth
Graph
Optimal Map-
LEKO ;r))ing Resul?
Gas 305 13 50 70 4
Guas Cs 2350 20 | 225 525 6
LEKO Geos 15,875 27 | 1250 | 3,500 8
G3 768 27 72 120 6
G Cs 7,020 41 | 432 | 1,080 9
G296 56,592 55 12392 | 8,640 12
Upper Bound on
LEKU Optimal Synthe-
sis Result
CD(Gys) Ce 1,166,655| 19 50 70 4
LEKU | CB(G,s) 814 16 50 70 4
CB(G3)| Cs 824 14 72 120 6
TABLE III
MAPPING RESULTS ON LEKO EXAMPLES
Circuits DAOmap | ABC |Quartus| ISE |Optimal
Area 83 80 72 80 70
LEKO(Gjs) | Ratio 1.19 1.14 | 1.03 | 1.14| 1.00
Area 650 609 | 561 | 588 | 525
LEKO(Gi35)| Ratio 1.24 1.16 | 1.07 | 1.12| 1.00
Area 4435 | 4072 | 3737 [3974| 3500
LEKO(Ggs)| Ratio 1.27 1.16 | 1.07 | 1.14 | 1.00
Average Ratio (using Cs)|  1.23 1.16 | 1.05 [1.13] 1.00
Area 139 149 [ 121 | 158 | 120
LEKO(G36) | Ratio 1.16 1.24 | 1.01 [1.32] 1.00
Area 1301 1336 | 1082 [ 1078 | 1080
LEKO(Gy16)| Ratio 1.20 1.24 ] 1.00 | 1.00 | 1.00
Area 10695 [10650] 8645 | 8626 | 8640
LEKO(Gi296)| Ratio 1.24 1.23 ] 1.00 | 1.00 | 1.00
Average Ratio (using Ce)|  1.20 1.24 | 1.00 [1.10] 1.00
Average Ratio 1822 1.20 | 1.03 | 1.12 | 1.00

device EP1S80F150817 and the option for area optimization.
Xilinx’s logic-synthesis tool was run from Xilinx ISE 7.1i [40]
using Virtex device xcv3200e and also the option for area
optimization. All the tools were run with the default settings
unless otherwise stated. For this paper, we only performed the
logic-synthesis steps of these tools and did not go through
final placement and routing. The depths of the mapped LEKO
circuits are not reported here for two reasons: Xilinx and Altera
optimize for delay instead of depth, and the final logic element
in the Xilinx device is not a 4-LUT but a slice that combines
two 4-LUTs.

A. Mapping Results on LEKO Examples

This section will illustrate how well mappers perform in
achieving the optimal mapping solution, if they do not have to
carry out logic optimization. We tested this by running each one
of the LEKO circuits on each one of the mappers. As the results
in Table III show, each mapper and logic-synthesis tool does a
fairly good job mapping the benchmarks. The average gap from
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TABLE 1V
LOGIC-SYNTHESIS RESULTS ON LEKU EXAMPLES
Upper
Circuits DAOmap| ABC |Quartus| ISE |Bounds
LEKU- Area | 22,717 [30,511]10,381| * 70
CD(Gys) | Ratio | 325 436 | 148 * 1
LEKU- Area | 25247 |[35,271] 5,005 {9,717 170
CD(G»s)’ | Ratio 361 504 72 139 1
Average LEKU-CD
Ratio 343 470 110 | 139 1
LEKU- Area 322 191 239 | 280 70
CB(G3s) | Ratio 4.6 2.7 34 4.0 1
LEKU- Area 356 339 206 | 290 120
CB(G36) | Ratio 3.0 2.8 1.7 2.4 1
Average LEKU-CB
Ratio 3.8 2.8 2.6 3.2 1
Average Ratio 173 236 56 71 1

(Note: *The Xilinx mapper was not able to accept a circuit of this
size)

optimal varies from 3% (by Quartus) to 22% (by DAOMap),
with an average of 15%. This shows that the current LUT-
based FPGA mappers or synthesis tools perform quite well
on circuits, where logic optimization is not needed to obtain
the optimal solutions. Note that Quartus and ISE perform both
logic optimization and technology mapping, while DAOMap
performs technology mapping only and ABC performs some
logic optimization during mapping which allows the removal of
a large amount of logic. It is interesting to see that by using dif-
ferent core graphs, we can show that DAOmap can outperform
ABC. At first, it would seem that the smaller core graph Cs
produced results further away from the optimal, but this is only
the case for the tools that performed logic optimization. Cg has
a difficult structure for mapping but some of its functionality
can be simplified, since it is very hard to create a Cg that is
difficult for the whole logic-synthesis process.

B. Synthesis Results on LEKU Examples

This section will illustrate how poorly most of the best
available FPGA logic-synthesis flows perform when logic re-
structuring and/or optimizing is needed to achieve the opti-
mal mapping solution. The academic mappers presented in
this section are allowed to use standard preprocessing tools
(script.algebraic for DAOmap and resyn2 for ABC mapper) for
technology-independent logic optimization, since the LEKU
examples require logic restructuring/optimization to achieve the
optimal mapping solutions. From the results in Table IV, when
examining the largest test case, we see that all four synthesis
flows perform poorly and produce synthesis results with area
ranging from 72X to 504X larger than the known upper bounds
(the mapping results of the equivalent LEKO examples), aver-
aging 256X larger. We believe Quartus produced a better solu-
tion on LEKU-CD than LEKU-CD, because it could perform
more optimizations on each one of the circuits of LEKU-CD
due to their smaller size. It is also interesting to note that in
the correlation between the performance of commercial tools
on LEKU-CB(Gsg) and LEKU-CB(Gss), the simpler logical

structure of Cg allowed for more logic optimizations. One of
the main reasons that every one of these algorithms performed
so poorly is because they were not able to reconstruct the
original structure of the circuit. The fact that the same logic-
synthesis flows perform so much worse on the LEKU examples
than the equivalent LEKO examples suggests that the existing
logic-optimization algorithms are not capable of reproducing
the initial circuit structure of the LEKO examples. This suggests
that there may be significant opportunity for improvement in the
existing logic-synthesis algorithms. For example, we believe
that in order for logic-synthesis algorithms to perform well
on the LEKU examples, they must have a more global view
of resynthesis—including duplication removal, logic identifica-
tion, and many other heuristics that examine the circuit globally.
Without such global heuristics, algorithms do not perform well
on LEKU examples and may produce poor results on large real-
world circuits as well.

C. Applications of Results

Regarding the LEKO benchmarks, we feel that the ones we
presented here not only have the known optimal solutions but
also have many structural similarities to the widely used MCNC
examples, based on the MFFC and Rent’s exponent analysis.
The problem with the MCNC benchmarks is that almost every
logic-synthesis tool is specifically tuned to perform well on
these benchmarks. By presenting a set of alternative-design
examples, we hope to better understand where and how these
algorithms differ. Another advantage of the LEKO construction
is that it enables a designer to combine multiple “hard to map
circuit cores” into one design with a known optimal. Knowing
the optimal solution, the designer can see exactly where the
algorithm made the incorrect choice and why.

The LEKU designs, on the other hand, can be used to test
how different logic-synthesis algorithms handle the design with
inefficiency or redundancy. For example, one can take a LEKO
design and start “introducing inefficiency or redundancy,”
which may include duplicate logic or signals that can eventually
be factored away. Using these “flawed” designs, we can test
various logic-synthesis tools to see the degree to which they
handle such design flaws. This type of test is very important,
since popularity of hardware languages enables people with lit-
tle or no hardware background to design hardware. Sometimes
people end up writing Verilog or very-high-speed integrated-
circuit hardware-description language (VHDL) in the same way
they write C, which results in designs with a high degree of
inefficiency or redundancy. The LEKU circuits are meant to test
how the existing logic-synthesis algorithms perform on such
designs and how much room is left for improvement when
handling each type of inefficiency and/or redundancy in the
design.

A good mapper should not only employ a single heuristic
but should be able to combine multiple heuristics so that it can
perform well on different types of benchmarks. We presented
a platform to create new benchmarks that can test every part
of a logic-synthesis tool. For example, to check that all the
heuristics of a logic-synthesis tool are working in harmony, one
only has to create a set of C,s representing difficult circuits and
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use them to create a LEKO circuit. Also, to test the capabilities
and strengths of various logic optimization phases of the tools,
all one has to do is introduce certain types of inefficiency
or redundancy (called targeted perturbation) in the underlying
LEKO circuit (thus creating a LEKU circuit) and check to see
if the tools can correct them.

The advantage of the LEKU circuit is that it establishes a
clear bound on how much minimization one can do. Since there
is no known lower bound of the MCNC benchmarks, there is no
clear way to tell if an improvement on a previous algorithm is
significant. For example, an improvement of some algorithm
X on another algorithm Y by 10% might be insignificant if
both algorithms are over 3x away from optimal. On the other
hand, when an algorithm does really well on certain LEKU
circuits, it means that the algorithm was able to find and
correct all the targeted perturbations used to create it. Such a
controlled experiment is very useful when one has a collection
of LEKU circuits to use for testing how the synthesis tools may
perform on common inefficiencies or redundancies that exist
in some HDL designs. For example, one can inject targeted
perturbations such as do-not-care signals and duplicated logic
and see how well an algorithm can detect and correct them.
Since these circuits cannot be minimized past a certain point,
one knows that the reason the logic synthesis under test did
well is precisely because it found the targeted perturbations that
one injects and not because of anything else. Without a tight
bound on the area, one cannot simply tell why or how the tool
produced a better solution.

IV. CONCLUSION

In this paper, we presented an algorithm for creating syn-
thetic benchmarks with known optimal technology mapping
solutions for LUT-based FPGA designs. Using these, LEKO
and LEKU benchmarks of sizes ranging from a few hundred
nodes to over one million nodes, we experimented on four
state-of-the-art FPGA logic-synthesis flows. We showed that
although leading FPGA technology mapping algorithms can
produce close to optimal solutions with an average gap of
15% on the LEKO examples, the results from the entire logic-
synthesis flows (logic optimization + mapping) are far from
optimal. The best industrial and academic FPGA synthesis
flows are around 70 times larger in terms of area on average and,
in some cases, as much as 500 times larger on LEKU examples.

It is important to understand that just because an algorithm
performs poorly on a set of artificial benchmarks, it does not
mean the algorithm will perform badly on real world circuits.
Since logic synthesis is NP-hard and all exiting synthesis
algorithms are heuristics in nature, one would naturally expect
there are examples where the heuristics perform poorly. Nev-
ertheless, it is important to have a quantitative measurement of
the optimality gap. We would also like to emphasize that the
performance of different heuristics on LEKO and LEKU may
not reflect their performance on other examples. We refer the
reader to [21, Ch. 6] on a discussion about the worst case versus
average case performance of heuristics.

We hope that the rather surprising results on LEKO and
LEKU examples will stimulate the logic-synthesis community

as did the PEKO examples to the physical-design community.
Needless to say, the potential of large-scale-area reduction is
of great interest to the IC and EDA industries. If realized, it
leads to significant improvement in density and cost of future
integrated circuits. It is not clear if and how often these artificial
examples constructed by our algorithm appear in real-life cir-
cuits. However, these examples will help to identify deficiencies
in the current logic-synthesis algorithms and improve their
quality. It is our hope that these benchmarks are not only
used to determine that logic-synthesis tools catch commonly
made mistakes (redundant logic and unused logic) that tool
designers expect, but also create an online community that leads
to the sharing of LEKO circuits that will test every possible
design flaw.

Although our optimality study is done for LUT-based
FPGAs, we think that the same technique can be easily ex-
tended to cell-based IC designs, where one needs to map to a
library of different logic cells. In this case, we need to modify
the construction of C,, so that it remains a “hard core” basis of
constructing larger hard examples.

The LEKO and LEKU examples are available online [41].
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