
Quantifier structure in search based procedures for QBFs ∗

Enrico Giunchiglia Massimo Narizzano Armando Tacchella

DIST - Università di Genova Viale Causa 13, 16145 Genova, Italy
E-mail: enrico,mox,tac@star.dist.unige.it

Abstract

The best currently available solvers for Quantified
Boolean Formulas (QBFs) process their input in prenex
form, i.e., all the quantifiers have to appear in the prefix
of the formula separated from the purely propositional part
representing the matrix. However, in many QBFs deriving
from applications, the propositional part is intertwined with
the quantifier structure. To tackle this problem, the standard
approach is to first convert them in prenex form, thereby
loosing structural information about the prefix.

In this paper we show that conversion to prenex form is
not necessary, i.e., that it is relatively easy to extend cur-
rent search based solvers in order to exploit the original
quantifier structure, i.e., to handle non prenex QBFs. Fur-
ther, we show that the conversion can lead to the exploration
of search spaces bigger than the space explored by solvers
handling non prenex QBFs. To validate our claims, we
implemented our ideas in the state-of-the-art search based
solver QUBE, and conducted an extensive experimental
analysis. The results show that very substantial speedups
can be obtained.

1. Introduction

The use of Quantified Boolean Formulas (QBFs) to en-
code problems arising from various application domains,
expcecially from Formal Verifications, has attracted in-
creasing interest in recent years (see, e.g., [15, 1, 13]). The
application-driven quest for efficiency has in turn propelled
the research on decision procedures in order to deal with the
size and the complexity of the QBF encodings (see [3] for
a recent account on the state of the art in QBF reasoning).
Considering the best currently available solvers, all of them
assume that the input QBF

1. is in prenex form, i.e., all the quantifiers have to appear
in the prefix of the formula separated from the purely
propositional part; and

∗This work is partially supported by MIUR

2. is in conjunctive normal form (CNF), i.e., the proposi-
tional part of the formula (called matrix) consists of a set
of clauses.

However, in many QBFs deriving from applications, the
propositional part is intertwined with the quantifiers struc-
ture and the matrix is not in CNF. The situation is simpler
in the propositional satisfiability (SAT) case, corresponding
to QBFs in which all the quantifiers are existential: in SAT,
the first problem does not show up, and several papers have
been dedicated to efficient and effective conversions to CNF
and/or to the implementation of SAT solvers able to handle
non CNF formulas (see, e.g., [16, 7] for two recent papers
on these issues). The solutions devised in SAT to handle
non CNF formulas can be easily lifted to the more com-
plex QBF case. Still, in the QBF case we are left with the
first issue. Indeed, the standard solution is to convert any
non prenex QBF into a prenex one using standard quantifier
rewriting rules like

(∃xΦ(x) ∧ ∀yΨ(y)) �→ ∃x∀y(Φ(x) ∧ Ψ(y))

or

(∃xΦ(x) ∧ ∀yΨ(y)) �→ ∀y∃x(Φ(x) ∧ Ψ(y)).

However, in the resulting QBF, the information that x and y
are not one in the scope of the other is lost. Further, as the
above simple example shows, there can be more than one
rule applicable at each step and the result may vary depend-
ing on which rule is applied. In general, given a non prenex
QBF ϕ, there can be exponentially many QBFs (i) in prenex
form, (ii) equivalent to ϕ, and (iii) each of them obtainable
from ϕ using the above mentioned rewriting rules. Thus,
it is not clear which of these exponentially many QBFs is
best, i.e., leads to the best performances when coupled with
a QBF solver. Egly, Seidl, Tompits, Woltran and Zolda [6]
define four strategies which are guaranteed to be optimal in
the sense that the resulting QBF is guaranteed to belong to
the lowest possible complexity class in the polynomial hier-
archy. Their experimental analysis, conducted on a series of
instances encoding knowledge representation problems and
involving the best QBF solvers based on search, showed that

1

the strategy delivering the best performances depends both
on the kind of instances and on the internals of the QBF
solver.

In this paper we show that conversion to prenex form is
not necessary, i.e., that it is relatively easy to extend current
search based solvers in order to exploit the original quanti-
fier structure, i.e., to handle non prenex QBFs. Further, we
show that the conversion can have severe drawbacks on the
heuristic and pruning techniques of the solvers, leading to
the exploration of search spaces bigger than the space ex-
plored by solvers handling non prenex QBFs. To validate
our claims, we implemented our ideas in the state-of-the-art
search based solver QUBE, and conducted an extensive ex-
perimental analysis. The results show that very substantial
speedups can be obtained.

2 The logic of QBFs

To focus on the problem we deal with, we consider QBFs
in which the quantifiers may be not in prenex form, but in
which the matrix is in CNF.

Consider a set P of variables. A literal is a variable or the
negation z of a variable z. In the following, for any literal l,

• |l| is the variable occurring in l; and

• l is l if l is a variable, and is |l| otherwise.

A clause is a finite disjunction of literals. Finally,

• if c1, . . . , cn are clauses, (c1 ∧ . . . ∧ cn) is a QBF,

• if Φ is a QBF and z is a variable, QzΦ is a QBF, where Q
is either the existential quantifier “∃” (in which case we
say that z and z are existential) or the universal quantifier
“∀” (in which case we say that z and z are universal). In
QzΦ, Φ is called the scope of Qz, and z is the variable
bound by Q.

• if Φ1, . . . , Φn are QBFs, (Φ1 ∧ . . . ∧ Φn) is a QBF.

For simplicity, we restrict our attention to closed QBFs, i.e.,
to QBFs in which each variable is bound by a quantifier.

For example,

∃x0(∀y1∃x1∃x2((x0 ∨ x1 ∨ x2) ∧ (y1 ∨ x1 ∨ x2)∧
(x1 ∨ x2) ∧ (x0 ∨ x1 ∨ x2))∧

∀y2∃x3∃x4((x0 ∨ x3 ∨ x4) ∧ (y2 ∨ x3 ∨ x4)∧
(x3 ∨ x4) ∧ (x0 ∨ x3 ∨ x4)))

(1)

is a closed QBF. Further, we assume that in a QBF there are
no two distinct quantifiers that bind the same variable. With
this assumption, we can represent any QBF as a pair

• the prefix, being a partially ordered set in
which (i) each element of the set has the form
〈quantifier, boundvariable〉; and (ii) two elements
〈Q1z1〉 and 〈Q2z2〉 in the set are in partial order (and we
write z1 ≺ z2) if and only if Q2z2 occurs in the scope of
Q1z1, and

• the matrix, consisting of a set of clauses.

Since we will use xi (resp. yi) to denote an existentially
(resp. universally) quantified variable,1 we can simply rep-
resent the prefix with the partial order. For example, the
prefix of (1) corresponds to the transitive closure of

x0 ≺ y1, y1 ≺ x1, x1 ≺ x2, x0 ≺ y2, y2 ≺ x3, x3 ≺ x4.
(2)

Notice that for a QBF in which no variable is in the scope
of another, our representation of the prefix will be empty.

About the matrix, we use the standard SAT notation, and
we represent each clause as the set of literals in it. Thus, the
matrix of (1) is written as

{{x0, x1, x2}, {y1, x1, x2}, {x1, x2}, {x0, x1, x2},
{x0, x3, x4}, {y2, x3, x4}, {x3, x4}, {x0, x3, x4}}

(3)

Consider a QBF ϕ with prefix ≺ and matrix Φ. The se-
mantics of ϕ can be defined recursively as follows. Define
the prefix level of a variable z as the length of the longest
chain z1 ≺ z2 ≺ zn ≺ z (n ≥ 0) in the prefix such that
zi and zi+1 are differently quantified. For instance, in (1)
the prefix level of x0 is 1, while both x1 and x2 have prefix
level 3. A variable z to be top in ϕ if it has prefix level 1.
If the matrix of ϕ is empty, then ϕ is true. If the matrix of
ϕ contains an empty clause, then ϕ is false. If z is top in ϕ
and z is existential (respectively universal), ϕ is true if and
only if the QBF ϕz or (respectively and) ϕz are true. If l is
a literal, ϕl is the QBF

• whose matrix is obtained from Φ by (i) eliminating the
clauses C such that l ∈ C, and eliminating l from the
other clauses in Φ; and

• whose prefix is obtained from ≺ by removing the pairs
|l|, z such that |l| ≺ z or z ≺ |l|.

3 Q-DLL

Most of the available QBF solvers assume that the input
formula is in prenex form. For us, a QBF ϕ is in prenex
form if its prefix is a total order.

Consider a QBF ϕ in prenex form, with prefix ≺ and
matrix Φ.

A simple procedure for determining the value of ϕ, starts
with ϕ and recursively simplifies the current ϕ to ϕz and/or
ϕz , where z is a heuristically chosen top variable in ϕ, till
either the empty clause or the empty set of clauses are pro-
duced: on the basis of the values of ϕz and ϕz , the value of
ϕ can be determined according to the semantics of QBFs.

Cadoli, Giovanardi and Schaerf [5] introduced various
improvements to this basic procedure.

1From a formal point of view, this amounts to divide the set P
of variables in two disjoint sets Px = {x, x1, x2, . . .} and Py =
{y, y1, y2, . . .}, being respectively the set of existentially and universally
quantified variables.

0 function Q-DLL(ϕ)
1 if (〈a contradictory clause is in ϕ〉) return FALSE;
2 if (〈the matrix of ϕ is empty〉) return TRUE;
3 if (〈l is unit in ϕ〉) return Q-DLL(ϕl);
4 l := 〈a top literal in ϕ〉;
5 if (〈l is existential〉) return Q-DLL(ϕl) or Q-DLL(ϕl);
6 else return Q-DLL(ϕl) and Q-DLL(ϕl).

Figure 1. The algorithm of Q-DLL.

The first improvement is that we can directly conclude
about the value of ϕ if Φ contains a contradictory clause. A
clause C is contradictory if it contains no existential literal.
An example of a contradictory clause is the empty clause.

The second improvement allows us to directly simplify ϕ
to ϕl if l is unit in ϕ. A literal l is unit in ϕ if l is existential
and for some m ≥ 0,

• a clause {l, l1, . . . , lm} belongs to Φ; and

• each literal li (1 ≤ i ≤ m) is universal and such that
|li| �≺ |l|, i.e., it is not the case that |li| ≺ |l|.
With such improvements, the resulting procedure, called

Q-DLL, is essentially the one presented in [5], which
extends the famous Davis-Logemann-Loveland procedure
DLL for (SAT). Figure 1 is a simple, recursive presentation
of Q-DLL. In the figure, given a QBF ϕ,

1. FALSE is returned if a contradictory clause is in the ma-
trix of ϕ (line 1); otherwise

2. TRUE is returned if the matrix of ϕ is empty (line 2);
otherwise

3. at line 3, ϕ is recursively simplified to ϕl if l is unit;
otherwise

4. at line 4 a top literal l is chosen (and we say that l has
been assigned as a branch) and

• if l is existential (line 5), the “or” of the results of the
evaluation of ϕl and ϕl is returned;

• otherwise (line 6), l is universal, and the “and” of the
results of the evaluation of ϕl and ϕl is returned.

Q-DLL is correct: it returns TRUE if the input QBF is true
and FALSE otherwise.

As it is the case in SAT, real implementations of Q-DLL
extend the basic algorithm by allowing for more power-
ful simplification rules (e.g., pure literal fixing), intelligent
backtracking (e.g., nogood and/or good learning), heuris-
tics for deciding on which literal to branch on. Examples of
solver featuring the above characteristics are QUBE [11],
YQUAFFLE [17], and SEMPROP [12]: see the respective pa-
pers for more details.

4 Partial order vs Total order prefixes

Consider a QBF ϕ, with prefix ≺ and matrix Φ, and as-
sume that ≺ is arbitrary, i.e., not necessarily in prenex form.

As we already anticipated in the introduction, in order to
decide the value of ϕ, the standard approach is to first con-
vert ϕ into prenex form, and then use one of the available
solvers. This is the approach followed, e.g., in [6, 13]. The
conversion can be easily done by simply extending the pre-
fix till we get a total order. However, this can have some
serious drawbacks detailed in the following.

The first important observation is that Q-DLL in Fig-
ure 1 does not rely on ≺ to be a total order. In other words,
Q-DLL maintains its correctness even when the prefix of
≺ is not a total order. A possible execution of Q-DLL on
(1) is represented by the tree in Figure 2. In the Figure,
each node of the tree is labeled with a set of clauses and
is numbered according to the order in which Q-DLL ex-
plores the search space; the root node has the input matrix
(3) as label, and the other nodes contain the matrices result-
ing from the simplifications performed along the path from
the root to each of them; each leaf is marked with {{}} to
denote that the resulting set of clauses contains at least an
empty clause; branches in the tree correspond to the choice
of a literal whose both values have to be tried; straight lines
stand for unit literals or branching literals that are not sub-
ject to backtracking. As it can be seen from the figure, Q-
DLL may, e.g., assign x1 as a branch without having as-
signed y2 before (and this in a total order setting would
imply x1 ≺ y2) and assign y2 later2 as a branch without
having assigned x1 before (and this in a total order setting
would imply y2 ≺ x1): since it is not possible to have both
x1 ≺ y2 and y2 ≺ x1, the search tree showed in Figure 2
cannot be explored by Q-DLL if run on a QBF with the
same matrix and a total order prefix extending (2).

Even if Q-DLL can work with QBFs in non prenex form,
the advantage of having a totally ordered vs a partially or-
dered prefix is that the former is simpler to handle than the
latter. However there can be exponentially many, pairwise
non equivalent, prefixes extending the prefix of ϕ. Two pre-
fixes are equivalent if removing from them the pairs z, z ′

such that both z and z ′ are either existential or universal
leads to the same set of pairs. Given this fact, it is not clear
which of these prefixes is best, i.e., leads to the best perfor-
mances once coupled with the desired QBF solver. In [6],
the authors define four strategies which are optimal in the
sense that each strategy leads to an optimal prefix: there
is no prefix extending ≺ with a smaller number of alterna-

2Considering the QBF (1), it can be objected that both y1 and y2 could
be eliminated during the preprocessing since they are pure literal: a slightly
more complicated example in which this critique does not apply and all the
considerations we make still hold, can be obtained by simply adding the
two clauses {y1, x1, x2} and {y2, x3, x4} to the matrix.

1 : {{x0, x1, x2}, {y1, x1, x2}, {x1, x2}, {x0, x1, x2}, {x0, x3, x4}, {y2, x3, x4}, {x3, x4}{x0, x3, x4}}

2 : {{x1, x2}, {x1, x2}, {x1, x2}, {x1, x2}, {y2, x3, x4}, {x3, x4}}

x0

y1

3 : {{}}

x1

x2

4 : {{}}

x1

x2

5 : {{y1, x1, x2}, {x1, x2}, {x3, x4}, {x3, x4}, {x3, x4}{x3, x4}}

x0

y2

6 : {{}}

x2

x3

7 : {{}}

x2

x3

Figure 2. Search tree of Q-DLL on the QBF with the matrix at the root and the prefix corresponding
to x0 ≺ y1, y1 ≺ x1, x1 ≺ x2, x0 ≺ y2, y2 ≺ x3, x3 ≺ x4.

tions.3 In the case of the QBF (1) the optimal prefixes are
the ones satisfying (2) and also: y1 ≺ x3, y2 ≺ x1. Obtain-
ing a QBF with a minimal number of alternations is an im-
portant property, at least theoretically: a QBF with k alter-
nations belongs to a complexity class which is contained in
the complexity class to which a QBF with k+1 alternations
belong, see [14]. However, in general there can be exponen-
tially many strategies which are optimal in the above sense,
i.e., there can be exponentially many, pairwise non equiva-
lent, and with the minimal number of alternations prefixes
extending a given prefix ≺. Further, the experimental anal-
ysis conducted in [6] shows that even restricting to the 4
optimal strategies there defined, the strategy delivering the
best performances depends both on the kind of instances
and on the internals of the QBF solver.

Furthermore, no matter which strategy is used, be it op-
timal or not, imposing a total order on the prefix can have
substantial drawbacks if a solver based on Q-DLL is used:

1. when deciding which literal to assign as a branch, the se-
lection is restricted among the top literals: imposing a to-
tal order on the prefix can severely limit the choice up to
the point that the heuristic becomes static. Considering,
e.g., an instance ϕ with three variables x1, x2 and y and
prefix either x1 ≺ x2 or y ≺ x2: the prefix according
to which x1 ≺ y ≺ x2 imposes a fixed, static ordering
on the atoms to branch on. In the case of the QBF (1),
we already pointed out that there is no total order allow-
ing to explore the search tree in Figure 2. Given that the
search tree in the Figure is optimal (any other search tree
possibly explored by Q-DLL on (1) has a bigger number
of literals assigned as branches) it trivially follows that
extending (1) to a total order will necessarily cause the
exploration of a search tree bigger than that in the figure.

2. when checking if a literal l is unit, we search for clauses
in which l is the only existential literal, and all the other
literals l′ are such that |l′| �≺ |l|: in the case we extend

3The number of alternations in a QBF ϕ is the maximal of the prefix
levels of the variables in ϕ minus 1. The number of alternations in (1) is 2.

the prefix to a total order, for each pair of distinct liter-
als l and l′, either |l| ≺ |l′| or |l′| ≺ |l|, and as conse-
quence some literals may no longer be detected as unit.
In the case of the QBF (1), if we consider the clause
{y1, x2, x3, x4} obtained by resolving the second, fourth
and last of the clauses in (3), once, e.g., x2 and x3 are as-
signed to false, x4 can be propagated as unit: This would
not happen if the partial order is extended with y1 ≺ x4.
These kind of clauses can be generated either in the pre-
processing and/or during the search if the solver imple-
ments nogood and/or good learning. 4

5 Exploiting Quantifier Structure in QUBE

We implemented the algorithm described in the previ-
ous section on top of the state-of-the-art solver QUBE [11].
QUBE reads instances in prenex form and features state-of-
the-art backtracking techniques, heuristics and data struc-
tures. To describe QUBE’s features prior to this work, we
use QUBE(TO) to denote the old version of QUBE solving
QBF instances in prenex form, and QUBE(PO) to denote
the version of QUBE modified in order to exploit the quan-
tifier structure.

QUBE(PO) main difference with respect to QUBE(TO)
is in the heuristic. The heuristic in QUBE(TO) is imple-
mented by associating a counter to each literal storing num-
ber of constraints c such that l ∈ c. Each time a constraint
is added, the counter is incremented; when a learned con-
straint is removed, the counter is decremented. In order to
choose a branching literal, QUBE(TO) stores the literals in
a priority queue according to (i) the prefix level of the cor-
responding atom, (ii) the score and (iii) the numeric ID.
Initially the score of each literal is set to the value of the
associated counter. Periodically, QUBE(TO) rearranges the
priority queue by updating the score of each literal l: this is

4It can be objected that once x2 and x3 are assigned, so it is also y1.
This is due to the extreme simplicity of our example. It is relatively easy to
build a more complex one, with more variables and clauses, in which x2
and x3 will be assigned as unit.

done by halving the old score and summing to it the vari-
ation in the number of constraints k such that l ∈ k, if l
is existential, or the variation in the number of constraints
k such that l ∈ k, if l is universal. In QUBE(PO), the or-
dering of the priority queue cannot be maintained using the
same set of conditions (i− iii) above. However, the condi-
tion that top-priority literals in the queue must correspond
to top atoms in the current QBF can be enforced by modi-
fying the score as follows. First, we consider the set S of
bottom atoms, i.e., all the atoms |l| such that there is no |l ′|
where |l| ≺ |l′| in the prefix, and we assign them the basic
score. Then, we consider the set S ′ of all the atoms |l| such
that |l| ≺ |l′| precisely when |l′| ∈ S, i.e., |l| is bottom: for
each such literal l, we add to the basic score the maximum
score among the literals l′ such that |l| ≺ |l′|. We repeat
the process, each time by letting S = S ′ and computing the
new S ′ as above. In this way, we guarantee that any two lit-
erals l, l′ that are incomparable (i.e., such that |l| �≺ |l ′| and
|l′| �≺ |l|) are selected according to their heuristic scores, at
the same time respecting the condition that each branching
literal l corresponds to a top atom |l|.

The other essential modification has been the implemen-
tation of a data structure allowing for efficiently checking
whether two atoms z and z ′ are in partial order. This check
is indeed at the basis of the unit detection procedure.

6. Experimental Analysis

To evaluate the effectiveness of QUBE(PO) vs
QUBE(TO), we first considered the same benchmarks
used in [6]. These QBFs are appealing since they can
be automatically generated not in prenex form, and/or in
prenex form according to the 4 different optimal strategies
defined in [6] and denoted with ∃↑∀↑, ∃↓∀↓, ∃↓∀↑, ∃↑∀↓.
The generator takes four parameters 〈DEP, VAR, CLS,
LPC〉 which have been set as follows: DEP is fixed to 6;
VAR is varied in {4, 8, 16}; CLS is varied in such a way
to have the ratio CLS/VAR in {1, 2, 3, 4, 5}; LPC is varied
in {3, 4, 5}. For each setting of 〈DEP, VAR, CLS, LPC〉
we have generated 100 problems, and for each problem
we obtained 4 different prenex QBF and one non prenex
QBF. Finally we have run QUBE(TO) and QUBE(PO) on
the prenex and non prenex instances respectively, on a farm
of 10 identical rack-mount PCs, each one equipped with a
3.2Ghz PIV processor, 1GB of main memory and running
Debian/GNU Linux. The timeout after which a solver is
stopped has been set to 600s.

On all these instances QUBE(PO) compares very well
with respect to QUBE(TO), especially if considering the
non trivial instances (i.e., with a running time ≥ 0.1s). The
first 4 rows of Table 1 gives a summary of the results. In the
table,

• “>” (resp. “<”) is the number of instances for which

> < = � � �� >10× 10×<

∃↑∀↑ 746 7 5247 370 1 1323 587 1
∃↓∀↓ 1061 0 4939 441 0 1324 847 0
∃↓∀↑ 1001 0 4999 425 0 1324 758 0
∃↑∀↓ 999 0 5001 425 0 1324 757 0

∃↑∀↑ 627 208 70 68 43 44 190 0

Table 1. QUBE(TO) vs QUBE(PO)

QUBE(TO) is slower (resp. faster) than QUBE(PO) of
more than 1s;

• “=” is the number of instances for which QUBE(TO) is
within 1s from QUBE(PO);

• “�” (resp. “�”) is the number of instances for
which QUBE(TO) (resp. QUBE(PO)) times out while
QUBE(PO) (resp. QUBE(TO)) does not;

• “��” is the number of instances for which both
QUBE(TO) and QUBE(PO)) exceed the timeout;

• “>10×” (resp. “10×<”) is the number of instances which
are solved by both systems, but for which QUBE(TO) is
at least 1 order of magnitude slower (resp. faster) than
QUBE(PO).

As it can be seen, QUBE(PO) outperforms QUBE(TO) no
matter which prenexing strategy is used. To further high-
lights QUBE(PO) good performances, figure 3 left shows
the comparison between QUBE(PO) vs QUBE(TO) when
considering the best prenexing strategy for that instance
(in other words, for each problem we consider the mini-
mum of the QUBE(TO) running times when using the 4
different prenexing strategies). In the plot in Figure 3 left,
each solid-fill square dot represents a setting of the param-
eters, QUBE(PO) median solving time is on the x-axis (log
scale), while QUBE(TO) median solving time, calculated
as above specified, is on the y-axis (log scale). The diago-
nal (outlined diamond boxes) represents the solving time of
QUBE(PO) against itself and serves as reference: the dots
above the diagonal are settings where QUBE(PO) performs
better than QUBE(TO), while the dots below are the settings
where QUBE(PO) is worse than QUBE(TO). Even in such
disadvantageous scenario, QUBE(PO) is competitive with
QUBE(TO): QUBE(TO) median time exceeds the timeout
for some setting of the parameters while this is never the
case for QUBE(PO).

We also considered 905 formal verification problems
coming from the application described in [8], where QBF
reasoning is applied to model checking of early require-
ments. Each problem corresponds to a non prenex QBF.
As before, the non prenex QBF has been converted to a
prenex one using our implementation of the optimal prenex-
ing strategy ∃↑∀↑which, according to the results in the first
four rows of Table 1, gives the best performances. The re-
sults are summarized in the last row in Table 1 and in the

Figure 3. QUBE(TO) vs QUBE(PO). On the y(x) axis there are the QUBE(TO)(QUBE(PO)) times

plot in Figure 3 right. As it can be seen, the results are very
positive also in this case, even though not as impressive as
before: this is due to the particular structure of these in-
stances, which feature a few universal variables and a small
number of alternations. Still, QUBE(PO) performs better
than QUBE(TO) of more than one order of magnitude on
258 problems, compared to the 43 where the opposite hap-
pens (counting the instances solved by only one system).

7. Conclusions and related work

The main points of the paper can be summarized as:

• The basic search algorithm of QBF solvers can be ex-
tended to take into account the quantifier structure.

• The conversion of QBF instances exhibiting quantifier
structure into prenex form can have dramatic impacts (i)
on the effectiveness of the heuristic, and (ii) on the de-
tection of unit literals.

• Our experiments reveal that by taking into account the
quantifier structure we can get dramatic improvements in
the performance of the QBF solver.

The work mostly related to ours is [2]. In this work, the
author tries to re-construct the original non prenex structure
of the formula starting from the instance in total order. A
similar thing is also done in [4]. The essential difference
between [2, 4] and our work is that the solver we use is
based on search, while the solvers in [2] and [4] are mainly
based on quantifier elimination. For solvers based on quan-
tifier elimination, recovering or keeping the original quan-
tifier structure is fundamental in order to reduce the size of
each quantifier elimination operation. Notice that the solver
SKIZZO described in [2] is not entirely based on quanti-
fier elimination, since it uses different strategies –including
search– for trying to solve each problem. However, search
is the last attempted and thus the least used strategy, and it
is not clear how SKIZZO uses the quantifier structure during
the search. Finally, this is the first paper that we know of,
clearly addressing the quantifier structure problem and giv-

ing clear evidence that keeping the original quantifier struc-
ture pays off, at least when using search based solvers.

References

[1] A. Ayari and D. Basin. Bounded model construction for
monadic second-order logics. In Proc. CAV’00.

[2] M. Benedetti. Quantifier Trees for QBFs. In Proc. SAT’05.
[3] D. Le Berre, L. Simon, and A. Tacchella. Challenges in the

QBF arena: the SAT’03 evaluation of QBF solvers. In Proc.
SAT’03.

[4] A. Biere. Resolve and Expand. In Proc. SAT’04.
[5] M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to

evaluate quantified Boolean formulae. In Proc. AAAI’98.
[6] U. Egly, M. Seidl, H. Tompits, and M. Zolda. Comparing

Different Prenexing Strategies for QBFs. In Proc. SAT’03.
[7] Z. Fu, Y. Yu, and S. Malik. Considering circuit observability

don’t cares in cnf satisfiability. In Proc. DATE’05.
[8] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri,

and P. Traverso. Specifying and analyzing early require-
ments in Tropos. Requirements Engineering, 9(2):132–150,
2004.

[9] E. Giunchiglia, M. Narizzano, and A. Tacchella. Learn-
ing for Quantified Boolean Logic Satisfiability. In Proc.
AAAI’02.

[10] E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjump-
ing for Quantified Boolean Logic Satisfiability. Artificial
Intelligence, 145:99–120, 2003.

[11] E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: an
Efficient QBF solver. In Proc. FMCAD’04.

[12] R. Letz. Lemma and model caching in decision procedures
for QBFs. In Proc. Tableaux’02.

[13] M. Mneimneh and K. Sakallah. Computing Vertex Eccen-
tricity in Exponentially Large Graphs: QBF Formulation
and Solution. In Proc. SAT’03.

[14] C. H. Papadimitriou. Computational Complexity. Addison-
Wesley, 1994.

[15] C. Scholl and B. Becker. Checking equivalence for partial
implementations. In Proc. DAC’01.

[16] D. Sheridan. The optimality of a fast CNF conversion and
its use with SAT. In Proc. SAT’04.

[17] L. Zhang and S. Malik. Conflict driven learning in a quanti-
fied Boolean satisfiability solver. In Proc. ICCAD’02.

