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Abstract— This paper studies area-efficient arithmetic circuits
to multiply a fixed-point input value selectively by one of several
preset fixed-point constants. We present an algorithm that gener- T—™
ates a class of solutions to this time-multiplexed multiple-constant i >
multiplication problem by “fusing” single-constant multiplication
circuits for the required constants. Our evaluation compares our
solution against a baseline implementation style that employs
a full multiplier and a lookup table for the constants. The
evaluation shows that we gain a significant area advantage, at
the price of increased latency, for problem sizes (in terms of the
number of constants) up to a threshold dependent on the bit- . .
widths of the input and the constants. Our evaluation further Cconstant have been studied extensively. The best approach for

shows that our solution is better suited for standard-cell ASICs minimizing the number of required additions (and subtrac-
than prior works on Reconfigurable Multiplier Blocks (ReMBs).  tions) is reported in [8] (more details are in Section II-A).
Other constructions of single-constant multiplication circuits
are possible. For example, for a given a set of constants, one
can consider single-constant circuits that share intermediate
values. Algorithms that produce these circuits are used for the
|. INTRODUCTION related problem of parallel multiple-constant multiplication,
e.g., [9], [10], [11].

Given an input set of single-constant multiplication circuits
Qn a graph representation), the algorithm in this paper derives
an area-efficient circuit for the time-multiplexed multiple-
constant multiplication. Specifically, given th& separate
single-constant circuits fofcy, co,...,cn} as input, theN
single-constant circuits are integrated iteratively into a "fused”
circuit consisting of adders and multiplexers. The properly
ynthesized controls for the multiplexers enable the circuit to

———m> C;T

Fig. 1. The time-multiplexed multiple-constant multiplier block considered
in this paper. The input is multiplied by one out ofN given fixed point
constantsy, ..., cy, based on the control input

Index Terms— Multiplierless, reconfigurable multiplier block,
addition chain

This paper is concerned with arithmetic circuits for timee-
multiplexed multiple-constant multiplicatiomith the interface
shown in Fig. 1 and is an extension of our preliminary wor
in [1]. The inputx is a fixed-point value of a specified bit-
width. The output of the circuit is;x where ¢; is one of
N given fixed-point constant§ci,cs,...,cn} selected ac-
cording to the[log, N]-bit control inputi. A straightforward
implementation would comprise a lookup table of thé

constants and a full multiplier (depicted later in Fig. 5(a)]. h inal tant circuit f h ofth ant
Intuitively, the full generality of a full multiplier is unnecessar ehave as a singie-constant circuit for €ach otitheonstants. -
he algorithm takes into consideration the commonalities in

for multiplying by a predetermined set of constants. Thi% _— . o
paper presents a class of circuits that take advantaget 3 topology c.’f theN' initial S|ngle-cor_1$tant CIrCUI.tS :.;md.

the redundancy and structure in the constituent constants g5 > & heur|st_|c gearch to produce'a final fg;e d circuit with
reduce hardware cost in terms of the number and the spi'rg sma_llest b't'W'dth adders and W'th. the minimum number
of the adders and multiplexers in the circuit. This problerﬂ steering multiplexers. The fused circuit contains only as

(sometimes referred to as Reconfigurable Multiplier Blockg'?an{) addfers alf tre Iarger?t of the s(;ngle-céonstarlthcircuitsi Trt1e
or ReMBs) has been studied by prior work [2], [3], [4], [5],”urn er of mulliplexers, nowever, depends on the constants

[6], [7] that develops solutions targeted to Field Programmab"i'(!?d how the single-constant circuits are fused, i.e., which

Gate Array (FPGA) implementations. Our approach uses® ders_ ar? mult[[plgxtehd.f . laorith tor that
different architecture than these approaches and is optimize ¢ Implemente € usion aigorithm as a generator tha

for ASIC implementations. We address the difference betwe es as input th(.w cons.tants and the b't.'w.'dth of, and .
our method and the prior work in Section II-B. generates the Verilog netlist of an area-optimized fused multi-

Our solution is based on “fusing” single-constant muItipIica[—)l'(I:,"’mon,[C'r;:lzJlt fo\;vthef.setconstlanis. (The glengtrﬁtor 1S ayaﬂatble
tion circuits of the required constants. Area-efficient arithmetgcp ;?fgé cE)ns]%mt (e:irclLSits Z?ni?afeguursiigc;g] r‘lrjhgsne Igi?gu?ts
circuits to multiply a fixed-point input by one fixed-point e T

Py P P y P have the minimal number of adders. The evaluation includes a
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contrast to the baseline approach where only the constant table
expands withV. For example, assuming a 16-bit input value
and random 16-bit constants, our approach results in a smaller
synthesized circuit area for up to 15 constants. The price for
these gains is an increased latency compared to the baseline.
We also evaluate our algorithm on inputs of single-constant
circuits prepared according to [11]. These circuits share more
intermediate values, but have in general more adders. As a
consequence, we get only marginal improvements and only
under very limited conditions. Nevertheless, in practice, both
starting inputs for a given set of constants could be evaluated
in conjunction since the runtime of our algorithm is typically
only a few seconds. Finally, we compare our multiplier blocks
for time-multiplexed multiple-constant multiplication againstig- 2. The DAG corresponding to multiplying byp021.
previous work on ReMB designs. For standard cell synthesis,
we can demonstrate an area advantage that becomes more - ] ) o
significant with increasing number of constants. reduce the number of additions associated with mltjl_ulplymg by
Paper outline. Following this brief introduction, Section 11 & constant. An SD constant 8§, 15y, —2---bo = > iy b:2'
discusses additional background and related work on thfereb: € {1,0,1} and1 stands for—1. The most salient
problem of multiplying a value by one or several constant@SPect of SD recoding is in replacing the occurrences: of
Section Il presents our algorithm for generating a timgEONSecutive 1's by0--- 01, which yields a saving ok —2
multiplexed multiple-constant multiplier circuit by iteratively2dditions. The canonical signed digit (CSD) recoding requires
fusing single-constant circuits. We analyze the runtime of olft ddition that no two consecutive bits are nonzero; CSD
algorithm and derive bounds on the quality of the generat§gC0ding results in a 33% cost saving on average [13, chap. 6].
circuits. Section IV evaluates our approach against the baselin®ACG based methods.The CSD method is not optimal

approach and compares to previous work. Finally, we offi 9eneral. For example, multiplying an input by ¢ =
conclusions in Section V. 1002119 = 100111001001015 can be done in the following

256

steps:
s1 = z+(z<K2)
[I. MULTIPLICATION BY CONSTANTS s3 = s+ (s1 < 11) @)
In this section we review the problem of multiplying an s3 = so+ (z<5H)
input by one or several fixed-point constants using only cx = s3— (v<38)

additions and shifts and put our contribution into the contei<t . . .
of previous work. Further, we review the directed acyclicn this example, 4 additions are required to compuig
' c9mpared to 5 additions required by the CSD method.

graph (DAG) representation of single- and multiple-constar The computation in (2) is best represented as the directed

multiplication, which provides a suitable way to formulate the . A
problem and its solution, acyclic graph (DAG) in Fig. 2. The nodes of the graph rep-

Without loss of generality, we assume that the multiplicar—e seqt additions and the edges represent the d"’?‘af'ow between
tions. We assume that each node has an in-degree of 2,

. . 4 o di
tive constants are fixed-point positive integer numbers. Tfﬁ‘g.’ each addition has two operands. Each edge is labelled
constant bit-width is denoted hy such that for a constamt . : .
by a positive 2-power integet = 2°, which represents the
wzl o scaling (by shifting bys) applied to the operand on that edge.
€= by1by—2--bibo = Z b2, b €{0,1}. (1) Each node is labelled by the intermediate constanThese
=0 intermediate constants are referred to asfthrelamentaldn
o the DAG, following the terminology in [14]. Ifc is the DAG
A. Multiplication By One Constant input andf is the fundamental of a node, then the intermediate
From (1) we see that the produet of an inputz and a output produced at this addition nodefis.
w-bit constant is given byzz":—ol b;2'z. This summation can  The problem of finding an optimal DAG for a constant
be directly mapped into a series of shifts (scalings by powess known to be NP-hard [15] and has been studied in the
of 2) and additions. In particular, if the binary representatiditerature [14], [8]. It is related to, but in theory and solution
of ¢ hask non-zero digits, the multiplication cost in terms ofundamentally different from the addition chain problem,
the number of additions i& — 1. In this paper, we assumewhich considers DAGs without shifts [16, pp. 465-485] and
the cost of shifts is negligible since they can be implementedbtractions. Recently, [8] has developed an algorithm that
as wired connections in hardware. For brevity, we use in tfieads optimal DAGs for constants up to a maximal bit-width
remainder of the paper the term “addition” for both additionsf 19, and shows that 5 additions are sufficient in all cases. In
and subtractions since these operations are virtually identitiails paper, we use a re-implementation of this method. Fig. 3
in complexity and map to similar hardware structures. shows the histogram of the number of adders for all odd 20-bit
CSD representation.Both software and hardware compil-constants.

ers generally use signed digit (SD) recoding [13, chap. 6] toBy propagating shifts, each DAG can be transformed into



x 10

Fig. 4. Multiplier block for the parallel multiplication byv given constants.
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signify common subexpressions or fundamentals. One of the
Fig. 3. Histogram for the number of adders in SCM DAGs for all odd 20-b@Verlapping regions is highlighted.
constants. Only one constar@i99829) needs 6 adders. Time-multiplexed multiplication. In this paper, we are
interested in developing an area-efficient combinational logic

) . ) . . block that can multiply a fixed-point input value by one of
an equivalennormalizedDAG with equal cost that satisfiesy o preset constants according to[Rg, N'-bit control

the following properties (see [14, theorem 2]): input (Fig. 1). The most straightforward implementation of this
« for each addition node, one of the operands is not shiftéshic block is shown in Fig. 5(a) where the preset constants
and, as a consequence, are stored in a lookup table. At a given time step, the control

« all fundamentals are odd. input selects which constant is supplied to one input of a full

For example, the DAG in Fig. 2 is normalized. In the remairmultiplier.
der of this paper, we will consider only normalized DAGs.  Again the question arises whether it is possible to exploit
Finally, for our fusion algorithm we assume that all theedundancy or inherent structure of the problem using a DAG
shifts in the single-constant DAGs aeft shifts. This restric- based approach. An immediate idea is to adapt the solution for
tion may yield suboptimal DAGs, but only in very few caseghe parallel multiplication (Fig. 4) to the sequential problem
For example, we evaluated (using the tool in [11]) that amorag depicted in Fig. 5(b), which uses a multiplexer to select
the 524288 odd 20-bit constants only 341 (or 0.065%) came of the output products according to the control input.
save exactly one adder by using right shifts. Whether this yields any savings compared to the generic
solution depends on the numh&r of multiplicative constants
and the degrees of overlapping between the individual DAGs.
However, a coarse analysis already shows that the adapted
In this section, we consider the problem of multiplying agolution in Fig. 5(b) is in general suboptimal for the sequential

B. Multiplying by Multiple Constants

input = by a given set{c,,...,cx} of N constants again problem. The reason is that each unique fundamental would
using only additions and shifts. There are two fundamentalfj¢ instantiated as one adder. Since only one product is visible
different scenarios: through the output multiplexer at any moment, the results of

« Parallel multiplicationis performed by a (parallel) mul- some adders are unused.
tiplier block that simultaneously outputs th€ values To further improve, one can fuse the fundamentals from
az,...,cyz. This problem is commonly referred to adifferent DAGs, equal or not, to share the same adders by
multiple-constant multiplicatiomr MCM. time-multiplexing, thus exploiting the topological similarities
« Time-Multiplexed multiplicatioms performed by a multi- between the DAGs to a much larger degree. This is the
plier block that outputs;x as controlled by an input that basic idea behind our solution depicted in Fig. 5(c), which
specifiesi (Fig. 1). inserts multiplexers into the DAG for time-multiplexed sharing
Both scenarios have been studied in the literature. TRE adders and thus reduced area requirements. Our solution
second is the subject of this paper. We briefly discuss botremploys only as many adders as required by the largest of the
Parallel multiplication. The problem of multiplying an initial DAGs being fused.
input by several constants in parallel occurs for example inRelated work. Time-multiplexed multiple-constant multi-
finite impulse response (FIR) filters and thus was the subjddication —sometimes referred to as Reconfigurable Multi-
of a large number of papers, e.g., [15], [9], [17], [18], [10]plier Block (ReMB)— has been studied extensively in [2], [3],
One of the best available methods is [11], also available B4, [5], [6], [7], [19] in the context of FPGA implementations.
online tool at [12]. Most of the above methods also use Ehe architecture of these prior solutions is motivated by the
DAG-based approach. The basic idea is to achieve savirfgst that in the construction of an adder in an FPGA, a 2-
by generating for the given constants DAGs that “overlap” fdp-1 multiplexer can be inserted in front of one input at no
additional savings, which is a form of common sub-expressi@dlditional cost. A stand-alone 2-to-1 multiplexer would incur
elimination. The goal is to minimize the total number of addei cost comparable to an adder of the same width.
shared by all constants. The resulting multiplier block is shown Thus, the basic building block in these solutions per-
as a schematic in Fig. 4. The leaf-shaped structures are thens the operationSUM = A + (select 7 B : C). For
single-constant DAGs farfy, ..., cy. The overlapping regions example, the circuit in shown later in Fig. 15(a) (repro-
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Fig. 5. Three implementations (as schematics) of the multiplier block in Fig. 1. From left to right: The standard solution using a generic multiplier; an
adaptation of the parallel multiplier block in Fig. 4; proposed method with shared adders.

duced from Fig. 6 in [5]) is an ReMB for the constants @ @
{1,2,4,8,15,26, 50,162, 256}. However, the ReMB approach ﬂ
is not optimal in general because the FPGA-motivated con- |, 4 1 1 ox/
straints lead to solutions that use more than the minimal
possible number of adders. For example, the aforementioned 16
ReMB comprise 7 adders, although the optimal DAGs for the 3 3 1 {53
individual constants need no more than 2 adders each. On
non-FPGA technologies, there is opportunity to reduce the 1 8 1 1l \mux/
19
(b) (c)

number of the adders (by time-multiplexed reuse) at the cost of

additional (but relatively cheaper) multiplexers. For example,

for the same set of constants, the approach in this paper will

produce a circuit with only 2 adders. As a part of our eval-  (a)

uatlor? In . Section 1V, \.Ne compare the synthesized Stanqaligd. 6. (a) Optimal DAGs for 45; (b) optimal DAG for 19; and (c) the fused

cell circuit area resulting from our approach based on timgac produced by our algorithm.

multiplexed reuse to ReMB examples from [3], [5], [7]. One

should also point out that the straightforward implementation

in Fig. 5(a) is, in most scenarios, the most economical soluticase, does not allow for DAG overlapping since the DAGs

on FPGAs given the availability of embedded multipliers anih Fig. 6(a) and (b) have no common fundamentals.

hard memory macros [20]. In the remainder of this section we provide the details of the

fusion algorithm. We start with an algorithm for the baseline

case of fusingN = 2 DAGs. This algorithm is then used

iteratively, as a subroutine primitive, in the algorithm for the
This section describes the proposed fusion algorithm. Thésion of N DAGs.

input to the algorithm is a set ofV normalized DAGs

representing single-constant multiplicationsgy. .. ,cy; the A Fusing Two DAGs

output is a composite, or fused, DAG that consists excluswelyWe start with 2 DAGs denoted d8AC, and DAC p, for

of additions, shifts, and multiplexers and implements thtﬁ ltinlicati ith want q tivelv. W
time-multiplexed multiplication by, ..., cy as depicted in € mulliplication with constants, andcp, respectively. We

Fig. 5(c). One crucial property of our fusion algorithm is thafSSume thaDAG;, and DAGr have n and m .nodes (or
the number of additions in the generated composite DAG %jd't'ons) and denote the node sets as follows:
equal to the largest number of additions required by any of Nodeg = {Node, ¢, Node;, 1, ...,Node, ,,_1},
the m_put DAGs, and therefore d_oes not grov_v with _ Nodes; — {Nodego,Nodex ., ..., Nodeg.n 1}.

A simple example.Before starting the technical explanation ' ' '
of the DAG fusion algorithm, we show a small exampleéWithout loss of generality, we assume> m.
In Fig. 6, the two DAGs in (a) and (b) are optimal for Intuitively, the fusion algorithm tries to find and exploit
multiplying by 45 and 19, respectively. Each of these DAGsmilarities in the topology of the two DAGs. These similar
requires 2 additions, and thus the composite DAG, producezbions are fused and allow the additions DAG; and
by our algorithm and shown in (c), also requitesx{2,2} = DAGpg to time-multiplex the same adder instantiations with
2 additions. With both multiplexers set to select their lefittle hardware overhead. In regions that are not similar, adders
inputs, the active datapaths in this composite DAG correspoaahn still be time-multiplexed by the additions IPAG; and
to DAG (a), and with both multiplexers set to their rightDAGg, but multiplexers must be inserted to connect the
input it corresponds to DAG (b). Note that in the fusiortorrect input sources to the shared adders or to correct for
process, we replaced 2 additions by 2 multiplexers. Sinceddferent shifts of the addition’s operands.
multiplexer requires about half as much combinational areaThe algorithm: Overview. A high level description of the
as an addition (in ASIC), this saves area compared to thesion procedure for 2 DAGs, called FusePairDags, is shown
competing multiplierless solution Fig. 5(b), which, in thisn Algorithm 1. The algorithm enumerates all admissible

{45,19}

I1l. DAG FusION



Algorithm 1 Fusing two DAGs. Input: Two DAGs
DAG,, DAGRg for multiplying with two constantgy, cg; the
DAGs haven and m nodes (additions) respectively; > m.
Output: Fused DAG with small area estimate for the time-
multiplexed multiplication withc;, andcg.

FusePairDAGYDAG, DAGR)

1: bestarea= oo
2: bestdag= nil
3: for all admissible assignmenisof DAG[, to DAGRr do
dag = FusePaiffAG, DAGRg, ¢)
area = EstimateArea(dag)
if area< bestareathen
bestarea = area
bestdag = dag
9: endif
10: end for
11: return bestdag

1 8 4
assignments of Nodgsto Nodeg,. Admissible means that the
1
1 2

Fig. 7. Structure of a worst case minimum-depth DAG.

o N g M

assignment respects the ordering of the nodes in both DAGs.
For each such assignment, the function FusePair merges the
edges oDAG andDAGrg, in the best possible way w.r.t. the
area estimation function EstimateArea, which is explained
later in Section 1lI-B. Finally, the composite DAG with the
lowest estimated area among all enumerated assignments is

returned. Q

We provide additional detail on the node assignment and  (a) (b)

on the .edge merging procedure. T_hen we slightly e.xter&%_ 8. Effect of merging edges: (a) and (b) are merged into (c). The fusion
FusePairDags to the case wh&A G, is already composite. of the upper adders produces no multiplexer, the middle adders produce one,
This extension will serve as the subroutine in the iterative st@pile the lower adders produce two multiplexers.
when mergingV > 2 DAGs.

Node assignment.To fuse DAG; and DAGg, one must i )
assign each node Noglg in DAG 1, to a unique node Node; _node has_two operands (incoming edges)_ and that one of them
in DAG, which means Nodg; and Nodeg,_; will share the is not shn‘_ted._ One of three cases applies at each node as
same addition in the composite DAG. Each assignment is 4Hstrated in Fig. 8:
injective mappinggp : Nodes; — Nodes,, i.e., no two nodes e+ The two incoming edges of the corresponding Noded
in DAG are mapped to the same nodeliAG ;.. Further, to Noder are shifted by the same valuesd belong to the
allow fusion,¢ has to respect the partial orderings imposed by ~same operand (a fused common predecessor node). Then
the dependencies in the two DAGs. In the simplest and most the composite DAG does not need any multiplexers for
common case, bottAG; and DAGy are totally-ordered this node. For example, this case occurs for the upper
(e.g., Fig. 2), which means there &) possible assignments ~ adders in Fig. 8.
#, which FusePairDags will enumerate. With respect to nodes Exactly one of the two incoming edges of the corre-
assignment, the most expensive DAGs have minimum depth sponding Nodg and Node is shifted by the same
relative to the number of nodes, since this produces the least value and belongs to the same operand. In this case one

ordering constraints. For a single-constant DAG witmodes, multiplexer is needed in the composite DAG for this node
the minimal possible depth iflog,(m + 1)]; Fig. 7 shows to accommodate for the remaining dissimilar edges. For
an example of such a DAG. In this worst case scenario, the €xample, this case occurs for the middle adders in Fig. 8
number of admissibleps is n!/([log,(m + 1)]!(n — m)!). as well as for both adders in Fig. 6.

For the constant bit-widths< 20 considered in this paper, < In all other cases, two multiplexers are needed for fusing
n,m < 6 as shown in Fig. 3; thus, the number of admissible the corresponding Nogeand Node; to accommodate
#s cannot exceed 720 and does not impose a computational for different input shifts and/or different operands. For
problem. example, this case occurs for the lower adders in Fig. 8.
Merging Edges. Assume an assignmermt of nodes has Note that FusePair also tries to flip the incoming edges of a
been fixed. The function FusePair then creates a compositele (since addition is commutative) to improve the result.
DAG starting from the input node. Consider the fusion of twdhus, at mosm fusions are tried for each call of FusePair.
addition nodes Nodg; and Nodg ;. Remember that each Subtractions. A DAG may contain subtractions. If two



subtraction nodes are fused, the result is again a subtractfdgorithm 2 Fusing N DAGs. Input: A list DAG[N] of

node. If an addition node and a subtraction node are fuséd,DAGs for constants:y, ..., cy. Output: Fused DAG with
the result is a combined addition/subtraction node, supporté@ area estimate for the time-multiplexed multiplication with
by most macro libraries. Also, if a node is not a pure additiof; - - -, CN-

node, commutativity is lost, and FusePair does not flip edgﬁﬁseNDAGs(DAG[ N,

NumLIterations)
to try to improve area.

Extension to support composite DAG,. To use Fuse- ;: Egiggﬁf nil
PairDags for the iterative fusion aN DAGs, we have to 3: for ,_%_ Nurm.Iterationsdo
generalize it to the case ofl2AG , that is already composite, A
4:  randomly permutdd AG[N]
i.e., that may contain multiplexers before each node.
dag =DAG(1]

The node assignment in this case is the same as in thGé
previous case. The edge merging in FusePair is also ver
similar. In fact, the chances of efficient merging are now_
increased as each node MG, now has several incoming
multiplexed edges. In case a node withv#o-1 multiplexer _
is fused, and a new multiplexer must be added, it becomeslft
(v + 1)-to-1 multiplexer.

Introducing larger multiplexers increases the effort for flnd—
ing an optimal edge assignment, because when adding a new
edge to a multiplexer, the multiplexer has to be checked if th
edge already exists. The cost of this pas®{#) for a v-to-1

for j=2,...,N do
dag = FusePairDAGs(daipAG[j])
end for
cost = EstimateArea(dag)
if cost< bestcostthen
bestcost = cost
bestdag = dag
end if
- end for
'%. return bestdag

multiplexer.
Xy y Y
B. Fusing Multiple DAGs 1 4 1( )4 16( >1
In this section we explain the algorithm for fusiny
constant DAGs in the general casé > 2. The algorithm @ @
is essentially an iterative fusion of 2 DAGs (Algorithm 1)
combined with a search over different orderings of fusing (a) (b) ()
these DAGs. We analyze the impact of reordering the DAGs X y X Y\u
and explain the area estimation function (already used in 1; ;1 1¥ le/f“ %
Algorithm 1) to select the best DAG among the generated 4
alternatives.
The algorithm. Pseudocode for fusingy DAGs is shown
in Algorithm 2 called FuseNDags. The input is an arrayN\of
DAGs, representing the multiplications by thé constants (d) (€
c1,...,cn, and an integer parameter Nuberations. The X y X 4 Y
output is a composite DAG that multiplies lay, 1 <i < N, 1k| ,1/ 4\° 1; @;4\‘1
according to glog, N-bit control input. 31 MUx,” \ MUX
The algorithm loops for Nuniterations to evaluate fusing b'/ \Gr;’]—/
the input DAG array in different randomly chosen orderings. In
each iteration, the randomly permuted input array is fused us-
ing the function FusePairDags in Algorithm 1 repeatedly. The ® (9)

lowest cost DAG among all different orderings is returned. The

cost is again estimated using the cost function EsumateAr{ eeg'DAg'f;f;gnmte?{ge{s Loeffusseeéhr?de) 2/:((13%;323;2;38 éﬁég(rt;)sgg?] (ch) e
Effect of ordering. First, we provide an example that showsusing (a) and (b) and then (c); (e) and (g) show the progression of first fusing

why the order of fusion makes a difference. Fig. 9(a), (b), (¢€p and (c) and then (b).

shows three DAG nodes that are to be fused. Fusing (a) and

(b) first yields (d); then fusing (d) and (c) yields (f). Fusing

(a) and (c) first yields (e); then fusing (e) and (b) yields (gjwo equal cost outcomes are possible; the connectio2$of

which has the same functionality as (f). and 2%y could be switched in (e). Unfortunately, the option
We observe that (g) needs one 3-to-1 multiplexer and onetaken in (e) forces a 3-to-1 multiplexer when attempting to

to-1 multiplexer, whereas (f) needs only two 2-to-1 multiplexfurther fuse (b). Taking the other option (not shown) would

ers and thus less logic. This difference arises in FuseNDdwgyve led to the same optimal result as in (f).

because FusePairDags makes a local decision about wherBo overcome the problem of possibly choosing a clearly

multiplexers are inserted, and these decisions can impact suboptimal solution due to the wrong fusion order, FuseNDags

options available to subsequent calls to FusePairDags for dreumerates Nunterations many orderings. The maximum

remaining DAGs. In this example, when fusing (a) and (chumber of orderings possible i§!, which makes an exhaus-
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above and summing them: (3).
2500 2500 2500
Nmuz Nadd
2000 2000 2000 A= Z Armus bwmuwi + Z Aodd - bwaddi
1500 1500 1500 =1 =1
Nsub Naddsub
1000 1000 1000
+ Z Asub * bwsubi + Z Aaddsub * bwaddsubz- (3)
500 500 500 =1 =1
0 0 0 We assume we fusety DAGs and the fused DAG has an
25 3 35 25 3 35 25 3 35 . . . . .
size a0t size xiof size . Input bit-width of n. In the recursive cost computation on the

composite DAG, we distinguish three cases for the current
Fig. 10.  Representative histograms of estimated areas. Each histogigick:

shows the area distribution (estimated) of 10,000 out of 16! possible different to-1 Multiol Th ltipl h . t h
ordering to fuse 16 randomly selected DAGs with five additions. e v-10- uluplexer. 'ne muluplexer hasv Inputs, eac

corresponding to the input value times the predecessor
fundamentalf; and scaled by a shift;, for 1 < ¢ <
v. The ith input value needs: + log,(f;) + s; bits to

tive search eventually impractical for largé. However, for represent. The multiplexer bitwidth needs to handle the

example forN = 8, FuseNDags only needs on the order of  |argest input value among theinputs. We compute the
seconds on a current workstation to iterate through all possible  maximum input bit-width using the auxiliary terms

fusions of 8 random 16-bit constant DAGs.

To analyze the expected gain obtained by enumerating dif-
ferent orderings, we conducted an experiment on ten different
random sets of sixteen 16-bit constants, each requiring 5
additions (the maximum possible). In each case we fused the bwmux = 10gs (fmux) + 7 — Smux-
DAGs using 10,000 random orderings and evaluated the results
using the area estimation function EstimateArea explained
below. Fig. 10 gives the histograms of three representative
trials among the ten. The difference between the best-case
ordering and worst-case ordering is about 10-15% in each
case. Thus, the expected gain of considering a number of
different orderings is about 5-8%. bwadd = max(logs (fimux) + Simux, 10€ (frmux) + Srmux)

Finally, we note that we explored a “greedy scheme”, which + 1 — max(Simux, Srmux)s  (5)
determined an order of fusion, by fusing those DAGs first
that have the largest overlap when fused with FusePairDags.
However, the method did not improve over selecting a random
order, so we omit a more detailed explanation.

fmux - InaXlSiSm(fiQSi)7 (4)
Smux = Mili<i<m(8i),

and get as bit-width for the multiplexer

Smux IS Subtracted because for a non-zegpy, the least-
significant bits to the multiplexer is hardwired tbfor
all inputs. The numbergnux and smux are also used for
the computations below.

Adder. Following [14],

where Imux and rmux denote the left and right prede-
cessor multiplexer, respectively, and the valyes are
obtained from (4).

- ) ) « Subtractor or Adder/SubtractoAs in (5), but without
Area estimation. Both alg_orlth_ms FusgPaera_gs and  ihe termmax(simux, srmux) because one cannot hardwire
FuseNDags use the area estimation function EstimateArea. ingse |east significant bits as zero in a subtraction as in

This function makes one pass through a given composite 5, gqdition.
DAG and recursively computes the bit-widths needed for We carefully compared the area estimate computed by

each of the occurring multiplexers, adders, subtractors, a@gimateArea with the post-synthesis area. The average error
adder/subtractors. Knowing the bit-width, say for any of was below 10% in all cases

these building blocks, the area can then be estimated in square

micron asa - k, wherea is a constant depending on thec. Analysis
ASIC technology and library used for mapping. In our case,
we mapped to a 0.18n ASIC technology, using Synopsys
Design Compiler v. 2002.05-SP2 and a commercial 0m8
standard cell library, optimizing for area. The constantgere
estimated, respectively, as follows:

In this section we analyze the number of adders and
multiplexers of the fused DAGs generated by our proposed
Algorithm 2 and its asymptotic runtime.

Quality of generated fused DAG.We considerN distinct
single-constant DAGs to be fused and denote with.« the

e v-t0-1 Multiplexer: a,u, = 14v; largest number of adders in any of these DAGs. Further, we
o Adder: a,gy = 67: denote withA(N) and M (N) the number of adders and the

« Subtractoria,,, = 75 number of multiplexers in the composite DAG. By multiplexer
« Adder/Subtractora,ggqsus = 98. we refer to a2-to-1 multiplexer; ann-to-1 multiplexer is

assumed to be built froow — 1 many 2-to-1 multiplexers.

The bit-widthsbw for each block in the composite DAG We have
are computed recursively, starting from the input node, which .
incurs cost 0. The total DAG costl is then obtained by A(N) = Amax, - and (©)
multiplying all bit-widths with the respective constants [logy(N)] < M(N) < 2Amax— 1)(N —1). ()



TABLE |
RUNTIME OF ALGORITHM 2 IN SECONDS FOR VARIOUS NUMBERS OF
CONSTANTS AND CONSTANT BITWIDTHS

150

100
number of constant&/

bitwidth w 4 8 12 16 20

4 0.005 0.005 0.008 0.01 0.014
8 0.006 0.015 0.02 0.02 0.04
12 0.006 0.076 0.33 0.6 1.54
16 0.008 0.573 2.06 6.8 46.0
20 0313 1.057 297 18.9 102.9

501

number of multiplexers

number of constants

Fig. 11. Bounds and average number of multiplexers in DAG fusion for . .
maximum constant bit-width of 16. previous fusion ofV DAGs. The second DAG has additions

andn > m.

Equality (6) holds since our fusion algorithms does not add Runtime(FusePairDAGs}
any adders but only multiplexers. nl(mN + n)

The lower bound in (7) can be derived from the fact <f10g2(m+1)]!(n—m)!) (8)
that every multiplexer added to a DAG can at most double . . . .
the number of possible outcomes. The upper bound in (Z Algorlthm 2 repeats EusePaw[?AGs Numer.anons times.
assumes that in the worst case every fused adder introdu%égs’ fusingV: DAGs using Algorithm 2 requires

two multiplexers. The question may arise WA, — 1) is RuNti

T ntime(FuseNDA!
used instead dfA,, ... The reason is that the first fundamental ! e(Fuse i Gsy- . .
in every single-constant multiplication DAG has an unshifted ~ O(Num.terations V- Runtime(FusePairDAGE) (9)

and a shifted edge to the input node. The unshifted edge cani Runtime(FusePairDAGs) in (8). Note, that in Algorithm 2
used for all other fused DAGs, thus requiring one multiplexghe cost function does not produce any additional computation,
less for each DAG. since the DAGs' estimated costs are already known from
The average number of multiplexers depends on the strygsePairDAGS.
ture of the input DAGs and thus cannot be easily analyzed. To give an idea of the actual runtimes of the implemented
Fig. 11 shows the upper bound, the lower bound and tBgjorithm, we ran benchmarks for all combinations &t
average number of multiplexers. The latter was determingdnstants of bitwidthw with N € {4,8,12,16,20} andw €
empirically by fusing randomly drawn constants with a maxi{47 8,12,16,20} (see Table I). We used Nuiterations = 100.
mum bit-width of16 and counting the multiplexers in the finalpifferent values change the runtime roughly proportionally.
design. Each point in/,., is averaged over00 experiments. The runtimes are in seconds and averages over 20 uniformly
Runtime. The computational cost for fusing two DAGsdrawn sets of constants. For a fixed set of constants, the
DAGr and DAGR using Algorithm 1 can be divided into runtime may differ from this average since it depends on the
the cost for assigning nodes, the cost for merging edges, ajinplexity (number of adders and structure) of the single-
the cost for evaluating the cost function. constant DAGs. The results show that within the space of
Assigning nodes means finding the best node mappiftg  parameters considered, the runtime is negligible in a real-world
two DAGs with n. andm additions respectively, and requiresiesign flow.
O(n!/([logy(m + 1)]!(n — m)!)) operations proportional to
the number of these mappings. Far = n this number is IV. EXPERIMENTAL RESULTS
highest. In this paper we only considet,n < 6; thus, the
maximum number of possibles is 720.
In Section IlI-A the edge merging cost has been sho
to be O(2m) = O(m) for m nodes on two Slngle'Consmmimplementation comprising a full multiplier and a constant

DAGs. For a DAGDAG/, that has been obtain by the previou . ; . i
fusion of NV single-constant DAGS, this cost increases due T;ble (Fig. 5()). Next, we apply Algorithm 2 to single-constant

AGs derived from parallel multiplier blocks [11] of the

the increased number of multiplexer options. In the worst case: in Fig. 4. These single-constant DAGs have maximized

there areO(mN) such options since the largest multiplexer )
L . . common fundamentals. Finally, we compare the performance
possible inDAG/, is now anN-to-1 multiplexer.

. . . . of our generated multiplier blocks against Reconfigurable
Evaluating the cost function on a DAG with additions g P 9 9

: . : > Multiplier Blocks fi in the literat , [5], [7].
requiresO(3n) = O(n) operations, since the cost function ultiplier Blocks found in the literature [3], [5], [7]

makes exactly one pass through the fused DAGs, every addi-

tion can have a maximum of twe-to-1 multiplexers, and the A- Fusing Optimal Single-Constant DAGs

evaluation does not depend on The problem of time-multiplexed multiple-constant multi-
This leads to the following overall runtime for fusing twoplication is parameterized by

DAGs. The first DAG has additions and was obtained by the e n = bit-width of the input to the multiplication block;

This section presents an experimental evaluation of Algo-
rithm 2. First, we apply Algorithm 2 to optimal single-constant
AGs and compare the generated solutions to the baseline



8000 T T T 14000

120001

60001
10000+

area
area

80001
40001

60001

—e—dag fusion —e—dag fusion 1
—=—generic multiplier —s=—generic multiplier
2000 4000

0 5 10 15 20 0 5 10 15 20

number of constants number of constants
@n=8w=8 (b)yn=16,w =28
3 10*
25
8 8
g 2 8
L5y —e—dag fusion 1 —e—dag fusion
—=—generic multiplier 0s ‘ ‘ —s=—generic multiplier
b 5 10 15 20 0 5 10 15 20
number of constants number of constants
(c)n =16,w =16 (dyn =20,w =8
4 4
35% 10 ! , \ ry 52 10 ! ! !
3r 4 M
« 2.5 ©
o o 3r 1
s ] 7/
15F —e—dag fusion g T —e—dag fusion i
—=—generic multiplier 1 ‘ ‘ —=—generic multiplier
lO 5 10 15 20 0 5 10 15 20
number of constants number of constants
(e)n =20,w =16 Hn=20,w=20

Fig. 12. Average synthesized area of fused DAGs and generic multiplier solutions for varying input bitanadth constant bit-widthw.

e w = maximum bit-width of the constants considered; from optimal single-constant DAGs grows approximately lin-

e N = number of constants to be fused. early with N. In all figures, the generated multiplier blocks

In this first set of evaluations, we compare the oufffer an advantage over the baseline for small valuesvof
put of Algorithm 2 against the table-based baseline desigh)weve_r, as the number of constants increases, the linear
(Fig. 5(a)) for all combinations of, € {8,12,16,20}, w € growth in size of_these blocks eventually exceeds the cost of
{8,12,16,20} with w < n, and N € {2,...,20}. For each the baseline design. Furthermore, the crossover valueVfor

combination ofn, w, and N, the comparison is based on thelecreases for increasingdue to the larger, less fusible initial
average result over 10 sets of random constants unifornfrGs. Table Il shows all values ol for those crossover
drawn and with Numiterations = 100. All evaluated de- POINts.

signs are described using structural Verilog and synthesizedt is interesting to note that the DAG fusing approach is
(optimizing for area) using the Synopsys Design Compiléikely to be ineffective on modern field-programmable gate ar-
(v. 2002.05-SP2) for a commercial 048 standard cell ray (FPGA) architectures. Firstly, modern FPGAs offer dense
library. hardwired multiplier macro blocks; this makes a multiplierless

Area. Fig. 12 reports the resulting average synthesizé®lution less attractive. Second, the resource cost of an adder is

areas (in square microns) as a function 6f for different comparable to a multiplexer on an FPGA so that Algorithm 2
combinations of: andw. In the figures, the baseline designyields little gain if a new multiplexer is required to remove an
based on generic multipliers follow a characteristic trer@dder.

where the area cost increases sharply for the first 2 to 3pelay. Fig. 13 reports the resulting average synthesized
constants and then grows slowly afterwards. This is becaysfical path delay (in nanoseconds) corresponding to the
for a small number of multiplicative constants, Synopsys Cafta points in Fig. 12. The critical paths for the generated
flatten the design for logic minimization. For a larger numbeqtiplier blocks are approximately two times greater than
of constants, the multiplier and table structure are left intaghe corresponding baseline designs in all cases. From a per-
and thus only the table structure grows@&V). formance standpoint, one should always utilize the baseline

On the other hand, for the rangewfw and N considered, design especially when optimized multiplier macros cells are
the area cost of the multiplier blocks produced by Algorithm available.
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Fig. 13. Average synthesized critical path delay of fused DAGs and generic multiplier solutions for input bitawadth constant bit-widtho.

TABLE I : . .
set of constants, a given derived single-constant DAG has
CROSSOVER POINTS FOR INPUT BFWIDTH 72 AND CONSTANT . .. . .
BIT-WIDTH in general more additions than an optimal single-constant
DAG from [8]. Consequently, the resulting fused DAG (using

Algorithm 2) will in general require more adders as well. On

constant bit-widthw - .
the other side, the increased number of common fundamentals

Iput Ditwidth ° 2 16 20 may lead to a reduction of the number of multiplexers in the
12 > ;f,’ 1§ - generated multiplier block. We evaluate this tradeoff in the
16 >20 19 19 - following.
0 >20 >20 20 9 We compare the results of fusing MCM-derived single-

constant DAGs versus fusing optimal single-constant DAGs
(Section IV-A) over the problem space spannedrby= w,
E_%. _Fus_ing Single-Constant DAGs Derived from Parallel Muly, < {4,...,20}, N € {2,...,20}. For each combination of
tiplication DAGs w andN, the comparison is based on the average area over 100
Fig. 4 sketches a DAG for the parallel multiple-constarfits Of randomly selected constants using Nterations=100.
multiplication (MCM). For brevity, we call such a DAG MCM- We determine the area cost using the cost function described in
DAG. The algorithm in [11] generates an MCM-DAG bySection [1I-B. Fig. 14 displays the result. The horizontal axes
maximizing the number of common fundamentals between tRrrespond tav and IV, respectively; the vertical axis is the
DAGs of different constants to minimize the total number giré@ advantage of the MCM-derived DAGs in %. The region
adders in the MCM-DAG. From this MCM-DAG, one canWhere the MCM-derived DAGs have an advantage is shaded
extract individual single-constant DAGs by pruning the unusd@ dark gray. The figure shows that gains can only achieved for
portion of the MCM-DAG with respect to a given constantd Small number of constanfs or for short constant bitwidths
The resulting set of single-constant DAGs then can be fustéid In other words, in these cases, the saving of using fewer
by Algorithm 2 to get a multiplier block for the multiplexed multiplexers in fusion overcomes the cost of the extra adders
multiple-constant multiplication. of the MCM-DAGs.
Because the MCM-DAG is globally optimized over the In practice, both methods, i.e., both sets of DAGs, can be
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Fig. 14. Area advantage of fusing MCM-derived DAGs over fusing optimal
DAGs.

TABLE Il
THE SYNTHESIZED AREA OF OUR SOLUTIONYFIG. 16) VERSUS THE
CORRESPONDINGREMBS (FIG. 15).

multiplier block label

@ © @

ReMB (Fig. 15) 16437 9203 7888 5361
DAG Fusion (Fig. 16) 6852 8859 6844 5222

tried due to the fast runtime (see Table I) of Algorithm 2.

(d)

C. Comparison Against Reconfigurable Multiplier Blocks Fig. 15. Example ReMB solutions from (a) Fig. 6 of [5], (b) and (c) Figs. 7
and 8 of [3], and (d) Fig. 6 of [7]. In (c), the bottom mux has one constant-zero

In this section we compare our results to the previousput.
work on Reconfigurable Multiplier Blocks (ReMBs) for mul-
tiplexed multiple-constant multiplication (discussed earlier in ) )
Section 1I-B). Fig. 15 reproduces four ReMB examples frofgxample sets of constants. We see that in synthesized gtandard—
Fig. 6 of [5], Figs. 7 and 8 of [3] and Fig. 6 of [7]. Thecell technology, our tradeoff. betwegn adder and multiplexer
ReMB approach is geared towards FPGAs. Namely, the Remgs.ts leads tq |mplem¢ntat|ons with less area oyerall. We
solutions use in general more adders than the minimal numiéEpiect from this evalu_atlon that for larger constants, i.e., larger
possible in order to map efficiently to the special topology giumber of adders, this advantage becomes more pronounced.
FPGAs. (In particular, a 2-to-1 multiplexer comes free with
each adder in FPGA technologies.) V. CONCLUSIONS

In the example in Fig. 15(a), the ReMB solution uses 5 more We have presented an algorithm to construct area-efficient
adders than our corresponding solution with only 2 adders @nithmetic circuits for time-multiplexed multiple-constant mul-
Fig. 16(a)) based on fusing optimal single-constant DAGS8plication, that is, for the multiplication of a fixed-point input
The remaining three smaller ReMB examples each requivg one of several preset fixed-point constants according to a
1 more adder than the fused-DAG solutions. When mappedntrol input. The starting point to our algorithm is the DAG-
onto an FPGA, our solutions are likely to consume mollgased representations of circuits for multiplying by a single
logic resources because we use more multiplexers, which ammstant. The algorithm reduces the hardware resources by
nearly as expensive as adders on FPGAs. Furthermore, ayrocess we have termed “fusion,” i.e., by time-multiplexing
multiplexers usage do no adhere to any special topology amhé additions required for different constants to reuse the same
therefore cannot be absorbed for free into the constructionaufders in the final fused circuit. This keeps the number of
an adder in an FPGA. adders in the generated blocks constant and only increases the

However, when synthesizing for standard cell technologiesultiplexers used.
the FPGA-specific advantage leveraged by the ReMB algo-Our algorithm is presented in detail including an analysis of
rithm no longer holds. Table Il summarizes the synthesizéis$ time complexity and the quality of its solutions. We showed
area of ReMBs (Fig. 15) versus our solutions (Fig. 16) for thtbat the generated multiplier blocks offer an area advantage
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It is conceivable to further improve on our results using
various heuristics. For example, the optimal single-constant
DAG for a constant is not unique. Considering several or all
possibilities in tandem with our algorithm may yield further
gains. Another possibility would be to consider single-constant
DAGs extracted from MCM-DAGs that have been optimized
for minimum latency, i.e., that have fewer adders on the critical
path. A different interesting direction is an extension of our
method to produce multiplexed multiplier blocks for several
outputs as in [6], [7] for FPGAs. These blocks can be used
for small matrix-vector multiplications and thus, for example,
as building blocks in linear transforms.



