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Wire Retiming Problem with Net Topology
Optimization

Dennis K.Y. Tong, Evangeline F.Y. Young, Chris Chu and Sampath Dechu

Abstract—In this paper, we study the retiming problem of
sequential circuits with net topology optimization. Both intercon-
nect and gate delay are considered in retiming. Most previous
retiming algorithms have assumed ideal conditions for the non-
logical portions of data paths, which are not sufficiently accurate
to be used in high performance circuits today. In our modeling,
we assume that the delay of a wire is directly proportional to
its length. This assumption is reasonable since the quadratic
component of a wire delay is significantly smaller than its linear
component when the more accurate Elmore delay model is used.
A simple experiment was conducted to illustrate the validity of
this assumption. We present two approaches to solve the retiming
problem, both of which have polynomial time complexity. The
first one can compute the optimal clock period while the second
one is an improvement over the first one in terms of practical
applicability. The second approach gives solutions very close to
the optimal (0.06% more than the optimal on average) but in a
much shorter runtime.

The optimally retimed circuit will then be realized physically
by placing the registers and finding the net topologies. In
contrast to many previous works [1], [2] that performed simple
calculations to determine the register positions, our approach can
preserve the optimal clock period obtained by the retiming step
and utilize as few registers as possible. Minimization of register
number saves both area and power in register and clock loading.
Our topology optimization step is shown to be optimal for nets
with four or fewer pins and this type of nets constitutes over
90% of the nets in a sequential circuit on average.

Using the ISCAS89 benchmark, we tested our algorithm with
a 0.35µm CMOS standard cell library. Silicon Ensemble was used
to layout the design with row utilization of 50%. Experimental
results showed that our algorithm could find the best sharing of
registers for a net in most of the cases, i.e., using the minimum
number of registers while preserving the target clock period
obtained by the retiming step, within a minute run on an Intel
Pentium IV 1.5GHz PC with 512MB RAM.

I. INTRODUCTION

Retiming [3] is a useful and popular technique for perfor-
mance optimization of sequential circuits. It relocates registers
to reduce cycle time while preserving the functionalities of
circuits. Much effort has been made to apply this technique in
different areas like power reduction [4], [5], testability [6],
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[7], logic resynthesis [8], circuit partitioning [9]–[11] and
physical planning [12]. Some extended its applicability to
large practical circuits efficiently [13]–[20]. However, most
retiming algorithms have assumed ideal conditions for the
non-logical portions of data paths, specifically ignoring in-
terconnect delay. As process technology gets down to deep
sub-micron, interconnect delay becomes a major factor of
path delay. Without including this delay component, existing
retiming algorithms are not sufficiently accurate to be used
in practical high performance circuits today. Besides, it’s very
important to be able to realize a retimed circuit physically
to achieve the optimal clock period obtained by the retiming
step. In this paper, we study the problem of retiming with both
interconnect and gate delay, and proposed a scheme to realize
an optimally retimed circuit physically to achieve the target
clock period.

The choice of an accurate interconnect delay model is
important. In the papers [21], [22], interconnect delay was
incorporated into the retiming process, but simplified assump-
tions were made such that the interconnect delay between
adjacent registers on the same wire was neglected. Another
approach to integrate retiming into detailed placement was
presented in [1]. After an initial place and route, heuristics
were used to estimate interconnect delay. Retiming and post-
retiming placement were then performed to optimize the
circuit performance. A recent paper [23] by Tabbara et al.
applied retiming in the DSM domain and interconnect delay
was considered. It was done by having a lower bound on
the number of registers on each wire euv, while the delay
at nodes were irrelevant. Registers could be retimed into a
node that represented a component and affected the total area
of the components. Retiming was performed to satisfy the
constraint on the number of registers on each wire while
minimizing the total area of the components. In the paper [15],
a clock skew solution corresponding to an optimal clock
period was converted into a retiming solution which was
guaranteed to be at most one gate delay larger than the optimal
clock period. However, their current approach to perform this
conversion considered only gate delay. Lin et al. [24]–[26]
have considered the retiming problem with linear interconnect
delay model, but they have formulated the problem differently
on chip level with macroblocks, etc.

In our model, the delay of a wire is assumed to be
directly proportional to its length.1 When a wire is short, the

1Please note that the retiming result in section III can also be applied to
other delay models since the result is independent of how the interconnect
delay di j between two gates i and j changes with the length of the wire from
i to j.
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quadratic component of the wire delay is significantly smaller
than its linear component. For a long wire, buffer insertion
can be performed to break the wire into short segments. A
simple experiment was conducted to illustrate the validity
of this assumption and the result was shown in fig. 1. In
this experiment, the Elmore delay model was used and the
parameters were based on the 0.07µm technology. This graph
shows the relationship between wire delay (y-axis) and wire
length (x-axis). If the wire is shorter than 1.46 mm, the error
of using a linear approximation is at most 5.48%. If the wire
is longer than 1.46 mm, the delay can be reduced by inserting
a buffer and the error resulted is even less.

We present two retiming approaches in this paper both
of which have polynomial time complexity. The first one is
extended from the MILP approach in the paper [3] to consider
both gate and wire delay and can solve the retiming problem
optimally, i.e., relocating the registers in a circuit to give the
smallest possible clock period. The second one transforms the
problem into a single-source longest path problem and then
applies a technique to reduce the size of the graph for the
longest path computation. It is an improvement over the first
one in terms of practical applicability. It gives solutions very
close to the optimal (0.06% more than the optimal on average)
but in a much shorter runtime.

After a circuit is retimed, we need to realize it physically.
A net is represented as a branch of edges in a retiming
graph model which does not bear any information about the
net topology and register positions. It is unknown whether
the clock period obtained by retiming can be realized in the
design. Being able to obtain the net topologies and place the
registers to preserve the target clock period is important, or it
will make the retiming optimization meaningless. Minimizing
the number of registers used is also essential as the size
of a register is usually several times larger than that of a
simple gate, regardless of the process technology being used.
There are several previous works on post-retiming register
placement, but many of them suffer from the problem of over-
simplification when wire delay dominates. For example, in [1],
the authors assume that a register is located at the geometric
center of the connected gates. A similar problem occurs in [2]
in which the authors determine the position of a register in
such a way that the sum of the net lengths connected to that
register is minimized.

We devised a scheme to realize a retiming solution physi-
cally to achieve a target clock period, given the gate positions.
This problem involves two main sub-problems, namely, topol-
ogy finding and register placement. As we have mentioned
before, a net is modeled as a branch of edges in the retiming
graph, topology finding refers to the problem of finding an
optimal sharing of registers among the fanout edges of a
net given the geometric positions of the connected gates.
After topology finding, we need to compute an appropriate
position for each register given the constraints in placement
(some occupied areas do not allow register insertion) and this
problem is known as register placement. Given a circuit with
its placement (we used standard cell design in our experi-
ments), retiming is first performed on the circuit to obtain
the optimal clock period, then topology finding and register

No buffer

One buffer

Linear Approx.

Delay (ps)

Wire
length
(mm)

0

50

100

150

200

250

300

350

400

450

500

550

0 0.5 1.0 1.5 2.0 2.5

Fig. 1. A simple experiment to illustrate the relationship between wire delay
and wire length.

placement will be performed to realize the retimed solution
physically. Our approach can find the optimal topology, i.e.,
using the minimum number of registers while preserving the
clock period, for four or fewer pin nets. Since nets with
four or fewer pins constitute, on average, over 90% of the
nets in a circuit, our proposed algorithm offered an agreeable
performance in the experiments. Nearly all the nets had their
best topologies found and registers were inserted successfully
to achieve the target clock period.

The remainder of this paper is organized as follows. We
present the problem statement in Section II. The optimal and
fast approach for the retiming problem are presented in Sec-
tion III-A and Section III-B, respectively. The topology finding
and register placement step are discussed in Section IV-A and
Section IV-B, respectively. Experimental results are shown in
Section V. A conclusion follows in Section VI.

II. PROBLEM FORMULATION

Given a sequential circuit C and its placment ℘, we want to
retime C to obtain the optimal clock period and implement this
retimed solution in ℘ by inserting registers into ℘ and finding
the connection topologies between the gates/registers. This
problem can be divided into two parts: retiming and topology
optimization. We will describe these two sub-problems in
details in the following sections.

III. RETIMING WITH INTERCONNECT AND GATE DELAY

A sequential circuit C can be represented by a directed graph
G(V,E), where each node v corresponds to a combinational
gate, and each directed edge euv represents a connection from
the output of gate u to the input of gate v, through zero or
more registers. Without loss of generality, we assume that G
is strongly connected. If not, we can add a source node s
and connect it to all primary inputs, add a target node t and
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Fig. 2. An example to illustrate the meaning of a(v).

connect all primary outputs to it, and connect t to s. Then the
resulting graph is strongly connected. If we set the delay of
s, t and all the added edges to zero, and set the number of
registers on ets to one and that on the other added edges to
zero, a retiming solution of the modified graph will also be a
valid retiming solution of the original graph as long as e ts still
has one register. Let wuv be the number of registers on edge
euv. Let duv be the interconnect delay of edge euv if all the
registers are removed. Note that the delay of an interconnect
segment is assumed to be proportional to the length of the
segment. Let du be the gate delay of node u.

Traditionally, interconnect delay is ignored during retiming.
A retiming solution can be viewed as a labeling of the nodes
r : V → Z, where Z is the set of integers [3]. The retiming label
r(v) for a node v represents the number of registers moved
from its outputs toward its inputs. After retiming, the number
of registers ŵuv on an edge euv is given by ŵuv = r(v)+wuv −
r(u).

As interconnect delay is dominating in the VDSM technol-
ogy, the exact position of each register will affect the clock
period. A retiming solution should specify both the retiming
label r(v) for each node v and the exact positions of the ŵ uv

registers on each edge euv. Retiming should be formulated as
a problem of determining a feasible retiming solution, i.e.,
a retiming solution in which the number of registers ŵ uv on
each edge euv is non-negative, such that the clock period of the
retimed circuit is minimized. In the following, we show how to
check whether a particular clock period T can be achieved by
a feasible retiming solution. The minimum achievable clock
period Topt can then be found by binary search.

A. An Exact Approach

This approach is extended from the mixed integer linear pro-
gramming (MILP) approach in [3]. In the original formulation,
only gate delay is considered and there is thus no differences
between having one or more than one registers on a wire. Their
technique can be extended to solve the problem with both gate
and interconnect delay optimally by modifying some of the
constraint formulation. In order to formulate the problem as
an MILP, for each gate v, we need to define a term a(v) that
represents the maximum arrival time at the output of gate v.
An example to illustrate this definition is shown in fig. 2. We
can then formulate the problem as the following MILP:

dv ≤ a(v) ∀v ∈V (1)

a(v) ≤ T ∀v ∈V (2)

r(v)+wuv − r(u) ≥ 0 ∀euv ∈ E (3)

a(v) ≥ a(u)+duv +dv −T(r(v)+wuv − r(u)) ∀euv ∈ E (4)

where T is the clock period that we want to check whether
it is achievable. Since a(v) is the longest delay to the output
of gate v from a register connected directly to an input of
v, this delay must be at least the delay of gate v, so dv ≤
a(v) as stated in (1). Besides, this delay cannot exceed the
clock period T as required in (2). Constraint (3) is needed
for a feasible retiming solution. Constraint (4) is to ensure
that enough registers are on each edge euv to achieve a clock
cycle T . As the largest possible delay between two adjacent
registers is T , the right-hand side of constraint (4) is reduced
by T for each register on edge euv. Note that this constraint also
captures the scenario when there is no registers on edge euv.
In that case, the arrival time at node u contributes directly to
the arrival time at node v. In [3], wire delay is not considered,
so we only need to differentiate the cases when a wire has
zero or non-zero registers on it. Therefore, the inequality (4)
is written as a(v) ≥ a(u)+d(v) whenever euv ∈ E and r(u)−
r(v) = w(euv), i.e., whenever an edge euv ∈ E has no registers
on it.

By introducing a variable R(v) at each node v that is defined
as a(v)/T + r(v), the above set of constraints (1)–(4) can be
rewritten as a set of difference constraints as follows:

R(v)− r(v)≥ dv

T
∀v ∈V (5)

R(v)− r(v) ≤ 1 ∀v ∈V (6)

r(u)− r(v) ≤ wuv ∀euv ∈ E (7)

R(v)−R(u)≥ duv

T
+

dv

T
−wuv ∀euv ∈ E (8)

Notice that (5)–(8) is a set of difference constraints in-
volving both integer and real variables. There are |V | real
variables R(v), |V | integer variables r(v), and 2|V |+2|E| con-
straints. This can be solved in polynomial time of O(|V ||E|+
|V |2 lg |V |) if Fibonacci heap is used as the data structure [27].

If the above set of constraints is solvable, the values of r(v)
and a(v) for all v ∈V are known. We can then find the exact
position of each register on a wire one by one as follows.
For each edge euv, if there are registers retimed on it, i.e.,
r(v) + wuv − r(u) > 0, the first register on this edge will be
placed at a distance of delay T −a(u) from the output of gate
u. Other registers are then placed as far from each other as
possible, i.e., at a distance of delay T from the previous one,
until reaching the gate v. All the remaining registers on this
edge are then placed right before v.

B. A Fast Approximate Approach

In this approach, we first replace each gate by a wire of the
same delay and then solve the problem with only interconnect
delay optimally and efficiently. Those registers retimed “into”
a gate are moved either to the input or the output wires of
the gate. The exact positions of the registers on the wires
are then determined by a linear program to minimize the
clock period. The solution obtained by this approach is very
close to the optimal on average as shown by the experimental
results. In the following, we first show how the retiming
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problem with interconnect delay only can be solved optimally.
Then we describe in details how gate delay can be handled
simultaneously.

1) Retiming with Interconnect Delay Only: In this sub-
section, we assume that dv = 0 for all v ∈ V . This problem
with zero gate delay is the same as the maximum cycle
ratio problem, which has been studied in many previous
works [28]–[31] before. We first show that the clock period
feasibility problem can be reduced to a single-source longest
paths problem. We then present a fast algorithm to solve the
longest paths problem. We solve the set of constraints (5)–(8)
with the help of the following lemma.

Lemma 1: Assume that dv = 0. Given R(v) for all v ∈ V
satisfying constraint (8), we can obtain a solution to constraints
(5)–(8) by setting r(v) = �R(v)� for all v ∈V .

Proof: It is clear that 0 ≤ R(v)−�R(v)�< 1 for all v∈V .
Therefore, (5) and (6) are satisfied. For any euv ∈ E,

r(u)− r(v) ≤ R(u)− r(v) as r(u) ≤ R(u)

≤ (
duv

T
+R(u))− r(v) as

duv

T
> 0

≤ (wuv +R(v))− r(v) by constraint (8)

< wuv + 1 as R(v)− r(v) < 1

As r(u)− r(v) is an integer, it must be less than or equal to
wuv. Hence, constraint (7) is also satisfied.

Lemma 1 implies that we can first solve constraint (8) to find
R(v) and it is then easy to find r(v) to satisfy the other three
constraints. Notice that if dv �= 0 for some v ∈ V , Lemma 1
does not hold as constraint (5) is not satisfied. This technique
is similar to that used in [30] to find an approximately optimal
retiming in a non-unit-delay circuitry with gate delay only. The
problem of finding R(v) for all v ∈V to satisfy constraint (8)
can be viewed as a single-source longest paths problem on
G with length luv equals duv/T −wuv for each euv ∈ E. As G
is strongly connected, we can pick an arbitrary node as the
source node s.2 Note that edge lengths can be positive. If G
has a positive cycle, the set of constraints has no solutions. It
means that the clock period T is infeasible.

The single-source longest paths problem in Section III-B1
can be solved by the Bellman-Ford algorithm [32] and the
time complexity is O(|V ||E|). This algorithm may still be slow
in practice. An interesting idea of using small feedbacks to
speed up the Bellman-Ford algorithm is found in [33] with
time complexity O(|E||E−|) where E− is the set of edges in
G with negative weights. In this section, we present a single-
source longest paths algorithm which is faster in practice. The
basic idea is to reduce the size of G by compacting some paths
into edges before the Bellman-Ford algorithm is applied. The
details are given below. We first transform the graph G(V,E)
into a directed acyclic graph (DAG) G ′(V ′,E ′) by performing
a depth-first traversal [32] starting from the source node s. The
depth-first traversal defines a tree in G. Those non-tree edges
running from a node u to an ancestor v of u are called back
edges. If we point all incoming back edges of a node v to an
extra node v′, the resulting graph will be a DAG because every

2If the original circuit is not strongly connected, a source node s has already
been added.
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Fig. 3. An example to illustrate the transformation to a DAG.

simple cycle in G involves at least one back edge. Formally,
we use Eb to denote the set of back edges and Vb to denote
the set of nodes with an incoming back edge. For each node
v in Vb, we introduce an extra node v ′. The back edge euv

is removed from the graph and the edge euv′ is added. The
resulting DAG is G′(V ′,E ′) where V ′ = V ∪{v′|v ∈ Vb} and
E ′ = (E −Eb)∪{eu,v′ |eu,v ∈ Eb}. We set the length luv′ of the
edge euv′ to luv. To illustrate the transformation, consider the
graph G in fig. 3(a) with source node A. Suppose the depth-
first traversal visits the nodes in the order ACDEFB. Then
Eb = {eDA,eCA,eFC,eFA} and Vb = {A,C}. We introduce two
extra nodes A′ and C′, and replace the four edges eCA, eDA, eFA

and eFC with the edges eCA′ , eDA′ , eFA′ and eFC′ , respectively.
The resulting DAG is shown in fig. 3(b).

We then construct a graph H with node set Vb. The edge
set EH contains an edge euv for u,v ∈Vb if there exists a path
from u to v in G with either no back edge or one back edge
at the end. The length of the edge euv in H (lH

uv) is the longest
path distance among those paths. Note that the longest path
distance from u to v in G with no back edge (respectively,
with one back edge at the end of the path) equals the longest
path distance from u to v (respectively, from u to v ′) in G′.
Hence lH

uv for all u,v ∈ Vb can be computed by solving |Vb|
single-source longest paths problems in G ′ for different source
nodes in Vb. As G′ is a DAG, each single-source longest paths
problem can be solved in linear time by visiting the nodes
in topological order. The time complexity to construct H is
therefore O(|Vb||E|).

It is obvious that every path in H corresponds to at least one
path in G of the same length. Therefore if H contains a positive
cycle, G will also contain a positive cycle. On the other hand,
if G contains a positive cycle, the cycle can be broken up into
a set of paths p1, p2, . . . , pk such that both endpoints of each
path pi are in Vb. Notice that each path pi corresponds to an
edge in H of at least the same length. So H must also contain
a positive cycle. Therefore we can solve the positive cycle
detection problem on H instead of on G. If H has no positive
cycles, R(v) for all v ∈Vb can be found from H. R(v) for all
v ∈ V −Vb can then be found in linear time by propagating
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R(v) for all v ∈Vb through G′ in topological order.
The most time consuming steps are step 7 and step 8 inside

the binary search loop. Step 7 can be done in O(|Vb||E|) time
as discussed above. Step 8 can be done in O(|Vb||EH |) time
by the Bellman-Ford algorithm. As Vb contains much fewer
nodes than V and EH usually contains comparable or fewer
edges than E, this technique is usually more efficient than
applying the Bellman-Ford algorithm to G directly. The total
time complexity is O(|Vb|max{|E|, |EH |} lg K

εTopt
), where ε is

the error bound for the binary search, K is the difference
between the upper and lower bounds of the clock period
initially, and Topt is the optimal clock period. Notice that the
number of iterations in the binary search, i.e., the logarithmic
term, can be reduced by finding the maximum delay-to-register
ratio which is a lower bound to the minimum clock period [30].

Algorithm I-Retiming()
/* Retime a sequential circuit with interconnect delay only to */
/* achieve the minimum possible clock cycle with an error */
/* bound ε. */
Input: A sequential circuit C with interconnect delay only
Output: An optimally retimed circuit of C
1. Build graph G(V,E) from C
2. Build DAG G′ by DFS(G)
3. Cup = a feasible clock, Clow = an infeasible clock
4. Do
5. T = (Cup +Clow)/2
6. Update edge lengths of G′ according to T
7. Build graph H(Vb,EH) with

EH = {euv|u ∈ anc(v)∪anc(v′) in G′}
by finding single-source longest paths in G′

8. If H does not have any positive cycle then
9. Cup = T
10. Else
11. Clow = T
12. while (Cup −Clow)/Cup > ε
13. T = Cup // Cup is always a feasible clock period
14. Compute R(v) and r(v) for each node v ∈V
15. Compute the exact position of each register on a wire

2) Retiming with Interconnect and Gate Delay: In this sec-
tion, we discuss how to consider interconnect and gate delay
simultaneously based on the above algorithm for interconnect
delay only. To consider gate delay, we first represent a gate
v with delay dv by a wire ev1v2 with delay dv1v2 = dv. This
transformation for the circuit in fig. 3(a) is shown in fig. 4(b).
We can then obtain an optimal retiming on this transformed
circuit G̃ using the algorithm in Section III-B1. However the
retiming solution obtained on G̃ may not be feasible for the
original circuit G because some registers may be retimed into
a wire that represents a gate. Therefore, we need to perform
a post-processing step to get back a feasible retiming solution
for G from the optimal retiming solution for G̃. This is done
by linear programming.

First of all, we move the registers in a gate either backward
to the input wires or forward to the output wires of the
gate, depending on which direction has a shorter distance. An
example showing the relocation of registers is given in fig. 5.
After this relocation step, the number of registers ŵuv on each
edge euv is fixed. A linear program is used to determine the
exact positions of the registers on the edges. Alternatively,
the method in [26] can be used to minimize the clock period
when the r values are unchanged in O(|V |2|E|) time. The
objective of the linear program is to minimize the clock period
T subject to the constraints in register count on each edge. In
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the following, we use xk
uv to denote the delay from the kth

register to the k+1st register of the wire from node u to node
v in G for k = 0,1, . . . , ŵuv . Notice that when ŵuv = 0, x0

uv is
the delay of the whole wire; and when k = 0 and k = ŵuv > 0,
xk

uv are the delays of the wire from node u to the first register
and from the last register to node v, respectively. The linear
program is formulated as follows:

Minimize T
Subject to ∑ŵuv

k=0 xk
uv = duv ∀euv ∈ E (9)

xŵuv
uv +dv ≤ a(v) ∀euv ∈ E s.t. ŵuv > 0 (10)

a(u)+ x0
uv ≤ T ∀euv ∈ E s.t. ŵuv > 0 (11)

a(u)+duv ≤ a(v) ∀euv ∈ E s.t. ŵuv = 0 (12)

For the circuit in fig. 5(b), example constraints are x0
CD +

x1
CD = dCD for type (9), x1

CD + dD ≤ a(D) for type (10),
a(C) + x0

CD ≤ T for type (11), and a(B) + dBD ≤ a(D) for
type (12). We can solve this linear program to obtain the best
possible clock period T ∗ under the register count constraint on
each edge. Notice that this linear program can solve the sub-
problem of finding the best possible position of each register
on a wire optimally to minimize the clock cycle only when the
register count on each edge is fixed, but the overall approach of
handling both interconnect and gate delay is not optimal. The
overall algorithm IG-Retiming() to handle both interconnect
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and gate delay is summarized as follows:

Algorithm IG-Retiming()
/* Retime a sequential circuit with both interconnect and gate */
/* delay to achieve a clock cycle very close to the minimum. */
Input: A sequential circuit C with both interconnect and gate delay
Output: A retimed circuit of C
1. Build graph G from C
2. Build G̃ by replacing each gate in G by a wire of the same delay
3. Solve the retiming problem of G̃ by I-Retiming()
4. Move registers away from wires that represent gates
5. Set up a linear program based on the register count on each edge
6. Solve the linear program to obtain a feasible retiming solution

and the smallest possible clock period T∗

IV. FLOP TOPOLOGY OPTIMIZATION

After retiming, we need to realize the circuit physically so
that the optimal clock period obtained by retiming can be
achieved. Given a retiming solution of the circuit (i.e., a target
clock period T , a retiming label r(v) at each gate v and the
maximum arrival time a(v) at the output of gate v) and the
positions of its gates, we want to find the topologies of the
nets and place the registers to realize the circuit, preserving
the target clock T as much as possible.

Now, consider a net N(s,D,L) in the retimed circuit, where
s denotes the driving gate, D denotes the set of all driven
gates, and L denotes the set of interconnections between s and
each of the gates di ∈ D. Obviously, {s}∪D ⊆V and L ⊆ E.
For each edge esdi ∈ L, we have a value ŵr(s,di) representing
the number of registers along the edge esdi after retiming. The
problem is to insert the minimum number of registers for this
net into the circuit such that the target clock period is preserved
as much as possible. This problem comprises two main sub-
problems known as topology finding and register placement.
Topology finding is the problem of finding a topology, ϒ N , of
a net N given the exact geometric positions of the gates such
that the minimum number of registers will be used and the
target clock period will be preserved. Register placement is
the problem of finding a position for each register given the
topology ϒN of net N.

A topology ϒN = (P,K) is a tree (an acyclic graph with no
designated root yet) that describes the structure of net N on the
plane. Each node p∈ P corresponds to either a combinational
gate or a register, and each edge kuv ∈ K represents a physical
connection between gate/register u and gate/register v. Each
node p ∈ P that has only one adjacent node in ϒN , i.e.,
deg(p) = 1, represents a combinational gate while an internal
node p ∈ P that has more than one adjacent nodes, i.e.,
deg(p) > 1, represents a register. In fig. 6, an example of
a 4-pin net in which each source-to-sink edge has a register
after retiming is shown. There are five possible register sharing
topologies in this example: (i) all the edges share a single
register (maximum sharing) as shown in fig. 7(a); (ii) each
edge has its own register (no sharing) as shown in fig. 7(b);
and (iii) for the rest three equivalent cases, two edges share a
single register while the other one has a separate register, as
shown in fig. 7(c).

Although we can always identify the topology tree which
has the maximum sharing of registers for a net, it is not always
possible to place the registers on a chip using that topology

Fig. 6. Graph model of a 4-pin net obtained after retiming in which each
edge has a register.

(a) A single register is shared between the edges (maximum
sharing).

(b) Each edge has a separate register (no sharing).

(c) Two edges share a register while the other edge has a
separate one.

Fig. 7. Five possible register sharing topologies. The topology tree of each
configuration is shown on the right.

while preserving the target clock period. Using case (a) in
fig. 7 as an example, suppose the clock period resulted from
retiming, T , equals 1.5 units and the positions of the gates u,
a, b and c are (0,0), (−3,0), (0,3) and (3,0) respectively, as
depicted in fig. 8. Obviously, it is impossible to share a single
register among the three edges without clock violation. Three
separate registers have to be allocated and inserted exactly
at (−1.5,0), (0,1.5) and (1.5,0) for edge eua, eub and euc

respectively in order to achieve the optimal clock period T .
Even if we have a feasible topology tree, it can happen that

the suggested position for a register has been occupied, and we
have to look for another appropriate position. The following
sections will address how a feasible topology tree can be found
and how the positions of the registers can be obtained.

A. Topology Finding

In this section, an algorithm is proposed to find the topology
of a net given the constraints in placement such that the
maximum sharing of registers is achieved and the clock period
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Fig. 8. A situation in which the registers cannot be shared in order to preserve
the clock period T = 1.5 units.

Fig. 9. The retiming graph model (left) and the corresponding best possible
topology ϒNopt (right) of a 4-pin net example.

is preserved. This method can find the optimal topology for a
net with four or fewer pins, and can give near-optimal solution
for a net with five or more pins according to the experimental
results.

Given a net N(s,D,L), a clock period T , and the maximal
arrival time at the output of gate v, a(v), we can obtain a
feasible topology tree of N, ϒN , as follows. First, we construct
the best possible topology ϒNopt for N, i.e., a topology having
the minimum number of internal nodes (an internal node rep-
resents a register). Obviously, the number of internal nodes in
ϒNopt equals Q = maxdi∈D{ŵr(s,di)}, where ŵr(s,di) denotes
the number of registers on edge esdi after retiming. We label
each internal node as fi representing the i-th register on the
net counting from the source s for 1 ≤ i ≤ Q. An example of
the retiming graph model and the corresponding best possible
topology ϒNopt for a 4-pin net is shown in fig. 9.

We call the region on the plane where a register f can be
placed the candidate region of f and is denoted by D( f ). For
consistency, the candidate region D(v) of a combinational gate
v is the position of v itself, i.e., its coordinates (xv,yv), since
v is already fixed in the placement. An δ-extended region of
a region ℜ, denoted by R+δ(ℜ), is the region on the plane
at a distance δ or less from some point in ℜ, assuming that
the distance between two points is measured by their shortest
Manhattan distance.

Besides, we define an adjacent-gate region for each node
p in a topology tree, denoted by A(p), as an δ-extended
region from its candidate region D(p), i.e., A(p) = R+δ(D(p))
where δ is defined differently for different types of nodes. The
physical meaning of A(p) refers to the region on the plane
that encompasses all the possible positions of an adjacent gate
of p. The value δ for the A(p) of a node p is described as
follows. If node p is an internal node, δ equals T . If node p
represents a driven gate, δ equals a(p)−d p. Otherwise, node p

1f

s

s(y ) = 1
s(y ) = 2
Q = 2

1y
1d

3

2

A(d  )

A(d  )

f21

d

2

1

2

3A(d  ) = y

2

1

(b)(a)

1n

2n

3d

2d

1

f

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

d

ds

Fig. 10. An example illustrating the SetY and ChangeTree process.

represents a driving gate, and we set δ to T −a(p). Notice that
all these regions are 45◦-rotated rectangles on the rectilinear
plane because of the Manhattan distance measurement.

Starting from the best possible topology ϒNopt , we will mod-
ify the topology tree incrementally until an optimal feasible
topology ϒN is obtained for net N. First of all, we choose the
node that represents the driving gate s as the root in ϒNopt and
direct all the edges away from s. Then, we will process each
internal node fi in ϒNopt from i = Q to i = 1, i.e., from the
furthest register to the closest one, in the following manner.
For each internal node f i with a set of children q1, . . . ,qm,
find a minimal set of the overlapping regions between A(q j)
for 1 ≤ j ≤ m, denoted by Ymin = {y1, . . . ,yk}, such that the
union of the elements in Ymin covers at least one point from
each region A(q j). For each yl in Ymin, we call the number of
regions that has at least one point in yl as the size of yl , denoted
by s(yl). An example is shown in fig. 10(a). The elements in
Ymin are then sorted in a non-ascending order of their sizes.
The set Ymin can be found by the following procedure SetY:

Algorithm SetY( fi, ϒN)
/* Find the Ymin of an internal node fi in a topology tree ϒN . */
Input: An internal node fi with children q1, . . . ,qm in ϒN
Output: Ymin
1. Ymin = /0
2. Add A(q1) to Ymin, i.e., y1 = A(q1)
3. For j = 1 to m
4. overlapped = f alse
5. For l = 1 to |Ymin|
6. If (yl ∩A(q j) �= /0)
7. yl = yl ∩A(q j)
8. Sort the elements in Ymin in a non-ascending order of

their sizes
9. overlapped = true
10. Break
11. End if
12. End for
13. If (overlapped = f alse)
14. Increment |Ymin| by 1
15. Add A(qj) to Ymin at the end, i.e., y|Ymin| = A(q j)
16. End if
17. End for

Notice that the union of the elements in Ymin covers at least
one point from each region, A(q j), for 1 ≤ j ≤ m. Next, we
can remove all the edges from f i to its children q1, . . . ,qm in
ϒNopt , and split the node fi into k new internal nodes, n1, . . . ,nk,
where node nl corresponds to element yl in Ymin for 1 ≤ l ≤ k.
In addition, we will assign region yl as the candidate region
of nl , i.e., yl = D(nl), for 1 ≤ l ≤ k. Starting from the yl with
the largest size in Ymin, an edge is added from nl to each q j
that has no parent node yet and has A(q j) covered by yl . This
step is repeated until all the yl have been processed. Finally,
an edge is added from the parent node of f i to every newly
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created internal nodes nl and fi will then be removed from
the topology tree. An example is shown in fig. 10(b). The
above operations are described by the procedure ChangeTree
as follows.

Algorithm ChangeTree( fi, Ymin, ϒN)
/* Modify a topology tree ϒN by replacing an internal node fi */
/* by several other nodes. */
Input: An internal node fi in ϒN and the corresponding Ymin
Output: A modified topology tree
1. Remove all the edges from fi to its children q1, . . . ,qm in ϒN
2. Instantiate k new internal nodes, n1, . . . ,nk , where k = |Ymin|
3. Assign region yl as the candidate region of nl , i.e.,

yl = D(nl)∀1 ≤ l ≤ k
4. For l = 1 to k
5. For j = 1 to m
6. If (yl ∩A(q j) �= /0 and qj has no parent node yet)
7. Add an edge from nl to q j
8. End if
9. End for
10. Add an edge from the parent node of fi to nl
11. End for
12. Remove fi
13. Output(ϒN )

After visiting all the internal nodes f i in ϒNopt and modifying
the topology as described above, we will get a new topology
tree ϒN at the end. The whole algorithm of topology finding
of a net N is described in the following procedure TopTree.

Algorithm TopTree(N)
/* Construct a feasible topology tree ϒN of a net N. */
Input: A net N in a circuit
Output: A topology tree ϒN for N
1. Construct the best possible topology tree ϒNopt for net N
2. ϒN = ϒNopt

3. For i = Q to 1 where Q is the number of internal nodes in ϒNopt

4. Ymin = GetY( fi, ϒN)
5. ϒN = ChangeTree( fi, Ymin, ϒN)
6. End for
7. Output(ϒN )

To prove the correctness of the above algorithms, i.e., the
statement of Theorem 1, we need to prove the following three
lemmas first.

Lemma 2: Given a set of n 45◦-rotated rectangles R1, . . . ,
Rn on a rectilinear plane, if R1 ∩ . . .∩Rn �= /0, then R+x(R1)∩
. . .∩R+x(Rn) �= /0, where x is a non-negative real number.

Proof: Since R1 ∩ . . .∩Rn ⊆ R+x(R1)∩ . . .∩R+x(Rn), the
argument follows.

Lemma 3: Given a set of n 45◦-rotated rectangles R1, . . . ,
Rn−1 and S on a rectilinear plane, if S∩Ri �= /0 for 1≤ i≤ n−1
and R1 ∩ . . .∩Rn−1 �= /0, then S∩ (R1 ∩ . . .∩Rn−1) �= /0.

Proof: It can be proved by induction. For the base case
when n = 3, consider three 45◦-rotated rectangles R1, R2 and S
on a rectilinear plane. If R1∩R2 �= /0, there are only four ways
that R1 and R2 overlap with each other, as shown in fig. 11.
It is easy to see that in each case if S∩R1 �= /0 and S∩R2 �= /0,
S∩R1∩R2 �= /0. When n > 3, let R′

n−2 = R1∩ . . .∩Rn−2 �= /0. By
the inductive hypothesis, S∩R ′

n−2 �= /0. Since, S∩Rn−1 �= /0 and
R′

n−2 ∩Rn−1 �= /0, we can conclude that S∩R′
n−2 ∩Rn−1 �= /0,

i.e., S∩ (R1 ∩ . . .∩Rn−1) �= /0, following a similar argument as
in the case for n = 3.

Lemma 4: Given two 45◦-rotated rectangles, A and B, on a
rectilinear plane, we denote the n times T-extended regions of
A and B as An and Bn respectively, i.e., An = R+(n×T)(A) and

R R R
R

R

R

R

R

ji i
j

i

j

i

j

Fig. 11. Four possible ways that two 45◦-rotated rectangles overlap

Bn = R+(n×T)(B). Suppose A∩B = RAB �= /0, we denote the
n times T-extended region of RAB by (RAB)n, i.e., (RAB)n =
R+(n×T)(RAB). It is claimed that if there exists a point x ∈
An ∩Bn, x ∈ R+T ((RAB)n−1) for all n ≥ 1.

Proof: We prove by induction on n.
Base case:

Consider the case when n = 1. Suppose x ∈ A1 ∩ B1, the
T -extended region from the position of x is given by R +T (x).
Obviously, R+T (x)∩A0 �= /0 and R+T (x)∩B0 �= /0 because x ∈
A1 ∩B1. Since A0 ∩B0 �= /0 (because A0 = A,B0 = B and A∩
B �= /0), R+T (x)∩ (A0 ∩B0) �= /0 by lemma 3. Therefore, x ∈
R+T ((RAB)0) and the claim is true.
Inductive step:

Assume that the claim is true for n = j− 1, where j is a
positive integer ≥ 2, i.e., if there exists a point x∈A j−1∩Bj−1,
x ∈ R+T ((RAB) j−2). Consider the case when n = j. Given a
point x ∈ A j ∩Bj, the T -extended region from x is denoted by
R+T (x). Obviously, R+T (x)∩Aj−1 �= /0 and R+T (x)∩Bj−1 �= /0
because x ∈ A j ∩Bj. By lemma 2, since A0 ∩B0 �= /0, Aj−1 ∩
Bj−1 �= /0. Therefore, R+T (x)∩(Aj−1 ∩Bj−1) �= /0 by lemma 3.
By the induction hypothesis, if R+T (x)∩ (Aj−1 ∩Bj−1) �= /0,
R+T (x)∩R+T ((RAB) j−2) �= /0. Therefore, x ∈ R+T ((RAB) j−1).

Theorem 1: The proposed algorithm TopTree() can find a
topology that maximizes the sharing of registers for an i-pin
net, where 2≤ i≤ 4, and the target clock period T is preserved.

Proof: We prove the three possible cases one-by-one.
Case 1: i = 2

This case is trivial because there is only one source s, one
sink t1 and one edge est1 in a 2-pin net, and there is no other
edges to share registers with. The algorithm will start from the
furthest internal node fQ and take the adjacent-gate region of
t1, A(t1) = R+(a(t1)−dt1)(D(t1)), as the candidate region of fQ,
i.e., D( fQ) = A(t1). Next, the algorithm will process node fQ−1

and take the adjacent-gate region of fQ, A( fQ) = R+T (D( fQ)),
as the candidate region of fQ−1, i.e., D( fQ−1) = A( fQ).

By substitution, D( fQ−1) can be represented as an ex-
tended region from the position of the sink t1, D( fQ−1) =
R+((a(t1)−dt1)+T )(D(t1)). The algorithm repeats the above steps
until it reaches the first internal node f1 where D( f1) =
R+((a(t1)−dt1)+(Q−1)×T)(D(t1)). Since the retiming solution is
valid, the interconnect delay between s and t1 will not exceed
(T − a(s)) + ((Q− 1)× T )+ (a(t1)− dt1). Therefore, the al-
gorithm can find the candidate region for every register and
return the best possible topology when it terminates.
Case 2: i = 3

Given a 3-pin net, let s be the source, and t1 and t2 be the
two sinks. Let ŵr(s, t1) and ŵr(s, t2) be p and q respectively,
where 1 ≤ p ≤ q. Suppose that there exists a topology tree of
maximum register sharing for the 3-pin net such that the first
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k registers, where 1 ≤ k ≤ p, are shared (notice that if the k-
th register can be shared, the h-th register can also be shared
where 1 ≤ h ≤ k), but that the algorithm cannot find such a
topology.

Since the algorithm cannot find that optimal topology, it
must fail to find an overlapping region for the k-th reg-
ister to be shared. At the point of failure, the algorithm
should find that the regions R+((a(t1)−dt1)+T×(p−k−1))(t1) and
R+((a(t2)−dt2)+T×(q−k−1))(t2) do not overlap. However, these
two regions encompass all the possible positions for the k-th
register from t1 and t2 respectively such that the clock period T
will not be violated. Therefore, should the k-th register be able
to be shared as assumed, it must lie within these two regions
and the algorithm must be able to find it. Contradiction occurs.
Case 3: i = 4

Given a 4-pin net, let s be the source, and t1, t2 and
t3 be the three sinks. Let ŵr(s,t1), ŵr(s,t2) and ŵr(s, t3)
be p, q and r respectively, where 1 ≤ p ≤ q ≤ r. Suppose
the algorithm is attempting to share the k-th register where
1 ≤ k ≤ p, i.e., it is trying to find a minimal subset of the
overlapping regions such that it covers all the extend regions
R+((a(t1)−dt1)+T×(p−k−1))(t1), R+((a(t2)−dt2)+T×(q−k−1))(t2) and
R+((a(t3)−dt3)+T×(r−k− 1))(t3), denoted by A, B and C respec-
tively. Notice that we only consider when k ≤ p and assume
that the three paths from s to t1, t2 and t3 are not merged yet
(i.e., no sharing of registers from k + 1 to r). Otherwise, the
situation will fall into case 1 or case 2 as discussed above.

There are 4 distinct sub-cases. First, A, B and C are disjoint.
It means that the k-th register cannot be shared and the
algorithm will introduce three new internal nodes to represent
the registers and continues with the next internal node f k−1.
Second, A, B and C overlap with each other. It means that the
k-th register can be shared among t1, t2 and t3. The algorithm
will introduce a single internal node to represent the register
and continues. The correctness of the algorithm in these two
cases is trivial and will not be elaborated.

The third sub-case is, without loss of generality, that A∩B �=
/0 and B∩C �= /0 but A∩C = /0. Denote the region A∩B as RAB

and the region B∩C as RBC. There are three possible options
that the algorithm can choose from when evaluating the k-th
register: (i) it does not share the k-th register and introduces
three different registers for the sinks; (ii) it shares the k-th
register between t1 and t2 but a separate one for t3; (iii) it
shares the k-th register between t2 and t3 but a separate one
for t1. Our algorithm will choose arbitrarily between (ii) and
(iii) (since RAB and RBC have the same size and their order in
Ymin is arbitrary), but it will never choose (i). We assume that
the algorithm chooses (ii) in the following analysis.

First, we compare the choices of (i) and (ii). Notice that
(i) can be better than (ii) only when the three separate paths
can be merged together at a subsequent step when register h
is being processed where 1 ≤ h < k, while the combined path
of (t1 and t2) and the path of t3 cannot be merged at the h-th
register. We are going to show that this will not happen.

If we choose (i), suppose that there exists a point x on
the plane such that x ∈ A j ∩ Bj ∩Cj, where A j, Bj and Cj

represent the j times T -extended regions of A, B and C
respectively, during a subsequent step when register h is being

processed where 1 ≤ h < k. By lemma 4, it is shown that
x ∈ R+T ((RAB) j−1), where (RAB) j−1 is the ( j − 1) times T -
extended region from RAB. This means that if it is possible to
share the h-th register among the three edges without sharing
the k-th register at the first place, by choosing (ii), i.e., to share
the k-th register between t1 and t2, the algorithm will also be
able to share the h-th register among the edges. Therefore, (ii)
is better than (i) by sharing more registers.

Next, we compare the choices of (ii) and (iii) similarly.
Consider at a subsequent step when register h is being pro-
cessed where 1 ≤ h < k. Suppose we choose (iii) and there
exists a point x on the plane such that x ∈ A j ∩ (RBC) j, where
Aj and (RBC) j represent the j times T -extended regions of
A and RBC respectively. Obviously, there exists a point y
covered by A j ∩Bj ∩Cj, i.e., y ∈ A j ∩Bj ∩Cj. By lemma 4,
y ∈ R+T ((RAB) j−1), i.e., y ∈ R+T ((RAB) j−1)∩Cj, so the h-th
register can also be shared among the three edges by choosing
(ii). Therefore, (ii) is no worse than (iii). As a result, the
algorithm will find the optimal solution by choosing arbitrarily
either (ii) or (iii).

Finally, if two pairs of the regions overlap while the other
is disjoint, i.e., A∩B �= /0 but A∩C = /0 and B∩C = /0, the
analysis is similar to the third sub-case above.

B. Register Placement

In this section, we discuss how registers are actually placed
using the topology tree yielded from the algorithm TopTree().
Since some parts of the chip are occupied, we need to know
where on the chip a register can be placed. To tackle this
problem, we divide the chip into a mesh of m × n grids.
For each grid gi j, we keep track of its center coordinates,
(xgi j ,ygi j ), and the size of the free space in the grid, F(gi j).

Given a topology tree ϒN , choose arbitrarily an internal
node f to be the root of ϒN , and direct the edges of ϒN

away from f . Starting from the root f , we choose a grid
whose center is contained in D( f ), i.e., the candidate region
for placing the register f , and it has the largest free space
available. We denote this grid as g( f ). If F(g( f )) ≥ z, where
z denotes the size of a register, we take the center of g( f )
as the position of register f . Otherwise, we allow a controlled
degree of inaccuracy by extending D( f ) one grid width further,
i.e., R+gw(D( f )), where gw represents the width of a grid, by
repeating the same process with R+gw(D( f )) instead of D( f )
in searching of a feasible grid for placing register f . If no
such grid is found, the placement of this register is reported
as unsuccessful. This could happen because the register counts
may increase greatly after retiming.

Let q1, . . . ,qm be the set of nodes which are the children
of f in the topology tree ϒN . After fixing the position of f ,
register q j, for 1 ≤ j ≤ m, is placed arbitrarily in its candidate
region D(q j) provided that it is at a distance T or less units
from f . After visiting all the internal nodes of ϒN , the position
of each register is fixed.

Suppose we have a 3-pin net N(s,D,L) and its topology tree
ϒN is shown in fig. 12. The topology tree ϒN shows that the
two driven gates d1 and d2 will share two registers represented
by the internal nodes f1 and f2. In this example, we assume
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Fig. 13. An illustration of the register placement procedure.

that T = 3 units. Consider a 5×5 mesh as shown in fig. 13,
where the driving gate s and the two driven gates, d 1 and
d2, are assumed to be at the centers of the grids containing
them correspondingly, i.e., gate s is located at (4,0), gate d 1

is located at (0,4) and gate d2 is located at (2,4). Suppose ϒN

is rooted at node f1 and the algorithm has fixed its position
at (1,0), let us examine how the position of f2 is determined.
The candidate region D( f2) of f2 covers the centers of grids
g03, g04, g12, g13, g14, g23 and g24. Then starting from the
position of f1, the algorithm expands a rectangle of distance
T from it, denoted by R+T ( f1) as shown. Next, the algorithm
will find that D( f2)∩R+T ( f1) is not empty and covers the
center of grid g12 and g13 - the candidate positions of register
f2. Assuming that the free space of g12 is greater than that of
g13, i.e., F(g12) ≥ F(g13) ≥ z, the algorithm will then assign
the center of g12 as the position of f2.

V. EXPERIMENTAL RESULTS

We performed retiming and topology optimization on the
ISCAS89 benchmark suite. The program was implemented in
C language and run on a 1.5GHz Intel Pentium IV processor
with 256KB cache and 512MB RAM. In our experiments, we
implemented the circuits using a 0.35µm CMOS standard cell
library from Austria Micro Systems and Silicon Ensemble was

used to layout the design with a setting of 50% row utilization.
Gate delays were referenced from the data book while wire
lengths were estimated using the shortest Manhattan distance
between the connected cells. We scaled the wire delay ac-
cording to [34] in which a 1mm wire was assumed to have a
delay of 150ps approximately. The size of a grid was set to
be twice as large as a D-type flip flop. During the placement
of a register, we allowed an error of one-grid width, i.e., the
width of a D-type flip flop.

The results are shown in Table 1. The first column indicates
the names of the circuits, and the numbers shown in brackets
are the total numbers of gates in the circuits (cell no). The
second column shows the numbers of logical registers ( f f old)
in the retiming graph model after retiming, and the numbers
shown in brackets are the numbers of registers in the original
input circuits before retiming. The number of registers had
increased after retiming for most of the circuits because the
retiming method that we used did not minimize the number
of registers as one of its objectives. In the third column, the
minimum possible numbers of registers required after sharing
are shown, i.e., assuming that every net could be realized
using the best topology. The fourth column shows the numbers
of registers ( f fnew) that have actually been inserted after the
flop topology optimization step. It can be observed that the
numbers in the fourth column are the same as those in the third
column except for circuit s3271 and s4863. This observation
showed that almost all the nets in our test cases could have
their registers inserted using the best topology, showing that
our proposed algorithm can very often find a near-optimal
solution for register insertion. The fifth column shows the
percentage reduction in area due to the topology optimization
step. This is calculated as ( f fold − f fnew)X/cell no where
X is the average ratio of the size of a register to the size
of a simple gate. We can see from the fifth column that the
reduction in area is about 8.1X% on average. Since the size
of a register is usually several times larger than that of a
simple gate, the reduction in area is significant for most of the
circuits. The sixth column shows the statistics of the numbers
of nets containing 4 or fewer edges with registers whereas the
seventh column shows the numbers of nets having 5 or more
edges with registers. The eighth column shows the numbers of
registers that are placed within their candidate regions while
the ninth column shows the numbers of registers that are
placed outside their candidate regions but with a controlled
error range (one grid size). As we can see, all the registers are
placed in their candidate regions successfully in all the test
cases. Finally, the CPU runtime is shown in the last column.

In this set of experiments, the topology optimization step
is performed on top of a retiming solution with minimum
delay. For a min-area retiming solution, the circuit is retimed
to minimize the total number of registers. The benefit of this
topology optimization step might be less in that case since
the registers will tend to be moved towards the fanins or the
fanouts of a gate depending on whichever is smaller in number
in a min-area retiming solution, and the number of possible
sharings achieved in the topology optimization step might be
reduced. However, different from the min-area retiming that it
minimizes the number of registers by retiming, the topology
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TABLE I
EXPERIMENTAL RESULTS OF REGISTER PLACEMENT WITH CLOCK PRESERVATION.

No. of Min. no. Actual no. Nets with Nets with No. of regs. No. of regs.
logical of regs. of regs. Reduction 4 or fewer 5 or more placed in placed with CPU

Circuit regs. after after using our in area edges edges candidate controlled time
retiming sharing method (%) with regs. with regs. region error (s)

s641 (381) 87 (19) 53 53 8.9X 53 0 53 0 0.01
s713 (395) 94 (19) 55 55 9.9X 54 1 55 0 0.02
s820 (291) 24 (5) 23 23 0.34X 23 0 23 0 0.01
s832 (289) 23 (5) 22 22 0.35X 22 0 22 0 0.01

s1196 (531) 31 (18) 18 18 2.4X 17 1 18 0 0.00
s1238 (510) 32 (18) 18 18 2.7X 17 1 18 0 0.00
s1269 (571) 259 (74) 127 127 23X 113 14 127 0 0.02
s1488 (655) 90 (6) 73 73 2.6X 71 2 73 0 0.02
s1494 (649) 78 (6) 62 62 2.5X 60 2 62 0 0.01
s3271 (1574) 826 (232) 342 438 25X 276 18 438 0 0.18
s4863 (2344) 622 (208) 408 417 8.7X 360 22 417 0 0.25

s15850.1 (9774) 1554 (534) 1264 1264 3.0X 1203 26 1264 0 2.52
s35932 (16067) 5455 (728) 2899 2899 16X 2601 280 2899 0 13.41

optimization step tries to reduce the register count by sharing
the registers along the fanout connections of a gate physically.
Therefore, it will still be beneficial to perform the optimization
step on top of a min-area retiming solution.

Another set of experiments was performed to study the
optimal and near-optimal retiming algorithms. In these ex-
periments, the circuits were layout by Silicon Ensemble and
wire delays (shortest Manhattan distance) were then extracted.
The lower and upper bounds of the binary search were set to
0 and 100ns respectively. In the near-optimal approach, we
performed the procedure I-Retiming() with an error bound of
1%. After assigning the registers retimed into a gate to the
appropriate wires, a linear program was set up to relocate the
registers on the wires to get the smallest possible clock period
T ∗. In the optimal approach, binary search was performed until
an error bound of 0.01% was obtained. We call the resulting
clock period Topt . Notice that we do not need to obtain a
very accurate result from I-Retiming() because the solution is
optimized by the linear program afterwards. On average, the
number of binary search iterations is 9.6 for the near-optimal
approach and 16.5 for the optimal approach.

The results are shown in Table II. The second and third
columns give the numbers of nodes and the numbers of edges
in the graph G, respectively. Notice that all circuits are not
strongly connected. The numbers of nodes and edges listed
are those after the addition of the source node, the target node,
and the associated edges. The fourth and fifth columns show
the numbers of nodes and the numbers of edges in the reduced
graph H, respectively. These two values are dependent on the
node chosen as the root in the depth-first traversal. In our
current implementation, we always pick the additional node
s as the root. We notice that using other nodes as the root
does not change the result significantly. The speedup of the
Bellman-Ford algorithm by the graph reduction approach in
Section III-B1 is (|V ||E|)/(|Vb||EH |), which is given in the
sixth column. The graph reduction approach is faster in all
circuits. On average, it is faster by 19.15 times. However, the
speedup is less for larger circuits. The reason is that |EH |
is roughly quadratic in |Vb|. For the circuits in Table II, the

ratio of |EH | to |Vb|2 is from 0.21 to 0.86 with an average
of 0.55. Therefore, the graph reduction approach may not be
useful for large circuits. We can avoid a slowdown of the
Bellman-Ford algorithm by determining whether to use G or
H based on the ratio (|V ||E|)/(|Vb||EH |). |Vb| and |EH | can
be found in O(|Vb||E|) time. We only need to perform this
checking once for each circuit. Hence, the runtime overhead
is insignificant compared with the total runtime. The seventh,
eighth, and ninth columns show the runtime of the I-Retiming()
procedure, the time taken to solve the linear program, and
the total runtime, respectively. The tenth column shows the
runtime for the optimal approach. We can see that the near-
optimal approach is much more efficient than the optimal ap-
proach (especially for large circuits). The eleventh and twelfth
columns show the clock periods T ∗ and Topt obtained by the
near-optimal approach and the optimal approach, respectively.
The last column is the percentage increase of T ∗ over Topt . The
clock period produced by the near-optimal approach is only
0.06% more than that by the optimal approach on average.

VI. CONCLUSION

In this paper, we proposed an algorithm to retime a circuit
with both gate and interconnect delay, and then realize the
retimed circuit physically to achieve the optimal clock period.
The proposed algorithm can preserve the target clock period
obtained by retiming with a controlled error using as few
registers as possible. In addition, the algorithm is proved to
be giving the optimal topology for nets with four or fewer
pins. Since this type of nets makes up for about 90% of the
nets in a sequential circuit on average, the algorithm performs
very well and effectively under most situations. For the circuit
retiming problem, we presented two elegant approaches to
perform retiming on sequential circuits with both interconnect
and gate delay. Our first approach is extended from the MILP
approach in the paper [3] and can solve the problem optimally.
Our second approach is an improvement over the first one in
terms of practical applicability. The main idea is to transform
the problem into a single-source longest paths problem in
a reduced graph. Experimental results show that the second
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No. of No. of No. of No. of CPU Time Clock Period

Circuit Nodes Edges Nodes Edges |V ||E| I-Retiming + LP = IG-Retiming Optimal T ∗ Topt
T ∗−Topt

Topt

in V in E in Vb in EH |Vb||EH | (sec) (sec) (sec) (sec) (ns) (ns) (%)
s1488 655 1405 27 627 54.36 0.09 0.19 0.28 5.62 18.85 18.82 0.16
s1494 649 1411 30 749 40.75 0.09 0.16 0.25 4.37 20.78 20.78 0.00
s3271 1574 2707 112 3360 11.32 0.38 0.71 1.09 33.70 10.24 10.24 0.00
s4863 2344 4093 154 20413 3.05 2.13 0.99 3.12 87.75 23.58 23.58 0.00

s15850 9774 13794 603 100738 2.22 21.42 2.60 24.02 1545.59 67.82 67.82 0.00
s35932 16067 28590 884 163945 3.17 54.59 6.66 61.25 8644.27 29.59 29.54 0.17

Using a 1.8GHz Intel Xeon PC with 512 KB cache and 512 MB RAM.

TABLE II
THE RUNTIME OF THE RETIMING ALGORITHMS AND THE CLOCK PERIODS OBTAINED.

approach gives solutions that are only 0.06% larger than the
optimal on average but in a much shorter runtime. Together
with this powerful retiming methods, our proposed algorithm
can be applied to pipeline long global interconnects. This is
particularly useful in today’s designs in which multiple clock
cycles are required to propagate a signal across a global wire.
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