Downloaded from orbit.dtu.dk on: Apr 27, 2024

DTU Library

=
=
—

i

A Reactive and Cycle-True IP Emulator for MPSoC Exploration

Mahadevan, Shankar; Angiolini, Federico; Sparsg, Jens; Benini, Luca; Madsen, Jan

Published in:
| E E E Transactions on Computer - Aided Design of Integrated Circuits and Systems

Link to article, DOI:
10.1109/TCAD.2007.906990

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Mahadevan, S., Angiolini, F., Sparsg, J., Benini, L., & Madsen, J. (2008). A Reactive and Cycle-True IP
Emulator for MPSoC Exploration. | E E E Transactions on Computer - Aided Design of Integrated Circuits and
Systems, 27(1), 109-122. https://doi.org/10.1109/TCAD.2007.906990

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.1109/TCAD.2007.906990
https://orbit.dtu.dk/en/publications/3f0b49f5-aeee-480f-859c-25c8abe4ad43
https://doi.org/10.1109/TCAD.2007.906990

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008 109

A Reactive and Cycle-True IP Emulator
for MPSoC Exploration

Shankar Mahadevan, Member, IEEE, Federico Angiolini, Student Member, IEEE, Jens Sparsg, Member, IEEE,
Luca Benini, Fellow, IEEE, and Jan Madsen, Member, IEEE

Abstract—The design of MultiProcessor Systems-on-Chip
(MPSoC) emphasizes intellectual-property (IP)-based
communication-centric approaches. Therefore, for the optimi-
zation of the MPSoC interconnect, the designer must develop
traffic models that realistically capture the application behavior
as executing on the IP core. In this paper, we introduce a
Reactive IP Emulator (RIPE) that enables an effective emulation
of the IP-core behavior in multiple environments, including bit-
and cycle-true simulation. The RIPE is built as a multithreaded
abstract instruction-set processor, and it can generate reactive
traffic patterns. We compare the RIPE models with cycle-true
functional simulation of complex application behavior (task-
synchronization, multitasking, and input/output operations).
Our results demonstrate high-accuracy and significant speedups.
Furthermore, via a case study, we show the potential use of the
RIPE in a design-space-exploration context.

Index Terms—Bus traffic modelling, cycle-true traffic gen-
erator, macromodelling, multi-processing, MultiProcessor
Systems-on-Chip (MPSoC), network-on-chip, network traffic
reproduction, reactive application models, simple instruction
set architecture, simulation, systems-on-chip, traffic generator,
traffic profiling and trace parsing, traffic shaping.

1. INTRODUCTION

HE primary design paradigm for MultiProcessor Systems-

on-Chip (MPSoC) is the separation of the communication
and computation concerns, as this enables intellectual-property
(IP) reuse and shorter design time. In order to improve the
overall performance of an MPSoC platform, it is key to evaluate
the impact of the interconnection backbone on the application
which is being executed. The interconnect can span over a huge
variety of architectures and topologies, ranging from traditional
shared buses up to packet-switching Networks-on-Chip (NoC)
[9], [13]. Therefore, to select and optimize a particular intercon-
nect, the MPSoC designer needs traffic models that are realistic
and accurate. A critical problem is that traffic models should
capture not only the behavior of the applications but also that
of the applications running on top of a stack of hardware and

Manuscript received December 13, 2005; revised August 15, 2006. The work
of S. Mahadevan was supported by the ARTIST and the works of F. Angiolini
and L. Benini are supported by the Semiconductor Research Corporation
(SRC) under Contract 1188. This paper was recommended by Associate Editor
A. Raghunathan.

S. Mahadevan, J. Sparsg, and J. Madsen are with the Department of Infor-
matics and Mathematical Modeling, Technical University of Denmark, 2800
Kgs. Lyngby, Denmark (e-mail: m_shankar@ieee.org).

F. Angiolini and L. Benini are with the Department of Electrical Engineering
and Computer Science, University of Bologna, 40136 Bologna, Italy.

Digital Object Identifier 10.1109/TCAD.2007.906990

software; this includes the properties which are not easy to
reproduce, such as cache behavior and synchronization.

In the presence of concurrent tasks running on multiple
processors, the characterization of traffic patterns is not simply
a matter of stochastic modeling [10], [19] or trace-based regen-
eration [21]. For example, an interprocessor synchronization
mechanism based on semaphore polling generates different
amounts of traffic depending on the relative timing of accesses.
This may create traffic spikes and localized congestion of the
interconnect but is very hard to predict in advance, impacting
the accuracy of the traffic model. A less simplistic way of
modeling the MPSoC system is to describe it entirely as a
cycle-true model [15], [22]. This yields the most accurate infor-
mation for performance analysis and subsequent interconnect
optimization. However, the implementation time and the sim-
ulation speed of such models are clearly a limit to widespread
adoption.

For the purposes of the interconnect designer, a valuable
tool for exploration and optimization would be a black-box
model that, when plugged at the ports of the interconnect,
would act like an IP core, injecting realistic traffic with clock-
cycle accuracy. A key desired property would be reactive-
ness to the surrounding environment, i.e., the ability to adjust
traffic patterns depending on synchronization events, which
are associated with the system as a whole, and could not be
properly rendered by any traffic-generation device in isolation.
An example has been given above with synchronization by
semaphore polling; more complex scenarios include system-
triggered interrupts. Only a tool featuring such reactiveness
really allows for meaningful analysis of the interconnect choice
and performance. The fundamental problem, however, is how
to generate such realistic traffic patterns.

In this paper, we investigate this problem and propose a
solution in the form of a Reactive IP Emulator (RIPE) model.
RIPE is a tool that can reproduce IP traffic with cycle accuracy.
This is done by influencing the type and the timing of the
communication transactions based on the current internal state
and the synchronization properties of the MPSoC system as a
whole. A part of the novelty of our approach is that we use
additional and readily available system-level information (such
as, for example, the knowledge of the location of semaphore
variables in the memory space) to automatically detect syn-
chronization events and respond to them during runtime. These
elements allow us to reach the goal of reactiveness.

A first aim of this paper is to investigate the requirements for
accurate modeling of communication events on MPSoCs. To
do so, in Section II, we will present examples of representative

0278-0070/$25.00 © 2008 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

_E_Eg_plng?_ﬁ_ll_ _

Interface

ST ocr___ 0 NoG
interface] [J [
|:> m RIPE

Fig. 1. RIPE as a simulation aid, replacing existing IP cores.

applications which are impacted by system-level constraints,
such as the sharing of interconnect and memory resources. The
scope of this paper will then be extended to systems controlled
by an operating system (OS). We will study several interesting
cases of usage of interrupts to drive system operation; for
example, an interrupt sent by a timer to trigger a context switch
may cause a noticeable shift in traffic if the new task has
different communication needs.

The key principles of RIPE can be rendered in several types
of devices, including behavioral modules, programmable simu-
lation devices, and even programmable hardware blocks. In this
paper, we explore the second alternative, which provides the
maximum flexibility while leaving future embodiments open.
Therefore, we specify an abstract RIPE multithreaded instruc-
tion set architecture (ISA), and we build a RIPE SystemC
simulation device with Open Core Protocol (OCP) 2.0 [4]
sockets at its ports. The RIPE model allows for easy program-
ming of sequences of communication transactions interleaved
with idle waits and is capable of sensing and responding
to system events and properties. Section III will discuss the
details of our implementation and show an example RIPE
program which models one of the applications introduced in
Section II.

The proposed RIPE device can be used in several ways,
which will be discussed in depth in Section IV. One possibility
(Fig. 1) is to leverage its features to replace existing IP cores;
this usage has previously been introduced in [5] and [23]. The
idea is to accurately reproduce communication transactions
based on prerecorded system traces. As shown in the figure,
by swapping away IP cores for RIPE blocks in the reference
cycle-true system, subsequent design-space exploration of the
interconnect can be performed independently while keeping
a very high level of accuracy and speeding simulation up. A
validation scheme for this type of flow will be presented in
Section V. Section VI will present the resulting experimental
data for a range of complex benchmarks, with and without an
underlying OS, when compared against the bit- and cycle-true
detailed MultiProcessor ARM (MPARM) [22] model.

On the other hand, a RIPE device can also be used (Fig. 2)
in the early stages of the design-space exploration, when all
IP cores may not yet have been finalized, in order to explore
cosimulation effects and see the impact of hardware changes on
the software stack. In this scenario, the interconnect designer
may want to leverage RIPE as a design tool by handwriting
programs to test specific realistic synchronization-intensive
scenarios which would be very difficult to study with traditional
traffic-generation flows. For example, in Section VII, we will

IP under
Development

| OS N :> RIPE RIPE

Fig. 2. RIPE as a design tool, acting as an IP core still under development.

present a case study where the impact on execution time of
variable densities of interrupt events can be investigated.

Finally, we will conclude this paper by contrasting our ap-
proach to previous research (Section VIII) and provide conclu-
sions and direction for future work (Section IX).

II. APPLICATION REACTIVENESS IN
MPSOC ENVIRONMENTS

In MPSoC environments, several different types of system-
level communication may occur. We identify three broad cate-
gories as follows: 1) processor-initiated communication toward
a private resource but across a shared medium; 2) processor-
initiated communication toward a shared resource; and
3) system-initiated communication toward a processor, which
typically happens by means of interrupts. In particular, the sec-
ond and third types are examples that illustrate the reactiveness
of IP cores, a property which must be carefully emulated to
accurately model their traffic patterns.

A. Communication With a Private Resource

Let us first consider a simple case of processor-initiated
communication toward an exclusively owned slave peripheral
but across a shared medium [Fig. 3(a)]. We code a simple appli-
cation, “matrix,” which involves one task per processor, each
performing some private computation. No intertask or intercore
synchronization is required. However, all tasks compete for
access to the same interconnection resource.

In this example, the communication needs of the application
are quite easy to model; the result is a simple list of transactions
interleaved with computation. The model is made only slightly
more complex by the issue of bus congestion, which makes the
data-access time unpredictable.

To better understand this issue, please consider the first
two master transactions, a write (WR) and a read (RD). The
WR transaction can be assumed to be nonblocking for the IP
core, which, therefore, simply issues a request and continues
its computation. The RD, on the other hand, uses blocking
semantics. Therefore, the response has to make its way back to
the master and only then can computation resume. The overall
latency is also a function of the congestion on the interconnect.
Therefore, it is not enough to capture a time-annotated list of
transactions, as the timing information depends on the specific
interconnect. From the emulation point of view, however, a
model can be easily achieved as follows. The latency due to

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

MAHADEVAN et al.: REACTIVE AND CYCLE-TRUE IP EMULATOR FOR MPSoC EXPLORATION

Master Slave IP#1 Semaphore IP#2
WR -, RD .. RD
."'~..,. e, % *
Computation b WR o, o
time access ;;_."'
time
RD locked
....... o
e . Resp R o Fail
access
time RD
. Computation ‘__..-""
Resp|a="" time ‘__..-"
Computation t
time WR "‘-.."_"_"k
ey, | Ttrea, .
WRpe, |] T | I | Fail
Computation e,
time o) unlocked ik
RD WR
..-..,.__ access t 4 RD
o [time __.”.‘f'- *
5» - lev""
stalled
access %
time lock
Resp =" | 1 | Tt | Resp
t t t t t
(a) (b)

Fig. 3.

111

Timer IP IO. IP
Device Task A TaskB Device Task
interrupt | : interrupt 0s
..... Mree....a] Handler
."""'ﬂ oS I '7
| | 1 |
|
interrupt |
1-.-.-.....
> . I
polling |
I interrupt
interrupt | ereen,, .
| |
I
Jnterrupt |
.....-.......l.... interrupt
l I (O
t t tt t tY ¢

(©) (d

Timelines for (a) communication with a private memory (matrix); (b) communication with a shared memory including polling (poll); (c) system-initiated

timer interrupt causing a context switch (multi); and (d) system-initiated I/O interrupt causing a driver to respond (I10).

congestion and actual slave response time can be discarded; the
only essential points to capture are just the two transactions:
the delay between the WR assertion and the RD assertion (which
is computation time), and the delay between the RD response
(Resp) and the following command. This information makes it
possible to emulate the IP core behavior on any given intercon-
nect, even one having very different latency properties.

Similarly, the stalling behavior observed in the next set of
instructions (WR-RD) does not need to be explicitly captured in
a RIPE model, since, from a processor perspective, it simply
appears to be part of the slave response time.

Requirement #1: This observation leads to the concept of
“time-shifting” behavior: consecutive transactions are tied to
each other and are issued at times which are a function
of the delay elapsed before receiving responses to previous
transactions. For emulation purposes, only the length of the
computation periods (which can be modeled by idle waits) and
the transaction types are needed.

Modeling requirements of this simple category of traffic can
be predicted or inferred given an algorithmic specification. In
[10] and [31], such an inference is drawn to test the intercon-
nect. However, these models do not hold for more complex
traffic types, as those that will be shown in the following
paragraphs, unless extremely detailed models of the underly-
ing hardware and software are provided. This includes cache-
replacement policies, simultaneous tracking of each processor
state, etc.

B. Communication With a Shared Resource

In the simplest synchronization case, one or more processors
competing for a shared resource may poll a semaphore to gain
resource access. As an example, let us consider a multimedia

application called “poll” [Fig. 3(b)]. For this case, we map a
single task onto each IP core. Tasks are programmed to commu-
nicate with each other in a point-to-point producer—consumer
fashion; every task acts both as a consumer (for an upstream
task) and as a producer (for a downstream task); therefore,
logical pipelines can be achieved by instantiating multiple
cores. Synchronization is needed in every task to check the
availability of input data and of output space before attempting
data transfers. To guarantee data integrity, semaphores are
provided. A semaphore is a special binary-valued memory-
mapped device for which test and set functionality is provided
in hardware. Therefore, an RD returns the semaphore state
and, if the semaphore is currently “unlocked”, also changes
its state to “locked.” By checking the return value of the RD,
the master issuing the command can decide if the locking was
successful or if the semaphore had already been locked by
another task. The unlocking can be performed with an explicit
WR command of the “unlock” value. In the poll application,
the consumer checks a semaphore before accessing producer
output. If the semaphore is found locked upon the first read, the
application reacts with a continuous polling strategy, whereby
it regularly issues read events until, eventually, the semaphore
is found unlocked. Since the transactions occur over a shared
interconnect, the unlock event (in this case, the WR issued by
IP#1) and the success of the next request (RD event by IP#2) are
interdependent.

In the figure, only if the IP#2 RD event is issued at least
Lnwk,1P#1 + tunlock,s — tnwk, P2 after the unlocking by IP#1,
then IP#2 will be granted the semaphore, and additional polling
events will not be required. Therefore, depending on network
properties, a variable amount of transactions might be observed
at the ports of the IP cores. This demonstrates that the “time-
shifting” behavior introduced before is not sufficient when

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

Spontaneous
s ;
semaphore uspensign Task
locked? Yes Suspend —
i Idle Wait
Task Execution No
Task Resumption on
Normal Resume nterrupt
Computation e —
Flow .
OS Routines
Pifimaly Tagk 0S Task Idle Wait

Fig. 4. Application flow of pipe.

multimaster systems are taken into account. The arbitration for
resources in such designs is timing- and, thus, architecture-
dependent.

Requirement #2: The state of the shared resources needs to
be tracked. For emulation purposes, the semaphore locations
must be known and monitored, and the devices must make use
of this information to adjust their execution flows.

C. System-Initiated Communication

System-initiated communication toward a processor is gen-
erally performed by means of interrupts, and an OS is in charge
of the handling. In reacting to the interrupt, however, the degree
of interaction between the OS and the application can vary
noticeably. We present here three examples, which are repre-
sentative of a vast class of execution flows. The RIPE model
we will propose can capture all the dynamics of these test cases,
given proper insight into the mechanics of the applications and
the OS.

As a first example [Fig. 3(c)], we create a test application
(“multi”) where timer-generated interrupts are used to drive
the OS scheduler. In this case, only the OS is aware of the
interrupts, while the user tasks are transparently paused and
resumed while executing a single stream of operations. In
our application, we introduce two tasks per processor, having
unbalanced bandwidth needs; therefore, every interrupt causes
an abrupt shift in traffic workload for the interconnect.

In a second example [Fig. 3(d)], the “IO” application is
composed of a main execution task and of a driver for an
input/output (I/0O) device; the latter is in charge of responding to
interrupts sent by the hardware device. The driver operation is
bandwidth-intensive, causing traffic spikes on the interconnect.

A third test case (“pipe”) features the same logical behavior
of the “poll” example shown above, which is a pipeline of
multimedia processing tasks, but leverages interrupts instead of
polling to reduce the congestion on the interconnect and the
energy waste upon synchronization points (see Fig. 4). This
scenario features a very tight coupling between the application
and the interrupt handling; for example, upon an unsuccessful
lock acquisition by a consumer, the application interacts with
the OS to be descheduled and to be resumed only upon the
next interrupt event, which will flag the availability of new
data. On the other hand, if the lock is immediately available,

the application proceeds directly. Interrupts may be ignored if
they are issued ahead of time, i.e., if the notification of new
data availability arrives before the consumer is ready to process
a new message.

As can be seen, modeling these applications and their impact
on interconnect performance is not trivial, presenting a major
hazard for any traffic-emulation device. A complete emulation
of the hardware and software stacks is needed to properly
determine the traffic behavior at the IP core pin-out boundary.

Requirement #3: In presence of interrupt facilities and of an
OS, the execution of every application task, of the OS kernel,
and of interrupt handlers must be independently identified and
modeled. This can be achieved by tracking the occurrence time
of interrupt events and application resumptions. The traffic
emulator should then be able to model the IP core behavior
independently from the interrupt occurrence time.

D. Timing Dependency of Applications

So far, we have evaluated the implications of different
MPSoC traffic categories. These requirements are not derived
in an ad hoc fashion but are representative of typical timing-
sensitive real-life applications [33], such as multimedia-stream
processing, time-slicing mechanisms in OS schedulers, and I/O
device handling. In such applications, the overall performed
computation does not change depending on the order of ar-
rival of external events. Therefore, while an execution trace of
these examples show widely varying traffic patterns depending
on external timings, the major computation blocks are still
recognizable. Even though applications with even more timing-
dependent behavior do exist, modeling them would require an
intratask notion of context switching. At this stage, we believe
that the complexity of such an effort for a whole MPSoC, in
a generic way, would be excessive and, anyway, unsuited for a
black-box component such as the RIPE intends to be.

III. RIPE MODEL AND IMPLEMENTATION

In this section, we describe a particular implementation of the
RIPE concept based on an ISA, which is capable of fulfilling the
above presented requirements of reactive behavior.

A. RIPE ISA

Applications such as those outlined in Section II can be
emulated either within a behavioral/transaction-level module
or with an ISA-based device. While our RIPE model and the
supporting tool chain (Section V) could also be targeted at
the deployment of behavioral models, we choose to develop
an ISA-based RIPE implementation, and we describe it in
SystemC [2]. While the behavioral model may have a slight
advantage in simulation speed over a programmable device, it
also requires a recompilation of the simulation platform every
time the application to be modeled changes. During design
exploration, such a step would be required to study multiple
applications on the same platform. A programmable model,
with a fixed emulation device and user-written programs, avoids
this time-consuming operation, introducing, instead, a simple

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

MAHADEVAN et al.: REACTIVE AND CYCLE-TRUE IP EMULATOR FOR MPSoC EXPLORATION 113

TABLE 1
RIPE INSTRUCTION SET

Instruction

Description |

Communication Instructions:
Read from an address
Write to an address

Read (AddrReg)
Write (AddrReg, DataReg)

BurstRead (AddrReg, Burst read from address set
CountReqg)
BurstWrite (AddrReg, Burst write to address set
DataReg, CountReg)
Flow Control Instructions:
If (argl, arg2, operand) Branch on condition
Jump (label) Branch direct

Idle (counter)
SetRegister (reg, value)

Wait for given no of cycles
Set register (load immediate)

programming-language paradigm. The designer may not even
need to use the language at all when using automatic translation
of the traffic specification into a RIPE program, as outlined
in Section V. Furthermore, a future goal of our project is to
build test chips containing interconnect prototypes. The ISA-
based approach is very attractive for this purpose, because it
can naturally map onto a hardware device to inject traffic on
test chips. In [16], the potential of this type of architecture
has already been shown within a field-programmable gate-
array (FPGA)-based emulation platform. Compared to current
ISA-based emulation and simulation approaches (using tens of
instructions), our ISA is simple.

The RIPE is implemented as a nonpipelined processor with
a very simple instruction set, as listed in Table I. Its external
pin out matches the OCP 2.0 [4] specifications for a master
interface. Hardware interrupts are available on the side-band
portion (SInterrupt) of the OCP interface, and an internal
software-interrupt facility is also present. A future planned
extension is the support for the multithreading extension of
the OCP protocol, thus supporting outstanding and out-of-order
transactions. Any other interface standard, such as Advanced
eXtensible Interface (AXI) [6], could also be supported, de-
pending on the interface required by the interconnect under
study.

The RIPE program that controls the device behavior contains
code to model single or multiple tasks. These tasks might be
actual tasks running on the IP core which is being emulated
or chunks of the OS layer, such as its native interrupt handlers
and scheduler. We instantiate in the device a program-counter
(PC) register, an instruction memory, and a register file for each
task specified by the program; no data memory is needed. A
context switch among tasks in the task pool is realized simply
by referring to the corresponding set of PC and register file. The
instruction set comprises four instructions for data transfers,
whose operation can be controlled by putting proper values
in the operand registers. These instructions are blocking, i.e.,
the RIPE execution is suspended until completion of the OCP
handshake, which, for a read, will include the latency of the
response over the network.

Four flow-control instructions are also available to realize
the reactive behavior. The SetRegister instruction loads an
immediate 32-b value, which is written into the specified
register. The If and Jump instructions are used to change
the execution flow, while the Idle instruction models the IP

TABLE II
RIPE SPECIAL REGISTERS
Special Name Usage
Register
Interrupt Registers:
2 IntrpMaskReg Masks or unmasks interrupts
3 TaskIDReg Stores a task 1D
5 SWIntrpReg Sends a software interrupt from
within the program
Other Registers:
4 RDReg Stores the data value returned
by a Read (AddrReq) instruction

computation periods with idle waits. Within the register file,
most registers are general purpose (typically used to set address
and data values for OCP transactions), and their number can be
configured. Some registers are designated as special purpose.
For example, since, in specific-flow control scenarios, the data
returned by a Read command must be available for evaluation
(e.g., in case of semaphore checks), the RIPE device provides
in Register 4 the response to the preceding read. Table II shows
all designated special purpose registers.

Of the interrupt-related registers, Register 2 is used to
(un)mask critical sections of the RIPE program from exter-
nal system-issued interrupts. For example, as shown in pipe
(Fig. 4), the interrupts are only enabled after the task has
suspended, while they are masked during normal operation.
Register 3 can be programmed to hold the task ID of the
next task to be loaded and run on the RIPE device out of the
available task pool. Register 5 allows the RIPE program to
assert “software interrupts.” The RIPE model instantly reacts
to unmasked hardware or software interrupts by loading the
program and register set corresponding to the next task to be
emulated, which is identified by Register 3. The usage of the
special registers will be shown in Section III-B.

B. Programming Language and Assembler

To better understand the programming model of the RIPE
device, Fig. 5 presents the main structure of a program to model
the IO application introduced in Section II. Statements starting
with a semicolon (;) are inlined comments.

The RIPE program starts with a header describing the core
and the task identifier: MASTER[(coreID), (taskID)]. All of the
tasks running on any given IP core are described within a single
program, so that there is one program per RIPE device. A RIPE
program can contain one or more task description. Recall that
IO models an application with a linear program flow, which can
be suspended by the OS to process 1/O interrupts. Therefore,
two tasks are described: task #0 (the main application) and
task #1 (the interrupt handler) within the same master IP
(core ID 1).

The next few statements express initialization of the register
file for this task. Unique labels should be used for register
names/tags. This allows correct initialization and easy identi-
fication of the registers within the program. For task #0, the
main body of the RIPE program, in which the execution flow is
linear, is composed of sequences of reads and writes interleaved
with register accesses (mostly, to set up transaction addresses

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

MASTER[L, 0]

; Special Registers
REGISTER IntrpMaskReg 0
REGISTER TaskIDReg 1

; General Purpose Registers (GPRs)
REGISTER AddrReg 0xdOabcdef
REGISTER DataReg 0

; Main application (Task 0)

; Unmask interrupts
; Next task ID

; Initialize address GPR
; Initialize data GPR

BEGIN

; Comments
; Normal application flow
Idle(10) ; Idle for 10 cycles
Read(AddrReg) ;

SetRegister(AddrReg, 0x10fedcab) ; Setup an address
SetRegister(AddrReg, 0x10abcdef) ; Setup a data value
Write(AddrReg, DataReg) ;

END ;

MASTER[1, 1] ; /O driver task (Task 1)

; Special Registers
REGISTER IntrpMaskReg 0
REGISTER SWintrpReg 0
REGISTER TaskIDReg 0

; General Purpose Registers (GPRs)

REGISTER AddrReg 0
REGISTER DataReg 0

; Unmask interrupts
; Disable SW interrupts
; Next task ID

; Initialize address GPR
; Initialize data GPR
BEGIN
; Interrupt Handling Routine
IntrptHandler
; OS Suspension Routine
SetRegister(IntrpMaskReg, 1) ; Mask interrupts
SetRegister(AddrReg, 0x30bebeef) ; Setup an address
Read(AddrReg) ;

; Comments

; I/O Routine

SetRegister(AddrReg, 0x30beefcd)
SetRegister(DataReg, 0x10101010)
Write(AddrReg, DataReg)
Idle(121)

; OS Release Routine

SetRegister(SWintrpReg, 1)
SetRegister(SWintrpReg, 0)
Jump(IntrptHandler)
; End Interrupt Handling
END

; Trigger SW interrupt
; Deassert SW interrupt
; Get ready for next event

Fig. 5. RIPE program for the IO application.

and data). Flow-control instructions might be inserted where
appropriate but are not needed for this application. Note the
initialization of interrupt-related registers at the top of task #0;
upon a hardware interrupt, the RIPE swaps the context to the
task having the ID provided in TaskIDReg, i.e., to task #1
(the I/O interrupt handler). Since task #0 can be suspended
by the OS to process I/O interrupts, IntrpMaskReg is set as
unmasked, allowing for such suspension.

The OS-driven context-switch traffic and the I/O-handler
routine are programmed in task #1. Within the interrupt routine
(starting with label IntrptHandler), which is the critical
section of the flow, interrupts are disabled (first instruction of
the task body). At the end of the flow, a software interrupt
is artificially triggered to restore the normal program flow to
task #0. Upon another hardware interrupt in the main task, the
interrupt-handler routine will be executed again from the top.
The flow therefore mimics Fig. 3(d).

The RIPE program containing the aforementioned instruc-
tions must be transformed into a binary file for use within the
RIPE device. An assembler tool takes care of this step, with a
one-to-one correspondence between program instructions and
binary opcodes. Within the binary, the individual task sections
are appended in the order of their task ID. A header with a
small-task lookup table is prepended.

During the setup phase, the RIPE device loads the binary
and based on the information encoded at the start of the binary
file, determines the number of tasks and the amount of program
memory and the register file size to be allocated to each one.

IV. GENERATING RIPE PROGRAMS

In this section, we outline three ways of transforming appli-
cation requirements into RIPE programs. One of the techniques
will be discussed in detail to show feasibility of RIPE as a
simulation aid and to create a validation environment for the
RIPE-device accuracy.

A. Trace Parsing and Replay

In this scenario, as is shown in Fig. 1, the availability of
a preexisting model for the IP under study is assumed. Here,
the RIPE program generation goes through two steps. First,
a reference simulation is performed by using the available
IP models, and an execution trace for each IP master in the
system is collected. The trace is a very straightforward log of
events on the OCP pin out; entries include requests, responses,
and interrupts, all of which are annotated with timestamps.
A sample-trace snippet is presented in Fig. 7(a). Second, the
trace is parsed with an offline tool. The output of the tool is
the desired RIPE program. The resulting program is coded to
behave exactly as the original IP model in the native system
and to behave as the core would do when plugged to a different
interconnect. This program is now ready to be used for cycle-
accurate interconnect design-space exploration with extremely
realistic test traffic.

This type of flow is useful whenever the preexisting IP model
is not available, due to licensing or technical issues, for the
next coexploration phase. In this case, the RIPE can provide
a quick functional yet cycle-accurate port of the IP model to
an MPSoC interconnect. Even if the IP model is available, a
simulation speedup can be achieved without significant losses
of accuracy (Section VI). The offline-parsing tool must, of
course, have some knowledge about the traced application in
order to correctly analyze and rearrange execution traces into
RIPE programs. While this effort is not trivial, it is feasible and
provides a path for validation of the presented RIPE device in a
complete cycle-accurate flow, as described in Section V.

B. Trace Editing

In a related scenario, an IP model might be available, but it
may differ with some respect from the IP that will eventually
be deployed in the SoC device. In this scenario, the RIPE
may be used to approximate the IP, as shown in Fig. 2. The
approximation may be introduced by trace editing, for example,

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

MAHADEVAN et al.: REACTIVE AND CYCLE-TRUE IP EMULATOR FOR MPSoC EXPLORATION 115

by changing the number of bus transaction or the delay between
transactions to model a cache subsystem. In this scenario,
overall cycle accuracy with respect to the eventual system is,
of course, not guaranteed. However, the RIPE will still be able
to react with cycle accuracy to any optimization in the SoC
interconnect. Provided that the transaction patterns are kept
close to the ones of the target IP core, the approach will result
in valuable guidelines.

C. Direct Development

Finally, RIPE programs can be written from scratch without
reference IP traces. In this case, the flexible RIPE instruction
set allows one for a full-featured traffic-generation system. The
availability of built-in flow-control management lets the de-
signer implement the same synchronization patterns, which are
present in real-world applications (see Section III). Addition-
ally, the application chunks enclosed within synchronization
points can quickly be rendered by exploiting the flexible-loop
structures provided by the RIPE ISA, thus providing capabil-
ities at least on par with those of traditional stochastic traffic-
generator implementations, as shown in [10], [16], and [19].
In the very first stages of development, the RIPE can also be
deployed as a validation tool to check the correct functionality
of the interconnect under the load of the supported transaction
types. An alternate possibility, as demonstrated in [18], is using
the RIPE as an interface between formal and simulation models
in a hybrid environment. Here, the RIPE programs are written
based on guidelines provided by the arrival curves obtained
by formal-analysis methods. These programs are then used to
generate communication events for the simulation environment.
Thus, the versatility of our RIPE flow allows for deployment in
a number of situations.

V. RIPE AS A SIMULATION AID

As an example of RIPE functionality, we now adopt the flow
presented in Section I'V-A to show its feasibility and to create a
validation environment for the RIPE device accuracy.

A. Reference MPSoC System

For validation purposes, the RIPE model is integrated into
the MPARM [22] reference system. MPARM is a homoge-
neous multiprocessor instruction-set simulation platform with
a configurable number of processors as IP masters with private
and shared memories and semaphore and interrupt devices. It
also contains a port of Real-Time Executive for Multiprocessor
Systems [3]—a real-time OS. The IP cores can be plugged onto
one of several interconnect architectures, such as AMBA [7],
STBus [29], and xpipes [12]. The use of the OCP v2.0 protocol
at the interfaces between the IP cores and the interconnect
allows for easy exchange of native cores with RIPE blocks
(Fig. 1). To record execution traces, the OCP interface modules
within the MPARM system (the network interfaces in the case
of xpipes and the AMBA AHB bus master) were adapted to
collect traces of OCP requests, responses, and interrupt events
in a predefined file format (.trc).

Benchmark

MPARM

Trace Collector

T . .
race (.trc) Readily
’ T lat Available
Iansdir Application
RIPE Program Information
File (.tgp)
‘ Assembler ‘
RIPE Binary
(.bin)
RIPE Model
Fig. 6. Trace to RIPE program flow.
; Master Core
MASTER[<corelD>,<thrdID>]
; Initializations

éEGISTER rdreg O ; holds value of RD
REGISTER tempreg 0
REGISTER addr 0x00000104

REGISTER data 0
Next IP comm BEGIN
transaction interval Start
Idle(11) ; wait for first inst
Network Read(addr, rd)
latency SetRegister(addr, 0x00000020)

SetRegister(data, 0x00000111)
Idle(1)

Write(addr, data, wr)
SetRegister(addr, 0x00000031)
Idle(9)

Read(addr, rd)

; Simple RD/WR/MWRNP

+» RD 0x00000104 @55ns

+» Resp Data 0x088000f0 @75ns

> WR 0x00000020 0x00000111 @90ns
RD 0x00000031 @140ns
Resp Data 0x00002236 @165ns

; .p.olling a semaphore location!!
SetRegister(addr, 0x000000ff)
SetRegister(tempreg, 0x00000001)

;.polling a semaphorel!
RD 0x000000ff @210ns

Resp Data 0x00000000 @270ns Semchk

RD 0x000000ff @285ns read(addr, rd)

Resp Data 0x00000000 @310ns If rdreg != tempreg then Semchk
RD 0x000000ff @305ns

Resp Data 0x00000001 @320ns Jump(start) ; rewind
§ END

(a) (b)

(a) MPARM trace. (b) RIPE program.

Fig. 7.

It is worth stressing that modeling the communication pat-
terns described in Section II is not trivial. The amount of
annotations that can be extracted from the application and
its traces reflects the programmer’s degree of knowledge and
access to the application-synchronization schemes, to the inter-
rupt routines, and to the OS internals.

B. Trace to RIPE Program

The RIPE validation flow is illustrated in Fig. 6. During
the reference simulation, traces are collected from all OCP
interfaces in the system. The address and (if any) data fields
of the transactions are also observed. Trace entries may contain
one of many transaction types: single or burst read/write re-
quests, assertion of hardware interrupt, arrival of response, etc.
Fig. 7(a) shows an example trace.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

116 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

The next step is to convert the traces into corresponding RIPE
programs (.tgp). The offline translator tool outputs symbolic
code; Fig. 7(b) shows the RIPE program derived from traces
in Fig. 7(a). The automated algorithm in the conversion flow is
capable of detecting and capturing many synchronization be-
haviors, without the need for the designer to handle them man-
ually. We will explain the translator operation in Section V-C
together with details regarding the required application insight,
which is readily available to the designer. Finally, the assembler
tool is used to convert the symbolic RIPE program into a binary
image (.bin), which can be loaded into the RIPE instruction
memory and executed. The entire flow is fully automated, and
the time taken for this process is discussed in Section VI.

C. Automated Translation of IP Traces Into RIPE Programs

As discussed in Section II, some prior knowledge about the
MPSoC system used in the reference simulation is required to
accurately program the RIPE device. Apart from the sequence
of transaction requests and responses, the following is a list of
information needed for correct operation of the translator:

1) the global identifier of the IP core in the system,;

2) the clock period of the IP core;

3) the addressing ranges representing semaphore (pollable)

resources;

4) the timestamp of interrupt events;

5) the timestamp of the return from an interrupt-handling

routine;

6) the timestamp of a spontaneous request for descheduling

by an application.

The first three pieces of information are readily available
design specifics and are encoded in the trace filename; the
rest are explicitly or implicitly (provided some knowledge of
the application functions) present within the trace file. For
example, incoming interrupts are detected on the OCP pin out
and explicitly recorded in the trace. On the other hand, returns
from interrupt-handling routines must be located implicitly by
detecting known behavior, such as a specific memory access at
the end of the handler or at the return point in the main code.

We use the system traces given in Fig. 7(a) as an example
source for transformation into a RIPE program and the result
is in Fig. 7(b). Let the clock period be 5 ns and the semaphore
location be 0x000000£ff. As shown in Fig. 7(b) and described
in Section III-B, the RIPE program starts with the typical core
identifiers. Register RDReg is defined as the name of the special
register where the value of read transactions is stored (Table II).

At the beginning of the trace file, the first communication
request, a read (RD), occurs at 55 ns, meaning that the RIPE
has to wait 11 (55/5) cycles before issuing this transaction.
Therefore, an Idle wait is observed in the RIPE program.
When parsing this trace statement, the translator collects the RD
address and initializes one of the registers marked as available
in the register table (tagged as addr on top of the program).
Based on the principle of “time-shifting” (Requirement #1)
discussed in Section II-B, we ignore the response to this RD
event at 75 ns but note the time interval of three [(90-75)/5]
cycles to the next trace event, the WR at 90 ns. New values have
to be set up in the address and data registers, which takes a

cycle each (either for updating the already used addr and data
or for setting up a new pair of registers). An ensuing Idle wait
is added to fill the gap, then the WR instruction is appended.

This translation process continues until the trace entry at
time 210 ns, when the semaphore address is encountered. By
identifying the address as belonging to a semaphore location
and knowing the polling behavior of the original IP core,
the translator inserts the Semchk label and an If conditional
statement. This statement checks whether the read value is
equal to “1,” which reflects an unlocked semaphore. This
loop effectively models the semaphore polling behavior. The
semaphore address and expected unlock value are set up prior
to the loop label to avoid repeated initialization, thus allowing
for continuous polling at the maximum frequency rate for
unlimited periods. Idle waits can obviously be added in the loop
should the original IP core have a low-frequency polling be-
havior. All master devices attempting to access this semaphore
incorporate the same routine in their RIPE program, thus
capturing the system dynamics to meet the Requirement #2.

Within the translator, a register-allocation algorithm cor-
rectly sets up all the required data in registers before the OCP
or the flow-control instructions that need them are scheduled
for execution. It is possible that streams of closely packed
communication requests may leave few or no interleaved idle
cycles available for preparing their address (and data, if any).
In this case, the translation algorithm exploits the slack (idle-
wait time) available further above in the transaction sequence
for setting up register values ahead of time. However, in case
of very long streams of back-to-back writes, a lack of free
registers may occur. In this case, the size of the register file
must be increased to avoid an accuracy loss due to hiccups in
the sequence of writes. We expect the problem to occur with
minimal frequency, as two idle cycles among transaction entries
are enough to allow for streams of arbitrary length. The problem
is of no importance in the context of a simulation RIPE device
(as in this paper) but would have an area penalty in a hardware
implementation.

D. Handling-Interrupt Reactiveness

For modeling interrupt routines and OS internals (Require-
ment #3), specific locations within the trace file, such as
interrupt-handling-routine entry and exit points, have to be
recognized by the translator tool to optimally insert the corre-
sponding code as a task into the RIPE task pool. The trace files
are always annotated with the time of occurrence of interrupt
events. However, the exit points need to be carefully screened,
since they depend on the degree of cooperation between the
application and the OS.

Using the pipe example (Fig. 4), let us consider this aspect
in more detail. Here, the task is explicitly interacting with the
OS internals, as described in Section II. Usually, this interaction
can be achieved by OS API calls, without direct access to the
interrupt handler code, whose exit point is therefore assumed
to be not accessible to the programmer. As a result, the only
annotations of significance within the trace file are the syn-
chronization points (semaphore checks) and the interrupt arrival
time. The RIPE program thus mimics the flow shown in Fig. 4,

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

MAHADEVAN et al.: REACTIVE AND CYCLE-TRUE IP EMULATOR FOR MPSoC EXPLORATION 117

first by reading the semaphore location, then choosing to con-
tinue or suspend depending on the lock. Upon resumption by a
hardware interrupt, a final (re-)check of the semaphore unlock
is done to ensure safe task operation. In the RIPE program, this
is realized via three tasks; the dotted lines in Fig. 4 mark their
boundaries. The primary task represents the main application
flow. The interrupts are masked here, as the application is
insensitive to hardware interrupts unless in suspension state.
If the semaphore is found locked, the flow is routed to load
the OS routine, which leads the processor to an idle wait. The
translator captures the chunk of trace after the semaphore check
in an independent OS task, which always yields control to a
third task consisting of an infinite loop of idle-wait instructions.
The easily identifiable sequence of transactions between the
eventual arrival of the hardware interrupt and the semaphore
recheck is the OS wake-up routine to reschedule the suspended
main program, and the translator appends it as a part of the OS
task. In the RIPE program, hardware interrupts are used to wake
up from the suspension state within OS routines, while software
interrupts redirect the execution flow toward the main task. Note
that IntrpMaskReg is set to “masked” for the regular program
and OS execution and is only unmasked within the suspen-
sion task.

After performing the translation described in this section and
after RIPE-program assembling, a second set of simulations
can be run on a platform with RIPE and a variety of intercon-
nects, thereby evaluating performance of interconnect-design
alternatives.

VI. VALIDATION RESULTS

The outcome of the validation process should show that the
requirements outlined in Section II are sufficient to extract IP
traffic patterns in a manner which is accurate yet independent
of interconnect characteristics. For this purpose, we simulate
different applications within the MPARM framework, first us-
ing the native [Advanced RISC (Reduced Instruction Set Com-
puter) Machines (ARM)] cores and then using the RIPE model,
and compare the resulting benchmark statistics. We undertake
this experiment for six benchmarks. Each is tested with 1-12
(1P-12P) system processors with cache (see Fig. 1) simulta-
neously plugged to the system interconnect. The aim is to as-
certain the accuracy of the RIPE model, device, and translation
framework when stressed by complex transaction patterns.

Five of the benchmarks are based on the examples introduced
in Section II: matrix, poll, multi, IO, and pipe. One more
application (‘“‘cacheloop”) is added as a reference to make the
validation more comprehensive. The application cacheloop is a
dummy program, which continuously performs cache fetches.
As such, it is generating no bus transactions, except for a few at
boot and shutdown. It is intended as a metric of the maximum
simulation-time speedup achievable by the replacement of IP
cores with another simulation device.

In the first experiment, we only aim at validating the trace
collection and translation. Fig. 8 outlines the process. We run
the same benchmarks over two of the interconnects of MPARM,
namely, AMBA AHB [1] and the Xxpipes [28] NoC. As ex-
pected, we measure very different execution times due to the

17 Benchmark ﬁ

MPARM+ MPARM+
AMBA xPIPES

v '

Trace (.trc) Trace (.trc)

P et e

/ Off-line Toolchain \

| Translator ‘

RIPE Binary RIPE Binary

o o
RIPE+AMBA RIPE+xPIPES

Fig. 8. RIPE accuracy-validation test.

different interconnect features, and the execution traces reflect
these differences. However, after translation, a check across
.tgp programs shows no difference at all, because the network
latency factor is completely abstracted from in the RIPE pro-
grams. As a consequence, a trace collected on one interconnect
is indeed usable to generate a program to be run on another.
This result validates our approach and strengthens the postulate
of the requirements outlined in Section II, which decouples
simulation of the IP cores and of the underlying interconnect.

We now proceed to measuring the accuracy of the our design
flow, i.e., how well the RIPE programs extracted from ARM
execution traces match the original execution. Table III sum-
marizes the results of simulations' done on the AMBA AHB
interconnect with ARM processors from MPARM and then
with RIPE devices. The columns report the overall execution
time of the benchmarks (in clock cycles) and the number
of single-read (SR), single-write (SW), and burst-read (BR)
transactions observed on the bus. The column “Inaccuracy” is
a measure of the relative difference in simulated cycles and bus
accesses when replacing ARM cores with RIPE devices.

The table shows that replacing ARM processors with RIPE
devices yields excellent precision, with inaccuracies close to
0% in most cases, resulting in a faithful reproduction of the
original execution flow and traffic pattern. The inaccuracies
in the SR count and the execution time in poll are due to the
compounding of minimal timing mismatches caused by the
semaphore polling mechanism in RIPE programs. In the real
system, the first few semaphore polls are found to occur at a
slightly different rate than subsequent ones, due to assembler-
level and caching effects. Eventually, polling occurs at periodic
intervals. This initial timing mismatch is not captured in the
RIPE model, which performs all polling loops at the asymptotic

IBenchmarks taken on a Pentium 4 2.26 GHz with 1 GB of RAM. The
absence of disk-swapping effects is checked during simulation. In particular, for
benchmarks with a short duration, time measurements are taken by averaging
over multiple runs, and care is put in minimizing disk-loading effects.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

118

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

TABLE 1II
RIPE VERSUS ARM PERFORMANCE ON AMBA. THE TREND IS SIMILAR FOR 6, 10, AND 12 IP SYSTEMS
Benchmarks | # IPs RIPE MPARM Inccuracy
Execution SR SW BR Execution SR SW BR
Cycles Cycles Exec % SR %
cacheloop 2 2500916 0 32 51 2500908 0 32 51 0.000% 0.000%
4 2501721 0 64 106 2501714 0 64 106 0.000% 0.000%
8 2503321 0 128 2018 2503314 0 128 201 0.000% 0.000%
matrix 2 1324711 0 117502 186 1324717 0 117502 186 0.000% 0.000%
4 1326582 0 235004 374 1326588 0 235004 374 0.000% 0.000%
8 1421281 0 470008 7502 1421272 0 470008 750 0.001% 0.000%
poll 2 881839 7176 71764 254 883977 7201 71764 254 0.242% 0.347%
4 975267 18241 143596 508 976488 18183 143596 508 0.125% 0.319%
8 1139110 46044 287356 1016 1140199 46300 287356 1016 0.096% 0.553%
multi 2 1823882 14 85729 24764 1824135 14 85729 24764 0.014% 0.000%
4 2224333 42 192745 52242 2225867 42 192745 52242 0.069% 0.000%
8 3482223 98 407707 109820 3482793 98 407707 109820 | 0.016% 0.000%
10 2 1156047 2560 68494 18271 1158639 2560 68495 18271 0.224% 0.000%
4 1446888 2560 145826 36966 1449109 2560 145827 36966 0.153% 0.000%
8 2325228 2560 300514 74435 2325625 2560 300515 74435 0.017% 0.000%
pipe 2 745386 2601 56004 16293 754998 2601 56004 16293 1.273% 0.000%
4 1051512 5246 114118 33257 1055056 5247 114298 33313 0.336% 0.019%
8 1829005 10530 229675 66321 1833183 10530 229675 66321 0.228% 0.000%
. point, the interconnect becomes completely saturated. In this
' condition, no further speedup is achievable because the sim-
3 ulation time of ARM processors is, anyway, mostly spent in
idle waits for bus responses—Ieaving no room for improvement
_ e% i to RIPE devices, regardless of their efficiency. To support this
i 2 N O analysis, we observe that the lowest speedup is achieved for
§ pipe, which is also found to be the benchmark with the highest
(% 1.5 ainininin'mininnininimnininlninly bandwidth requirements, and therefore, the highest load on the
i I T I interconnect model. We would like to stress that, as the cache-
loop demonstrates, this decrease in simulation speedup is not a
0.5 U HHEAHHHHHEHHHHH shortcoming of our RIPE approach and is, instead, a direct con-
sequence of benchmark and system behavior. In absolute terms,
4 gaaon aaaaan acaaan aoana againof 1.75x to 3.53x is observed when running the bench-
§8884s EEEELL 3EEEac 2333, mark code on RIPE devices as opposed to ARM processors,
g882022 EEERSE as S%%%% owing to the removal of the computation logic within cores.
888853 It is noteworthy that, even though speedup is not the primary
objective of RIPE, it compares favorably to previous work in the
Fig. 9. RIPE versus MPARM speedup.

rate. This causes RIPE to be affected by a small timing skew,
which impacts subsequent simulation.

The inaccuracies in interrupt-related benchmarks are due
to minor issues in properly pinpointing different sections
of OS code in the execution trace, as discussed before in
Section V. The near-matching statistics, however, fully prove
the role of the RIPE as a powerful design tool to mimic
complex-application behavior in replacement of a real IP core.

Scalability tests, based on simulation time in seconds, per-
formed by increasing the number of processors attached to the
bus, exhibit two main different trends, as shown in Fig. 9. The
cacheloop exhibits a fundamentally monotonic trend, showing
the advantage of replacing a progressively increasing amount
of system cores with a faster device model. Other benchmarks
show a fundamentally constant figure, or an asymptotic increase
(for example, matrix). This seemingly strange behavior can be
explained as follows. An increase in the number of processors
implies more traffic on the interconnect, thereby shifting the
simulation load toward the interconnect model. At a certain

area (a speedup of 1.55x is reported in [25]), particularly given
the fact that it is achieved at the cycle-true level of abstraction.

The time penalty for trace collection is small and is incurred
only once. For example, when running the relatively complex
pipe benchmark on the AMBA interconnect with four ARM
processors, a benchmark run augmented to collect reference
traces takes 20 s, and subsequent translation and elaboration
requires an additional 12 s for a 5.6-MB trace file. Only
one such iteration is needed to validate the RIPE model and
for subsequent design-space exploration. Additionally, since
processed RIPE programs are identical regardless of the
reference interconnect in which raw traces are collected, such
a collection could be performed on top of a fast transactional
interconnect model, further reducing the impact of the reference
simulation.

VII. RIPE AS A DESIGN TooL

To demonstrate the potential of RIPE as a coexploration tool,
we look at a variant of the multi application, first discussed
in Section II-C, in more detail. Specifically, we consider a

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

MAHADEVAN et al.: REACTIVE AND CYCLE-TRUE IP EMULATOR FOR MPSoC EXPLORATION 119

140

120

100

w

80

Bus Usage (transferred words)

15000 20000 25000 30000

Time (us)

0 5000 10000

Fig. 10. Reference traffic pattern.

nannnnnmm

120 i | l

140

100

80

60

40 Ny

Bus Usage (transferred words)

20 -

0 !
0 5000 10000 15000 20000 25000

Time (us)

30000

Fig. 11. Casel.

five-processor bus-based system with one RIPE configured
to act like a timer device. This core triggers the delivery of
interrupts at regular intervals to the other four RIPE devices,
which, as a result, switch among two tasks. The two tasks are
tuned to have very different bandwidth requirements: One task
performs matrix manipulations (MM) and heavily relies on data
caches to minimize memory transactions, whereas the second
task performs streams of writes (WS) to a memory attached to
the bus. The WS task is very demanding on the interconnect
and can easily saturate it, therefore impacting overall system
performance. In MPARM, interrupts are triggered by writing
to a specific address of a memory-mapped device; therefore,
to trigger the interrupts that should come from a timer device,
we write a small RIPE program issuing OCP writes at the right
times. In turn, this is achieved by parameterized idle waits. Such
a program is written in a dozen lines of RIPE code.

In this case study, using the RIPE, we test the behavior of
this system for different interrupt delivery policies and study the
resulting traffic profiles (Figs. 10—13). This type of exploration
may be useful to schedule bus accesses for real-time tasks in
critical systems. The traffic plots show the profile of the bus
traffic over time, expressed as transferred data words over a time
window of 2 us.

140
120 !

| T
100 “’ ‘ {4
% | |‘ | L
60

40

Bus Usage (transferred words)

20

15000 20000 25000 30000

Time (us)

0 5000 10000

Case II.

N
o
e ——

Bus Usage (transferred words)

0 !
0 5000 10000 15000 20000 25000
Time (us)

30000

Fig. 13. Case III.

In all the plots, until about the 6000-u:s mark, the bus activity
during the OS boot is observed. The boot activity is irregular
but, on average, quite intensive in terms of required bandwidth,
since all the processors are loading the OS and application
instructions from the memory across the interconnect. After
this mark, application code begins to be executed. In Fig. 10,
a straightforward scheduling policy is used: A timer interrupt
is sent to each core simultaneously, therefore causing all of
the cores to switch among MM and WS at the same time.
Since interrupts simultaneously reach all processors, all of them
are in the same task group during any given time slice of
execution. As expected, the bus load shifts depending on the
task characteristics; the traffic profile exhibits a clear alternating
pattern among two disproportionate usage values, with peaks
above 130 and a floor of around 20 transactions per time
window. The number of transitions between these two limits
and the width of each peak correspond to the number of issued
interrupt events and the interval between them (see Table IV).
The tail of the plot is representing shutdown code and is not
relevant.

Since excessive contention inflates the response latency of
the bus, therefore decreasing performance, the traffic profile
must be reshaped to decrease congestion. As is observed in

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

120 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

TABLE 1V
INTERRUPT-ISSUE FREQUENCY FOR FOUR
DIFFERENT MULTITASKING PATTERNS

Interval among | Notes
interrupts to
same core (ms)
Reference 2
Case [1
Case II 2 Processors receive interrupts
staggered by a 0.5 ms offset
Case III 2 Two processors receive an extra
interrupt just after the boot

Fig. 11, as compared to Fig. 10, doubling the interrupt-issue
frequency does little to mitigate the bus-congestion issue; it
only shifts the contention to a different time slot. Execution
time remains constant at about 28 200 us.

Let us now consider the impact on the bus activity of stag-
gering the interrupt events. In Fig. 12, an interrupt is sent every
500 ps, but two interrupts to the same processor are spaced
2000 ps apart. The traffic profile is smoother; owing to stag-
gering, MM tasks on some cores run in parallel to WS tasks
on other cores. Over time, the system shifts from running four
MM tasks to running four WS tasks and back, which results in a
sinusoidal-like trend with visible steps. Peak congestion is only
reached during a shorter fraction of the time, therefore reducing
the execution time to about 26 000 ys.

To balance the traffic even better, the clear choice is to
always overlap two MM and two WS tasks. This is achieved in
Fig. 13, where two processors are forced to perform a context
switch just after the OS boot, and the subsequent interrupt
pattern is the same as in Fig. 10. Owing to much better traffic
balancing, the bus never saturates, providing good performance
and decreasing the execution time to 25200 us.

In Fig. 14, the benchmark execution time and the average
communication latency for a write transaction on the bus are
plotted for the four configurations. As shown, Case I exhibits
basically identical performance to the reference, while Case II
improves 18% on communication latency (and, thus, 8% on
execution time) and Case III improves 24% on latency (and,
thus, 11% on execution time). Therefore, Case III is the best
among the alternatives under evaluation.

These experiments highlight that RIPE can be an extremely
useful tool to explore communication bottlenecks even without
having the real IP cores and benchmarks attached to the inter-
connect. The flexibility guaranteed by the interrupt handling
support provides the designer with additional degrees of free-
dom and accuracy, allowing a realistic system exploration even
in the presence of complex communication and synchronization
patterns.

VII. RELATED WORK

The use of IP emulation devices, such as traffic generators
(TGs), is not new and several approaches and models have been
proposed.

In [19], a stochastic TG model is used for the intercon-
nect exploration; the IP behavior is statistically represented
by means of uniform, Gaussian, or Poisson distributions. A
similar approach in [32] uses random and semideterministic

55 e,

7
,,,,,
s,

50 iy

45

40

35
30

Time

25 N— e
20

\, Exec. time (ms)
15 “, Latency (ns)

10

5

0
Reference

T T 1
Case | Casel ll Case lll

Fig. 14. Performance of the four synchronization patterns under test.

distributions. The IP model used for NoC optimization in [10]
takes into account the nature of MPSoC traffic, such as real-
time, short-data access, bursty, etc.; however, the injection rate
is governed by statistical methods. In [31], an extra dimension
of “self-similarity” is added to the stochastic model, which is
argued to assist in precise characterization of multimedia traffic
by examining the correlations in traffic traces at the macroblock
level. Despite the refinements, the inherent probabilistic nature
of the statistical approaches makes it less accurate, as each
TG injects traffic in complete isolation from every other. As
surveyed in [8], such stochastic models are widely popular
for analysis of macronetworks, e.g., the Internet, that exhibit
such behavior, which is, unfortunately, unlikely in an MPSoC
environment.

A modeling technique which adds functional accuracy and
causality is transaction-level modeling (TLM), which has been
widely used for MPSoC design [11], [14], [17], [24], [25],
[27]. In [24] and [25], TLM has been used for bus-architecture
exploration. The communication is modeled as read and write
transactions toward the bus. Depending on the required accu-
racy of the simulation results, timing information, such as bus
arbitration delay, is annotated within the bus model. In [25], an
additional layer called “Cycle Count Accurate at Transaction
Boundary” is presented. Here, the transactions are issued at
the same cycle as that observed in bus-cycle-accurate models.
Intratransaction visibility is traded off for a simulation-speed
gain. An average speedup of 1.55x is reported. While modeling
the entire system at TLM, both [24] and [25] present a method-
ology for preserving accuracy with gain in simulation speed.
Such models are efficient in capturing regular communication
behavior, but the fundamental problem of capturing system
unpredictability in the presence of OS and interrupts is not
addressed.

In [22] (MPARM) and [15], complete cycle-true MPSoC
systems including the full instruction set of the IP cores and
the OS are described. This consequently impacts the simula-
tion speed and the scalability of the system. Furthermore, the
time required to investigate the performance impact of rela-
tively minor changes in systems modeled in such a way often
becomes major due to long implementation and simulation

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

MAHADEVAN et al.: REACTIVE AND CYCLE-TRUE IP EMULATOR FOR MPSoC EXPLORATION 121

times. However, as seen before, it presents an ideal tool for
validation of our RIPE approach. To overcome the speedup
limitation of such simulation-based approaches, an FPGA-
based emulation platform has been proposed in [16]. However,
the approach uses the stochastic or the trace-driven model to
generate traffic, which, as addressed before, is not sufficiently
accurate for MPSoC performance optimization. A transforma-
tion methodology of high-level simulation traces with cycle-
true information from the target architecture, e.g., memory
distribution and communication details, is presented in [20]
and [21]. In [21], based on accurate information, different rules
are specified for inserting and ordering synchronization events
in the output-execution trace, while, in [20], a trace-based
communication graph is adjusted with interconnect-specific
details, such as connection-setup time, burst size, etc. The RIPE
approach, in contrast, is to identify synchronization events
based on system information and abstract it for communication
refinement. As has been demonstrated, this has been success-
fully achieved for complex benchmarks with interrupts and OS.
We believe that the RIPE model and the approach presented
in [21] are complementary in addressing trace-based MPSoC
analysis from functional to cycle-true abstraction.

In [26], a commercial TLM-based reactive-workload-
generation framework is presented that is somewhat similar to
our RIPE approach, wherein users can configure traffic patterns
for handling synchronization and inter-IP events. Primitives for
timing-dependent behavior are provided, so that the user can
trigger actions which do not depend on application flows but on
simulation time. The RIPE approach, however, supports mul-
tithreading, which is required for interrupt-driven OS context
switches, and traffic generation at multiple levels of abstraction,
including in a cycle- and bit-true environment.

Other commercial efforts also exist, including the Open-
VERA [30] language and tool chain, that model concurrence
and synchronization. However, our approach is focused on
maximum accuracy of results, while OpenVERA is mostly
focused on the verification issue, providing a flow from higher
abstraction levels to RTL.

IX. CONCLUSION

In this paper, we identified the requirements to split the
design of computation and communication entities in an
MPSoC design. Modeling requirements derive from real-life
applications, and they represent complex execution scenarios,
including an OS layer and asynchronous interrupt-based syn-
chronization. The key piece of the puzzle can be identified
in reactiveness to external events and system state. The RIPE
device presented here and its programming interface provide
support for the identified scenarios of traffic modeling and gen-
eration. Unlike traditional or commercial approaches, extensive
support for multithreading is provided, and via flow-control
instructions, it is possible to model a large and representative
class of traffic types observed in MPSoCs. We have shown the
usefulness of the RIPE device within different coexploration
domains, either to replace existing IP cores in new domains or
to provide emulation of IP cores that are under development or,
even yet, to be designed. Experimental results show excellent

accuracy figures when validating the RIPE against a reference
system and a respectable gain in simulation speed when taking
into account previous literature and the cycle-accurate abstrac-
tion level. A case study is supplied to show the usefulness of
RIPE in a design-space-exploration context. Future work may
include carrying the current RIPE design toward silicon for on-
chip traffic generation and toward behavioral models for extra
simulation speedups.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for extensive comments that have helped in vastly improving
this paper.

REFERENCES
[1] The Advanced Microcontroller Bus Architecture (AMBA)
homepage. [Online]. Available: ~www.arm.com/products/solutions/
AMBAHomePage.html

[2] “The SystemC discussion forum,” Web Forum. [Online]. Available:
WWwWWw.systemc.org

[3] The Real-Time Operating System for Multiprocessor Systems. [Online].
Available: http://www.rtems.com

[4] Open Core Protocol Specification, 2003. Release 2.0.

[5] F. Angiolini, S. Mahadevan, J. Madsen, L. Benini, and J. Sparsg, “Real-
istically rendering SoC traffic patterns with interrupt awareness,” in Proc.
IFIP Int. Conf. VLSI-SoC, Sep. 2005.

[6] ARM, AMBA AXI Protocol Specification. (2004, Mar.). version 1.0.
[Online]. Available: www.arm.com

[71 ARM Holdings PLC, Advanced Microcontroller Bus Architecture
(AMBA) Specification rev 2.0, 2001.

[8] S. Avallone, A. Pescape, and G. Ventre, “Analysis and experimentation of
Internet traffic generator,” in Proc. FTDCS, 2004.

[9] L. Benini and G. D. Micheli, “Networks on chips: A new SoC paradigm,”
Computer, vol. 35, no. 1, pp. 70-78, Jan. 2002.

[10] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS architec-
ture and design process for network on chip,” in J. Syst. Archit., vol. 50,
Feb. 2004, pp. 105-128.

[11] L. Caiand D. Gajski, “Transaction level modeling in system level design,”
Center for Embedded Comput. Syst., Inf. Comput. Sci., Univ. California,
Irvine, CECS Tech. Rep. 03-10, Mar. 2003.

[12] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini,
“xpipes: A latency insensitive parameterized network-on-chip architec-
ture for multi-processor SoCs,” in Proc. ICCD, 2003, pp. 536-539.

[13] W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Proc. 38th Des. Autom. Conf., Jun. 2001,
pp. 684-689.

[14] F. Fummi, P. Gallo, S. Martini, G. Perbellini, M. Poncino, and F. Ricciato,
“A timing-accurate modeling and simulation environment for networked
embedded systems,” in Proc. 42th DAC, Jun. 2003, pp. 42-47.

[15] F. Fummi, S. Martini, G. Perbellini, M. Poncino, F. Ricciato, and
M. Turolla, “Heterogeneous co-simulation of networked embedded sys-
tems,” in Proc. DATE, Feb. 2004, pp. 168-173.

[16] N. Genko, D. Atienza, G. D. Micheli, L. Benini, J. M. Mendias,
R. Hermida, and F. Catthoor, “A novel approach for network on chip
emulation,” in Proc. Int. Symp. Circuits Syst., 2005, pp. 2365-2368.

[17] T. Grotker, S. Liao, G. Martin, and S. Swan, System Design With SystemC.
Norwell, MA: Kluwer, 2002.

[18] S. Kuenzli, F. Poletti, L. Benini, and L. Thiele, “Combining simulation
and formal methods for system-level performance analysis,” in Proc.
DATE, Mar. 2006, pp. 236-242.

[19] K. Lahiri, A. Raghunathan, and S. Dey, “Evaluation of the traffic-
performance characteristics of system-on-chip communication architec-
tures,” in Proc. 14th Int. Conf. VLSI Des., 2001, pp. 29-35.

[20] K. Lahiri, A. Raghunathan, and S. Dey, “System-level performance analy-
sis for designing on-chip communication architectures,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 6, pp. 768-783,
Jun. 2001.

[21] P. Lieverse, P. van der Wolf, and E. Deprettere, “A trace transforma-
tion technique for communication refinement,” in Proc. 9th Int. Symp.
Hardware/Software Codesign (CODES), Apr. 2001, pp. 134-139.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

122 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 1, JANUARY 2008

[22] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon, “Analyzing
on-chip communication in a MPSoC environment,” in Proc. DATE, 2004,
pp. 752-757.

[23] S. Mahadevan, F. Angiolini, M. Storgaard, R. G. Olsen, J. Sparsg, and
J. Madsen, “A network traffic generator model for fast network-on-chip
simulation,” in Proc. DATE, Mar. 2005, pp. 780-785.

[24] O. Ogawa, S. B. de Noyer, P. Chauvet, K. Shinohara, Y. Watanabe,
H. Niizuma, T. Sasaki, and Y. Takai, “A practical approach for bus ar-
chitecture optimization at transaction level,” in Proc. DATE, Mar. 2003,
pp. 176-181.

[25] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Extending the transac-
tion level modeling approach for fast communication architecture explo-
ration,” in Proc. 38th DAC, 2004, pp. 113-118.

[26] S. Schneider, U. Mueller, and D. Tiegelbekkers, “A reactive workload
generation framework for simulation-based performance engineering of
system interconnects,” in Proc. MASCOTS, Sep. 2005, pp. 484—487.

[27] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vincentelli, “Addressing the system-on-chip interconnect
woes through communication-based design,” in Proc. 38th DAC, Jun.
2001, pp. 667-672.

[28] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, and G. D.
Micheli, “xpipes lite: A synthesis oriented design library for networks
on chips,” in Proc. DATE, Mar. 2005, pp. 1188-1193.

[29] STMicroelectronics, The ST Bus, 2004. [Online]. Available: http://www.
st.com/stonline/

[30] Synopsys, OpenVERA Technology Backgrounder, 2001. White paper.
[Online]. Available: http://www.open-vera.com/

[31] G. V. Varatkar and R. Marculescu, “On-chip traffic modeling and synthe-
sis for MPEG-2 video applications,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 12, no. 1, pp. 108-119, Jan. 2004.

[32] D. Wiklund, S. Sathe, and D. Liu, “Network on chip simulations for
benchmarking,” in Proc. 4th IEEE Int. Workshop Syst.-on-Chip for Real-
Time Appl. (IWSOC), 2004, pp. 269-274.

[33] W. Wolf, Computers as Components: Principles of Embedded Computing
System Design. San Mateo, CA: Morgan Kaufmann, 2001, ch. 3.

Shankar Mahadevan (M’05) received the M.S. de-
gree in electrical engineering from Virginia Poly-
technic Institute and State University, Blacksburg,
in 2002 and the Ph.D. degree from the Department
of Computer Science and Engineering, Technical
University of Denmark, Lyngby, Denmark, in 2006.

His research interests are in the area of model-
ing embedded systems and interconnects at multiple
levels of abstraction.

Federico Angiolini (S’07) received the M.S. degree
(summa cum laude) in electrical engineering from
the University of Bologna, Bologna, Italy, in 2003,
where he is currently working toward the Ph.D. de-
gree in the Department of Electronics and Computer
4 Science.

His research is mostly focused upon mem-
ory hierarchies, multiprocessor embedded systems,
networks-on-chip, and nanotechnologies.

\

Jens Sparsg (M’98) received the M.Sc. degree
from the Technical University of Denmark (DTU),
Lyngby, Denmark, in 1981.

Since 1982, he has been with the Section for Com-
puter Science and Engineering, Department of Infor-
matics and Mathematical Modelling, DTU, first, as
an Assistant Professor and then was appointed as an
Associate Professor in 1986 and Professor in 2007.
His research interests are in architecture and design
of very large scale integration systems, application-
specific computing structures and processors, low-
power design techniques, design of asynchronous circuits and systems, and
communication structures for systems-on-chip (i.e., networks-on-chip).

Prof. Sparsg has been on the steering committees and technical program
committees for several conferences. He was the General Chair for PATMOS
1998 and the Program Chair for PATMOS 1999 and ASYNC 2006. He
was the Director and Local Organizer of a summer school on asynchronous
circuit design at DTU in 1997. He is the coauthor of the book Principles of
Asynchronous Circuit Design-A Systems Perspective (Kluwer, 2001). He was
the recipient of the Radio-Parts Award and the Reinholdt W. Jorck Award
in 1992 and 2003, in recognition of his research on integrated circuits and
systems. He was the recipient of the Best Paper Award at the IEEE International
Symposium on Asynchronous Circuits and Systems in 2005.

Luca Benini (S’94-M’97-SM’04-F’06) received
the Ph.D. degree in electrical engineering from
Stanford University, Stanford, CA, in 1997.

He is currently a Full Professor with the Depart-
ment of Electrical Engineering and Computer Sci-
ence, University of Bologna, Bologna, Italy. He also
holds a visiting faculty position with Ecole Polytech-
nique Federale de Lausanne, Lausanne, Switzerland.
His research interests are in the design of system-on-
chip platforms for embedded applications. He is also
active in the area of energy-efficient smart sensors
and sensor networks, including biosensors and related data-mining challenges.
He has published more than 350 papers in peer-reviewed international journals
and conferences, four books, and several book chapters.

Dr. Benini has been the Program Chair and Vice Chair of the Design Au-
tomation and Test in Europe Conference. He has been a member of the technical
program committee and organizing committee of several technical conferences,
including the Design Automation Conference, International Symposium on
Low Power Design, and the Symposium on Hardware—Software Codesign. He
is an Associate Editor of the IEEE TRANSACTIONS ON COMPUTER-AIDED
DESIGN OF CIRCUITS AND SYSTEMS and the Association for Computing
Machinery Journal on Emerging Technologies in Computing Systems.

Jan Madsen (S’83-M’90) received the M.Sc. degree
in electrical engineering and the Ph.D. degree in
computer science from the Technical University of
Denmark (DTU), Lyngby, Denmark, in 1986 and
1992, respectively.

He has been with the Department of Informatics
and Mathematical Modelling, DTU, as an Assistant
Professor from 1992 to 1996, an Associate Professor
from 1996 to 2002, and a Full Professor of computer-
based systems since 2002. He has published 7 book
chapters and more than 80 papers in peer-reviewed
international journals and conference proceedings. His research interests are in
modeling, analysis and design of embedded systems, particularly system-level
tools for performance analysis and verification, hardware/software codesign,
and wireless sensor networks.

Prof. Madsen has been the Program Chair and Vice Chair of the Design,
Automation, and Test in Europe Conference and the Program Chair and
General Chair of the Hardware/Software Codesign Conference. He has been
a member of the Technical Program Committee and Organizing Committee of
several technical conferences, including the Symposium on Hardware/Software
Codesign, the International Symposium on System Synthesis, the Design Au-
tomation Conference, the Real-Time System Symposium, and the International
Symposium on Industrial Embedded Systems.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 4, 2009 at 10:53 from |IEEE Xplore. Restrictions apply.

