
1942 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

An Implicit Approach to Minimizing
Range-Equivalent Circuits

Yung-Chih Chen and Chun-Yao Wang, Member, IEEE

Abstract—Simplifying a combinational circuit while preserv-
ing its range has a variety of applications, such as combina-
tional equivalence checking and random simulation. Previous
approaches use the binary decision diagram (BDD) technique to
compute the range of one circuit and then reconstruct the circuit
using the computed range. Although the size of the new circuit is
significantly reduced due to the range rearrangement, this method
suffers from the BDD blowup problems for large circuits since
performing range computation using BDD is memory intensive.
Thus, in this paper, we propose a new method for simplifying
combinational circuits without explicit range computation. We
first introduce a new concept of a stuck-at fault test for a circuit’s
range, showing that a range untestable stuck-at fault on a primary
input (PI) indicates that this PI is range redundant, i.e., it can be
removed without affecting the circuit’s range. We then present
a procedure to determine if a given range stuck-at fault on a
PI is untestable. Our method iteratively identifies and removes
range-redundant PIs to simplify a combinational circuit without
performing range computation. Accordingly, large circuits that
BDD-based methods cannot deal with can be handled using our
method. We conduct experiments on a set of ISCAS’85 and MCNC
benchmarks, and the experimental results show that our approach
can minimize circuits such that fewer PIs are left. On average, our
approach gets 37.06% reduction in terms of the number of PIs and
36.31% reduction in terms of the node counts.

Index Terms—Range-preserving simplification, range-
redundant primary input (PI).

I. INTRODUCTION

THE RANGE of a combinational circuit is the set of all
possible output combinations [14]. Simplifying a combi-

national circuit while preserving its range has a variety of appli-
cations, e.g., combinational equivalence checking and random
simulation.

Binary decision diagram (BDD)-based [6] cut-point ver-
ification is a widely used approach in combinational logic
equivalence checking [4], [10], [13]. These methods partition
the specification and implementation circuits into many sub-
circuits to avoid huge memory requirements in verifying the
equivalence of the circuits. However, these approaches cause
false negative problems if they simply replace the cut nets
with free variables, because they lose the correlations with
the free variables. To deal with this problem, one can add

Manuscript received July 19, 2007; revised February 3, 2008 and May 20,
2008. Current version published October 22, 2008. This work was supported in
part by the National Science Council of R.O.C. under Grants NSC 96-2220-
E-007-009 and NSC 96-2220-E-007-049. This paper was recommended by
Associate Editor S. Nowick.

The authors are with the Department of Computer Science, National
Tsing Hua University, Hsinchu 300, Taiwan (e-mail: ycchen@cs.nthu.edu.tw;
wcyao@cs.nthu.edu.tw).

Digital Object Identifier 10.1109/TCAD.2008.2006088

Fig. 1. (a) False negative problem: C1b is not equivalent to C2b, but C1 and
C2 are equivalent. (b) Add a simplified range-equivalent circuit Cr to avoid the
false negative problem.

a simplified range-equivalent circuit connected to the cuts to
drive the subcircuits [14], [15]. For example, in Fig. 1(a) (taken
from [15]), C1 and C2 are designs under verification (DUV).
The cut-point-based approaches partition C1 and C2 into two
subcircuits to avoid memory explosion during verification.
Therefore, the equivalence checking for C1 and C2 is now
transformed to verifying the equivalence of C1a and C2a as well
as the equivalence of C1b and C2b. In this example, C1a and C2a

are equivalent, but C1b is not equivalent to C2b. However, C1

and C2 are actually functionally equivalent, demonstrating that
this method can give falsely negative results. The reason for this
problem is that these approaches regard Y1, Y2 and Z1, Z2 as
free variables when verifying the equivalence of C1b and C2b.
In fact, Y1(Z1) and Y2(Z2) cannot be simultaneously assumed
to equal 1. To deal with this problem, we can add a simplified
range-equivalent circuit of C1a and C2a, i.e., Cr, to drive C1b

and C2b [as shown in Fig. 1(b)] and then verify the equivalence
of C ′

1 and C ′
2. Since the number of primary inputs (PIs) in

the simplified range-equivalent circuit is usually reduced, it is
more likely that the equivalence check for C ′

1 and C ′
2 can be

conducted by BDD-based approaches.
Random simulation is an efficient way to detect design

errors. However, applying illegal random vectors to the DUV
is meaningless for verification. Thus, the concept of constraint-
based random simulation that can generate legal patterns for
simulation is proposed [19]–[21]. However, the knowledge of
generating these constraints is carried by designers according
to the DUV specification. As a result, designers have to be
involved in writing the input constraints for random pattern
generation, increasing the possibility of manual errors. Another

0278-0070/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

CHEN AND WANG: AN IMPLICIT APPROACH TO MINIMIZING RANGE-EQUIVALENT CIRCUITS 1943

Fig. 2. Replace the constraint circuit by a simplified (with fewer PIs) but
range-equivalent circuit.

approach to dealing with the problem of illegal random sim-
ulation is to construct a constraint circuit for generating legal
random vectors for simulation. This idea is as follows. In
general, the inputs of the DUV are driven by the outputs of other
modules that are within the same system. Thus, these modules,
also called the environment, can be seen as constraint circuits
for the DUV. The outputs of these modules can always feed
legal vectors to the DUV. The main concern of this approach
is verification efficiency. Verification engineers hope that the
random vectors can be evenly distributed to reach more design
corners. However, the randomness of input vectors in the DUV
can suffer from the nonuniformity constraint circuit outputs.
For example, many random input vectors in the constraint
circuit will generate the same output vector, which will be the
random input vector for the DUV. Thus, if the constraint circuit
can be replaced by a simplified (with fewer PIs) but range-
equivalent circuit, the verification process will be accelerated.
This idea is shown in Fig. 2. Note that the constraint circuit
is limited to a combinational circuit in this application. For a
sequential circuit, this idea still works if the sequential circuit
can be translated into a combinational one by setting reachable
state values to flip-flops.

To simplify a combinational circuit without changing its
range, several works have been proposed [2], [3], [11], [14],
[22]. These methods first compute and present the range of
the circuit using BDDs. They then synthesize the computed
range into a range-equivalent circuit. These range-computation-
based methods can obtain significant reductions on the size of
the circuit. Unfortunately, they could suffer from BDD blowup
for large circuits since performing range computation using
BDD is memory intensive. As a result, these methods fail
to simplify a circuit whose range cannot be computed and
presented efficiently.

On the other hand, a normalized function method [15] is
proposed to simplify a circuit without performing range com-
putation. This method partitions all PIs into two groups. One
group is fan-out-free PIs, which are PIs in the transitive fan-
in cone of only one primary output (PO). The other group is
fan-out PIs, which are PIs in the intersection of the transitive
fan-in cones of more than one PO. This method is capable
of removing all fan-out-free PIs, but retains the fan-out PIs.
As a result, although the method can minimize some large
circuits that the range-computation-based methods cannot, the
reduction is limited. In particular, for circuits with only fan-out
PIs, the algorithm fails.

Thus, in this paper, we propose a new method to simplify a
circuit by removing range-redundant PIs. A range-redundant PI
is a PI which is not responsible for the circuit’s range. We can

replace a range-redundant PI with a constant value, 1 or 0, with-
out changing the circuit’s range. Our approach is based on the
concept of mandatory assignments (MAs), which is used in the
identification of functional redundant wires [7], [8], [17]. With
this approach, we iteratively identify and remove the range-
redundant PIs without performing range computation. Thus,
our method also can deal with large circuits that the range-
computation-based methods cannot. We conduct experiments
on a set of ISCAS’85 and MCNC benchmarks. The experimen-
tal results show that our approach can minimize circuits so that
fewer PIs are left. Our approach gets an average of 19.74%
more reduction than that of the normalized function method
[15] in terms of the number of PIs. Note that our approach
and that in [15] both focus on reducing the number of PIs in
simplification. This is because fewer PIs in the simplified circuit
improves performance in various applications. Additionally,
although our approach focuses on reducing the number of PIs,
the total node count is also reduced when we simplify a circuit
by removing the range-redundant PIs. The experimental results
show that our approach on average gets 36.31% reduction in
terms of the number of nodes.

In contrast to the range-computation-based methods, the
simplification capability of our method may not be as good as
that of them, but our method is more scalable and can simplify
a circuit having an enormous range. Additionally, since the
proposed algorithm is not limited to specific applications, any
application using the technique of range-preserving simplifica-
tion can take advantage of this work.

This paper is organized as follows. Section II reviews the
related concepts in very large scale integration (VLSI) test-
ing used in this paper. Section III describes our fundamental
method of identifying range-redundant PIs. Section IV intro-
duces two procedures to improve the method mentioned in
Section III. Section V shows the overall algorithm. Section VI
presents the experimental results. Finally, Section VII con-
cludes this paper.

II. PRELIMINARIES

In VLSI testing, a stuck-at fault is a fault model used to
represent a manufacturing defect within a circuit. The effect of
the fault is as if the faulty wire is stuck at either 1 (stuck-at 1)
or 0 (stuck-at 0). A stuck-at fault is testable if there exists a
test vector that can generate the different output values in the
fault-free and faulty circuits. Otherwise, the fault is untestable.

In a combinational circuit, an untestable stuck-at fault does
not affect the functionality of the circuit. Thus, an untestable
fault on a wire indicates that the wire is redundant. The circuit
will still be functionally equivalent if the redundant wire is
replaced with the stuck value. Here, we review an approach
of identifying functional redundant wires using the concept of
MAs [17]. Additionally, we assume that circuits only consist of
AND, OR, and INV gates for simplicity. Complex gates can be
decomposed into these gates.

An input of a gate g has an input-controlling value of g if
this value determines the output value of g regardless of the
other inputs. The output-controlling value of g is the output
value with respect to the input-controlling value. For example,

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

1944 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

the input-controlling value of a NAND (NOR) gate is 0 (1),
and the output-controlling value is 1 (0). The inverse of the
input-controlling value is called input-noncontrolling value,
and the inverse of the output-controlling value is called output-
noncontrolling value. Furthermore, a gate g or a wire w is in the
transitive fan-out cone of a wire ws if there exists a path from
ws to g or w, and ws is in the transitive fan-in cone of g or w.

The dominators [9] of a wire w are a set of gates G such
that all paths from w to any PO have to pass through all gates
in G. Consider the dominators G of a wire w. The side inputs
of G are the inputs of G that are not in the transitive fan-out
cone of w.

Logic implication is a process of computing unique logic
values based on known logic values of nodes in a Boolean
network. Given a logic value assigned at one node, the value can
be propagated forward or backward until no more logic values
can be determined. Recursive learning [12], a learning method
in automatic test pattern generation, can be used to perform
logic implications more completely.

The MAs are the unique value assignments to nodes required
for a test to exist. Consider a stuck-at fault test on a wire w.
The MAs can be obtained by setting w to the fault-activating
value and by setting the side inputs of dominators of w to the
fault-propagating values. Then, these MAs can be propagated
forward or backward to infer more MAs by performing logic
implication. If the MAs of the fault are inconsistent, the fault is
untestable, and therefore, w is redundant [17].

In this paper, our fundamental idea of identifying range-
redundant PIs is derived from that of identifying functional
redundant wires using inconsistent MAs.

III. RANGE-REDUNDANT PI IDENTIFICATION

In this section, we first present a new concept of a stuck-
at fault test for a circuit’s range and show that, if a stuck-at
fault on a PI is range untestable, this PI is range redundant.
We then derive the MAs for a test vector based on a specific
type of don’t care. The don’t care we consider is based on
range equivalence, and it is different from the traditional con-
trollability/observability don’t cares used in Boolean network
minimization [1], [5], [16]. The don’t cares that these works
consider are based on functionality equivalence. Finally, when
the MAs are inconsistent, the fault is range untestable.

Before the detailing description of our approach, we use
a simple example to demonstrate the intention of this paper.
Fig. 3(a) shows a three-input two-output circuit. Its truth table
is also shown in Fig. 3(a). The range of this circuit, denoted
as R, is (O1, O2) = {(0, 0), (1, 0), (1, 1)}. We observe that the
output combinations of the last four minterms {a = 1, b = −,
c = −} (− denotes irrelevance of value) is the subset of the
first four minterms {a = 0, b = −, c = −}. Thus, the range-
equivalent circuit can be constructed using only the first four
minterms {a = 0, b = −, c = −}. Furthermore, since a = 0 is
the input-noncontrolling value of the OR gate in Fig. 3(a),
the OR gate can be removed as well, and the resultant range-
equivalent circuit is shown in Fig. 3(b). In this example, we
must examine if the minterms with a = 1 only generate output
values that are the subset of the range of minterms with a = 0.

Fig. 3. (a) Stuck-at 0 fault on PI a is range untestable. (b) The resultant circuit
by replacing a with a constant 0 in (a).

Therefore, we set a stuck-at 0 fault on the PI a and check if the
fault effect affects the circuit’s range. Note that the traditional
stuck-at fault test considers the fault effect to the circuit’s
functionality; however, we consider if the fault effect affects
the circuit’s range in this work.

A. Stuck-at Fault Test for a Circuit’s Range

Definition 1: A stuck-at fault test while considering a cir-
cuit’s range is a process to find a test (vector) such that the
output value of this vector is in the range of a fault-free circuit
but not in that of a faulty circuit. Given a stuck-at fault f , if there
exists such a test, f is said to be range testable; otherwise, f is
range untestable.

In the previous example in Fig. 3(a), the circuit’s range R
is (O1, O2) = {(0, 0), (1, 0), (1, 1)}. If we consider the
stuck-at 0 fault test of the PI a, the range of the faulty circuit, de-
noted as R′, is also (O1, O2) = {(0, 0), (1, 0), (1, 1)} as seen in
Fig. 3(b). Since each output value in R is also in R′, we cannot
find a test vector that produces an output value only in the range
of the fault-free circuit. Thus, this fault is range untestable.
The following theorem shows that a range untestable fault of
a PI indicates that it is a range-redundant PI.

Theorem 1: A PI is range redundant and can be replaced
with a constant value v(v denotes a logical value 0 or 1), if the
stuck-at v fault of this PI is range untestable.

Proof: According to Definition 1, the stuck-at v fault of a
PI is range untestable means that there is no output value that is
only in the range of the fault-free circuit. Therefore, replacing
the PI with a constant value v will not change the circuit’s range.
Hence, the PI is range redundant. �

For example, in Fig. 3(a), the stuck-at 0 fault of PI a is
range untestable as explained. Hence, we can replace a with
a constant 0 without changing the circuit’s range. The resultant
circuit is shown in Fig. 3(b).

Note that our approach does not use explicit means to exam-
ine the range of a circuit, e.g., truth tables or BDDs, and then
determine if any PI is range redundant. Instead, we use the idea
of inconsistent range MAs (RMA) to achieve this. The details
of our method will be presented in the following sections.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

CHEN AND WANG: AN IMPLICIT APPROACH TO MINIMIZING RANGE-EQUIVALENT CIRCUITS 1945

B. RMAs

As mentioned in Section II, for a traditional stuck-at fault
test, the MAs are the unique assignments to nodes required for
a test to exist. Similarly, for a stuck-at fault to be range testable,
some nodes in the circuit have to be set to certain values for a
test vector. These assignments are named RMAs. The formal
definition of RMA is as follows:

1) Definition 2: Let f be a stuck-at fault in a combinational
circuit C, and let T be a set of all vectors that can detect f for
C’s range. A node n in C has an RMA m if n is assigned as the
value m for all vectors in T .

Computing all RMAs of a stuck-at fault is with exponential
time complexity. This is because the process involves finding all
vectors that can detect the fault. In this paper, instead of finding
all RMAs, we present two types of value assignments that can
be derived in practice, and then we show that they are some
RMAs for a stuck-at fault test on a PI.

Type 1 Assignments: The activating assignment, which is
necessary for activating the fault effect, and the propagating
assignments, which are necessary for propagating the fault
effect.

Consider a stuck-at v fault on a PI pi, the activating as-
signment is pi = v̄ (v̄ denotes the inverse value of v), and
the propagating assignments can be obtained by setting the
side inputs of dominators of pi to input-noncontrolling values.
These assignments are also the MAs for a stuck-at fault test as
mentioned in Section II.

Before introducing another type of assignment, we define a
concept that a node with a value assignment is observable at
a PO. This definition is different from that previously defined
and used in Boolean network minimization [1], [5], [16]. In
the previous definition, a node n is observable if a change
at its value is perceived at one of the circuit’s outputs. If
n is a PI, its observability is identical in our definition and
the previous definition. However, if n is an internal node, its
observability may be different. The previous definition only
considers whether the value change at n can be observed at
the POs in the transitive fan-out cone of n. In our approach,
however, we also consider whether the value change at n
(that made by some value changes at PIs) causes a value change
at a PO which is not in the transitive fan-out cone of n.

Definition 3: A node n is observable if all possible value
changes at PIs in the transitive fan-in cone of n that can change
the value of n make a value change at a PO. An input pattern t
makes n observable if n is observable under the condition that
t is applied to the circuit. Otherwise, t makes n unobservable.

In Definition 3, we only consider the value changes at PIs
that are in the transitive fan-in cone of n. This is because only
they are responsible for the value change at n. In addition, if
n is a PI, the PI we consider in its transitive fan-in cone is n
itself. We use a simple example in Fig. 4 to clarify Definition 3
and to explain its difference with the previous definition. In this
example, a = 0 is observable since a change at its value flips
O1’s value. Similarly, b = 0 and d = 1 are observable as well.
However, c = 1 is not observable since b = 0 blocks the effect
of c’s value change. Next, let us consider the observability of
the internal node g1. In the previous definition, g1 = 0 is not
observable because d = 1 blocks the effect of its value change.

Fig. 4. Example of node assignments that are observable/unobservable.

Fig. 5. Example of observability assignments.

However, g1 = 0 is observable according to Definition 3.
The value change at g1, g1 becomes 1, must be caused by the
value change at b, b becomes 1, and b becoming 1 flips the
value of O1. As a result, g1 = 0 is observable. Furthermore,
let us consider the observability of g1 when the input pattern is
{a = 0, b = 1, c = 1, d = 1}. In this case, g1 = 1 is not observ-
able according to Definition 3. Three possible value changes
at b and c can cause g1 = 0, {b = 0, c = 1}, {b = 1, c = 0},
and {b = 0, c = 0}, but one of them, {b = 1, c = 0}, is not
observable. Hence, g1 = 1 is not observable.

For a value assignment in a circuit to be observable at a PO,
some nodes in the circuit have to be set at certain values. These
assignments are named observability assignments.

Type 2 Assignments: The observability assignments, which
are necessary for making type 1 or 2 assignments themselves
observable at a PO.

To compute type 2 assignments, we first calculate the observ-
ability assignments of each PI and internal gate and then collect
them based on these assignments.

In a combinational circuit, the observability assignments of
a PI or an internal gate are further classified into controlling
observability assignments (COAs) and noncontrolling observ-
ability assignments (NCOAs). The COAs and NCOAs of a PI
are identical, and they are the same with its propagating as-
signments. For example, in Fig. 5, a’s propagating assignments
are {b = 1, c = 0, d = 1}, and these assignments are also a’s
COAs and NCOAs. b’s COAs and NCOAs are empty set ∅. This
is because b has no dominators. This is also true for the PI c. d’s
COAs and NCOAs are {g3 = 1}.

For an internal gate g, its COAs and NCOAs, denoted as
COAs(g) and NCOAs(g), are the necessary assignments for
making g observable at a PO when g has its output-controlling
and -noncontrolling values, respectively. They can be de-
rived from the COAs and NCOAs of g’s inputs. Theorems 2
and 3 show the methods. Here, we suppose g has k inputs.
In addition, icv(g), incv(g), ocv(g), and oncv(g) denote the

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

1946 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

Fig. 6. (a) COAs(n3) are the intersection of COAs(n1) and NCOAs(n2).
(b) NCOAs(n3) are the union of NCOAs(n1) and COAs(n2).

input-controlling, input-noncontrolling, output-controlling, and
output-noncontrolling values of g, respectively.

Theorem 2: Let gin_j be the jth input of g and OAs_C(gin_j)
denote the set of observability assignments necessary for
making gin_j = icv(g) observable. Each value assignment in⋂k

j=1 OAs_C(gin_j) must be necessary for making g = ocv(g)
observable.

Proof: Suppose n = v is a value assignment in⋂k
j=1 OAs_C(gin_j), and t is an input pattern that generates

g = ocv(g) but n = v̄. Since n = v is necessary for each input
of g having icv(g) to be observable, t generating n = v̄ makes
all of them unobservable. Let us consider the value change
at g; it must be caused by all inputs of g becoming incv(g).
Since all of them cannot be observed at a PO, g = ocv(g)
is unobservable. Thus, an input pattern generating n = v̄
must make g = ocv(g) unobservable, and therefore, n = v is
necessary for g = ocv(g) to be observable. �

We use the example in Fig. 6 to demonstrate Theorem 2.
In Fig. 6(a), n1 and n2 are the inputs of n3. Suppose n = v
is a value assignment in OAs_C(n1)

⋂
OAs_C(n2), and t is

an input pattern that generates n3 = 0 but n = v̄. When we
apply t to the circuit, there are three possible combinations on
the values of n1 and n2 : {n1 = 0, n2 = 0}, {n1 = 0, n2 = 1},
and {n1 = 1, n2 = 0}, and t makes both n1 = 0 and n2 = 0
unobservable. Next, let us consider the value change at n3. It
must be caused by the values of n1 and n2 becoming 1. Since
they cannot be observed at a PO, n3 = 0 is unobservable. Thus,
t does not make n3 = 0 observable, and hence, n = v is a
necessary assignment.

Consider computing COAs(g). We can compute them by
intersecting the COAs or NCOAs of all of g’s inputs. For exam-
ple, in Fig. 6(a), ocv(n3)= icv(n3)=ocv(n1)=oncv(n2)=0.
The observability assignments necessary for making n1 =
icv(n3) = ocv(n1) = 0 observable are COAs(n1), and the ob-
servability assignments necessary for making n2 = icv(n3) =
oncv(n2) = 0 observable are NCOAs(n2). Thus, COAs(n3)
are the intersection of COAs(n1) and NCOAs(n2). In the
example, in Fig. 5, COAs(g1) are the intersection of COAs(a)
and COAs(b), and they are ∅.

Theorem 3: Let gin_j be the jth input of g and
OAs_NC(gin_j) denote the set of observability assignments
necessary for making gin_j = incv(g) observable. Each value
assignment in

⋃k
j=1 OAs_NC(gin_j) must be necessary for

making g = oncv(g) observable.
Proof: Suppose n = v is a value assignment in⋃k

j=1 OAs_NC(gin_j), and t is an input pattern that generates
g = oncv(g) but n = v̄. Since n = v is necessary for at least
one input gin of g having incv(g) to be observable, t makes

Fig. 7. Example of (1) and (2).

gin = incv(g) unobservable. Let us consider the value change
at g; it may be caused by gin becoming icv(g). Since the value
change at gin cannot be observed at a PO, t makes g = oncv(g)
unobservable. Thus, an input pattern generating n = v̄ must
make g = oncv(g) unobservable, and therefore, n = v is
necessary for g = oncv(g) to be observable. �

We use the example in Fig. 6 to demonstrate Theorem 3. In
Fig. 6(b), n1 and n2 are the inputs of n3. Suppose n = v is
necessary for n1 = incv(n3) to be observable, and t is an input
pattern that generates n3 = 1 but n = v̄. When we apply t to the
circuit, we obtain n1 = 1 and n2 = 1. Next, let us consider the
value change at n3. It may be caused by n1’s value becoming
0. Since the value change at n1 cannot be observed at a PO,
n3 = incv(n3) is unobservable. Thus, t does not make n3 = 1
observable, and hence, n = v is a necessary assignment. Simi-
larly, each value assignment necessary for n2 = incv(n3) to be
observable is necessary for n3 = 1 to be observable as well.

Next, consider computing NCOAs(g). NCOAs(g) are the
union of the COAs or NCOAs of all of g’s inputs. Con-
sider the example in Fig. 6(b). oncv(n3) = incv(n3) =
oncv(n1) = ocv(n2) = 1. The observability assignments nec-
essary for making n1 = incv(n3) = oncv(n1) = 1 observable
are NCOAs(n1), and the observability assignments neces-
sary for making n2 = incv(n3) = ocv(n2) = 1 observable are
COAs(n2). Thus, NCOAs(n3) are the union of NCOAs(n1)
and COAs(n2). In Fig. 5, NCOAs(g1) are the union of
NCOAs(a) and NCOAs(b), and they are {b = 1, c = 0, d = 1}.

More formally, COAs(g) and NCOAs(g) can be calculated
using (1) and (2) as follows. We denote gin_j as the jth input
of g. If icv(g) = ocv(gin_j), the notation OAs_C(gin_j) repre-
sents COAs(gin_j); otherwise, it represents NCOAs(gin_j). If
incv(g) = ocv(gin_j), the notation OAs_NC(gin_j) represents
COAs(gin_j); otherwise, it represents NCOAs(gin_j). For ex-
ample, in Fig. 7, a is a PI, and n1, n2, and n3 are internal nodes
in a circuit. icv(n3) = ocv(n3) = 0 is oncv(n1) and ocv(n2).
Thus, COAs(n3) are the intersection of COAs(a), NCOAs(n1),
and COAs(n2). Additionally, incv(n3) = oncv(n3) = 1 is
ocv(n1) and oncv(n2). Thus, NCOAs(n3) are the union of
NCOAs(a), COAs(n1), and NCOAs(n2)

COAs(g) =
k⋂

j=1

OAs_C(gin_j) (1)

NCOAs(g) =
k⋃

j=1

OAs_NC(gin_j). (2)

Finally, in the example of Fig. 5, by (1) and (2), COAs(g2)
and NCOAs(g2) are ∅. COAs(g3) and NCOAs(g3) are ∅ as
well. Furthermore, COAs(g4) is ∅, and NCOAs(g4) is {g3 =1}.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

CHEN AND WANG: AN IMPLICIT APPROACH TO MINIMIZING RANGE-EQUIVALENT CIRCUITS 1947

With each gate’s COAs and NCOAs, we can calculate
type 2 assignments for a PI’s stuck-at fault test. Consider a’s
stuck-at 1 fault test in Fig. 5. Type 1 assignments are a = 0 to
activate the fault effect and {b = 1, c = 0, d = 1} to propagate
the fault effect. For type 2 assignments, g3 = 1 is COAs(d)
and NCOAs(d); therefore, g3 = 1 is necessary to make d = 1
observable. Furthermore, since g3 is an OR gate and COAs(g3)
is ∅, there does not exist any assignment necessary for making
g3 = 1 observable. Therefore, the type 2 assignment is g3 = 1.

To summarize the procedure for computing type 1 and 2
assignments for a given fault test on a PI, we first compute the
activating assignment and each PI’s propagating assignments
in order to get type 1 assignments. Second, based on these
propagating assignments, we calculate each gate’s COAs and
NCOAs. Finally, we collect type 2 assignments according to
the assignments computed in the first two steps.

Theorem 4: For a stuck-at fault test on a PI, type 1 and 2
assignments are some RMAs.

Proof: Let f be a stuck-at v fault on a PI pi in a combina-
tional circuit C, T be the set of all input vectors that can detect f
for C’s range, and R be the set of output values with respect to
T . By Definition 1, each output value in R must be in the range
of the fault-free circuit but not in that of the faulty circuit.

1) Activating assignment. Because each output value in R is
not in the range of the faulty circuit, each input vector in
T must have pi = v̄. Therefore, the activating assignment
is an RMA for f .

2) Propagating assignment. Suppose t is an input vector that
has pi = v̄, and pi = v̄ is unobservable when we apply t
to C. Let o be the output value with respect to t. Since t
does not make pi = v̄ observable, the value change at pi
cannot be observed at a PO. Thus, we can find another
input vector t′ with pi = v, and t′ can generate o as
well. Thus, in order to generate the output values only
in the range of the fault-free circuit, each input vector in
T must make pi = v̄ observable at a PO. Therefore, the
propagating assignments are also RMAs for f .

3) Observability assignment. Suppose t is an input vector
that, when we apply t to C, pi = v̄ is observable, but there
exists at least one propagating assignment whose value
is unobservable. Let np be the propagating assignment
and np = vp be the unobservable value. Since np = vp is
unobservable, we can find an input vector t′ that gener-
ates np = v̄p and outputs the same output value. When
np is assigned to v̄p, the value pi = v̄ is blocked and
becomes unobservable. As a result, t′ cannot make pi = v̄
observable. In the earlier paragraph, we have proved that
a test vector for f must make pi = v̄ observable. Thus,
t′ is not a test vector, and hence, t is not a test vector
as well. Similarly, an input vector that cannot make all
observability assignments’ values observable is not a test
vector for f . This is because we can find an input vector
that makes at least one propagating assignment’s value
unobservable while generating the same output value.
Thus, each input vector in T must make pi = v̄, each
propagating assignment’s value, and each observability
assignment’s value observable. Therefore, the observabil-
ity assignments are also RMAs for f . �

Thus, the MAs for a traditional stuck-at fault test are the
subset of the RMAs of a stuck-at fault test on a PI for the
circuit’s range. When a PI’s traditional stuck-at fault test is
untestable, there is no input pattern that can produce a different
output value between the faulty and fault-free circuit; the PI’s
stuck-at fault is range untestable as well. As a result, a func-
tional redundant PI is also range redundant. However, a range-
redundant PI may not be functional redundant.

Given a stuck-at fault on a PI, we can compute the RMAs of
the fault test for the circuit’s range and then perform logic im-
plications to obtain more RMAs. If the RMAs are inconsistent,
the fault is range untestable. This is because no input pattern
can generate a conflict value on a node in the circuit. Thus, we
can replace the PI with a constant value. For example, in Fig. 5,
consider a’s stuck-at 1 fault test. The RMAs are {a = 0, b = 1,
c = 0, d = 1, g3 = 1}. After performing logic implication, we
can find a conflict on g3 because a = 0 and c = 0 imply g3 = 0.
Thus, a is a range-redundant PI, and it can be replaced with a
constant 1.

IV. MORE RMA IDENTIFICATION

In Section III, we introduce a simple method to compute
the RMAs for a given stuck-at fault on a PI. The method, in
fact, can only find a subset of all possible RMAs. However,
the number of found RMAs significantly affects our capability
of identifying range-redundant PIs. In this section, we propose
two approaches for finding more RMAs so that more range-
redundant PIs can be identified. Finally, we summarize the
proposed range-redundant PI identification algorithm.

A. Propagating Assignment Identification

Given a stuck-at fault on a PI pi, pi’s propagating assign-
ments can be obtained by setting the side inputs of the dom-
inators of pi to input-noncontrolling values. For example, in
Fig. 5, the propagating assignments of the fault on a are {b =
1, c = 0, d = 1}. However, this method only works when pi has
dominators and side inputs. In Fig. 5, c has no dominators,
therefore, no propagating assignment for the fault on c can
be found. However, g1 = 0 is necessary to propagate the fault
effect, and it is a propagating assignment indeed.

A new method to finding more propagating assignments for
a given fault on a multiple fan-out PI is to individually consider
the fault propagating path of each fan-out. For example, in
Fig. 5, consider the stuck-at fault on c. The fault effect can
be propagated through either g2 or g3. First, we suppose that
the effect is propagated through g2. We then find that the
propagating assignment is b = 0, and b = 0 implies g1 = 0.
Next, we suppose that the effect is propagated through g3. We
then find that the propagating assignments are {g1 = 0, d = 1}.
Finally, since g1 = 0 is necessary for propagating the fault
effect through either g2 or g3, it is a propagating assignment
of the stuck-at fault on c. Thus, given a stuck-at fault on a mul-
tiple fan-out PI pi, its propagating assignments can be obtained
by intersecting the propagating assignments of each of pi’s
fan-out.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

1948 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

Fig. 8. Example of observability assignments by considering the fault
effect d = 0.

B. COA and NCOA Identification

To review the approach discussed in Section III for identi-
fying each gate’s COAs and NCOAs, we first compute each
PI’s propagating assignments. Next, based on these propagating
assignments, we identify each gate’s COAs and NCOAs using
(1) and (2).

With these COAs and NCOAs, we can find the RMAs for a
given stuck-at fault on a PI. For example, in Fig. 5, consider d’s
stuck-at 1 fault test for the circuit’s range. d = 0 is the activating
assignment, and g3 = 1 is its propagating assignment. Since
g3 is an OR gate and COAs(g3) is ∅, we cannot find any
observability assignment for g3 = 1. Thus, the RMAs of d’s
stuck-at 1 fault test are {d = 0, g3 = 1}. However, when d = 0,
any effect through g4 will be blocked such that b = 0 becomes
necessary to make g3 = 1 observable at O1, and the effect
propagating path is from g3, c, g2 to O1. Thus, b = 0 is a COA
of g3 as we consider d’s stuck-at 1 fault test.

To find more RMAs for a given stuck-at fault, we should
consider the values of computed RMAs and then recalcu-
late each gate’s COAs and NCOAs. For example, consider
d’s stuck-at 1 fault test in Fig. 5. We have the RMAs
{d = 0, g3 = 1}. Since d = 0 blocks any effect through g4,
we can assume that no path from g3 to g4 exists for effect
propagation, and then, we recalculate each gate’s COAs and
NCOAs. The results are shown in Fig. 8. In Fig. 8, we show
COAs(a) and NCOAs(a) as disabled. This means that both
a = 0 and a = 1 are unobservable since no path from a to a PO
exists. COAs(b) and NCOAs(b) become {c = 0}, and COAs(c)
and NCOAs(c) become {b = 0}. The intersection and union
rules for a disabled set are as follows. The intersection of a set
S and a disabled set results in S, and the union of S and disabled
results in disabled. By these rules, COAs(g1) become {c = 0},
and NCOAs(g1) become disabled. NCOAs(g2) become
{c = 0, b = 0}. COAs(g3) become {b = 0}, and NCOAs(g3)
become {c = 0, b = 0}. NCOAs(g4) become {b = 0, g3 = 1}.

Again, consider d’s stuck-at 1 fault test. Before recalcu-
lating each gate’s COAs and NCOAs, we have the RMAs
{d = 0, g3 = 1}. Since COAs(g3) become {b = 0}, b = 0 is
necessary to make g3 = 1 observable at O1. Furthermore, c = 0
is necessary to make b = 0 observable at O1 since c = 0 is a
COA and an NCOA of b. Finally, the RMAs for d’s stuck-at 1
fault test are {d = 0, g3 = 1, b = 0, c = 0}. After performing
logic implication, we can find a conflict on g3 because b = 0
and c = 0 imply g3 = 0. Thus, d is a range-redundant PI, and

Fig. 9. Range-redundant PI identification algorithm.

Fig. 10. Type 2 assignment identification algorithm.

it can be replaced with a constant 1. In this example, it is clear
that we cannot identify d as a range-redundant PI if we do not
consider the values of computed RMAs and recalculate each
gate’s COAs and NCOAs.

C. Range-Redundant PI Identification Algorithm

Our algorithm to identifying and removing a range-redundant
PI is shown in Fig. 9. Given a PI pi and the stuck-at v fault
on pi, in step 1, we compute type 1 assignments. They are the
activating assignment pi = v̄ and the propagating assignments
of pi. If pi has a single fan-out, we compute its propagating
assignments by setting the side inputs of dominators of pi
to input-noncontrolling values. However, if pi has multiple
fan-outs, we compute them using the method mentioned in
Section IV-A. The method individually considers the propa-
gating path of each fan-out of pi to compute its propagating
assignments. In step 2, we compute type 2 assignments using
algorithm Type2_Assignment shown in Fig. 10. First, we com-
pute COAs(i) and NCOAs(i) for each PI i. Both of them are
identical to the propagating assignments of i. Next, we compute
COAs(g) and NCOAs(g) for each internal gate g using (1) and
(2). Finally, we collect RMAs according to the computed COAs
and NCOAs. In step 3, we perform logic implications to learn
more RMAs. If there exists a conflict in RMAs, we replace pi
with a constant v and stop. Otherwise, in step 4, we reperform
step 2 to calculate more type 2 assignments by considering
the value assignments in RMAs. The method is mentioned in
Section IV-B. In step 5, we perform logic implications again to
check if there exists a conflict or disabled assignment in RMAs.
If so, we replace pi with a constant v.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

CHEN AND WANG: AN IMPLICIT APPROACH TO MINIMIZING RANGE-EQUIVALENT CIRCUITS 1949

Fig. 11. Example of splitting fan-out and merging PIs.

V. RANGE-PRESERVING SIMPLIFICATION

In Sections III and IV, we present a method for range-
redundant PI identification, which is of the basis of range-
equivalent circuit minimization. Next, in this section, we first
discuss two operations, split fan-out and merge PIs. These two
operations can be used to remove more PIs. We then present our
overall algorithm.

A. Split Fan-Out and Merge PIs

In previous sections, we propose an approach for finding
RMAs for a stuck-at fault test on a PI. A shortcoming of this
approach is that only a few RMAs can be found when each PI
only has a few propagating assignments. To solve this problem,
we can change the structure of PIs to potentially generate
more propagating assignments for each PI while preserving the
circuit’s range. Split fan-out is an operation to split a PI with
multiple fan-outs into two PIs. For example, in Fig. 11, the PI b
is split into b1 and b2, and the circuit’s range is intact.

Given a combinational circuit, split fan-out may create extra
output values that do not belong to the original circuit. Let C
be the original circuit and C ′ be the resultant circuit of splitting
the fan-out of a PI a into a1 and a2. If the ranges of C and C ′

are different, there must exist an output value o that is in the
range of C ′ but not in that of C. Since o is in the range of C ′

only, the input vector that can generate o must be the one with
a1 �= a2. For such an input vector and output value o to exist,
there must exist unique assignments to nodes in C ′. These MAs
are the propagating assignments necessary for propagating the
effects of a1 �= a2 and the observability assignments necessary
for making the propagating assignments observable at a PO.
The method for finding these MAs is the same as that mentioned
in Section III. If these MAs are inconsistent, we can split a into
a1 and a2 without changing the circuit’s range.

Our algorithm to splitting a given PI pi is shown in Fig. 12.
For each fan-out of pi, we first split it into pi1 and pi2. In
step 1(b), we compute the propagating assignments of pi1 and
pi2, respectively, and they are RMAs. In step 1(c), we compute
type 2 assignments using algorithm Type2_Assignment shown
in Fig. 10. In step 1(d), we perform logic implications to learn
more RMAs. If there exists a conflict or same value assignments
on pi1 and pi2 in RMAs, we stop and continue to consider
the next fan-out of pi. Otherwise, in step 1(e), we reperform
step 1(c) to calculate more type 2 assignments by considering
the value assignments in RMAs. In step 1(f), we perform logic
implications again to check if there exists a conflict, same value
assignments on pi1 and pi2, or a disabled assignment in RMAs.

Fig. 12. Algorithm of splitting fan-out.

Fig. 13. (a) Stuck-at 0 fault on b is range untestable. (b) Split b into b1 and
b2. (c) The resultant circuit by replacing b1 and b2 with a constant 0 in (b).

If so, we stop and continue to consider the next fan-out of pi.
Otherwise, in step 1(g), we merge pi1 and pi2.

For example, in Fig. 13(a), b is a range-redundant PI and can
be replaced with a constant 0. However, our method mentioned
in Section III cannot identify that the stuck-at 0 fault on b
is range untestable. This is because there is no propagating
assignment for b = 1. To solve this problem, we can split b
into b1 and b2 and then remove them. To determine if b can
be split and the circuit’s range remains intact, we first split b
into b1 and b2, as shown in Fig. 13(b). We then check if there
exists an output value o that belongs to the circuit in Fig. 13(b)
but not to the circuit in Fig. 13(a). The MAs for o to exist are
{a = 0, c = 0}, which are necessary to propagate the effect of
b1 �= b2. Type 2 assignments for o to exist are {b1 = 0, b2 = 0},
which are necessary to make {a = 0, c = 0} observable. As a
result, a conflict occurs. Therefore, o does not exist, and we can
split b into b1 and b2 without changing the circuit’s range. After
splitting b, we further identify that both the stuck-at 0 faults on
b1 and b2 are range untestable. We then replace them with a
constant 0 and obtain a simplified but range-equivalent circuit
as shown in Fig. 13(c).

Merging PIs can be seen as an inverse operation of split fan-
out. Let C be the original circuit with two PIs a1 and a2, and
C ′ be the resultant circuit by merging a1 and a2 into a PI a.
Similarly, if the ranges of C and C ′ are different, there must
exist an output value o which is in the range of C but not in
that of C ′. We also can compute the MAs for o to exist. If the
MAs are inconsistent, merging a1 and a2 does not change the
circuit’s range. When two range-irredundant PIs can be merged
into one PI, the number of PIs is reduced.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

1950 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

Fig. 14. Algorithm of merging PIs.

Fig. 15. Algorithm of range-equivalent circuit minimization.

Our algorithm to merging two PIs pi1 and pi2 is shown in
Fig. 14. The algorithm is similar to that of splitting fan-out as
shown in Fig. 12. They perform the same checking method but
different operations.

B. Algorithm

We have described the operations for identifying range-
redundant PIs, splitting fan-out, and merging PIs. Our overall
algorithm based on these three operations is shown in Fig. 15.
Given a combinational circuit, we first split PIs that can be split
without changing the circuit’s range. We then remove all range-
redundant PIs. Finally, we merge the PIs that can be merged
while preserving the circuit’s range.

VI. EXPERIMENTAL RESULTS

In this section, we provide the experimental results of our
algorithm on a set of ISCAS’85 and MCNC combinational
benchmarks. The experiments are conducted within a SIS [18]
environment on a Sun Blade 2500 workstation with 4-GB mem-
ory. The benchmarks are in Berkeley Logic Interchange Format,
which is a netlist level design description. For simplicity, we
also decompose complex gates into AND2, OR2, and INV gates
in the experiments using the decomp_tech_network function
in SIS.

The experiments include three parts: The first one is to
compare the simplification capabilities of our approach and the
normalized function method [15], the second one is to present
the effect of using different orders to remove range-redundant
PIs on the size of a simplified circuit, and the third one is to

TABLE I
COMPARISON OF OUR APPROACH AND THE NORMALIZED

FUNCTION METHOD [15]

show the benefits of a simplified circuit to constraint-based
random simulation.

A. Comparison of Simplification Capabilities

To show our simplification capabilities, we reimplement the
normalized function method [15] for comparison. In the exper-
iments, we repeatedly apply the method [15] to the benchmark
circuit until the circuit can no longer be simplified. Addition-
ally, to perform logic implications more completely, recursive
learning technique [12] is applied with the recursion depth = 1
by our approach in the experiments.

Table I summarizes the experimental results of our approach
and that in [15] over the number of reduced PIs and nodes.
Column 1 lists the benchmarks. The benchmarks marked
with “∗” mean that their ranges are enormous and cannot be
presented by constructing their characteristic function BDDs.
Therefore, they cannot possibly be handled by the range-
computation-based methods. Additionally, all benchmarks can
be simplified by our approach, but not by that in [15]. Column 2

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

CHEN AND WANG: AN IMPLICIT APPROACH TO MINIMIZING RANGE-EQUIVALENT CIRCUITS 1951

lists the number of POs in each benchmark |PO|. Column 3
lists the number of PIs in each benchmark |PI|. Column 4 lists
the total node counts in each benchmark NC. Columns 5
and 9 list the number of reduced PIs |PId| of these two ap-
proaches, respectively. Columns 6 and 10 list the reduction
percentage of the number of PIs. Column 7 lists the number
of reduced nodes by our approach NCd. Column 8 lists the
reduction percentage of the number of nodes. Column 11 lists
the number of reduced nodes by the method [15]. In Column 11,
a negative value indicates that the node count increases after the
benchmark is simplified. For example, the C2670 benchmark
has 140 POs, 233 PIs, and 1073 nodes, and our approach can
remove 87 PIs and 429 nodes without influencing its range.
The reduction percentage is 37.34% in terms of the number
of PIs and 39.98% in terms of the node counts. However, the
method in [15] only can remove three PIs, and the reduction
percentage is 1.29%. Furthermore, the simplified benchmark
has more node count than the original one with the increase
of 2362.

Table I shows that the node counts of some benchmarks
simplified by the method in [15] increase. This is because [15]
first partitions an n-output circuit into n subcircuits and then
simplifies each subcircuit individually; a lot of nodes are dupli-
cated in different subcircuits. When we merge all subcircuits to
obtain the simplified circuit by connecting the same PIs, there
may exist many redundant nodes in it. Thus, it is possible that
the method in [15] reduces the number of PIs but increases
the number of nodes when simplifying a benchmark. In the
experiments, we apply the com_redundancy_removal function
in SIS to remove the redundant nodes in the benchmarks
simplified by the approach in [15] and then measure the node
counts as shown in Column 11.

According to Table I, our approach provides more reduction
in terms of the number of PIs in most benchmarks as compared
to that of the method in [15]. In particular, 17 benchmarks
which cannot be simplified by the approach in [15] can be
simplified by our approach. On average, our approach can re-
duce 37.06% of PIs, but that in [15] only can reduce 17.32% of
PIs. As a result, our approach reduces the PIs by 19.74% more
than that of [15] on average. Furthermore, our approach gets an
average of 36.31% reduction in terms of the node counts.

Note that the experimental results of our approach and that
in [15] are variant from one benchmark to another. The results
strongly depend on the functionalities of circuits. Since both
approaches only eliminate minterms with repeated outputs and
do not rearrange the range of each circuit, the amount of
feasible reduction could be limited. It is an inherent limitation
of both approaches. On the other hand, a 100% reduction of PIs
is impossible since each output combination in the range has at
least one corresponding input combination. Thus, a reasonable
objective of this paper is to obtain a simplified circuit with the
same number of PIs and POs. The reason is that an n-output
circuit has at most 2n output combinations and hence requires at
least 2n corresponding minterms (n-input). For all benchmarks
shown in Table I, if the suggested objective is achieved, the
average reduction percentage is 48.74% in terms of the number
of PIs. The results of our approach are significantly closer to
this objective than that of [15].

TABLE II
EXPERIMENTAL RESULTS OF SIMPLIFYING THE cu BENCHMARK USING

DIFFERENT ORDERS TO REMOVE RANGE-REDUNDANT PIs

B. Effect of Different Orders of Removed PIs

The number of RMAs that we can compute is heavily related
to a circuit’s structure. In particular, when each PI only has
a few propagating assignments, each internal gate will have a
few observability assignments as well, and hence, the number
of RMAs that we can compute will be small. Additionally, the
number of computed RMAs significantly affects our capability
of identifying range-redundant PIs. As a result, using different
orders to remove range-redundant PIs may result in different
numbers of RMAs that we can compute and may even affect
the size of a simplified circuit.

We conducted the experiments to show this phenomenon. For
each benchmark listed in Table I, we use two different orders to
simplify it separately. Order 1 is from the first PI to the last one,
and Order 2 is from the last PI to the first one. For each PI, we
first set stuck-at 1 fault on it and check if it is range untestable.
If so, we remove it and then check the next PI. Otherwise, we
set stuck-at 0 fault on it.

Table II summarizes the experimental results of the cu bench-
mark on the number of computed RMAs and the removed
PIs. Column 1 lists the PIs. Column 2 lists the type of stuck-at
fault. s-a-1 denotes stuck-at 1 fault, and s-a-0 denotes stuck-at 0
fault. Columns 3 and 4 list the number of computed RMAs
using Orders 1 and 2, respectively. The numbers of RMAs
marked with “∗” mean that there exists a conflict among them
and the fault with respect to the PI is range untestable. “—”
in column 4 means that the PI has been identified and that
its stuck-at 1 fault is range untestable, and hence, we do not
set stuck-at 0 fault on it (we check stuck-at 1 fault first in

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

1952 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

TABLE III
EXPERIMENTAL RESULTS OF SIMULATING A BENCHMARK

AND ITS SIMPLIFIED ONE FOR 100 s

both orders). The experimental results show that using different
orders results in a different number of computed RMAs for
most PIs and results in different simplified circuits. When using
Order 2 to simplify the cu benchmark, we can remove five PIs
but only one PI using Order 1.

Although the order of removed PIs affects the simplified re-
sult of the cu benchmark, it is not true for all benchmarks. Only
6 out of 45 benchmarks listed in Table I have different sim-
plified results when applying Orders 1 and 2 to simplify them,
respectively. They are cm151a, cu, b9, rot, C2670, and i10.

In this paper, we do not consider the order of removed PIs
to simplify a circuit. This is because it is difficult to identify
which PI, if removed first, can have more range-redundant PIs
later. Thus, as we identify a range-redundant PI, we remove
it right away. Considering the order of removed PIs to obtain
better simplifications could be our future work.

C. Generation of Output Combinations

In Section I, we mentioned that a constraint circuit can be
replaced by a simplified but range-equivalent one to acceler-
ate the verification process. We conducted the experiments to
show the advantages of this work for constraint-based random
simulation.

First, we serve each benchmark as a constraint circuit, and
its circuit simplified by our approach is a simplified constraint
circuit. We then simulate each circuit by repeatedly applying
random input patterns and record the number of generated

output combinations. For comparison of various aspects, we
conducted two experiments as follows.

1) Same simulation time. We simulate each circuit and its
simplified version for 100 s to compare the number of
generated output combinations.

2) Same number simulation patterns. We simulate each
circuit and its simplified version for 100 000 random
input patterns to compare the number of generated output
combinations and the simulation time.

The experimental results are summarized in Tables III and
IV, respectively. Since the smaller (fewer number of PIs or
POs) circuits can easily apply all input combinations or pro-
duce all output combinations, they are not considered in the
experiments.

In Table III, column 1 lists the benchmarks. Column 2 lists
the number of POs in each benchmark. Column 3 lists the
number of PIs, and column 4 lists the number of nodes in each
benchmark and its simplified one. Columns 5 and 6 list the
number of generated output combinations by these two range-
equivalent benchmarks, respectively. Column 7 lists the ratio of
generated output combinations. For example, the C2670 bench-
mark originally has 140 POs, 233 PIs, and 1073 nodes, and can
generate 37 264 output combinations for 100-s simulation time.
After being simplified by our approach, the C2670 benchmark
has 146 PIs and 644 nodes. For the same simulation time, it can
generate 68 993 output combinations, and the ratio normalized
with respect to that of the original benchmark is 1.85.

The experimental results in Table III show that each simpli-
fied benchmark generates more output combinations than the
original one. In particular, the ratio of the cht benchmark is
up to 12.55. On average, a simplified benchmark generates the
output combinations 120% more than that of the original one
for 100-s random simulation time. Let us consider constraint-
based random simulation. For the same simulation time, since
the simplified constraint circuit can generate more output com-
binations, it increases the probability of detecting design errors.
Thus, replacing a constraint circuit with a simplified one can
accelerate the verification process.

Table IV shows the results of the second experiment. Unlike
Table III, columns 6 and 9 list the CPU time measured in
seconds of each benchmark and its simplified one, respectively.
Column 8 lists the improvement in terms of the generated
output combinations of each simplified benchmark as compared
to its original one. Furthermore, column 10 lists the reduction
in terms of the CPU time. For example, the i6 benchmark
originally has 67 POs, 138 PIs, and 885 nodes. After simulating
100 000 random patterns, it generates 74 997 output combina-
tions, and the simulation time is 214.51 s. Furthermore, the
simplified i6 benchmark has 70 PIs and 184 nodes. For the same
number of simulation patterns, it can exactly generate 100 000
output combinations and only requires 68.13 s. As compared
with the original one, the simplified i6 benchmark can save
68% CPU time and obtain 33% improvement in terms of the
generated output combinations.

Table IV shows that each simplified benchmark requires
less CPU time than its original one. Furthermore, most
simplified benchmarks generate the same number or more

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

CHEN AND WANG: AN IMPLICIT APPROACH TO MINIMIZING RANGE-EQUIVALENT CIRCUITS 1953

TABLE IV
EXPERIMENTAL RESULTS OF SIMULATING A BENCHMARK AND ITS SIMPLIFIED ONE FOR 100 000 RANDOM PATTERNS

output combinations. Compared to the original benchmark, a
simplified one saves an average of 29.42% of the CPU time
and obtains an average of 14.54% improvement in terms of the
generated output combinations for 100 000 random patterns.

Let us consider the differences between a circuit C and
its simplified one C ′. Since C ′ is obtained by simplifying
C, C ′ must have fewer PIs and nodes than C. Thus, the
simulation time of C ′ must be less than that of C as well.
Additionally, since C ′ has fewer PIs, the number of all input
combinations of C ′ is less than that of C. When we apply
the same number of input patterns to C and C ′, it is more
possible that C ′ generates more output combinations than C.
In Table IV, 17 out of 27 simplified benchmarks really generate
more output combinations than their original ones. However,
although simplifying a circuit can reduce the number of all
input combinations, we cannot ensure that the probability for
each output combination to be generated will increase. It is
possible that the probabilities of many output combinations
decrease and only a few output combinations’ probabilities
increase. This phenomenon may cause a simplified circuit to
generate fewer output combinations than the original one for the
same number of simulation patterns. In Table IV, the simplified
benchmarks of dalu, lal, and C880 are such examples that
generate fewer output combinations than their original ones.
Nevertheless, they still generate more output combinations for
the same simulation time as shown in Table III.

Next, we show the experimental results of performing ran-
dom simulation using a simplified constraint circuit over the

number of required input patterns and CPU time. In the ex-
periments, we serve the C2670 benchmark and its simplified
one by our approach as the constraint circuits. Additionally,
we select some benchmarks in Table I as DUV. The method of
applying the input patterns generated by the constraint circuit
to a DUV is as follows. We assume that a DUV has n PIs.
Since C2670 only has 140 POs, if n ≤ 140, only the first n
POs of the constraint circuit will drive the DUV. Conversely, if
n > 140, we additionally apply the values of the first (n − 140)
POs of the constraint circuit to drive the last (n − 140) PIs of
the DUV.

In the experiments, for each DUV, we first inject an error to
it by adding an INV to the fan-out of a randomly selected gate.
Next, we iteratively apply random patterns to the constraint
circuit to generate legal patterns for the DUV. Finally, the
verification process stops when the DUV outputs a wrong
output value. We repeatedly run 100 iterations for each DUV
and measure the average results over the number of required
input patterns and CPU time in seconds. The experimental
results are shown in Table V.

In Table V, column 1 lists the benchmarks. Columns 2 and
3 list the average number of required input patterns and CPU
time APo and ATo, respectively, with respect to the original
constraint circuit. Columns 4–7 list the results with respect to
the simplified constraint circuit. Among them, the average num-
ber of required input patterns APs and the reduction percentage
as compared to APo appear in columns 4 and 5. Furthermore,
the average CPU time ATs and the reduction percentage as

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

1954 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

TABLE V
EXPERIMENTAL RESULTS OF PERFORMING RANDOM SIMULATION USING

C2670 AND ITS SIMPLIFIED CIRCUIT AS THE CONSTRAINT CIRCUITS

compared to ATo appear in columns 6 and 7. For example,
consider the frg1 benchmark. When we use the original C2670
benchmark as the constraint circuit, on average, we require
1273.41 input patterns and 12.70 s to detect the error. However,
when we use the simplified C2670 benchmark as the constraint
circuit, on average, we only require 882.28 input patterns and
5.90 s. The reductions are 30.72% in terms of the number of
required input patterns and 53.53% in terms of the CPU time.

Table V shows that using a simplified constraint circuit can
accelerate the random simulation process for each benchmark
on average. Additionally, for all benchmarks, we obtain an
average of 32.37% reduction in terms of the number of required
input patterns and 53.51% reduction in terms of the CPU time.

VII. CONCLUSION

In this paper, we propose a new method for simplifying a
circuit while preserving its output range. This is the first work
that introduces the concept of a stuck-at fault test on a PI for
a circuit’s range and proposes a procedure to determine if a
given fault is range untestable. We also show that a range-
untestable fault on a PI indicates that this PI is range redun-
dant. Furthermore, a range-redundant PI can be replaced with
a constant value without changing the circuit’s range. Since
our method does not perform range computation, iteratively
identifying and removing the range-redundant PIs instead, the
method can handle large circuits that the range-computation-
based methods cannot.

The experimental results show that our approach gets 36.31%
reduction in terms of the node counts on average. Furthermore,
as compared with the normalized function method [15], a
non-BDD-based method, our approach provides an average of
19.74% more reduction in the number of PIs. Additionally,
each benchmark simplified by our approach can generate more

output combinations than the nonsimplified one for the same
random simulation time. This work certainly can be applied
to the application of constraint-based random simulation to
accelerate the verification process.

REFERENCES

[1] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R.
Morrison, R. L. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang,
“Multi-level logic minimization using implicit don’t cares,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 7, no. 6, pp. 723–740,
Jun. 1988.

[2] J. Baumgartner, “Automatic structural abstraction techniques for en-
hanced verification,” Ph.D. dissertation, Univ. Texas, Austin, TX,
Dec. 2002. chapter 7.

[3] J. Baumgartner and H. Mony, “Maximal input reduction of sequential
netlists via synergistic reparameterization and localization strategies,” in
Proc. Int. Conf. Correct Hardware Design Verification Methods, 2005,
pp. 222–237.

[4] C. L. Berman and L. H. Trevillyan, “Functional comparison of logic
designs for VLSI circuits,” in Proc. Int. Conf. Comput.-Aided Des., 1989,
pp. 456–459.

[5] D. Bostick, G. D. Hachtel, R. Jacoby, M. R. Lightner, P. Moceyunas,
C. R. Morrison, and D. Ravenscroft, “The boulder optimal logic design
system,” in Proc. Int. Conf. Comput.-Aided Des., 1987, pp. 62–65.

[6] R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[7] C. W. Jim Chang, M. F. Hsiao, and M. M. Sadowska, “A new reason-
ing scheme for efficient redundancy addition and removal,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 22, no. 7, pp. 945–952,
Jul. 2003.

[8] S. C. Chang, L. P. P. P. Van Ginneken, and M. M. Sadowska, “Circuit
optimization by rewiring,” IEEE Trans. Comput., vol. 48, no. 9, pp. 962–
970, Sep. 1999.

[9] T. Kirkland and M. R. Mercer, “A topological search algorithm for
ATPG,” in Proc. Des. Autom. Conf., 1987, pp. 502–508.

[10] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Proc. Des. Autom. Conf., 1997, pp. 263–268.

[11] J. H. Kukula and T. R. Shiple, “Building circuits from relations,” in Proc.
Int. Conf. Comput. Aided Verification, 2000, pp. 131–143.

[12] W. Kunz and D. K. Pradhan, “Recursive learning: An attractive alternative
to the decision tree for test generation in digital circuits,” in Proc. Int. Test
Conf., 1992, pp. 816–825.

[13] Y. Matsunaga, “An efficient equivalence checker for combinational cir-
cuits,” in Proc. Des. Autom. Conf., 1996, pp. 629–634.

[14] I. H. Moon, H. H. Kwak, J. Kukula, T. Shiple, and C. Pixley, “Simplifying
circuits for formal verification using parametric representation,” in Proc.
Int. Conf. Formal Methods Comput.-Aided Design, 2002, pp. 52–69.

[15] J. Moondanos, C. H. Seger, Z. Hanna, and D. Kaiss, “CLEVER: Divide
and conquer combinational logic equivalence VERification with false neg-
ative elimination,” in Proc. Int. Comput. Aided Verification Conf., 2001,
pp. 131–143.

[16] H. Savoj, R. K. Brayton, and H. J. Touati, “Extracting local don’t cares
for network optimization,” in Proc. Int. Conf. Comput.-Aided Des., 1991,
pp. 514–517.

[17] M. H. Schulz and E. Auth, “Advanced automatic test pattern generation
and redundancy identification techniques,” in Proc. Int. Fault-Tolerant
Comput. Symp., 1988, pp. 30–35.

[18] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A system for sequential circuit synthesis,” Elec-
tron. Res. Lab., Univ. California, Berkeley, CA, May 1992. Tech. Rep.
UCB/ERL M92/41.

[19] K. Shimizu and D. L. Dill, “Deriving a simulation input generator and a
coverage metric from a formal specification,” in Proc. Des. Autom. Conf.,
2002, pp. 801–806.

[20] J. Yuan, K. Albin, A. Aziz, and C. Pixley, “Constraint synthesis for
environment modeling in functional verification,” in Proc. Des. Autom.
Conf., 2003, pp. 296–299.

[21] J. Yuan, K. Shultz, C. Pixley, H. Miller, and A. Aziz, “Modeling design
constraints and biasing in simulation using BDDs,” in Proc. Int. Conf.
Comput.-Aided Des., 1999, pp. 584–589.

[22] F. Zaraket, J. Baumgartner, and A. Aziz, “Scalable compositional min-
imization via static analysis,” in Proc. IEEE Int. Conf. Comput.-Aided
Des., 2005, pp. 1060–1067.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

CHEN AND WANG: AN IMPLICIT APPROACH TO MINIMIZING RANGE-EQUIVALENT CIRCUITS 1955

Yung-Chih Chen received the B.S. and M.S. de-
grees in computer science from National Tsing Hua
University, Hsinchu, Taiwan, in 2003 and 2005, re-
spectively, where he is currently working toward
the Ph.D. degree in the Department of Computer
Science.

His research interests include logic synthesis and
design verification.

Chun-Yao Wang (S’00–M’03) received the B.S.
degree from the Department of Electronics Engi-
neering, National Taipei University of Technology,
Taipei, Taiwan, in 1994 and the Ph.D. degree from
the Department of Electronics Engineering, National
Chiao Tung University, Hsinchu, Taiwan, in 2002.

Since 2003, he has been an Assistant Professor
with the Department of Computer Science, National
Tsing Hua University, Hsinchu. His research inter-
ests include logic synthesis, design verification, and
very large scale integration testing.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 01:13 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

