RUMBLE: An Incremental, Timing-driven,
Physical-synthesis Optimization Algorithm

David A. Pap#, Tao Lud, Michael D. Moffitf, C. N. Szé,
Zhuo L#*, Gi-Joon Narh, Charles J. Alpeftand Igor L. Markov
TUniversity of Michigan / EECS Department / Ann Arbor, Ml 480
TUniversity of Texas at Austin / Department of ECE / Austin, 78712
#IBM Austin Research Lab / 11501 Burnet Rd. / Austin, TX 78758
iamyou@umich.edu, tluo@ece.utexas.¢dwmoffitt,csze, lizhuo,gnam,alpeé@us.ibm.com,imarkov@umich.edu

2) Electrical correction fixes capacitance and slew viola-
tions with gate sizing and buffering.
Legalizationis an incremental placement capability that

Abstract—Physical synthesis tools are responsible for achieving
timing closure. Starting with 130nm designs, multiple cyats are
required to cross the chip, making latch placement critical to 3)

success. We present a new physical synthesis optimizatioor f
latch placement called RimBLE (Rip Up and Move Boxes with
Linear Evaluation) that uses a linear timing model to optimize

removes overlaps caused by optimization with minimal
disturbance to placement and timing.

timing by simultaneously re-placing multiple gates. RIMBLE runs 4) Timing analysis assesses the speed of the design and
incrementally and in conjunction with static timing analysis to determines if performance targets are met. Among other
improve the timing for critical paths that have already been metrics, this phase determines #iackof every path in
optimized by placement, gate sizing, and buffering. Expernental the ci ’ it — the diff bet the clock iod
results validate the effectiveness of the approach: our témiques e circul ; e a erenpe etween (he clock perio
improve slack by 41.3% of cycle time on average for a large and how long it takes a signal to traverse the path.
commercial ASIC design. 5) Detail placement moves gates to further reduce wire-

length and improve timing. In this phase it is possible
to do timing-driven detail placement wherein timing
information is explicitly considered when optimizing
gate placements.
6) Critical-path optimization identifies most-critical paths
and focuses on techniques to improve the slack for the
worst timing violations. Relevant optimizations include
buffering, gate sizing and incremental synthesis [23].
Compressionoptimizes the remaining paths that violate
timing constraints when improvements on most-critical
paths are no longer possible. The goal ictmmpresses
the timing histogram and reduce number of negative-
slack paths that require designer intervention.
ow can be repeated with net weighting and timing-driven

I. INTRODUCTION

Physical synthesis is a complex multi-phase process primar
ily designed to achieve timing closure, though power, area,
yield and routability also need to be optimized. Startinghwi
130nm designs, signals can no longer cross the chip in a
single cycle, which means thatipeline latchesneed to be 7
introduced to create multi-cycle paths. This problem beesm
more pronounced fa#0-, 65- and45-nanometer nodes, where
interconnect delay increasingly dominates gate delay.[10]
Indeed, for high-performance ASIC scaling trends, the neimb
of pipeline latches increases 9x at each technology
generation, accounting for as much &% of the area of Thef :
90nm designs [8] and as many &8% of the gates ir82nm placement to further improve results.

designs [22]. Hence, the proper placement of pipeline &gch Qne can thmk of physwal synthesis as progressing W'th
.) . variable detail and variable accuracy. For example, during
is a growing problem for timing closure.

The choice of computational techniques for latch placeme%ltObal placement, large changes are made to the design using

depends on where this optimization is invoked in a physicfail coarse objective (such as wirelength) that is oblivious to

. . : . iming considerations. Later, one may perform more aceurat
synthesis flow. To this end, we review the major phases of .. = =
) optimization using an Elmore interconnect-delay modehwit
such flows following [1], [4].

Steiner-tree estimates for net capacitance. As timingriseti
1) Global placement computes non-overlapping physicakonverge, one can apply more costly, fine-grained buffering
locations for gates and typically optimizes half-perineteyjong actual detailed routes using a statistical timing ehod
wirelength (HPWL) or weighted HPWL. As part of this Figure I(a)-(d) illustrates the complications of usingsiig
phase, usually some amount of detail placement is dorgpbal placement techniques to solve the latch placemetipr
and legalization is called to ensure a legal optimizatiggm for a single two-pin net. Assume that, for all four figures
result. the source A and sink B are fixed in their respective locations
Copyright (c) 2008 IEEE. Personal use of this material isnpeed and that glopal placem_ent must ﬁnd.the Co.rrECt. |006_1’Fi0n for
However, permission to use this material for any other psggomust be the latch. This example is representative of situationshicty
obtained from the IEEE by sending an email to pubs-permisgieee.org. a fixed block in one corner of the chip must communicate

>
+
(&)}
o
L]
&
@

model the impact of buffering for the latch placement
problem.
« We develop RwmBLE, a linear-programming-based,
(@) timing-driven placement algorithm which includes
0 § : v ’ buffering for slack-optimal placement of individual
LT latches under this model and show its effectiveness
(b) experimentally.
2 -2 1B) « We extend RmsLE to improve the locations of individual
logic gates other than latches. Further, we show how to
LT find the optimal locations of multiple gates (and latches)
(c) simultaneously with additional objectives. Incremental
placement of multiple cells requires additional care to
u > \ preserve timing assumptions, optimizing a set of slacks
instead of a single slack, while also biasing the solution
(d) towards placement stability. We describe howwBLE
Fig. 1. The placement of a pipeline latch impacts the sla¢ksoth input handles these situations.
and output paths. A wirelength objective does not captueetithing effects « We empirically validate proposed transforms and the
of this situation. . .
entire RumeLe flow. We show how these techniques can
be used to significantly improve initial latch placement in

C
A
<

'
w
(o]
g
o]
+
w

)
C
o
Lol
<

B
o
i
L]
o
G

with a block in the opposite corner, but signal delay inevliga a reasonably optimized ASIC design with “do no harm”

exceeds a single clock period. All four placements have lequa acceptance criteria that reject solutions if any quality
wirelength, therefore unless global placement is timiriger, metrics are degraded. This facilitates the use ofidRe

the placement of the latch between A and B is arbitrary. later in physical synthesis.

Consider the following scenarios: The remainder of the paper is organized as follows. Sec-

« Suppose the placement tool chooses (a), which is tfien Il discusses background and previous work. Section IlI
worst location for the latch. In this case, the latch is sdescribes the timing model we use in this work. Section
far from B that the timing constraint at B cannot be meiV describes how BwvsLe performs timing-driven placement.
This results in a slack on the input net (U) ebns and Section V describes theursLe algorithm. Section VI shows
a slack on the the output net (V) efsns (even after experimental results. Conclusions are drawn in Section VII
optimal buffering)*

« With a second iteration of physical synthesis, timing- Il. BACKGROUND

driven placement could try to optimize the location of this .)
latch by adding net weights. Any net weighting scheme Several approaches improve IC performance by modify-

will assign a higher weight to net V than U, resultindng wir(_elength—driven global placement through timingsbd
in a placement where the latch is very close to B, as [t Weights [9], [11]-{13], [15], [18]. Such algorithms are
(b). While the timing is improved, there now is a S|aclgenerally referred to as timing-driven placement, but the

violation on the other side of the latch with3ns of slack literature has not ye_t considered the impact of buffering on
on U and-3ns on V. latch placement during global placement. Due to the lack of

« A global or detail placer could use a quadratic wirelengtﬁUCh algorithms, it is inevitable that some latches will be

objective to handle these kinds of nets, giving the locatioty!PoPtimally placed during global placement. Thereforsy n
(c), which, while better than (a) and (b), is suboptimal.algor'thms are needed for post-placement performancealri

« To achieve the optimal location with no critical nets (|ncrem_ental latch mo_vement. L _
slack on U and V), the latch must be placed as shown Ve introduce a high-level description of the incremental
in (d). In this case, there is only one location that meeldtch placement problem below, and elaborate on its multi-
both constraints. move formulation in Section IV. Given an optimized design
This example suggests that wirelength optimization is napd a small set of gatell (M may consist of a single latch)

. . . fihd new locations for each gate M and new buffering solu-
well-suited for latch placement, especially when theratiel . o S o
tions for nets incident td/ such that the timing characteristics
room for error. Instead, one must be able to couple latc .)
ST : . the design are improved.
placement with timing analysis and model the impact O : . . . -
While moving a cell can improve delay, especially if it has

buffering. The problem is more complex in practice, and SOmbeeen oorly placed, moving a latch has special significance
aspects are not illustrated above. In particular, manyhkgc poorly p ' 9 P 9

have buffer trees in the immediate fan-in and fan-out Susriwnce it facilitates time-borrowing: reallocating cirtudelay

complications pose additional challenges that we addtress?riom a longer (slow) combinational stage to a shorter (fast)

this work. We make the following contributions. combinational stage. This fact offers a particularly siigaint

. .) . boost to our basic approach, and is enhanced even further whe
o We show that a linear-wire-delay model is sufficient t%urrounding gates are also free to move

1The nets in each scenario could include buffers without ghmanthe trends A .SOIUIion to this problem is C_a"ed Hansform using t.he
discussed. terminology of [23]. A transform is an optimization desighe

to incrementally improve timing. Other examples of trandecation of the latch depends on how the input and output
forms include buffering a single net, resizing a gate, aigni nets are buffered. As a result, the optimal approach is to
a cell, swapping pins on a gate, etc. The way transforresnultaneously move the latch and perform buffering, but
are invoked in a physical synthesis flow is determined khis is computationally prohibitive because a typical npldt-
the drivers For example, a driver designed for critical pattobjective buffering algorithm runs in exponential time. As
optimization may attempt a transform on th@ most critical mentioned in Section I, we propose a sequential approach in
cells. A driver designed for the compression stage (seéddectwhich we first compute the new locations for a selected set of
[) may attempt a transform on every cell that fails to meet ithovable gates based on timing estimation considering tsuffe
timing constraints. Then, buffering is applied to the input and output nets of the
A driver has the option of avoiding transforms that magelected movable gates. Being practical, effective andieii,
harm the design (e.g., generating new buffering solutiotisis approach can be integrated into a typical VLSI physical
inferior to the original) and can then reject this solutidimis synthesis flow. The calculation of optimal movement depends
do no harmphilosophy of optimization has received significanbn a simple but effective buffered-interconnect delay nhode
recognition in recent work [5], [20]. The dBLe approach which is discussed the following section.
adopts this same convention which makes it more trustworthy

in a physical synthesis flow. A. Linear Buffered-Path Delay Estimation

i V\|/h|le n(k))lprewotL;]s WO”F thas a;tempt_e;j ttr(]) tsolve tg's pgr- Buffering has become indispensable in timing closure and
icuiar problem, other Solutions do exist thal may be a Eeannot be ignored during interconnect delay estimation [3]

to help with the placement of poorly placed latches. Tl’ﬁ], [22]. Therefore to calculate new locations of movable

aqthor_s of [54] pr?pose 3 I|IneaE[r prﬁgramTlngtforml;Iatmith ates, one must adopt a buffering-aware interconnect delay
minimizes downstream delay 1o choose focations 1or ga esaibdel that accounts for future buffers. We found that the

field-programmable gate arrays (FPGAS). The authors of [ear delay model described in [3], [17] is best suited for
model static timing analysis (STA) in a linear programmingqis application. In this model, the delay along an optigall
formulation by approximating the quadratic delay of netthwi buffered interconnect is '

a piecewise-linear function. Their formulation’s objeetis to

maximize the improvement in total negative slack of timing delay(L) = L(RyC + RCy + V2R,CoRC) (1)
end points. The authors of both approaches conclude that \t/vhne

o . . . ; ere L is the length of a&-pin buffered net,R, and C, is
addition of buffering would improve their techniques [624]. thi intrinsic resistance and input capacitance of buffeid a

When these transformations are applied at the same poin es whileR andC' are unit wire resistance and capacitance

. . . . a
in a physical synthesis flow that we propose, they will br%espectively.

rezsﬁi”ecrtied; by ?(;ﬁg:/c\;ilf oplgrgélzatllgges}nve\/:t()enthaeppg?g is:mh Empirical results in [3] indicate that Equation 1 is accarat
g 99 P y R up to 0.5% when at least one buffer is inserted along the

of certain improvements. Namely, downstream Optlmlzaﬂ’Onn%t. Furthermore, our own empirical results in Section VI-B

such_as puffer msertpn, gate sizing, and detal IOIaCemesnuggest &7% correlation between this linear delay model and
may invalidate the optimality of latch placement. Thereforthe output of an industry timing analvsis tool
our technique focuses on the bad latch placements that we P y 9 y '

observed in large commercial ASIC designs after statdref-t o
art physical synthesis optimizations. However, we beligag B- The Timing Graph

RumvBLe may be too disruptive to use after routing. In RumseLE, a set of movable gates is selected, which must
include fixed gates or input/output ports to terminate every
1. THE RUMBLE TIMING MODEL path. Fixed gates and I/Os help formulate timing constsaint

and limit the locations of movables. In Figure 1lI-B(a), we

We now introduce the timing model critical toURBLE'S 555ume that new locations have to be computed for the latch

success. and the two OR gates, while all NAND gates are kept fixed.
In the timing graph, each logic gate is represented by a node,
+S5——-4
° °‘> @ while a latch is represented by two nodes because the inputs

L and outputs of a latch are in different clock cycles and can
Fig. 2. A poorly-placed latch with buffered interconneat. this case, the have different slack vqlues. E?‘Ch edg_e represents a quh_r' .
buffer must be moved or removed in order to have the freedomdee the path along a net and is associated with a delay value which is
latch far enough to fix the path. linearly proportional to the distance between the drivet dre
sink gate. In other words, we decompose each multi-pin net

Figure 11l shows an intuitive example of the problem whemto a set of2-pin edges that connect the driver to each sink of
we try to find new locations for movable gates. Similar tthe net. This simplification is crucial to our linear delay deb
Figure I, the latch has to be moved to the right to improvand is valid because the linear relationship can be prederve
timing. However, since the latch drives a buffer which i$or the most critical sinks by decoupling less critical pattith
placed next to it, we must move the buffer in order tbuffers. Therefore th@-pin edge model in the timing graph
improve the slack of the latch, and other complications acan guide the computation of new locations for the movable
illustrated by Figure 3. At the same time, the optimal negates.

(@) (b) (© (d)

Fig. 3. The layout in (a) has a poorly-placed latch, and mgstritical path optimizations do not solve the problempBeering the gates may improve the
timing some in (b), but if it cannot fix the problem, the latclushbe moved. Moving the latch up to the next buffer, showrc)n ¢oes not give optimization
enough freedom. If we move the latch but do not re-buffer i {ghing may degrade. Figure 9(d) shows the ideal solutmthts problem.

2 units of slack improvement on less-critical nets. Below we
s introduce the timing-driven placement technique iovB.E
' that directly maximizes minimum slack. In the following
placement formulation we account for the timing impact of
our changes by implicitly modeling static timing analysis i
(@) (b) our timing graph. In this work, we estimate net length by

Fig. 4. (a) An example subcircuit and (b) corresponding rigngraph the half-perimeter wirelength (HPWL) and then scale it to

used in RIMBLE. The AATs or RATs of unmovable objects (squares) argepresent net delay. More accurate models are possible, but
considered known. STA is performed on movable objects @ostmapes). may complicate optimization.

In the timing graph, an edge which represents a timing afe Problem Formulation
is created only for (1) each connection between the movableconsider the problem of maximizing the minimum slack of
gates, and (2) each connection between a movable gate gnflven subcircuity with some movable gates and some fixed
a fixed gate. This is because we only care about the slagltes, or ports.
change due to the displacement of movable gates. For the et the set of nets in the subcircuit D& = ng, n1, ..., ns.
subcircuit in Figure 11-B(a), the resultant timing graph i | et the set of all gates in the subcircuit (movable and fixed)
shown in Figure [1I-B(b). be G = go,01,...,9s. Let the set of movable gates in the
For each fixed gate, we assume that the required arrijpcircuit (a subset o) be M = mg, my, . . ., my,.
time (RAT) and the actual arrival time (AAT) are fixed. The 7 js a technology dependent parameter that is equal to the
values of RAT and AAT are generated by a static timingatio of the delay of an optimally-buffered, arbitrarilgrg
analysis (STA) engine using a set of timing assertions eteaiyire segment to its length
by designers. An in-depth exposition of STA can be found in
[16], [21] along with algorithms to generate RAT and AAT. A — : 2)
movable latch corresponds to two nodes in the timing graph, length(wire)
one for the data input pin and one for the output pin. Farhe following equations govern static timing analysis ane a
the input pin, the RAT is fixed based on the clock periodised in the next section. A timing arc is specified for a given
Similarly, the AAT is fixed for the latch’s output pin. Based o netn driven by gatex and having sink asn,,. The delay
all the fixed RAT and AAT at fixed gates and latches, the AAbf a gateg is D,.
and RAT are propagated along the edges according to the delayhe Required Arrival Time (RAT) of a combinational gate
of the timing arcs. The values of AAT are propagated forwarg is
to fan-out edges, adding the edge delay to the AAT. On .
the contrary, RATs are propagated backward along the fan-in Ry = Oj:(l)gljl.l<m{30j — 7+ HPWL(ng,0,) — Dy} (3)
edges, subtracting the edge delay from the RAT values. Betai
of edge delay, RAT and AAT calculation in our algorithm are
covered in Section IV. IS

_ delay(wire)

The Actual Arrival Time (AAT) of a combinational gatg

Ag = max {A;, +7+HPWL(n;, 4) + Dy} (4)
i5:0<5<1 '

IV. TIMING-DRIVEN PLACEMENT Given a clocked latch, we assume for simplicity that the

The goal of RmsLE is to find new locations for movable RAT (R,) and AAT (4,) are fixed and come from the timer.
gates in a given selected subcircuit such that the overalhclocked latches are treated similarly to the combination
circuit timing improves. Therefore we maximize the minimungates above.

(worst) slack of source-to-sink timing arcs in the subditclm The slack of a timing are, , connecting two gates (com-
contrast to other objectives used in previous work, we s$elésinational or sequential, movable or fixep)andq is
this objective because we are targeting critical-pathnojze- g

tion. Hence, we prefer unit of worst-slack improvement over npg = g = Ap — 7+ HPWL(ny4) ()

(10, 10)

@)

Fig. 5. In many subcircuits there are multiple slack-optimplacements. In BMBLE we add a secondary objective to minimize the displacememn ihe
original placement. This helps to maintain the timing asstioms made initially and reduces legalization issues.st@ws the initial state of and example
subcircuit, (b) a slack-optimal solution commonly retudnigy LP solvers, all optimal solutions lie on the dotted limelgc) a solution given by BVIBLE
that maximizes worst-slack then minimizes displacement.

B. The RwBLE Linear Program component is used as a tie-breaker and has little impact on
We define a linear program to maximize the minimum slac0rst-slack maximization. Instead, the combined objects/
S of a subcircuit as follows. maximized by a slack-optimal solution closest to cellsgoral
VARIABLES: locations. During incremental timing-driven placemeninm
_ imizing total cell displacement encourages higher plaggme
5 - U Vnen iS5 . Y stability and often translates into fewer legalizatiorfidiflties.
Vmen 5zn U Vmenm v Y Figure 5 shows an example of theuw&Le formulation
Vnen Ui U Vnen Ug Y with and without the total displacement objectives. Theyonl
Voen 0 Ly U Vaen o Ly U movable object in Figure 5(a) is the latch. An input netand
Vimem @ Rm U VYmem @ An

an output neti, are connected to the latch with slack& and

(6) . : . :
. : 42 respectively. Figure 5(b) shows the optimal LP solution
Of the above,3 are independent variables for gate IOCatlons'ithout the total displacement objective. The Manhattah ne

The U an(_j L variables represent Upper f’md lower boun gngth of ny is reduced from20 to 18, and the net length
of nets (highest and lowest coordinates in the and y— of is increased fron20 to 22. This improves the worst
directions) for computing HPWLR and A compute required 12 ' P

. . slack of the subcircuit from—2 to 0. However, the latch
and actual arrival times. Each, computes the slack of a
. L - moves a large distance. Figure 5(c) illustrates that iriowd
particular net, whileS is the minimum slack of all nets.

OBJECTIVE Maximize S the total displacement objective may preserve optimalkslac

CONSTRAINTS For everv aater: on netn. while minimizing latch displacement.
'y 9219y ! In order to minimize displacement by adding a new

Uri > By, Uy > By (7) objective, we introduce the following variables and coaistis
Lno< g% Lo < g ®) to the linear program.
z =Pz My =Py DISPLACEMENT VARIABLES:
For every movable gate:; and sink it drivesg; via netny, Vmert 0 07 U Ve 7 U
Ry, < Ry, — 7% (UM — L + UM — Ly*) — Dy (9) Vimem @ ¢y U Vmem @ wp' U (13)
Vmem ¢y U Vmem o wy)

For every movable gate:; and gatey; that drives one of its
inputs via netn, DISPLACEMENT CONSTRAINTS

For every movable gate:;, o' anda;'* denote the original
Ap, 2 Agy + 7+ (U — Ly» + Uy* — Ly*) + Dy (10) 1 andy coordinates. The upper and lower bounds of the new

For every timing arc in the subcircuit, , associated with net and original coordinates andw in each dimension are:

n; Ppt = 0, wpt < B
_ _ v v M > fmi o mi < g
_ _ Ng __ TN nig __ TN ¢U — Yy Y — Y
Spi S Rg—Ap —7# (Ut = Ly + U = Ly') - (11) T P e (14)
For each nety;: g > al, W < Qi

5 < Sn, (12) The displacement§™: for a movable gaten, are defined as

C. Extensions to Minimize Displacement 0" = @yt — w0yt = gyt —wptt (15)

The linear program of RusLE is defined to maximize the]]

minimum slack of a subcircuit. Additional objectives can b®- Extensions to Improve the Slack Histogram

considered as well, such as total cell displacement, whioliss ~ The minimum slack is the worst slack in a subcircuit. For
Manhattan distances between cells’ original and new lonati two subcircuits with identical worst slack, it is possibleat
We subtract the minimum slack objective from a weighteditotane subcircuit has few critical paths with worst slack while
cell displacement term to avoid unnecessary cell movemetite other one has many. A timing optimization has to improve
The weightlV/; for the total cell displacement objective is seboth the worst slack and the overall figure of merit (FOM) in
to a small value. Therefore the weighted total displacememtsubcircuit. FOM is defined as the sum of all slacks below

-20, -20
-20 -20

(b)

Fig. 6. (a) An example subcircuit with an imbalanced latchoséh worst-slack cannot be improved. Nevertheless, it isiplesto improve timing of the
latch while maintaining slack-optimality. By including @& component in the objective, the total negative slack cameduced, as shown in (b).

a threshold. If the slack threshold is zero, FOM is equivialen For each netn;, whose slack is greater than the slack
to the total negative slack. With the minimum slack as tharesholdT’, add the following constraint.

only objective, a small improvement in the worst slack may

cause a large FOM degradation. Therefore we must add a FOM S 2 Ts (7)

component to the optimization objective. The balance betwerhis addition may over-constrain the linear program, incbhi

the minimum slack and the FOM is controlled by a parametggse it is not possible to improve the worst slack without
Wy, which is set to a relatively small value because the worghrming FOM.

slack objective is more important.

Figure 6 shows another scenario where the FOM component
may help. During optimization, it may not be always possible
to improve the minimum slack of the subcircuit. In that In this section we discuss the details of thevBLe algo-
case, we can still reduce the number of critical cells byjthm, which employs the linear program from the previous
improving the FOM. In Figure 6, there are three movables #ection to incrementally improve the timing of poorly pldce
the subcircuit. The minimum slack of the subcircuit-i0, latches.
and it is not possible to improve the minimum slack by moving
any of the gates. With the additional FOM component in thR_ Subcircuit Selection

objective, the FOM of the subcircuit is improved frosd0 . o . .
to —85, as shown in Figure 6(b). RumsLE identifiesimbalanced latcheswhich we define as

Let S, denote the slack on net, then the combined those that exhibit positive slack on their inputs and negati

objective has the displacement and FOM components slack on their outputs (or vice versa). As illustrated inUfigl,
Maximize: the movement of any such imbalanced latch has the potential

S - W,y (6 + 5m) to improve timing, even if all surrouqding cells are held
LW Z’”GM x g, (16) fixed. More generally, however, the neighbors and extended
f ZinneN, 8, <T, PO neighbors of the targeted latch may also be included to form
where T is the small slack threshold used to compute thgsetM of movable cells. In our technique, shown in Figure 8,
FOM. We have earlier assumét; andW; to be small, with we adopt a basiév-hop neighborhood approach, where any
Wa < Wy. In our implementation we sé¥; to 0.005 times gate within N steps of the imbalanced latch is included in
the absolute value of the average slack in the subcircudt, aghe set of movable cells. This requires both a forward sweep
we setlV,; to 10, These additional terms change the optimato collect sinks) and a backward sweep (to collect sources)
region, but because the weights are so small the combingfiich are performed in tandem. Those cells that fall- 1

V. THE RuMBLE ALGORITHM

optimal region is very near the slack-optimal region. steps from the latch form a sét of fixed peripheral nodes.
. In contrast to prior work that has assumed operation within
E. Preventing Harm to FOM a pre-buffering stage, our subcircuit selection algoritimust

The primary goal of the BusLE linear program as pre- address the presence of buffers. These buffers will be arcou
sented in previous sections is to maximize the worst slat&ed in our neighborhood selection algorithm, as they are
of the subcircuit. We define two additional objectives — onpart of the current logic; however, since it is presumed that
preserves the initial solution as much as possible, therottieey would be ripped up when new locations are determined
can improve the slack histogram when the worst slack canr{ét critical assumption that makes our linear-delay model
be further improved. However, it is possible that in order tpossible), we must prevent their inclusion in our model of
improve a single worst slack path, multiple paths may degrathe subcircuit. Therefore, when fetching adjacent gates, w
to the point of being critical. If BveLe is deployed late transparently skip these buffers and omit them from the set
enough in a physical synthesis flow, the corresponding FOM. The recursive functionsrRUe-Source)) and TRUE-SINK () in
degradation may be undesirable. To address this problem, kigure 8 provide this additional level of indirection, rating
have devised an additional constraint which, at the cost @fily those combinational gates that reflect the logicalstme
reduced improvement in worst slack, can prevent this type of the subcircuit.

FOM degradation. When FOM should not be degraded, we,)))

. . . Variations on this theme, such as metrics that incorpora¢edegree of
add the following constraints to theuRsLe linear program to neighbors’ criticality [14], [24] and the size of the sulmiit bounding box
preserve FOM. are also possible.

P Clock Period = 20 Clock Period =20
Clock Period =20 Delay = +10 Pelay - +10
.......... A
AAT = +20“ /I‘?AT =0 T] \
L *[= 1 f L
AAT = +1§ 1 RAT = +1 AAT = +15 RAT = +5
i RAT +19 Delay = +9 i
(a) (b) ©)

Fig. 7. Modeling feedback paths within logic requires a ngpetof gate. Pseudomovable gates have timing values thandepn the timing values of
neighboring gates, but they cannot be moved. (a) Ignoriegpttesence of feedback paths is overly pessimistic, andpi¢éap that the timing of the latch
cannot meet its constraints. (b) Making the fixed gates abfgedback path pseudomovable allows the latch to meetitagiconstraints, but doing only
this can lead to the wrong placement. (c) Including all gatmsnected to pseudomovables as fixed timing points propedglels the problem as a convex
subcircuit.

BUILD-SUBCIRCUIT-FROM-SEED BUILD -FIXED-FROM-CORE
> Input: Latch [, , int N-hops > Input: Setcore
> Output: Setmovables , Setpseudo , Set fized > Output: Setfized
1 mowables = BUILD-MOVABLES-FROM-SEED(L, N-hops) 1 fived = 0 ’
2 pseudo = BUILD-PSEUDOMOVABLES-FROM-MOVABLES(movables) 5 for each Gate (7 € core
3 fized = BUILD-FIXED-FROM-CORE(movables U pseudo) 3 Setneighbors = GET-INPUTH(G) U GET-OUTPUTHG)
BUILD-MOVABLES-FROM-SEED 4 fiwed = fized |] (neighbors - core)
> Input: Latch L , int N-hops
> Output: Setmowvables GET-INPUTS GET-OUTPUTS
1 dnputs = input-fringe = {L} B> Input: Gate ¥ > Input: Gate (¥
2 outputs = output-fringe = {L} > Output: Setinputs > Output: Setoutputs
3 for 4 =1. N-hops 1 S=0 1 §=0
4 input-fringe = U (GET-INPUTHinput € input-fringe)) 2 for each pin € IN-PINS(G) 2 for each pin € OUT-PINS(G)
5 output-fringe = | J (GET-OUTPUTH output € output-fringe)) 3 § = 8 |J TRUE-SoURCHpin) 3 S =5 |J TRUE-SINKS(pin)
. iy) . 4 return S 4 return S
6 npuls = inputs U nput-fringe
7 outputs = outputs U output-fringe TRUE-SINKS
8 mowvables = inputs U outputs > Input: Pinp
TRUE-SOURCE : sinks
BUILD-PSEUDOM OVABLES-FROM-MOVABLES & Input: Pinp 1 Eetozteptui ’?:_?(7;)] °
B> Input: Setmovables > Output: Gatesource 2 Setdriven = DRIVEN(net)
> Output: Setpseudo 1 Net net = NET(P) 3 §=0
1 pseudo =Q© 2 Gate G = DRIVER(net) 4 for each Gate G € driven
2 do) 3 unlessIS-BUFFER(G) 5 if 1S-BUFFER(G)
3 Setfan_in = INPUT-CONE(movables U pseudo) 4 return 6 P = OUT-PIN(G)
4 Setfan_out = OUTPUT-CONE(mowvables U pseudo) 5 P = IN-PIN(G) 7 S’ = TRUE-SINKS(P)
5 Setpseudo’ = (fan_in ﬂ fan_out) - movables - pseudo 6 return TRUE-SOURCHP) 8 elses’ = @
—_ !
6 pseudo = pseudo U pseudo’ 9 5=5 U S
10 return §

7 while pseudo’ # @

Fig. 8. Subcircuit selection transparently skips buffetsew building a neighborhood of movable gates, and requiegsction of “pseudomovables.”

B. Feedback Paths toward one of the two neighbors. We loosely refer to these
neighbors agpseudomovablgates. Although timing must be

As noted in [24], the process of extracting gates to forfropagated through them (as it is for movable gates), their

a subcircuit may suffer from complications when subpaths ghysical locations may be fixed.

combinatorial logic between peripheral nodes are not neztiel pseudomovables are collected by intersecting the traesiti

These subpaths introduce additional timing constrairds th cones of logic between inputs and outputs to detect feedback

left absent from the model, could invalidate the optimatify paths, as shown in the pseudocode of Figu?er8.ensure ac-

the solution. curacy, the inputs and outputs of pseudomovables thensselve
To illustrate, consider the example in Figure 7, in which enust be bounded by fixed endpoints, as shown illustrated in

single latch has been selected as a movable gate. Aftectollé-igure 7(c). These fringe nodes completely isolate thengmi

ing its inputs and outputs, a simple subcircuit is consedets of the resultingconvexsubcircuit from outer cones of logic.

shown in Figure 7(a), with the two endpoints shown selected

as fixed gates. With the timing constraints as given in the€ The “Do no harm” Philosophy

figure, an optimal solution to this problem will place theclat - -

equidistantly from both endpoints to ensure that the slacks Atter gates are moved, it is _Ilkely th_at tlr_nlng has degrad_ed

either side are balanced. However, consider a scenarioaNh% e t, fo_r e’?"}‘mp'e’ a capacn_ance V|olat_|on_0n a long wire.

a feedback path exists from the output to the input, as sho € subcircuit must. be examlngd, a_nd_ |ts_ mtercor.mect.lm-

in Figure 7(b); in such an event, the RAT of the output and tkPéoved through physical synthesis optimizations, whichi

AAT of the input aredependenon the location of the latch. stq improve runtime, one can limit the depth of these conesrtaaonably

If this dependency is modeled, the solution may be biasedall constant, as opposed to the exhaustive expansior].in [5

(@) (b) (©) (d)

Fig. 9. The RIMBLE algorithm proceeds by (a) selecting a subcircuit to work An.LP is formulated and solved, with movable gates beingcatied
as shown in (b). Existing repeater trees are no longer apiptep and are subsequently removed in (c). Finally, the ae¢ re-buffered, forming the final
subcircuit shown in (d).

include gate-sizing and buffer-insertion for delay or élieal RumBLE-ONE-LATCH
considerations on nets. > Input: Gatemnouvable

Even though the linear program of Section IV-B can be [Output:movable has optimized location and interconnect

ved ti . it d t tf Il th @t subcircuit = BUILD-SUBCIRCUIT-FROM-SEED(mowvable, 0)
so_ve optimally, 1 - pes_ no accqun ora e _Comp ®sl before-timing = MEASURE TIMING (subcircuit)
of interconnect optimization. The linear program is an edust initial-solution = CACHE-SUBCIRCUIT(subcircuit)
tion of the subcircuit timing that models physical syntisesi 4 L = new RIMBLE linear program forsubcircuit

timizations (e.g., virtual-buffering) by prorating widela after-locs = SOLVE(LP)
opumiza g) g Y P g o y SET-GATE-L OCATIONS(subcircuit, after-locs)
constants based on upcoming physical synthesis optiroizati REMOVE-BUFFERY subcircuit)

Despite the high correlation to more accurate timing model$ REINSERFBUFFERYsubcircuit) o

i imental results, theuReLe model could turn outto be o &ter-timing = MEASURETIMING (subcircudd)

In expe_rlme_n a g ' . BLE_ . e 10 if(after-timing worse thanbefore-timing)

too optimistic and its solution might result in a timing dagr 11 RESTORE GATE-L OCATIONS(subcircuit, initial-solution)
dation. For example, nets can cross blockages or congest@d RESTOREINTERCONNECT:nitial-solution)

regions with no nearby legal locations. As a result, le@dion
could create a timing degradation.

When running RwmsLE in our physical synthesis flow, we
mitigate the harmful effects of legalization by finding léga Vi
locations for gates and buffers when moving or insertingrthe o)))
Insisting on legal locations can also contribute to a degtiad ~ RUMBLE is implemented in C++ (compiled with GCC1.0)
not anticipated by the @sLe model. Fortunately, BvsLe and mtegr_ated into an mdu_strlal physical synth_es_|s floor. F
can examine the timing implications of its changes befoR&l €xperiments, we examined an already optimiz8dnm

committing to them. It simply stores the initial state of th&ommercial ASIC with clock perioc2.2ns and 3 million
subcircuit, and restores it if a timing degradation occums. objects. We first examined the most critical latches and then

this way, RimsLe will “do no harm” to the circuit by ensuring filtered out the ones where the latch was already well placed.

that whatever solution it keeps is no worse than what existé¥f Use the algorithm from [2] to perform buffering after the
before. Such safe delay optimizations are more easily teger C€/lS have been moved. In practice, the LP-solving tecteiqu

~NOoabhwWNE

Fig. 10. The RIMBLE algorithm for moving one latch.

. EXPERIMENTAL RESULTS

into physical synthesis flows [5], [20]. from.RUMBLE r.equires onIy1.7 miIIiseconds_; the buffering
algorithm dominates the runtime (ove§%). Since the overall
D. The RwsLe Algorithm runtime is dependent on the choice of the buffering algorith

we omit the (trivial) runtimes from our tables. Note that
atit?g “do no harm” approach of Section V-C is applied to all
experiments, preventing timing degradation in our tabies, (

a value of 0 appears in the imprv. column).

Figure 10 shows pseudocode for thesvRLE algorithm,
which assumes a set of movable gates given at input,
Figure 9 illustrates the process. First, the subcircuit tisa
necessary for incremental placement is extracted (for glesin
movable, we extract its one-hop neighborhood of input gates o
During this process, buffers are ignored (viewed as wire§y Re-buffering in BveLe
as described in Section V-A. Next,uRBLE performs timing Previously published LP techniques for timing-driven gac
analysis so as to measure timing improvement later. [3nement do not allow for re-buffering during optimization. In-
stores the state of the circuit (gates and nets) so as tobiywssstead, they are either applied before buffers have beertéase
undo most recent transformations we are considering. Arece br they do not differentiate the buffers from other gatesr Ou
initial state is safely stored, lines6 use the linear program first experiment is designed to show how important it is to rip
of Section IV to compute new gate locations, followed bwp buffers before replacing gates and subsequently refudte
buffer removal. If the model shows improvement we continue. We modified our pseudocode in Figure 8 so that the function
Buffers are inserted on ling, and other physical synthesisis-BUFFER) always returns false. The effect of this is to stop
optimizations could also be applied here (e.g, repowelif)g, “seeing through” the buffers, and instead to consider them
assignment, etc.). Linés12 measure improvement, and in theixed timing endpoints. This configuration models the work of
case of timing degradation, restores the initial solution. [24]. We then calculate a new location for each latch with the

LP in Section IV. The final change is to skip ligeof Figure Model timng vs. reference timng
10, i.e., do not re-buffer. We call this algorithneke-Burrers I Model slack (ps) Subcircuit slaci (ps)
. Subcircuit orig | new | imprv. orig | new | imprv.
Table VI-A_shows the results of ikisLE on a single latch —zrch A0 1799 28 | 1751 [1280 26 | 1506
compared with Kepr-Burrers Column 1 shows the name| | atch Al -1509 65| 1574 || -1268 | 186 | 1454
of the benchmark and columris and 5 show worst-slacks | | atch A2 -1113 | -868 | 245 || -1020 | -791 229
in picoseconds before optimization. Colum$isand 6 show | latch A3 || -1147 | -527 | 620 -953 | -390 | 563

the slacks after optimization of gérBurrers and Rumeie | | atch A4\ -1090) 180 | 1269 \ -897) 356) 1253

. . latch A5 -945 | -295 650 -848 | -278 570
respectively. Columng and7 show the improvements of each | 5t ch a6 920 | 320 | 1241 690 | 395| 1085
technique. latch A7 886 | 49| 935 || -645| -19| 626

| atch A8 -913 | 213 | 1126 -633 | 290 923
SenTeroT gravi Ty Vs ROVELE latch A9 || -800| 397 | 1198 || -610| 262| 872
o . Slack (ps). . Slack (ps) TABLE II
Subcircuit orig | new | Imprv. orig | new | IMPIV. | Ty RUMBLE MODEL ACCURATELY PREDICTS THE SOLUTION QUALITY
latch A0 || -1480 | -527 953 || -1480 26 | 1506 IMPROVEMENTS IN THE REFERENCE TIMING MODEL

latch Al || -1268 | -203 1065 || -1268 | 186 1454
latch A2 || -1020 | -800 219 || -1020 | -791 229
| atch A3 -953 | -615 338 -953 | -390 563
latch A4 -897 -78 819 -897 | 356 1253

| at oh A5 848 | -319 509 || -848 | -278 570 achievable, but this is not always the case, especially for

latch A6 || -690 | -690 0| -690| 395| 1085 multi-sink nets.
latch A7 -645 | -645 0 -645 | -19 626 « However, if one compares actual improvement to model
latch A8 | -633| -633 0| -633| 290 923 improvement, there is 87% correlation, suggesting that
latch A9 || -610 67 677 610| 262| 872 the model is reasonable enough to justify the latch
avg -904 | -444 460 -904 4 908 location

TABLE | We now show how BwsLe actually improves the design’s

KEEPING BUFFERS INSTEAD OF REMOVING AND REINSERTING THEM L "
DEGRADESRUMBLE’S PERFORMANCE timing characteristics.

C. RumBLE on a Single Latch

From the table we observe the following:
. o o Given that we are solving a new physical synthesis problem,

« Despite not ripping up buffers, d¢rBurrersis still able eyisting solutions are scarce. Therefore we first consider
to improve solution quality for nine out of ten testcasesrajghtforward approaches to solve this problem. Oneiposs
though the improvement is never more ta&Ops. pjjity is to take thecenter-of-gravitf COG) of adjacent pins. A

« When rip-up and re-buffering is allowed, uReLE IS timing-driven improvement of the center-of-gravity tedue
able to significantly outperform #&r-Burrersfor all ten \yeights each pin by its slack. A reasonable version of this
testcases. On average the improvement grows.by. heyristic works in the following way. For a slack threshdlg

o While KEEP—BU.FFERS improves slack by an average Of(see Section IV-D), let the weight of a pin p with slack S,
123ps, RumsLE improves slack by08ps, which confirms pe-

how important it is to rip-up buffers so that they do not w — 1+ Sy — T4 Sp <0
anchor the latch into an artificially small region. P max(0.1,1—|S, —Ts|) Sp, >0

Then we compute the coordinate of movable gate as the

B. Accuracy of the BusLe Timing Model weighted average of thecoordinates of the set of neighboring
Theoretical results published by Otten [17] and discuss8d'™® P S wyp

in Section Il indicate that optimal buffer insertion or2epin my = ZEEP PTT

net results in a wire delay that is linearly-proportionalit® ZPGP Wp

length. The RmeLe model heavily relies on these results. and similarly for they coordinate.

Table VI-B compares the model-predicted values for subcir- We implemented the above COG technique within the
cuit slack to values measured by running a commercial staRomsLe framework in place of the LP solver presented in
timing analyzer. Measurements are taken after thamsRe Section V. We still allow COG the benefits of ripping up
LP is solved, the latches are moved and connected nets lauéfers, and reinserting them after the latches are movaileT
buffered. Columns2-4 report the initial, final, and improve- VI-C shows a comparison betweenmsLe and slack-weighted
ment in worst-slack of the subcircuit measured by the timinQOG on 10 latches. Columnl shows the same latches as
model presented in Section Ill. Columas7 report the same reported in Table VI-B. Columng-4 show the initial and
metrics measured by the STA engine. final slacks, and improvement for COG. Columfg show

We make the following observations: the same for BvBLE.

« On average, the BusLe model overestimates the actual We observe the following:
timing improvement by about5%. This makes sense « For all ten cases, bBLE generates a better solution than
since it assumes an optimal ideal buffering will be COG. For three of the cases, COG could not improve the

Iterated RUMBLE vs. RUMBLE: 1-hop

10

Iterated single-move RvBLE Multi-move RuMBLE
Slack (ps) FOM (ps) Slack (ps) FOM (ps)
Subcircuit orig new | imprv. orig new | imprv. orig | new | imprv. orig new | imprv.
subcircuit BO || -1542 | -1542 0| -6091| -6091 0|l -1542| -130 | 1412 | -6091| -130| 5962
subcircuit Bl || -1501 | -277 | 1223 | -5924 -277 | 5647 || -1501 55 | 1556 | -5924 0 5924
subcircuit B2 || -1240 | -1240 0| -4354| -4354 0 || -1240 | -980 261 | -4354 | -4044 310
subcircuit B3 -848 | -278 569 | -2523 -812 | 1710 -848 | -279 569 | -2523| -813 | 1709
subcircuit B4 -690 -79 612 | -4090 -79 | 4011 -690 | 202 893 | -4090 0| 4090
subcircuit B5 -690 48 739 | -2053 0 2053 -690 | 290 980 | -2053 0 2053
subcircuit B6 -645 -18 627 | -1921 -32 1889 -645 | 301 945 | -1921 0 1921
subcircuit BY -595 86 681 | -1937 0 1937 -595 | 503 | 1098 | -1937 0 1937
subcircuit B8 -444 | -444 0 -889 -889 0 -444 | -92 352 -889 | -191 698
subcircuit B9 -418 -46 372 -857 -46 811 -418 6 424 -857 0 857
avg -861 | -379 482 | -3064 | -1258 | 1806 -861 | -12 849 | -3064 | -518 | 2546
TABLE IV

RUMBLE SIMULTANEOUSLY MOVING A one-hOpNEIGHBORHOOD COMPARED TO ITERATIVELY MOVING THE SAME GATESNDIVIDUALLY .

Iterated RUMBLE vs. RUMBLE: 2-hop
Iterated single-move RvBLE Multi-move RuMBLE
Slack (ps) FOM (ps) Slack (ps) FOM (ps)
Subcircuit orig new | imprv. orig new | imprv. orig | new | imprv. orig new | imprv.
subcircuit Q0 -719 | -719 0| -8313| -8313 0 -719 | -675 44 | -8313 | -5028 | 3285
subcircuit Cl -719 | -719 0| -8004 | -8004 0 -719 | -653 66 | -8004 | -4386 | 3617
subcircuit C2 -690 -79 612 | -4090 -79 | 4011 -690 | 314 | 1004 | -4090 0| 4090
subcircuit C3 -690 -79 612 | -4090 -79 | 4011 | -690 | 337 | 1027 | -4090 0| 4090
subcircuit C4 -681 | -349 333 | -3865 -349 | 3516 || -681 | -158 524 | -3865| -158 | 3707
subcircuit C5 -645 -91 554 | -3767 -306 | 3462 || -645| 371 | 1015| -3767 0 3767
subcircuit C6 -645 -33 612 | -3767 -52 | 3716 || -645| 324 969 | -3767 0 3767
subcircuit C7 -318 | -318 0 -940 -940 0 -318 | 531 848 -940 0 940
subcircuit C8 -490 227 716 -966 0 966 || -490 | 466 956 -966 0 966
subcircuit C9 -217 | -217 0 -652 -652 0 -217 60 277 -652 0 652
avg -581 | -238 344 | -3846 | -1877 | 1968 || -581 92 673 | -3846 | -957 | 2888
TABLE V

RUMBLE SIMULTANEOUSLY MOVING A two-hOpNEIGHBORHOOD COMPARED TO ITERATIVELY MOVING THE SAME GATESNDIVIDUALLY .

Center-of-gravity vs. RUMBLE
COG RUMBLE
Slack (ps) Slack (ps)
Subcircuit orig new | imprv. orig | new | imprv.
latch AO || -1480| -527 953 || -1480 26 1506
latch Al || -1268 | -203 | 1065 || -1268 | 186 | 1454
latch A2 || -1020 | -800 219 || -1020 | -791 229
| atch A3 -953 | -615 338 -953 | -390 563
latch A4 -897 -78 819 -897 | 356 | 1253
| atch A5 -848 | -319 529 -848 | -278 570
| atch A6 -690 | -690 0 -690 | 395 | 1085
| atch A7 -645 | -645 0 -645 | -19 626
| atch A8 -633 | -633 0 -633 | 290 923
latch A9 -610 67 677 -610 | 262 872
avg -904 | -444 460 -904 4 908
TABLE Il

COMPARISON OFRUMBLE’S LP TO A SLACK-WEIGHTED
CENTER-OF-GRAVITY TECHNIQUE.

cells incident on the latch to achieve the most balanced
solution.

D. Optimizing Multiple Gates Simultaneously

For this experiment, we show how an even better solution
can be obtained when one allows cells close to the latch to
move. We show the effectiveness of this technique on two sets
of circuits.

« One-hop subcircuits include every gate (while ignoring
buffers and inverters) incident to the latch of interest tha
shares an incident net with the latch. Typically this result
in 4 or 5 gates being moved.

o Two-hop subcircuits in addition include all non-buffer
and inverter cells incident to cells in the one-hop neigh-
borhood. These subcircuits range framto 18 movables
with a mean ofl4.8 movables.

We compare this technique to iterated single-mowadRe,
where we pick each cell in the neighborhood and solve the

latch placement. These new solutions are rejected by the for that particular cell, fix it, and then move to the next
driver so as not to make the design worse.
« On average, COG improves slack §.9% of the2.2ns need to be optimized simultaneously to obtain the besttsesul
cycle time, whereas BBLE improves slack byl1.3%.
This shows that one must incorporate slack constraints stacks of all cells that may be moved, and the objective

cell. The experiment is designed to show that multiple cells

To measure the improvement one must now consider the

11

becomes to improve the worst slack of the entire subcircuihan T, or vice versa. The Imb. column reports the number
However, when one cannot improve the most critical patbf imbalanced latches found in the design. Let the set of
the other paths may have room for improvement. We ugmbalanced latches bé, and for each latch let ws(l) be
FOM to measure the total improvement of all the slacks ithe worst slack of any pin oh We define imbalance FOM to

the subcircuit. be
Tables IV and V compare iterating URBLE over each > T, —ws(l) (18)
gate one at a time versusulBLe moving multiple gates lel

simultaneously. Columng-4 show the original and final the |mp, FOM column reports this value. A critical latch is

slack, and .the slack improvement for iterated s.ingle—moyj%ﬁned as one that has pins on both sides that are HElow
RumsLe, while columns5-7 show the corresponding FOM The cit. column reports the number of critical latches foun
measurements for a zero-slack threshold. Colus8 show 4 the design. Similarly to imbalance FOM, @ is the set

the same measurements for multi-movevRLe. We make the f ciitical latches and for each latehlet ws(c) be the worst

following observations: slack of any pin orr, then we define the critical FOM to be
o Multi-move RumsLE is clearly more effective than itera-
tive RumsLE both for one- and two-hop neighborhoods. In > Ty —ws(c) (19)
fact, for six out of ten one-hop subcircuits and for seven ced

out of ten two-hop circuits, multi-move actually broughThe Crit. FOM column reports this value.
the FOM down to zero, meaning it fixed all the timing Finally, the FOM column reports the FOM for the entire
violations. Iterative single move was able to fix two andesign. We make the following observations:

four respectively. . « RumeLe reduces the number of imbalanced latches by

« On average, the worst-slack improvements weiéps 8.8% and 9.2% on cktl and ckt2, respectively.
and673ps respectively for one- and two-hop subcircuits. , Ruvsie has a harder time optimizing the critical latches
The diminished improvement for larger subcircuits iS than the imbalanced ones.

likely because we are including more nets, some of which, RyvsLE reduces circuit FOM by 8.6% and 5.4% on cktl
cannot be improved as much as those connected to the and ckt2, respectively.

imbalanced latch (Figure 6 has an example). « RumsLe improves the characteristics of all columns, and
« Solving the LP take$3ms for one-hop subcircuits and does no harm to the circuit metrics.

325ms for two-hop subcircuits, on average. In addition to these observations, we point out that the two

most common reasons for being unable to fix a particular latch

Imb. | Imb. FOM | Crit. | Crit. FOM | FOM | 506 1) there is a high-fanout net in the subcircuit, which ldou
old | 102768 -21855 | 7912 -2798 | -22448 . .
cktl ew T 93736 19400 | 7775 2644 | 20511 degrade the performance of buffering, and we therefore skip
dift -9032 2455 | -137 154 | 1937 this case or 2) the gates are moved to a fixed endpoint, which
old | 12151 -3080 | 3206 -1783 | -19211 | jndjcates that BvsLE does not have enough freedom to solve
ckt2 [Tnew | 11037 -2351 | 2997 -1667 | -18170 . o .
aiff 114 > T 209 116 T 10411 the problem entirely. The addition ofuRsLe to our design
ABLE VI flow adds about 4% to the total runtime in these experiments.
RUMBLE DEPLOYED IN A PHYSICAL DESIGN FLOW ON CIRCUITS THAT
HAVE PIPELINE LATCH PLACEMENT PROBLEMS CKT1 HAS 2.92M VIl. CONCLUSIONS
OBJECTS AND629K LATCHES AND CKT2 HAS 4.74MOBJECTS AND24 7K . . i
LATCHES. “OLD” REPORTS VALUES BEFORIRUMBLE “NEW"’ REPORTS In this work we observe that erelength-drlven placement
RESULTS AFTER AND“DIFF” REPORTS THEIR DIFFERENCEFOM IS leads to particularly poor timing of “pipeline latches” in

REPORTED IN NANOSECONDS modern physical design flows, which is especially probléenat

at sub-130nm technology nodes. To address this challenge,
we developed RvsLE — a linear-programming based, incre-
_ _) mental physical synthesis algorithm that incorporatesntim
E. RumeLe in a physical design flow driven placement and buffering. The latter justifiesvBLe’S
In the experiments presented so far, we have compared linear-delay model which exhibited @ % correlation to the
effects of RimeLE to those of other techniques on the mogtkeference timing model in our experiments. Empiricallysthi
critical latches of the design. Due to the high runtime alelay model is accurate enough to guide optimizatiamdre
buffering all of the nets in multi-move subcircuits, muttieve improves slack byl1.3% of cycle time on average for a large
RumsLE for every critical latch in the design is expensive. Concommercial ASIC design.
sequently, in this subsection, we demonstrate the curaalati The linear program (LP) used inuRsLE is general enough
effect of single-move RveLe when deployed in our physicalto optimize multiple gates and latches simultaneously. How
synthesis flow orall latches with a critical pin Table VI-D ever, when moving multiple gates considering only the slack
shows two circuits that each contain a significant number objective, we encountered two challenges: placementligyabi
poorly placed latches. For each circuit, we report 5 siatist and FOM degradations. We present our extensions to address
An imbalanced latch is defined as one that has slack on tiese problems directly in our LP objective. With these ad-
input pins that is greater than the slack threshdld,(see ditions, moving several gates simultaneously improvesnupo
Section IV-D), and slack on the output pins that are lowdRumsLE used iteratively on the same movables.

REFERENCES

[1] C. J. Alpert, C. Chu, and P. G. Villarrubia, “The Coming Afe
of Physical SynthesisCCAD, 2007, pp. 246-249.

[2] C. J. Alpert et al., “Fast and Flexible Buffer Trees thaavigate
the Physical Layout EnvironmentDAC, 2004, pp. 24-29.

[3] C. J. Alpert et al., “Accurate Estimation of Global BuffBelay
Within a Floorplan,”TCAD 25(6), 2006, pp. 1140-1146.

[4] C. J. Alpert, et al., “Techniques for Fast Physical Swsis,”
Proc. IEEE95(3), 2007, pp. 573-599.

[5] K-H. Chang, I. L. Markov and V. Bertacco, “Safe Delay Opti
mization for Physical SynthesisRSPDAC 2007, pp. 628-633.

[6] A. Chowdhary et al., “How Accurately Can We Model Timing
In A Placement Engine? DAC, 2005, pp. 801-806.

[7] J. Cong, L. He, C.-K. Koh and P. H. Madden, “Performance
Optimization of VLSI Interconnect Layout,Integration: the
VLSI Journa) 1996, vol. 21, pp. 1-94.

[8] P. Cocchini, “Concurrent Flip-Flop and Repeater Ingertfor
High Performance Integrated CircuitdCCAD, 2002, pp. 268-
273.

[9] B. Halpin, C. Y. R. Chen and N. Sehgal, “Timing Driven
Placement Using Physical Net Constraini3&C, 2001, pp. 780-
783.

[10] International Technology Roadmap for Semiconduc{@01l).
[Online]. Available: http://public.itrs.net.

[11] M. A. B. Jackson and E. S. Kuh, “Performance-driven Blac
ment of Cell Based IC’s,DAC, 1989, pp. 370-375.

[12] A.B. Kahng and I. L. Markov, “Min-max Placement for Larg
scale Timing Optimization,ISPD, 2002, pp. 143-148.

[13] T. T. Kong, “A Novel Net Weighting Algorithm for Timing-
driven Placement,JCCAD, 2002, pp. 172-176.

[14] T. Luo, D. Newmark and D. Z. Pan, “A New LP Based
Incremental Timing Driven Placement for High Performance
Designs,”"DAC, 2006, pp. 1115-1120.

[15] M. Marek-Sadowska and S. P. Lin, “Timing driven placertje
in ICCAD, 1989, pp. 94-97.

[16] R. Nair, C. Berman, P. Hauge and E. Yoffa, “Generation of
Performance Constraints for LayouT,CAD8(8), 1989, pp. 860-
874.

[17] R. Otten, “Global Wires Harmful? ISPD, 1998, pp. 104-109.

[18] S. L. Ou and M. Pedram, “Timing-driven Placement Basad o
Partitioning with Dynamic Cut-net Control,DAC, 2000, pp.
472-476.

[19] D. A. Papa et al., “RUMBLE: An Incremental, Timing-dew,
Physical-synthesis Optimization Algorithm3PD, 2008, pp. 2-

9

[20] H. Ren et al., “Hippocrates: First-Do-No-Harm DetdilElace-
ment” ASPDAG 2007, pp. 141-146.

[21] S. Sapatnekar, “Timing,” Springer-Verlag, New YorkQ(.

[22] P. Saxena, N. Menezes, P. Cocchini and D. A. Kirkpatrick
“Repeater Scaling and Its Impact on CAOCAD 23(4), 2004,
pp. 451-463.

[23] L. Trevillyan et al., “An Integrated Environment for @enol-
ogy Closure of Deep-submicron IC Design$ZEE Des. Test
Comput, 2004, vol. 21, no. 1, pp. 14-22.

[24] Q. Wang, J. Lillis and S. Sanyal, “An LP-Based Methodplo
for Improved Timing-Driven PlacementASPDAGC 2005, pp.
1139-1143.

12

