
1

RUMBLE: An Incremental, Timing-driven,
Physical-synthesis Optimization Algorithm

David A. Papa†♯, Tao Luo‡, Michael D. Moffitt♯, C. N. Sze♯,
Zhuo Li♯, Gi-Joon Nam♯, Charles J. Alpert♯ and Igor L. Markov†

†University of Michigan / EECS Department / Ann Arbor, MI 48109
‡University of Texas at Austin / Department of ECE / Austin, TX78712

♯IBM Austin Research Lab / 11501 Burnet Rd. / Austin, TX 78758
iamyou@umich.edu,tluo@ece.utexas.edu,{mdmoffitt,csze,lizhuo,gnam,alpert}@us.ibm.com,imarkov@umich.edu

Abstract—Physical synthesis tools are responsible for achieving
timing closure. Starting with 130nm designs, multiple cycles are
required to cross the chip, making latch placement critical to
success. We present a new physical synthesis optimization for
latch placement called RUMBLE (Rip Up and Move Boxes with
Linear Evaluation) that uses a linear timing model to optimize
timing by simultaneously re-placing multiple gates. RUMBLE runs
incrementally and in conjunction with static timing analysis to
improve the timing for critical paths that have already been
optimized by placement, gate sizing, and buffering. Experimental
results validate the effectiveness of the approach: our techniques
improve slack by 41.3% of cycle time on average for a large
commercial ASIC design.

I. I NTRODUCTION

Physical synthesis is a complex multi-phase process primar-
ily designed to achieve timing closure, though power, area,
yield and routability also need to be optimized. Starting with
130nm designs, signals can no longer cross the chip in a
single cycle, which means thatpipeline latchesneed to be
introduced to create multi-cycle paths. This problem becomes
more pronounced for90-, 65- and45-nanometer nodes, where
interconnect delay increasingly dominates gate delay [10].
Indeed, for high-performance ASIC scaling trends, the number
of pipeline latches increases by2.9× at each technology
generation, accounting for as much as10% of the area of
90nm designs [8] and as many as18% of the gates in32nm
designs [22]. Hence, the proper placement of pipeline latches
is a growing problem for timing closure.

The choice of computational techniques for latch placement
depends on where this optimization is invoked in a physical
synthesis flow. To this end, we review the major phases of
such flows following [1], [4].

1) Global placement computes non-overlapping physical
locations for gates and typically optimizes half-perimeter
wirelength (HPWL) or weighted HPWL. As part of this
phase, usually some amount of detail placement is done,
and legalization is called to ensure a legal optimization
result.

Copyright (c) 2008 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

2) Electrical correction fixes capacitance and slew viola-
tions with gate sizing and buffering.

3) Legalization is an incremental placement capability that
removes overlaps caused by optimization with minimal
disturbance to placement and timing.

4) Timing analysis assesses the speed of the design and
determines if performance targets are met. Among other
metrics, this phase determines theslackof every path in
the circuit — the difference between the clock period
and how long it takes a signal to traverse the path.

5) Detail placement moves gates to further reduce wire-
length and improve timing. In this phase it is possible
to do timing-driven detail placement wherein timing
information is explicitly considered when optimizing
gate placements.

6) Critical-path optimization identifies most-critical paths
and focuses on techniques to improve the slack for the
worst timing violations. Relevant optimizations include
buffering, gate sizing and incremental synthesis [23].

7) Compressionoptimizes the remaining paths that violate
timing constraints when improvements on most-critical
paths are no longer possible. The goal is tocompresses
the timing histogram and reduce number of negative-
slack paths that require designer intervention.

The flow can be repeated with net weighting and timing-driven
placement to further improve results.

One can think of physical synthesis as progressing with
variable detail and variable accuracy. For example, during
global placement, large changes are made to the design using
a coarse objective (such as wirelength) that is oblivious to
timing considerations. Later, one may perform more accurate
optimization using an Elmore interconnect-delay model with
Steiner-tree estimates for net capacitance. As timing begins to
converge, one can apply more costly, fine-grained buffering
along actual detailed routes using a statistical timing model.

Figure I(a)-(d) illustrates the complications of using existing
global placement techniques to solve the latch placement prob-
lem for a single two-pin net. Assume that, for all four figures,
the source A and sink B are fixed in their respective locations,
and that global placement must find the correct location for
the latch. This example is representative of situations in which
a fixed block in one corner of the chip must communicate

2

A B

Q

QSET

CLR

D

L

VU
-5+5

(a)
A B

Q

QSET

CLR

D

L

VU
+3-3

(b)
A B

Q

QSET

CLR

D

L

VU
-2+2

(c)
A B

Q

QSET

CLR

D

L

VU
00

(d)
Fig. 1. The placement of a pipeline latch impacts the slacks of both input
and output paths. A wirelength objective does not capture the timing effects
of this situation.

with a block in the opposite corner, but signal delay inevitably
exceeds a single clock period. All four placements have equal
wirelength, therefore unless global placement is timing driven,
the placement of the latch between A and B is arbitrary.
Consider the following scenarios:

• Suppose the placement tool chooses (a), which is the
worst location for the latch. In this case, the latch is so
far from B that the timing constraint at B cannot be met.
This results in a slack on the input net (U) of+5ns and
a slack on the the output net (V) of−5ns (even after
optimal buffering).1

• With a second iteration of physical synthesis, timing-
driven placement could try to optimize the location of this
latch by adding net weights. Any net weighting scheme
will assign a higher weight to net V than U, resulting
in a placement where the latch is very close to B, as in
(b). While the timing is improved, there now is a slack
violation on the other side of the latch with−3ns of slack
on U and+3ns on V.

• A global or detail placer could use a quadratic wirelength
objective to handle these kinds of nets, giving the location
(c), which, while better than (a) and (b), is suboptimal.

• To achieve the optimal location with no critical nets (0
slack on U and V), the latch must be placed as shown
in (d). In this case, there is only one location that meets
both constraints.

This example suggests that wirelength optimization is not
well-suited for latch placement, especially when there is little
room for error. Instead, one must be able to couple latch
placement with timing analysis and model the impact of
buffering. The problem is more complex in practice, and some
aspects are not illustrated above. In particular, many latches
have buffer trees in the immediate fan-in and fan-out. Such
complications pose additional challenges that we address in
this work. We make the following contributions.

• We show that a linear-wire-delay model is sufficient to

1The nets in each scenario could include buffers without changing the trends
discussed.

model the impact of buffering for the latch placement
problem.

• We develop RUMBLE, a linear-programming-based,
timing-driven placement algorithm which includes
buffering for slack-optimal placement of individual
latches under this model and show its effectiveness
experimentally.

• We extend RUMBLE to improve the locations of individual
logic gates other than latches. Further, we show how to
find the optimal locations of multiple gates (and latches)
simultaneously, with additional objectives. Incremental
placement of multiple cells requires additional care to
preserve timing assumptions, optimizing a set of slacks
instead of a single slack, while also biasing the solution
towards placement stability. We describe how RUMBLE

handles these situations.
• We empirically validate proposed transforms and the

entire RUMBLE flow. We show how these techniques can
be used to significantly improve initial latch placement in
a reasonably optimized ASIC design with “do no harm”
acceptance criteria that reject solutions if any quality
metrics are degraded. This facilitates the use of RUMBLE

later in physical synthesis.

The remainder of the paper is organized as follows. Sec-
tion II discusses background and previous work. Section III
describes the timing model we use in this work. Section
IV describes how RUMBLE performs timing-driven placement.
Section V describes the RUMBLE algorithm. Section VI shows
experimental results. Conclusions are drawn in Section VII.

II. BACKGROUND

Several approaches improve IC performance by modify-
ing wirelength-driven global placement through timing-based
net weights [9], [11]–[13], [15], [18]. Such algorithms are
generally referred to as timing-driven placement, but the
literature has not yet considered the impact of buffering on
latch placement during global placement. Due to the lack of
such algorithms, it is inevitable that some latches will be
suboptimally placed during global placement. Therefore, new
algorithms are needed for post-placement performance-driven
incremental latch movement.

We introduce a high-level description of the incremental
latch placement problem below, and elaborate on its multi-
move formulation in Section IV. Given an optimized design
and a small set of gatesM (M may consist of a single latch)
find new locations for each gate inM and new buffering solu-
tions for nets incident toM such that the timing characteristics
of the design are improved.

While moving a cell can improve delay, especially if it has
been poorly placed, moving a latch has special significance
since it facilitates time-borrowing: reallocating circuit delay
from a longer (slow) combinational stage to a shorter (fast)
combinational stage. This fact offers a particularly significant
boost to our basic approach, and is enhanced even further when
surrounding gates are also free to move.

A solution to this problem is called atransformusing the
terminology of [23]. A transform is an optimization designed

3

to incrementally improve timing. Other examples of trans-
forms include buffering a single net, resizing a gate, cloning
a cell, swapping pins on a gate, etc. The way transforms
are invoked in a physical synthesis flow is determined by
the drivers. For example, a driver designed for critical path
optimization may attempt a transform on the100 most critical
cells. A driver designed for the compression stage (see Section
I) may attempt a transform on every cell that fails to meet its
timing constraints.

A driver has the option of avoiding transforms that may
harm the design (e.g., generating new buffering solutions
inferior to the original) and can then reject this solution.This
do no harmphilosophy of optimization has received significant
recognition in recent work [5], [20]. The RUMBLE approach
adopts this same convention which makes it more trustworthy
in a physical synthesis flow.

While no previous work has attempted to solve this par-
ticular problem, other solutions do exist that may be able
to help with the placement of poorly placed latches. The
authors of [24] propose a linear programming formulation that
minimizes downstream delay to choose locations for gates in
field-programmable gate arrays (FPGAs). The authors of [6]
model static timing analysis (STA) in a linear programming
formulation by approximating the quadratic delay of nets with
a piecewise-linear function. Their formulation’s objective is to
maximize the improvement in total negative slack of timing
end points. The authors of both approaches conclude that the
addition of buffering would improve their techniques [6], [24].
When these transformations are applied at the same point
in a physical synthesis flow that we propose, they will be
restricted by previous optimizations. When applied somewhat
earlier (e.g., following global placement) they are incapable
of certain improvements. Namely, downstream optimizations,
such as buffer insertion, gate sizing, and detail placement
may invalidate the optimality of latch placement. Therefore
our technique focuses on the bad latch placements that we
observed in large commercial ASIC designs after state-of-the-
art physical synthesis optimizations. However, we believethat
RUMBLE may be too disruptive to use after routing.

III. T HE RUMBLE TIMING MODEL

We now introduce the timing model critical to RUMBLE’s
success.

A B

Q

QSET

CLR

D

L

-4+5

Fig. 2. A poorly-placed latch with buffered interconnect. In this case, the
buffer must be moved or removed in order to have the freedom tomove the
latch far enough to fix the path.

Figure III shows an intuitive example of the problem when
we try to find new locations for movable gates. Similar to
Figure I, the latch has to be moved to the right to improve
timing. However, since the latch drives a buffer which is
placed next to it, we must move the buffer in order to
improve the slack of the latch, and other complications are
illustrated by Figure 3. At the same time, the optimal new

location of the latch depends on how the input and output
nets are buffered. As a result, the optimal approach is to
simultaneously move the latch and perform buffering, but
this is computationally prohibitive because a typical multiple-
objective buffering algorithm runs in exponential time. As
mentioned in Section I, we propose a sequential approach in
which we first compute the new locations for a selected set of
movable gates based on timing estimation considering buffers.
Then, buffering is applied to the input and output nets of the
selected movable gates. Being practical, effective and efficient,
this approach can be integrated into a typical VLSI physical
synthesis flow. The calculation of optimal movement depends
on a simple but effective buffered-interconnect delay model,
which is discussed the following section.

A. Linear Buffered-Path Delay Estimation

Buffering has become indispensable in timing closure and
cannot be ignored during interconnect delay estimation [3],
[7], [22]. Therefore to calculate new locations of movable
gates, one must adopt a buffering-aware interconnect delay
model that accounts for future buffers. We found that the
linear delay model described in [3], [17] is best suited for
this application. In this model, the delay along an optimally
buffered interconnect is

delay(L) = L(RbC + RCb +
√

2RbCbRC) (1)

whereL is the length of a2-pin buffered net,Rb and Cb is
the intrinsic resistance and input capacitance of buffers and
gates whileR andC are unit wire resistance and capacitance
respectively.

Empirical results in [3] indicate that Equation 1 is accurate
up to 0.5% when at least one buffer is inserted along the
net. Furthermore, our own empirical results in Section VI-B
suggest a97% correlation between this linear delay model and
the output of an industry timing analysis tool.

B. The Timing Graph

In RUMBLE, a set of movable gates is selected, which must
include fixed gates or input/output ports to terminate every
path. Fixed gates and I/Os help formulate timing constraints
and limit the locations of movables. In Figure III-B(a), we
assume that new locations have to be computed for the latch
and the two OR gates, while all NAND gates are kept fixed.

In the timing graph, each logic gate is represented by a node,
while a latch is represented by two nodes because the inputs
and outputs of a latch are in different clock cycles and can
have different slack values. Each edge represents a driver-sink
path along a net and is associated with a delay value which is
linearly proportional to the distance between the driver and the
sink gate. In other words, we decompose each multi-pin net
into a set of2-pin edges that connect the driver to each sink of
the net. This simplification is crucial to our linear delay model
and is valid because the linear relationship can be preserved
for the most critical sinks by decoupling less critical paths with
buffers. Therefore the2-pin edge model in the timing graph
can guide the computation of new locations for the movable
gates.

4

(a) (b) (c) (d)

Fig. 3. The layout in (a) has a poorly-placed latch, and existing critical path optimizations do not solve the problem. Repowering the gates may improve the
timing some in (b), but if it cannot fix the problem, the latch must be moved. Moving the latch up to the next buffer, shown in (c), does not give optimization
enough freedom. If we move the latch but do not re-buffer in (d), timing may degrade. Figure 9(d) shows the ideal solution to this problem.

(a) (b)

Fig. 4. (a) An example subcircuit and (b) corresponding timing graph
used in RUMBLE. The AATs or RATs of unmovable objects (squares) are
considered known. STA is performed on movable objects (round shapes).

In the timing graph, an edge which represents a timing arc
is created only for (1) each connection between the movable
gates, and (2) each connection between a movable gate and
a fixed gate. This is because we only care about the slack
change due to the displacement of movable gates. For the
subcircuit in Figure III-B(a), the resultant timing graph is
shown in Figure III-B(b).

For each fixed gate, we assume that the required arrival
time (RAT) and the actual arrival time (AAT) are fixed. The
values of RAT and AAT are generated by a static timing
analysis (STA) engine using a set of timing assertions created
by designers. An in-depth exposition of STA can be found in
[16], [21] along with algorithms to generate RAT and AAT. A
movable latch corresponds to two nodes in the timing graph,
one for the data input pin and one for the output pin. For
the input pin, the RAT is fixed based on the clock period.
Similarly, the AAT is fixed for the latch’s output pin. Based on
all the fixed RAT and AAT at fixed gates and latches, the AAT
and RAT are propagated along the edges according to the delay
of the timing arcs. The values of AAT are propagated forward
to fan-out edges, adding the edge delay to the AAT. On
the contrary, RATs are propagated backward along the fan-in
edges, subtracting the edge delay from the RAT values. Details
of edge delay, RAT and AAT calculation in our algorithm are
covered in Section IV.

IV. T IMING -DRIVEN PLACEMENT

The goal of RUMBLE is to find new locations for movable
gates in a given selected subcircuit such that the overall
circuit timing improves. Therefore we maximize the minimum
(worst) slack of source-to-sink timing arcs in the subcircuit. In
contrast to other objectives used in previous work, we select
this objective because we are targeting critical-path optimiza-
tion. Hence, we prefer1 unit of worst-slack improvement over

2 units of slack improvement on less-critical nets. Below we
introduce the timing-driven placement technique in RUMBLE

that directly maximizes minimum slack. In the following
placement formulation we account for the timing impact of
our changes by implicitly modeling static timing analysis in
our timing graph. In this work, we estimate net length by
the half-perimeter wirelength (HPWL) and then scale it to
represent net delay. More accurate models are possible, but
may complicate optimization.

A. Problem Formulation

Consider the problem of maximizing the minimum slack of
a given subcircuitG with some movable gates and some fixed
gates, or ports.

Let the set of nets in the subcircuit beN = n0, n1, . . . , nh.
Let the set of all gates in the subcircuit (movable and fixed)
be G = g0, g1, . . . , gf . Let the set of movable gates in the
subcircuit (a subset ofG) be M = m0, m1, . . . , mk.

τ is a technology dependent parameter that is equal to the
ratio of the delay of an optimally-buffered, arbitrarily-long
wire segment to its length

τ =
delay(wire)

length(wire)
(2)

The following equations govern static timing analysis and are
used in the next section. A timing arc is specified for a given
net n driven by gateu and having sinkv asnu,v. The delay
of a gateg is Dg.

The Required Arrival Time (RAT) of a combinational gate
g is

Rg = min
oj :0≤j≤m

{Roj
− τ ∗ HPWL(ng,oj

) − Dg} (3)

The Actual Arrival Time (AAT) of a combinational gateg
is

Ag = max
ij :0≤j≤l

{Aij
+ τ ∗ HPWL(nij ,g) + Dg} (4)

Given a clocked latchr, we assume for simplicity that the
RAT (Rr) and AAT (Ar) are fixed and come from the timer.
Unclocked latches are treated similarly to the combinational
gates above.

The slack of a timing arcnp,q connecting two gates (com-
binational or sequential, movable or fixed)p andq is

Snp,q
= Rq − Ap − τ ∗ HPWL(np,q) (5)

5

(a) (b) (c)

Fig. 5. In many subcircuits there are multiple slack-optimal placements. In RUMBLE we add a secondary objective to minimize the displacement from the
original placement. This helps to maintain the timing assumptions made initially and reduces legalization issues. (a)shows the initial state of and example
subcircuit, (b) a slack-optimal solution commonly returned by LP solvers, all optimal solutions lie on the dotted line and (c) a solution given by RUMBLE
that maximizes worst-slack then minimizes displacement.

B. The RUMBLE Linear Program

We define a linear program to maximize the minimum slack
S of a subcircuit as follows.
VARIABLES:

S ∪ ∀n∈N : Sn ∪
∀m∈M : βm

x ∪ ∀m∈M : βm
y ∪

∀n∈N : Un
x ∪ ∀n∈N : Un

y ∪
∀n∈N : Ln

x ∪ ∀n∈N : Ln
y ∪

∀m∈M : Rm ∪ ∀m∈M : Am

(6)
Of the above,β are independent variables for gate locations.
The U and L variables represent upper and lower bounds
of nets (highest and lowest coordinates in thex− and y−
directions) for computing HPWL.R andA compute required
and actual arrival times. EachSn computes the slack of a
particular net, whileS is the minimum slack of all nets.
OBJECTIVE: Maximize S

CONSTRAINTS: For every gategj on netni

Uni
x ≥ β

gj

x , Uni
y ≥ β

gj

y (7)

Lni
x ≤ β

gj

x , Lni
y ≤ β

gj

y (8)

For every movable gatemi and sink it drivesgj via netnk

Rmi
≤ Rgj

− τ ∗ (Unk
x − Lnk

x + Unk
y − Lnk

y) − Dg (9)

For every movable gatemi and gategj that drives one of its
inputs via netnk

Ami
≥ Agj

+ τ ∗ (Unk
x − Lnk

x + Unk
y − Lnk

y) + Dg (10)

For every timing arc in the subcircuitnp,q associated with net
ni

Sni
≤ Rq − Ap − τ ∗ (Uni

x − Lni

x + Uni

y − Lni

y) (11)

For each netni:
S ≤ Sni

(12)

C. Extensions to Minimize Displacement

The linear program of RUMBLE is defined to maximize the
minimum slack of a subcircuit. Additional objectives can be
considered as well, such as total cell displacement, which sums
Manhattan distances between cells’ original and new locations.
We subtract the minimum slack objective from a weighted total
cell displacement term to avoid unnecessary cell movement.
The weightWd for the total cell displacement objective is set
to a small value. Therefore the weighted total displacement

component is used as a tie-breaker and has little impact on
worst-slack maximization. Instead, the combined objective is
maximized by a slack-optimal solution closest to cells’ original
locations. During incremental timing-driven placement, min-
imizing total cell displacement encourages higher placement
stability and often translates into fewer legalization difficulties.

Figure 5 shows an example of the RUMBLE formulation
with and without the total displacement objectives. The only
movable object in Figure 5(a) is the latch. An input netn1 and
an output netn2 are connected to the latch with slacks−2 and
+2 respectively. Figure 5(b) shows the optimal LP solution
without the total displacement objective. The Manhattan net
length of n1 is reduced from20 to 18, and the net length
of n2 is increased from20 to 22. This improves the worst
slack of the subcircuit from−2 to 0. However, the latch
moves a large distance. Figure 5(c) illustrates that including
the total displacement objective may preserve optimal slack,
while minimizing latch displacement.

In order to minimize displacement by adding a new
objective, we introduce the following variables and constraints
to the linear program.
DISPLACEMENT VARIABLES:

∀m∈M : δm
x ∪ ∀m∈M : δm

y ∪
∀m∈M : φm

x ∪ ∀m∈M : ωm
x ∪

∀m∈M : φm
y ∪ ∀m∈M : ωm

y

(13)

DISPLACEMENT CONSTRAINTS:
For every movable gatemi, αmi

x andαmi
y denote the original

x andy coordinates. The upper and lower bounds of the new
and original coordinatesφ andω in each dimension are:

φmi
x ≥ βmi

x , ωmi
x ≤ βmi

x

φmi
y ≥ βmi

y , ωmi
y ≤ βmi

y

φmi
x ≥ αmi

x , ωmi
x ≤ αmi

x

φmi
y ≥ αmi

y , ωmi
y ≤ αmi

y

(14)

The displacementsδmi for a movable gatemi are defined as

δmi
x = φmi

x − ωmi
x , δmi

y = φmi
y − ωmi

y (15)

D. Extensions to Improve the Slack Histogram

The minimum slack is the worst slack in a subcircuit. For
two subcircuits with identical worst slack, it is possible that
one subcircuit has few critical paths with worst slack while
the other one has many. A timing optimization has to improve
both the worst slack and the overall figure of merit (FOM) in
a subcircuit. FOM is defined as the sum of all slacks below

6

(10, 10)

-20

-20

-20

-20
+5 -10

(15, 10)

-20

-20

-20

-20

0 -5

(a) (b)

Fig. 6. (a) An example subcircuit with an imbalanced latch whose worst-slack cannot be improved. Nevertheless, it is possible to improve timing of the
latch while maintaining slack-optimality. By including a FOM component in the objective, the total negative slack can be reduced, as shown in (b).

a threshold. If the slack threshold is zero, FOM is equivalent
to the total negative slack. With the minimum slack as the
only objective, a small improvement in the worst slack may
cause a large FOM degradation. Therefore we must add a FOM
component to the optimization objective. The balance between
the minimum slack and the FOM is controlled by a parameter
Wf , which is set to a relatively small value because the worst
slack objective is more important.

Figure 6 shows another scenario where the FOM component
may help. During optimization, it may not be always possible
to improve the minimum slack of the subcircuit. In that
case, we can still reduce the number of critical cells by
improving the FOM. In Figure 6, there are three movables in
the subcircuit. The minimum slack of the subcircuit is−20,
and it is not possible to improve the minimum slack by moving
any of the gates. With the additional FOM component in the
objective, the FOM of the subcircuit is improved from−90
to −85, as shown in Figure 6(b).

Let Sn denote the slack on netn, then the combined
objective has the displacement and FOM components
Maximize:

S − Wd

∑

m∈M (δm
x + δm

y)
+ Wf

∑

n:n∈N,Sn<Ts
Sn

(16)

where Ts is the small slack threshold used to compute the
FOM. We have earlier assumedWf andWd to be small, with
Wd < Wf . In our implementation we setWf to 0.005 times
the absolute value of the average slack in the subcircuit, and
we setWd to 10−6. These additional terms change the optimal
region, but because the weights are so small the combined
optimal region is very near the slack-optimal region.

E. Preventing Harm to FOM

The primary goal of the RUMBLE linear program as pre-
sented in previous sections is to maximize the worst slack
of the subcircuit. We define two additional objectives — one
preserves the initial solution as much as possible, the other
can improve the slack histogram when the worst slack cannot
be further improved. However, it is possible that in order to
improve a single worst slack path, multiple paths may degrade
to the point of being critical. If RUMBLE is deployed late
enough in a physical synthesis flow, the corresponding FOM
degradation may be undesirable. To address this problem, we
have devised an additional constraint which, at the cost of
reduced improvement in worst slack, can prevent this type of
FOM degradation. When FOM should not be degraded, we
add the following constraints to the RUMBLE linear program to
preserve FOM.

For each netnk whose slack is greater than the slack
thresholdTs, add the following constraint.

Snk
≥ Ts (17)

This addition may over-constrain the linear program, in which
case it is not possible to improve the worst slack without
harming FOM.

V. THE RUMBLE ALGORITHM

In this section we discuss the details of the RUMBLE algo-
rithm, which employs the linear program from the previous
section to incrementally improve the timing of poorly placed
latches.

A. Subcircuit Selection

RUMBLE identifies imbalanced latches, which we define as
those that exhibit positive slack on their inputs and negative
slack on their outputs (or vice versa). As illustrated in Figure I,
the movement of any such imbalanced latch has the potential
to improve timing, even if all surrounding cells are held
fixed. More generally, however, the neighbors and extended
neighbors of the targeted latch may also be included to form
a setM of movable cells. In our technique, shown in Figure 8,
we adopt a basicN -hop neighborhood approach, where any
gate within N steps of the imbalanced latch is included in
the set of movable cells. This requires both a forward sweep
(to collect sinks) and a backward sweep (to collect sources),
which are performed in tandem. Those cells that fallN + 1
steps from the latch form a setP of fixed peripheral nodes.2

In contrast to prior work that has assumed operation within
a pre-buffering stage, our subcircuit selection algorithmmust
address the presence of buffers. These buffers will be encoun-
tered in our neighborhood selection algorithm, as they are
part of the current logic; however, since it is presumed that
they would be ripped up when new locations are determined
(a critical assumption that makes our linear-delay model
possible), we must prevent their inclusion in our model of
the subcircuit. Therefore, when fetching adjacent gates, we
transparently skip these buffers and omit them from the set
M . The recursive functions TRUE-SOURCE() and TRUE-SINK() in
Figure 8 provide this additional level of indirection, returning
only those combinational gates that reflect the logical structure
of the subcircuit.

2Variations on this theme, such as metrics that incorporate the degree of
neighbors’ criticality [14], [24] and the size of the subcircuit bounding box
are also possible.

7

AAT = +20

RAT +19

RAT = 0

Clock Period = 20

AAT = +11

Delay = +10

RAT = +1
Delay = +9

Clock Period = 20

AAT = +15

Delay = +10

RAT = +5

Clock Period = 20

(a) (b) (c)

Fig. 7. Modeling feedback paths within logic requires a new type of gate. Pseudomovable gates have timing values that depend on the timing values of
neighboring gates, but they cannot be moved. (a) Ignoring the presence of feedback paths is overly pessimistic, and it appears that the timing of the latch
cannot meet its constraints. (b) Making the fixed gates alonga feedback path pseudomovable allows the latch to meet its timing constraints, but doing only
this can lead to the wrong placement. (c) Including all gatesconnected to pseudomovables as fixed timing points properlymodels the problem as a convex
subcircuit.

BUILD -SUBCIRCUIT-FROM-SEED

� Input: LatchL , int N -hops
� Output: Setmovables , Setpseudo , Setfixed

1 movables = BUILD -MOVABLES-FROM-SEED(L, N -hops)
2 pseudo = BUILD -PSEUDOMOVABLES-FROM-MOVABLES(movables)
3 fixed = BUILD -FIXED-FROM-CORE(movables

⋃

pseudo)

BUILD -MOVABLES-FROM-SEED

� Input: LatchL , int N -hops
� Output: Setmovables

1 inputs = input-fringe = {L}
2 outputs = output-fringe = {L}
3 for i = 1 .. N -hops

4 input-fringe =
⋃

(

GET-INPUTS(input ∈ input-fringe)
)

5 output-fringe =
⋃

(

GET-OUTPUTS(output ∈ output-fringe)
)

6 inputs = inputs
⋃

input-fringe

7 outputs = outputs
⋃

output-fringe

8 movables = inputs
⋃

outputs

BUILD -PSEUDOMOVABLES-FROM-MOVABLES

� Input: Setmovables
� Output: Setpseudo

1 pseudo = ⊘
2 do
3 Setfan in = INPUT-CONE(movables

⋃

pseudo)
4 Setfan out = OUTPUT-CONE(movables

⋃

pseudo)

5 Setpseudo′ =
(

fan in
⋂

fan out
)

- movables - pseudo

6 pseudo = pseudo
⋃

pseudo′

7 while pseudo′ 6= ⊘

BUILD -FIXED-FROM-CORE

� Input: Setcore
� Output: Setfixed

1 fixed = ⊘
2 for each GateG ∈ core

3 Setneighbors = GET-INPUTS(G)
⋃

GET-OUTPUTS(G)
4 fixed = fixed

⋃

(neighbors - core)

GET-INPUTS

� Input: GateG
� Output: Setinputs

1 S = ⊘
2 for each pin ∈ IN-PINS(G)
3 S = S

⋃

TRUE-SOURCE(pin)
4 return S

GET-OUTPUTS

� Input: GateG
� Output: Setoutputs

1 S = ⊘
2 for each pin ∈ OUT-PINS(G)
3 S = S

⋃

TRUE-SINKS(pin)
4 return S

TRUE-SOURCE

� Input: Pinp

� Output: Gatesource
1 Net net = NET(p)
2 Gate G = DRIVER(net)
3 unless IS-BUFFER(G)
4 return G
5 p = IN-PIN(G)
6 return TRUE-SOURCE(p)

TRUE-SINKS

� Input: Pinp

� Output: Setsinks
1 Net net = NET(p)
2 Set driven = DRIVEN(net)
3 S = ⊘
4 for each GateG ∈ driven
5 if IS-BUFFER(G)
6 p = OUT-PIN(G)
7 S ′ = TRUE-SINKS(p)
8 elseS ′ = G
9 S = S

⋃

S ′

10 return S

Fig. 8. Subcircuit selection transparently skips buffers when building a neighborhood of movable gates, and requires detection of “pseudomovables.”

B. Feedback Paths

As noted in [24], the process of extracting gates to form
a subcircuit may suffer from complications when subpaths of
combinatorial logic between peripheral nodes are not modeled.
These subpaths introduce additional timing constraints that, if
left absent from the model, could invalidate the optimalityof
the solution.

To illustrate, consider the example in Figure 7, in which a
single latch has been selected as a movable gate. After collect-
ing its inputs and outputs, a simple subcircuit is constructed as
shown in Figure 7(a), with the two endpoints shown selected
as fixed gates. With the timing constraints as given in the
figure, an optimal solution to this problem will place the latch
equidistantly from both endpoints to ensure that the slackson
either side are balanced. However, consider a scenario where
a feedback path exists from the output to the input, as shown
in Figure 7(b); in such an event, the RAT of the output and the
AAT of the input aredependenton the location of the latch.
If this dependency is modeled, the solution may be biased

toward one of the two neighbors. We loosely refer to these
neighbors aspseudomovablegates. Although timing must be
propagated through them (as it is for movable gates), their
physical locations may be fixed.

Pseudomovables are collected by intersecting the transitive
cones of logic between inputs and outputs to detect feedback
paths, as shown in the pseudocode of Figure 8.3 To ensure ac-
curacy, the inputs and outputs of pseudomovables themselves
must be bounded by fixed endpoints, as shown illustrated in
Figure 7(c). These fringe nodes completely isolate the timing
of the resultingconvexsubcircuit from outer cones of logic.

C. The “Do no harm” Philosophy

After gates are moved, it is likely that timing has degraded
due to, for example, a capacitance violation on a long wire.
The subcircuit must be examined, and its interconnect im-
proved through physical synthesis optimizations, which might

3To improve runtime, one can limit the depth of these cones to areasonably
small constant, as opposed to the exhaustive expansion in [5].

8

(a) (b) (c) (d)

Fig. 9. The RUMBLE algorithm proceeds by (a) selecting a subcircuit to work on.An LP is formulated and solved, with movable gates being relocated
as shown in (b). Existing repeater trees are no longer appropriate, and are subsequently removed in (c). Finally, the nets are re-buffered, forming the final
subcircuit shown in (d).

include gate-sizing and buffer-insertion for delay or electrical
considerations on nets.

Even though the linear program of Section IV-B can be
solved optimally, it does not account for all the complexities
of interconnect optimization. The linear program is an abstrac-
tion of the subcircuit timing that models physical synthesis
optimizations (e.g., virtual-buffering) by prorating wire delay
constants based on upcoming physical synthesis optimizations.
Despite the high correlation to more accurate timing models
in experimental results, the RUMBLE model could turn out to be
too optimistic and its solution might result in a timing degra-
dation. For example, nets can cross blockages or congested
regions with no nearby legal locations. As a result, legalization
could create a timing degradation.

When running RUMBLE in our physical synthesis flow, we
mitigate the harmful effects of legalization by finding legal
locations for gates and buffers when moving or inserting them.
Insisting on legal locations can also contribute to a degradation
not anticipated by the RUMBLE model. Fortunately, RUMBLE

can examine the timing implications of its changes before
committing to them. It simply stores the initial state of the
subcircuit, and restores it if a timing degradation occurs.In
this way, RUMBLE will “do no harm” to the circuit by ensuring
that whatever solution it keeps is no worse than what existed
before. Such safe delay optimizations are more easily inserted
into physical synthesis flows [5], [20].

D. The RUMBLE Algorithm

Figure 10 shows pseudocode for the RUMBLE algorithm,
which assumes a set of movable gates given at input, and
Figure 9 illustrates the process. First, the subcircuit that is
necessary for incremental placement is extracted (for a single
movable, we extract its one-hop neighborhood of input gates).
During this process, buffers are ignored (viewed as wires)
as described in Section V-A. Next, RUMBLE performs timing
analysis so as to measure timing improvement later. Line3
stores the state of the circuit (gates and nets) so as to possibly
undo most recent transformations we are considering. Once the
initial state is safely stored, lines4-6 use the linear program
of Section IV to compute new gate locations, followed by
buffer removal. If the model shows improvement we continue.
Buffers are inserted on line8, and other physical synthesis
optimizations could also be applied here (e.g, repowering,Vth

assignment, etc.). Lines9-12 measure improvement, and in the
case of timing degradation, restores the initial solution.

RUMBLE-ONE-LATCH

� Input: Gatemovable
� Output:movable has optimized location and interconnect

1 subcircuit = BUILD -SUBCIRCUIT-FROM-SEED(movable, 0)
2 before-timing = MEASURE-TIMING (subcircuit)
3 initial-solution = CACHE-SUBCIRCUIT(subcircuit)
4 LP = new RUMBLE linear program forsubcircuit
5 after-locs = SOLVE(LP)
6 SET-GATE-LOCATIONS(subcircuit, after-locs)
7 REMOVE-BUFFERS(subcircuit)
8 REINSERT-BUFFERS(subcircuit)
9 after-timing = MEASURE-TIMING (subcircuit)

10 if (after-timing worse thanbefore-timing)
11 RESTORE-GATE-LOCATIONS(subcircuit, initial-solution)
12 RESTORE-INTERCONNECT(initial-solution)

Fig. 10. The RUMBLE algorithm for moving one latch.

VI. EXPERIMENTAL RESULTS

RUMBLE is implemented in C++ (compiled with GCC4.1.0)
and integrated into an industrial physical synthesis flow. For
our experiments, we examined an already optimized130nm
commercial ASIC with clock period2.2ns and 3 million
objects. We first examined the most critical latches and then
filtered out the ones where the latch was already well placed.
We use the algorithm from [2] to perform buffering after the
cells have been moved. In practice, the LP-solving technique
from RUMBLE requires only17 milliseconds; the buffering
algorithm dominates the runtime (over75%). Since the overall
runtime is dependent on the choice of the buffering algorithm
we omit the (trivial) runtimes from our tables. Note that
the “do no harm” approach of Section V-C is applied to all
experiments, preventing timing degradation in our tables (i.e.,
a value of 0 appears in the imprv. column).

A. Re-buffering in RUMBLE

Previously published LP techniques for timing-driven place-
ment do not allow for re-buffering during optimization. In-
stead, they are either applied before buffers have been inserted,
or they do not differentiate the buffers from other gates. Our
first experiment is designed to show how important it is to rip
up buffers before replacing gates and subsequently rebuffering.

We modified our pseudocode in Figure 8 so that the function
IS-BUFFER() always returns false. The effect of this is to stop
“seeing through” the buffers, and instead to consider them
fixed timing endpoints. This configuration models the work of
[24]. We then calculate a new location for each latch with the

9

LP in Section IV. The final change is to skip line8 of Figure
10, i.e., do not re-buffer. We call this algorithm KEEP-BUFFERS.

Table VI-A shows the results of RUMBLE on a single latch
compared with KEEP-BUFFERS. Column 1 shows the name
of the benchmark and columns2 and 5 show worst-slacks
in picoseconds before optimization. Columns3 and 6 show
the slacks after optimization of KEEP-BUFFERS and RUMBLE

respectively. Columns4 and7 show the improvements of each
technique.

Center-of-gravity vs. RUMBLE
COG RUMBLE

Slack (ps) Slack (ps)
Subcircuit orig new imprv. orig new imprv.
latch A0 -1480 -527 953 -1480 26 1506
latch A1 -1268 -203 1065 -1268 186 1454
latch A2 -1020 -800 219 -1020 -791 229
latch A3 -953 -615 338 -953 -390 563
latch A4 -897 -78 819 -897 356 1253
latch A5 -848 -319 529 -848 -278 570
latch A6 -690 -690 0 -690 395 1085
latch A7 -645 -645 0 -645 -19 626
latch A8 -633 -633 0 -633 290 923
latch A9 -610 67 677 -610 262 872

avg -904 -444 460 -904 4 908

TABLE I
KEEPING BUFFERS INSTEAD OF REMOVING AND REINSERTING THEM

DEGRADESRUMBLE ’ S PERFORMANCE.

From the table we observe the following:

• Despite not ripping up buffers, KEEP-BUFFERS is still able
to improve solution quality for nine out of ten testcases,
though the improvement is never more than220ps.

• When rip-up and re-buffering is allowed, RUMBLE is
able to significantly outperform KEEP-BUFFERS for all ten
testcases. On average the improvement grows by7.4x.

• While KEEP-BUFFERS improves slack by an average of
123ps, RUMBLE improves slack by908ps, which confirms
how important it is to rip-up buffers so that they do not
anchor the latch into an artificially small region.

B. Accuracy of the RUMBLE Timing Model

Theoretical results published by Otten [17] and discussed
in Section III indicate that optimal buffer insertion on a2-pin
net results in a wire delay that is linearly-proportional toits
length. The RUMBLE model heavily relies on these results.

Table VI-B compares the model-predicted values for subcir-
cuit slack to values measured by running a commercial static
timing analyzer. Measurements are taken after the RUMBLE

LP is solved, the latches are moved and connected nets are
buffered. Columns2-4 report the initial, final, and improve-
ment in worst-slack of the subcircuit measured by the timing
model presented in Section III. Columns5-7 report the same
metrics measured by the STA engine.

We make the following observations:

• On average, the RUMBLE model overestimates the actual
timing improvement by about15%. This makes sense
since it assumes an optimal ideal buffering will be

Model timing vs. reference timing
Model slack (ps) Subcircuit slack (ps)

Subcircuit orig new imprv. orig new imprv.
latch A0 -1799 -48 1751 -1480 26 1506
latch A1 -1509 65 1574 -1268 186 1454
latch A2 -1113 -868 245 -1020 -791 229
latch A3 -1147 -527 620 -953 -390 563
latch A4 -1090 180 1269 -897 356 1253
latch A5 -945 -295 650 -848 -278 570
latch A6 -920 320 1241 -690 395 1085
latch A7 -886 49 935 -645 -19 626
latch A8 -913 213 1126 -633 290 923
latch A9 -800 397 1198 -610 262 872

avg -1112 -51 1061 -904 4 908

TABLE II
THE RUMBLE MODEL ACCURATELY PREDICTS THE SOLUTION QUALITY

IMPROVEMENTS IN THE REFERENCE TIMING MODEL.

achievable, but this is not always the case, especially for
multi-sink nets.

• However, if one compares actual improvement to model
improvement, there is a97% correlation, suggesting that
the model is reasonable enough to justify the latch
location.

We now show how RUMBLE actually improves the design’s
timing characteristics.

C. RUMBLE on a Single Latch

Given that we are solving a new physical synthesis problem,
existing solutions are scarce. Therefore we first consider
straightforward approaches to solve this problem. One possi-
bility is to take thecenter-of-gravity(COG) of adjacent pins. A
timing-driven improvement of the center-of-gravity technique
weights each pin by its slack. A reasonable version of this
heuristic works in the following way. For a slack thresholdTs

(see Section IV-D), let the weightw of a pinp with slackSp

be:

wp =

{

1 + |Sp − Ts| Sp < 0
max(0.1, 1 − |Sp − Ts|) Sp ≥ 0

Then we compute thex coordinate of movable gatem as the
weighted average of thex coordinates of the set of neighboring
pins P .

mx =

∑

p∈P wppx
∑

p∈P wp

and similarly for they coordinate.
We implemented the above COG technique within the

RUMBLE framework in place of the LP solver presented in
Section IV. We still allow COG the benefits of ripping up
buffers, and reinserting them after the latches are moved. Table
VI-C shows a comparison between RUMBLE and slack-weighted
COG on 10 latches. Column1 shows the same latches as
reported in Table VI-B. Columns2-4 show the initial and
final slacks, and improvement for COG. Columns5-7 show
the same for RUMBLE.

We observe the following:

• For all ten cases, RUMBLE generates a better solution than
COG. For three of the cases, COG could not improve the

10

Iterated RUMBLE vs. RUMBLE: 1-hop
Iterated single-move RUMBLE Multi-move RUMBLE

Slack (ps) FOM (ps) Slack (ps) FOM (ps)
Subcircuit orig new imprv. orig new imprv. orig new imprv. orig new imprv.

subcircuit B0 -1542 -1542 0 -6091 -6091 0 -1542 -130 1412 -6091 -130 5962
subcircuit B1 -1501 -277 1223 -5924 -277 5647 -1501 55 1556 -5924 0 5924
subcircuit B2 -1240 -1240 0 -4354 -4354 0 -1240 -980 261 -4354 -4044 310
subcircuit B3 -848 -278 569 -2523 -812 1710 -848 -279 569 -2523 -813 1709
subcircuit B4 -690 -79 612 -4090 -79 4011 -690 202 893 -4090 0 4090
subcircuit B5 -690 48 739 -2053 0 2053 -690 290 980 -2053 0 2053
subcircuit B6 -645 -18 627 -1921 -32 1889 -645 301 945 -1921 0 1921
subcircuit B7 -595 86 681 -1937 0 1937 -595 503 1098 -1937 0 1937
subcircuit B8 -444 -444 0 -889 -889 0 -444 -92 352 -889 -191 698
subcircuit B9 -418 -46 372 -857 -46 811 -418 6 424 -857 0 857

avg -861 -379 482 -3064 -1258 1806 -861 -12 849 -3064 -518 2546

TABLE IV
RUMBLE SIMULTANEOUSLY MOVING A one-hopNEIGHBORHOOD COMPARED TO ITERATIVELY MOVING THE SAME GATESINDIVIDUALLY .

Iterated RUMBLE vs. RUMBLE: 2-hop
Iterated single-move RUMBLE Multi-move RUMBLE

Slack (ps) FOM (ps) Slack (ps) FOM (ps)
Subcircuit orig new imprv. orig new imprv. orig new imprv. orig new imprv.

subcircuit C0 -719 -719 0 -8313 -8313 0 -719 -675 44 -8313 -5028 3285
subcircuit C1 -719 -719 0 -8004 -8004 0 -719 -653 66 -8004 -4386 3617
subcircuit C2 -690 -79 612 -4090 -79 4011 -690 314 1004 -4090 0 4090
subcircuit C3 -690 -79 612 -4090 -79 4011 -690 337 1027 -4090 0 4090
subcircuit C4 -681 -349 333 -3865 -349 3516 -681 -158 524 -3865 -158 3707
subcircuit C5 -645 -91 554 -3767 -306 3462 -645 371 1015 -3767 0 3767
subcircuit C6 -645 -33 612 -3767 -52 3716 -645 324 969 -3767 0 3767
subcircuit C7 -318 -318 0 -940 -940 0 -318 531 848 -940 0 940
subcircuit C8 -490 227 716 -966 0 966 -490 466 956 -966 0 966
subcircuit C9 -217 -217 0 -652 -652 0 -217 60 277 -652 0 652

avg -581 -238 344 -3846 -1877 1968 -581 92 673 -3846 -957 2888

TABLE V
RUMBLE SIMULTANEOUSLY MOVING A two-hopNEIGHBORHOOD COMPARED TO ITERATIVELY MOVING THE SAME GATESINDIVIDUALLY .

Center-of-gravity vs. RUMBLE
COG RUMBLE

Slack (ps) Slack (ps)
Subcircuit orig new imprv. orig new imprv.
latch A0 -1480 -527 953 -1480 26 1506
latch A1 -1268 -203 1065 -1268 186 1454
latch A2 -1020 -800 219 -1020 -791 229
latch A3 -953 -615 338 -953 -390 563
latch A4 -897 -78 819 -897 356 1253
latch A5 -848 -319 529 -848 -278 570
latch A6 -690 -690 0 -690 395 1085
latch A7 -645 -645 0 -645 -19 626
latch A8 -633 -633 0 -633 290 923
latch A9 -610 67 677 -610 262 872

avg -904 -444 460 -904 4 908

TABLE III
COMPARISON OFRUMBLE ’ S LP TO A SLACK-WEIGHTED

CENTER-OF-GRAVITY TECHNIQUE.

latch placement. These new solutions are rejected by the
driver so as not to make the design worse.

• On average, COG improves slack by20.9% of the2.2ns
cycle time, whereas RUMBLE improves slack by41.3%.
This shows that one must incorporate slack constraints on

cells incident on the latch to achieve the most balanced
solution.

D. Optimizing Multiple Gates Simultaneously

For this experiment, we show how an even better solution
can be obtained when one allows cells close to the latch to
move. We show the effectiveness of this technique on two sets
of circuits.

• One-hop subcircuits include every gate (while ignoring
buffers and inverters) incident to the latch of interest that
shares an incident net with the latch. Typically this results
in 4 or 5 gates being moved.

• Two-hop subcircuits in addition include all non-buffer
and inverter cells incident to cells in the one-hop neigh-
borhood. These subcircuits range from11 to 18 movables
with a mean of14.8 movables.

We compare this technique to iterated single-move RUMBLE,
where we pick each cell in the neighborhood and solve the
LP for that particular cell, fix it, and then move to the next
cell. The experiment is designed to show that multiple cells
need to be optimized simultaneously to obtain the best results.

To measure the improvement one must now consider the
slacks of all cells that may be moved, and the objective

11

becomes to improve the worst slack of the entire subcircuit.
However, when one cannot improve the most critical path,
the other paths may have room for improvement. We use
FOM to measure the total improvement of all the slacks in
the subcircuit.

Tables IV and V compare iterating RUMBLE over each
gate one at a time versus RUMBLE moving multiple gates
simultaneously. Columns2-4 show the original and final
slack, and the slack improvement for iterated single-move
RUMBLE, while columns5-7 show the corresponding FOM
measurements for a zero-slack threshold. Columns8-13 show
the same measurements for multi-move RUMBLE. We make the
following observations:

• Multi-move RUMBLE is clearly more effective than itera-
tive RUMBLE both for one- and two-hop neighborhoods. In
fact, for six out of ten one-hop subcircuits and for seven
out of ten two-hop circuits, multi-move actually brought
the FOM down to zero, meaning it fixed all the timing
violations. Iterative single move was able to fix two and
four respectively.

• On average, the worst-slack improvements were849ps
and673ps respectively for one- and two-hop subcircuits.
The diminished improvement for larger subcircuits is
likely because we are including more nets, some of which
cannot be improved as much as those connected to the
imbalanced latch (Figure 6 has an example).

• Solving the LP takes53ms for one-hop subcircuits and
325ms for two-hop subcircuits, on average.

Imb. Imb. FOM Crit. Crit. FOM FOM
old 102768 -21855 7912 -2798 -22448

ckt1 new 93736 -19400 7775 -2644 -20511
diff -9032 2455 -137 154 1937
old 12151 -3080 3206 -1783 -19211

ckt2 new 11037 -2351 2997 -1667 -18170
diff -1114 271 -209 116 1041

TABLE VI
RUMBLE DEPLOYED IN A PHYSICAL DESIGN FLOW ON CIRCUITS THAT

HAVE PIPELINE LATCH PLACEMENT PROBLEMS. CKT1 HAS 2.92M
OBJECTS AND629K LATCHES AND CKT2 HAS 4.74MOBJECTS AND247K

LATCHES. “ OLD” REPORTS VALUES BEFORERUMBLE “ NEW” REPORTS
RESULTS AFTER AND“ DIFF” REPORTS THEIR DIFFERENCE. FOM IS

REPORTED IN NANOSECONDS.

E. RUMBLE in a physical design flow

In the experiments presented so far, we have compared the
effects of RUMBLE to those of other techniques on the most
critical latches of the design. Due to the high runtime of
buffering all of the nets in multi-move subcircuits, multi-move
RUMBLE for every critical latch in the design is expensive. Con-
sequently, in this subsection, we demonstrate the cumulative
effect of single-move RUMBLE when deployed in our physical
synthesis flow onall latches with a critical pin. Table VI-D
shows two circuits that each contain a significant number of
poorly placed latches. For each circuit, we report 5 statistics.
An imbalanced latch is defined as one that has slack on the
input pins that is greater than the slack threshold,Ts (see
Section IV-D), and slack on the output pins that are lower

than Ts, or vice versa. The Imb. column reports the number
of imbalanced latches found in the design. Let the set of
imbalanced latches beI, and for each latchl let ws(l) be
the worst slack of any pin onl. We define imbalance FOM to
be

∑

l∈I

Ts − ws(l) (18)

The Imb. FOM column reports this value. A critical latch is
defined as one that has pins on both sides that are belowTs.
The Crit. column reports the number of critical latches found
in the design. Similarly to imbalance FOM, ifC is the set
of critical latches and for each latchc let ws(c) be the worst
slack of any pin onc, then we define the critical FOM to be

∑

c∈C

Ts − ws(c) (19)

The Crit. FOM column reports this value.
Finally, the FOM column reports the FOM for the entire

design. We make the following observations:

• RUMBLE reduces the number of imbalanced latches by
8.8% and 9.2% on ckt1 and ckt2, respectively.

• RUMBLE has a harder time optimizing the critical latches
than the imbalanced ones.

• RUMBLE reduces circuit FOM by 8.6% and 5.4% on ckt1
and ckt2, respectively.

• RUMBLE improves the characteristics of all columns, and
does no harm to the circuit metrics.

In addition to these observations, we point out that the two
most common reasons for being unable to fix a particular latch
are 1) there is a high-fanout net in the subcircuit, which would
degrade the performance of buffering, and we therefore skip
this case or 2) the gates are moved to a fixed endpoint, which
indicates that RUMBLE does not have enough freedom to solve
the problem entirely. The addition of RUMBLE to our design
flow adds about 4% to the total runtime in these experiments.

VII. CONCLUSIONS

In this work we observe that wirelength-driven placement
leads to particularly poor timing of “pipeline latches” in
modern physical design flows, which is especially problematic
at sub-130nm technology nodes. To address this challenge,
we developed RUMBLE — a linear-programming based, incre-
mental physical synthesis algorithm that incorporates timing-
driven placement and buffering. The latter justifies RUMBLE’s
linear-delay model which exhibited a97% correlation to the
reference timing model in our experiments. Empirically this
delay model is accurate enough to guide optimization; RUMBLE

improves slack by41.3% of cycle time on average for a large
commercial ASIC design.

The linear program (LP) used in RUMBLE is general enough
to optimize multiple gates and latches simultaneously. How-
ever, when moving multiple gates considering only the slack
objective, we encountered two challenges: placement stability
and FOM degradations. We present our extensions to address
these problems directly in our LP objective. With these ad-
ditions, moving several gates simultaneously improves upon
RUMBLE used iteratively on the same movables.

12

REFERENCES

[1] C. J. Alpert, C. Chu, and P. G. Villarrubia, “The Coming ofAge
of Physical Synthesis,”ICCAD, 2007, pp. 246-249.

[2] C. J. Alpert et al., “Fast and Flexible Buffer Trees that Navigate
the Physical Layout Environment,”DAC, 2004, pp. 24-29.

[3] C. J. Alpert et al., “Accurate Estimation of Global Buffer Delay
Within a Floorplan,”TCAD 25(6), 2006, pp. 1140-1146.

[4] C. J. Alpert, et al., “Techniques for Fast Physical Synthesis,”
Proc. IEEE95(3), 2007, pp. 573-599.

[5] K-H. Chang, I. L. Markov and V. Bertacco, “Safe Delay Opti-
mization for Physical Synthesis,”ASPDAC, 2007, pp. 628-633.

[6] A. Chowdhary et al., “How Accurately Can We Model Timing
In A Placement Engine?,”DAC, 2005, pp. 801-806.

[7] J. Cong, L. He, C.-K. Koh and P. H. Madden, “Performance
Optimization of VLSI Interconnect Layout,”Integration: the
VLSI Journal, 1996, vol. 21, pp. 1-94.

[8] P. Cocchini, “Concurrent Flip-Flop and Repeater Insertion for
High Performance Integrated Circuits,”ICCAD, 2002, pp. 268-
273.

[9] B. Halpin, C. Y. R. Chen and N. Sehgal, “Timing Driven
Placement Using Physical Net Constraints,”DAC, 2001, pp. 780-
783.

[10] International Technology Roadmap for Semiconductors(2001).
[Online]. Available: http://public.itrs.net.

[11] M. A. B. Jackson and E. S. Kuh, “Performance-driven Place-
ment of Cell Based IC’s,”DAC, 1989, pp. 370-375.

[12] A. B. Kahng and I. L. Markov, “Min-max Placement for Large-
scale Timing Optimization,”ISPD, 2002, pp. 143-148.

[13] T. T. Kong, “A Novel Net Weighting Algorithm for Timing-
driven Placement,”ICCAD, 2002, pp. 172-176.

[14] T. Luo, D. Newmark and D. Z. Pan, “A New LP Based
Incremental Timing Driven Placement for High Performance
Designs,”DAC, 2006, pp. 1115-1120.

[15] M. Marek-Sadowska and S. P. Lin, “Timing driven placement,”
in ICCAD, 1989, pp. 94-97.

[16] R. Nair, C. Berman, P. Hauge and E. Yoffa, “Generation of
Performance Constraints for Layout,”TCAD8(8), 1989, pp. 860-
874.

[17] R. Otten, “Global Wires Harmful?,”ISPD, 1998, pp. 104-109.
[18] S. L. Ou and M. Pedram, “Timing-driven Placement Based on

Partitioning with Dynamic Cut-net Control,”DAC, 2000, pp.
472-476.

[19] D. A. Papa et al., “RUMBLE: An Incremental, Timing-driven,
Physical-synthesis Optimization Algorithm,”ISPD, 2008, pp. 2-
9.

[20] H. Ren et al., “Hippocrates: First-Do-No-Harm Detailed Place-
ment” ASPDAC, 2007, pp. 141-146.

[21] S. Sapatnekar, “Timing,” Springer-Verlag, New York, 2004.
[22] P. Saxena, N. Menezes, P. Cocchini and D. A. Kirkpatrick,

“Repeater Scaling and Its Impact on CAD,”TCAD23(4), 2004,
pp. 451-463.

[23] L. Trevillyan et al., “An Integrated Environment for Technol-
ogy Closure of Deep-submicron IC Designs,”IEEE Des. Test
Comput., 2004, vol. 21, no. 1, pp. 14-22.

[24] Q. Wang, J. Lillis and S. Sanyal, “An LP-Based Methodology
for Improved Timing-Driven Placement,”ASPDAC, 2005, pp.
1139-1143.

