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Obstacle-Avoiding Rectilinear Steiner Tree
Construction Based on Spanning Graphs
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Abstract—Given a set of pins and a set of obstacles on a plane,
an obstacle-avoiding rectilinear Steiner minimal tree (OARSMT)
connects these pins, possibly through some additional points
(called the Steiner points), and avoids running through any ob-
stacle to construct a tree with a minimal total wirelength. The
OARSMT problem becomes more important than ever for modern
nanometer IC designs which need to consider numerous rout-
ing obstacles incurred from power networks, prerouted nets, IP
blocks, feature patterns for manufacturability improvement, an-
tenna jumpers for reliability enhancement, etc. Consequently, the
OARSMT problem has received dramatically increasing attention
recently. Nevertheless, considering obstacles significantly increases
the problem complexity, and thus, most previous works suffer
from either poor quality or expensive running time. Based on
the obstacle-avoiding spanning graph, this paper presents an
efficient algorithm with some theoretical optimality guarantees
for the OARSMT construction. Unlike previous heuristics, our
algorithm guarantees to find an optimal OARSMT for any two-pin
net and many higher pin nets. Extensive experiments show that
our algorithm results in significantly shorter wirelengths than all
state-of-the-art works.

Index Terms—Physical design, routing, spanning tree,
Steiner tree.

I. INTRODUCTION

G IVEN A SET of pins and a set of obstacles on a plane,
an obstacle-avoiding rectilinear Steiner minimal tree

(OARSMT) connects these pins, possibly through some ad-
ditional points (called Steiner points), and avoids running
through any obstacle to construct a tree with a minimal total
wirelength. The OARSMT problem becomes more important
than ever for modern nanometer IC designs which need to
consider numerous routing obstacles incurred from large-scale
power networks, prerouted nets, IP blocks, feature patterns for
manufacturability improvement, antenna jumpers for reliability
enhancement, etc. Consequently, the OARSMT problem has
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received dramatically increasing attention recently [5], [8], [9],
[12], [13].

The rectilinear Steiner minimal tree problem, even without
obstacle consideration, is a well-known NP-complete problem
[7]. The presence of obstacles further increases the complexity,
and thus, most previous works on the OARSMT problem
suffer from either poor quality or expensive running time. The
OARSMT problem is a fundamental problem with extensive
practical applications to routing and wirelength/congestion/
timing estimations in early IC design stages, such as floor
planning and the placement. In particular, the application to
congestion-driven routing has attracted much attention recently,
where over congested regions can be treated as obstacles during
routing. Therefore, it is desired to develop an effective and
efficient algorithm for the OARSMT problem to facilitate the
IC design flow.

Previous methods for the OARSMT problem can be
classified into four major categories: 1) the maze-routing-
based approach; 2) the nondeterministic approach; 3) the
construction-by-correction approach (called the sequential ap-
proach in [12]); and 4) the connection-graph-based approach.
Maze routing, which was first proposed in [10], can optimally
route two-pin nets. However, its time complexity and memory
usage grow prohibitively huge as the routing area becomes
larger; therefore, Clow [2] presented the A∗ maze routing to
reduce the time complexity and memory usage. Due to its sim-
plicity, many global routers are based on Clow’s maze routing.

Based on ant-colony optimization, Hu et al. [9] presented
a nondeterministic local search heuristic to handle small-scale
OARSMT problems with complex obstacles of both concave
and convex polygons. Although this nondeterministic approach
is flexible in handling complex obstacles, it incurs prohibitively
expensive running time for large-scale designs.

The construction-by-correction approach constructs a Steiner
or a spanning tree for a multipin net first and then replaces the
edges overlapping obstacles with edges around the obstacles.
This approach is popular in industries due to its simplicity
and efficiency. However, the first step for the tree construction
may not have the global view of the obstacles, and thus, the
second step might only remove the overlaps locally around the
obstacles. As a result, the solution quality may be limited, as
pointed out in [12]. In particular, when there are more/larger
obstacles, this approach is less favorable because more/larger
corrections need to be fixed. Example works in the category
include those in [14] and [5]. Yang et al. [14] presented a
heuristic to remove the overlaps. Very recently, Feng et al. [5]
constructed an obstacle-avoiding Steiner tree for an arbitrary
λ-geometry by Delaunay triangulation.
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The last category is based on the connection graph. This ap-
proach first constructs a connection graph by pins and obstacle
boundaries, which guarantees that at least a desired OARSMT
is embedded in the graph. Then, some search techniques are
applied to find the desired OARSMT from the connection
graph. Unlike the construction-by-correction approach, this
approach has a more global view of both pins and obstacles.
Consequently, this approach can often obtain a much better
solution quality. Nevertheless, there exists a tradeoff between
effectiveness and efficiency in this approach; the larger size
of the connection graph, the higher probability that a better
OARSMT is embedded in the connection graph, but the more
expensive is the running time.

Clarkson et al. [1] considered only two-pin nets and pre-
sented an O(n(lg n)2)-time algorithm to compute a rectilinear
shortest path between two pins through polygonal obstacles,
where n is the number of pins and obstacle boundaries. Later,
Zheng et al. [15] introduced an implicit connection graph con-
taining rectilinear edges and found obstacle-avoiding shortest
paths. It can be used to solve the one-to-one shortest path
problem, the one-to-many shortest paths problem, and the mini-
mum spanning tree problem in the presence of obstacles, where
its time complexity is O(n2 lg n). On the other hand, Ganley
and Cohoon [6] presented an algorithm to find an optimal
OARSMT with three or four pins, but its time complexity
is O(n4). Hu et al. [8] developed an efficient hierarchical
heuristic to partition all pins into subsets, then connect pins
in each subset, and finally construct an OARSMT using a
connection graphlike approach. Based on the spanning graph
[16] that does not consider obstacles, Shen et al. [12] recently
proposed a clever heuristic to construct an OARSMT. In this
heuristic, an obstacle-avoiding spanning graph (OASG) was
first constructed and then transformed into an OARSMT. The
time complexity of the OASG construction is O(n lg n), and
that of the OARSMT transformation is Ω(n2 lg n) although not
analyzed or explicitly stated in [12]. This work [12] is effective
in general, but we observe that it misses many “essential” edges
which can lead to more desired solutions in the construction of
the OASG, resulting in significant degradation in the solution
quality for many practical cases. Furthermore, its OARSMT
transformation procedure could also be significantly improved.

In this paper, we construct an OASG with “essential” edges
and prove the existence of a rectilinear shortest path between
any two pins, which is not guaranteed in the OASG constructed
by Shen et al. [12]. With this property, our algorithm guarantees
to find an optimal OARSMT for any two-pin net and many
higher pin nets. Moreover, we prove that the expected number
of edges in our OASG is only O(n lg n), ensuring an efficient
searching or processing on it. After constructing an initial
OARSMT, we develop an effective refinement scheme for the
U-shaped connection in the OARSMT to further reduce the
total wirelength. Empirical results based on the least squares
analysis show that our algorithm run in about O(n1.46) time,
whereas the theoretical time complexity is O(n3) in the worst
case and O(n2 lg n) in a random case.

Extensive experiments based on 22 test cases (five industrial
designs, 12 test cases from [5], and five larger random designs)
show that our algorithm significantly outperforms all state-of-

Fig. 1. (a) Any two obstacles cannot overlap each other, but (b) two obstacles
could be point-touched at the corner or line-touched at the boundary. (c) A pin
vertex may not locate inside any obstacle, but (d) it could be at the corner or
on the boundary of an obstacle. (e) Any edge of the OARSMT cannot intersect
any obstacle, but (f) it could be point-touched at the corner or line-touched on
the boundary of an obstacle.

the-art works in the total wirelength and requires comparable
running time to the algorithm in [12] for practical-sized prob-
lems. Considering the differences from the half-perimeter of the
bounding box of all pins (which is a lower bound of the optimal
OARSMT solution), the respective average improvements are
27.79%, 6.66%, 5.79%, and 0.93%, compared with the recent
works [5], [12], [13], and an extension of Clow’s A∗ maze-
routing algorithm. The empirical time complexity of the exten-
sion of Clow’s A∗ maze-routing algorithm is about O(n1.59),
whereas ours is about O(n1.46). With the completeness of the
OASG construction, in particular, our algorithm also provides
key insights into the search for more desirable OARSMT
solutions.

The rest of this paper is organized as follows. Section II
formulates the OARSMT problem. Section III presents our
OARSMT algorithm and its time complexity. Section IV re-
ports the experimental results. Finally, we conclude this paper
in Section V.

II. PROBLEM FORMULATION

We define an obstacle and a pin vertex as follows.
Definition 1: An obstacle is a rectangle on the xy-plane. No

two obstacles overlap with each other, but two obstacles could
be point-touched at the corner or line-touched at the boundary
[see Fig. 1(a) for two overlapped obstacles and Fig. 1(b) for
point-touched and line-touched obstacles].
Definition 2: A pin vertex is a vertex on the xy-plane. A pin

vertex must not locate inside any obstacle, but it could be at
the corner or on the boundary of an obstacle [see Fig. 1(c) for
an illegal instance with two pin vertices inside an obstacle and
Fig. 1(d) for a legal instance with a pin vertex at the corner and
another on the boundary of an obstacle].

Let P ={p1, p2, . . . , pm} be a set of pin vertices for an m-pin
net, O = {o1, o2, . . . , ok} be a set of k obstacles, and n be the
size of P ∪ {corners in O}. We have n ≤ m + 4k since each
obstacle has four corners. The rectilinear (Manhattan) distance
between vi and vj can be computed by |xi − xj | + |yi − yj |.

We consider rectilinear (vertical and horizontal) routes and
define the OARSMT problem as follows.

Problem: OARSMT

Given a set P of pins and a set O of obstacles on a plane,
construct a rectilinear Steiner tree to connect the pins in P ,
possibly through some additional points (called the Steiner
points), such that no tree edge intersects an obstacle in O and
that the total wirelength of the tree is minimized.
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Fig. 2. (b)–(e) Four steps for OARSMT construction.

Note that no edge of the OARSMT can intersect with any
obstacle, but an edge could be point-touched at the corner or
line-touched on the boundary of an obstacle [see Fig. 1(e) for
a rectilinear Steiner tree intersecting an obstacle and Fig. 1(f)
for tree edges being line-touched on the boundary of an
obstacle].

Throughout this paper, we represent the bottom-left, top-left,
top-right, and bottom-right corner vertices of an obstacle oi

by ci,1, ci,2, ci,3, and ci,4 with their coordinates being (xi,min,
yi,min), (xi,min, yi,max), (xi,max, yi,max), and (xi,max, yi,min),
respectively. Moreover, C =

⋃k
i=1{ci,j}, where j = 1, 2, 3,

and 4.

III. ALGORITHM

We now present our algorithm. Our algorithm consists of the
following four steps.

1) OASG construction: In this step, an OASG connect-
ing all vertices in P ∪ C is constructed. This step en-
sures that the following steps, except the operations in
Section III-D3, can ignore the obstacles without violat-
ing the obstacle-avoiding property [see Fig. 2(b) for an
example of OASG construction].

2) Obstacle-avoiding spanning tree (OAST) construction:
An OAST connecting all pin vertices is constructed by
selecting edges from the OASG constructed in Step 1)
[see Fig. 2(c) for an example of OAST construction].

3) Obstacle-avoiding rectilinear spanning tree (OARST)
construction: An OARST is constructed by transforming
each slant edge of the OAST in Step 2) to rectilinear (ver-
tical and horizontal) edges [see Fig. 2(d) for an example
of OARST construction].

4) Obstacle-avoiding rectilinear Steiner tree (OARSMT)
construction: Finally, an initial OARSMT is constructed
by introducing Steiner points and removing overlapping
edges of the OARST in Step 3). Then, a refinement
scheme for some particular routing shapes is applied to
find an OARSMT with a smaller total wirelength [see
Fig. 2(e) for an example of OARSMT construction].

The following sections detail the four steps.

Fig. 3. Divided regions for (a) each corner vertex of an obstacle and (b) a pin
vertex.

Fig. 4. Comparison between our OASG and that of Shen et al. (a) Our OASG
has the edge (p1, p2) and (b) results in an optimal rectilinear connection.
(c) The OASG of Shen et al. does not contain the edge and (d) results in two
wasted segments.

A. OASG Construction

In this step, we construct an OASG which is defined as
follows.
Definition 3: An OASG is an undirected connected graph on

the vertex set P ∪ C, where no edge intersects with an obstacle
in O.

We extend the spanning graph proposed by Zhou [16] to
consider obstacles for the OASG construction. For each vertex
in P ∪ C, we divide the plane into four regions, R1, R2, R3,
and R4, as shown in Fig. 3(a) and (b). The division is similar to
that in [12], but we construct an OASG with more “essential”
edges to improve the solution quality. As an example shown
in Fig. 4, our OASG contains the edge (p1, p2) [see Fig. 4(a)],
whereas that in [12] does not [see Fig. 4(c)]. After transforming
them to rectilinear connections, we can obtain an optimal
connection as shown in Fig. 4(b), whereas the work in [12]
results in a suboptimal solution, as shown in Fig. 4(d).

In the example shown in Fig. 5 with r + 1 pin vertices,
each obstacle is of two-unit high, and the edge (pi, pi+1),
1 ≤ i ≤ r, is of four-unit long. For this case, we can reduce the
total wirelength by about 33% over the algorithm in [12] and
obtain an optimal solution. In Fig. 5(a), our OASG contains
the edges (pi, pi+1), 1 ≤ i ≤ r, resulting in an optimal recti-
linear connection with the total wirelength of 4r, as shown in
Fig. 5(b). However, the OASG constructed by Shen et al. [12] is
shown in Fig. 5(c), which does not contain the edges (pi, pi+1),
1 ≤ i ≤ r, resulting in the connection with the total wirelength
of 6r + 2, as shown in Fig. 5(d).

1) OASG Construction Within a Region: For the OASG
construction within a region, the neighbors of a vertex are
defined as follows.
Definition 4: A vertex f ∈ P ∪ C is a neighbor of a vertex

v ∈ P ∪ C if no other vertex in P ∪ C or obstacle is inside or
on the boundary of the bounding box of v and f .
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Fig. 5. Another comparison between our OASG and that of Shen et al.
(a) Our OASG has the edges (pi, pi+1), 1 ≤ i ≤ r, and (b) results in an
optimal rectilinear connection with the total wirelength of 4r. (c) The OASG of
Shen et al. does not contain these edges and (d) results in the connection with
the total wirelength of 6r + 2.

Fig. 6. (a) An example instance and (b) the OASG construction for the vertex
c6,2 in R2 of a vertex.

As shown in Fig. 6(b), c4,4, c2,4, and c5,4 are the neighbors
of c6,2, but p2 is not because c5,4 is on the boundary of the
bounding box of c6,2 and p2. Our OASG construction is to
construct edges between a vertex v ∈ P ∪ C and each of its
neighbors. We will focus on R2 of a vertex in P ∪ C for the
discussion, whereas the other regions are similarly handled.
Note that if the vertex is at the corner or on the boundary of
an obstacle, it is clear that no edge will be constructed within
the regions blocked by the obstacle.

The algorithm of the OASG construction for R2 of a vertex
is shown in Fig. 7. Fig. 6(a) shows an example to construct the
OASG within the R2 of c6,2. After the initialization steps (lines
1–3), line sweeping is performed from left to right. When the
line meets the left boundary of o1, the interval [y1,min, y1,max]
is inserted into the interval set I as the “blocking information”
(lines 5–6). When the line meets the left boundary of o2, the
interval [y2,min, y2,max] is also inserted into the interval set I
as the “blocking information” (lines 5–6). At the same time, the
sweeping line meets the pin vertex p1, but p1 is not inserted into
the candidate set A due to the intersection of the blocking infor-
mation (lines 18–20). When the sweeping line meets the right
boundary of o1, [y1,min, y1,max] is deleted from the interval set
I (lines 8–9), and c1,4 is inserted into the candidate set A (lines
13–15). Similarly, c4,4 and c2,4 are inserted into the candidate
set A (lines 13–15), whereas c3,4 is not due to the intersection
of the blocking information (lines 13–14). Then, when the
sweeping line meets the pin vertex p2 and the right boundary of

Fig. 7. Algorithm of the OASG construction for the R2 of a vertex.

o5, p2 and c5,4 are inserted into the candidate set A (lines 18–21
and lines 13–15). Therefore, when the sweeping line meets the
left boundary of o6, the sweeping line halts, and the candidate
set A is {c1,4, c4,4, c2,4, p2, c5,4}. After the sorting (line 22), the
candidate set A becomes {c1,4, c4,4, c2,4, p2, c5,4}. Therefore,
c4,4, c2,4, and c5,4 can easily be detected as the neighbors of c6,2

(lines 23–24). Finally, (c4,4, c6,2), (c2,4, c6,2), and (c5,4, c6,2)
are inserted into the set E (line 25), and the OASG within the
R2 of c6,2 is constructed as shown in Fig. 6(b).
2) Properties of Pin-Vertex Shortest Paths: We claim that

the OASG implies a rectilinear shortest path of any two vertices
in P ∪ C, i.e., a rectilinear shortest path of any two vertices
can be obtained by transforming some edges in the OASG
to rectilinear (vertical and horizontal) edges. Moreover, each
slant edge is transformed into only one vertical edge and one
horizontal edge. We first define the territory of a vertex in
P ∪ C as follows.

Definition 5: A vertex g on the xy-plane is in the territory of
a vertex v ∈ P ∪ C if no other vertex in P ∪ C or obstacle is
inside the bounding box of v and g.

Note that the territory of a vertex is not necessarily a close re-
gion. An example territory of the vertex s is shown in Fig. 8(a).
Lemma 1: Given a source s ∈ P ∪ C, a target t ∈ P ∪

C (s �= t), and any of their rectilinear shortest paths RSP(s, t),
there must exist a neighbor f of s such that the rectilinear
shortest length δr(s, t) = δr(s, f) + δr(f, t).

Proof: By the definition of the territory in Definition 5, t is
outside or on the boundary of the territory of s; therefore, any
of their rectilinear shortest paths RSP(s, t) must intersect the
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Fig. 8. (a) Example neighbors and territory of a vertex s. (b) A shortest path
from s must intersect the boundary of the territory of s. (c) The path can be
replaced by another path through a neighbor of s.

boundary of the territory (for example, in Fig. 8(b), RSP(s, t1)
intersects the boundary at u1). Assume that the intersecting
vertex is u. Since no other vertex in P ∪ C or obstacle is inside
the territory of s, there must exist a neighbor f of s such that
RSP(s, u) can be replaced by RSP(s, f) and RSP(f, u) with-
out increasing the total wirelength, i.e., δr(s, t) ≥ δr(s, f) +
δr(f, t) [for example, in Fig. 8(c), RSP(s, u1) is replaced
by RSP(s, f4) and RSP(f4, u1)]. With the property of the
rectilinear shortest path, δr(s, t) ≤ δr(s, f) + δr(f, t). There-
fore, there must exist a neighbor f of s such that δr(s, t) =
δr(s, f) + δr(f, t). �
Lemma 2: Given a vertex v ∈ P ∪ C, for any neighbor f of

v, there must exist an edge between v and f in the OASG, i.e.,
a rectilinear shortest path of v and f is implied by the OASG.

Proof: Since the OASG construction in Section III-A1
exactly constructs the edge between a vertex and its neighbor,
for any neighbor f within any region of a vertex v, there exists
an edge between v and f . By the definition of neighbors in
Definition 4, since no obstacle is inside the bounding box of v
and its neighbor f , the slant edge between v and f can directly
be transformed to only one vertical edge and one horizontal
edge with the rectilinear shortest length. If the edge between
v and f is originally a vertical edge or a horizontal edge, the
claim immediately follows. �

Theorem 1: The OASG implies a rectilinear shortest path of
any two vertices in P ∪ C.

Proof: For any pair of vertices s and t and any of their
rectilinear shortest paths RSP(s, t), by Lemma 1, there must
exist a neighbor f of s such that δr(s, t) = δr(s, f) + δr(f, t).
By Lemma 2, a rectilinear shortest path of s and f is implied
by the OASG.

At this moment, we still need to prove that a rectilinear
shortest path of f and t is implied by the OASG to complete the
proof. However, because f and t are both in P ∪ C, after similar
proofs (the number of proofs is finite because δr(s, t) �= ∞ and
δr(s, f) > 0), it is reduced to prove that a rectilinear shortest
path between the vertex t and itself (t) is implied by the OASG.
It is trivial, and the theorem thus follows. �

Note that this property is very important. It can be used
to guarantee that we can construct optimal solutions in many
cases. Moreover, although the quality and efficiency may de-
pend on different characteristics and distributions of obstacles,
this property can also make our algorithm more stable.

Fig. 9. Example of OAST construction.

B. OAST Construction

We first define an OAST as follows.
Definition 6: An OAST is an undirected tree connecting all

pin vertices without intersecting with any obstacle.
We construct an OAST by selecting some edges from the

given OASG. As shown in Fig. 9, the OAST construction con-
sists of three steps: 1) pin-vertices shortest path computation;
2) initial OAST construction; and 3) local refinement.
1) Pin-Vertices Shortest Path Computation: For each edge

in the given OASG, its length is defined as the Manhattan
distance of its two end vertices. We apply Dijkstra’s shortest
path algorithm [3] for each pin-vertex pair to compute their
distance, as shown in Fig. 9(b).
2) Initial OAST Construction: We then construct a complete

graph for the |P | pin vertices. The edge weight is defined as
the distance of its two end vertices computed in Section III-B1.
We then apply Prim’s algorithm [3] on the complete graph to
obtain a minimum spanning tree [see Fig. 9(c)]. By the shortest
paths computed in Section III-B1, we can map each edge in
the minimum spanning tree to a shortest path in the spanning
graph; therefore, the initial spanning tree on the spanning graph
is constructed [see Fig. 9(d)]. It should be noted that shortest
paths may share a common edge. In such a case, the initial
spanning tree on the spanning graph will count it only once.
3) Local Refinement: In the initial OAST, there could be

some pairs of vertices whose corresponding edges are in the
OASG but not in the initial OAST. We add such edges into
the OAST [see Fig. 9(e)] and compute the minimum spanning
tree on it to remove unwanted cycles [see Fig. 9(f)]. This
local refinement may lead to a new OAST with a smaller total
wirelength.

C. OARST Construction

In this step, we transform each slant edge of the given OAST
into vertical and horizontal edges to obtain an OARST.
Definition 7: An OARST is an undirected graph connecting

all pin vertices with vertical and horizontal edges.
We then define a neighboring edge and its sharing length in

an OAST as follows.
Definition 8: A neighboring edge of an edge e is an edge

which has a common end vertex with e.
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Fig. 10. Three cases in the OARST construction for a slant edge and its
neighboring edge. The graphs in (a), (c), and (e) are transformed into those
in (b), (d), and (f), respectively.

Fig. 11. Example of OARST construction.

Definition 9: The sharing length of two edges e1 and e2 is
the summation of the overlapping lengths when e1 and e2 are
projected to the x- and the y-axes.

Three cases in the OARST construction for a slant edge e and
its neighboring edge e′ need to be considered, in which we take
the common vertex as the origin on the xy-plane.

Case 1) The two edges are in opposite regions [see
Fig. 10(a)]. In this case, e is transformed into a
vertical edge and a horizontal edge [see Fig. 10(b)].
There are two possible transformations; therefore,
we randomly choose one.

Case 2) The two edges are in neighboring regions [see
Fig. 10(c)]. In this case, both e and e′ are trans-
formed into a vertical edge and a horizontal edge.
There are several possible transformations; there-
fore, we choose the one with edge overlap [see
Fig. 10(d)].

Case 3) The two edges are in the same region [see
Fig. 10(e)]. In this case, by using Fig. 10(f) as an
example, e and e′ are transformed into (va, vb)
and (vb, vc), respectively. There are two possible
transformations for (vc, ve), and we randomly
choose one.

We use the example shown in Fig. 11(a) to explain the
process. Initially, the unprocessed edge set A is {(p1,c1),(p2,
c1),(c1,c2),(c2,p3),(p3,p4),(p3,p5)}, as shown in Fig. 11(a),
and the output set E is ∅. In the first iteration, the longest edge
in A, (p3, p5), is selected as e, and its longest neighboring edge,
(p3, p4), is selected as e′. Then, Case 3) [see Fig. 10(e)] is
applied, and they are transformed into (t1, p4), (t1, p5), (t1, t2),
and (t2, p3), as shown in Fig. 11(b). After the first iteration, the
unprocessed edge set A is {(p1, c1), (p2, c1), (c1, c2), (c2, p3)},
and the output set E is {(t1, p4), (t1, p5), (t1, t2), (t2, p3)}.
Repeating similar operations, Fig. 11(b) is transformed to
Fig. 11(c) and then Fig. 11(d). Finally, the OARST is con-
structed as shown in Fig. 11(e).

Fig. 12. Five cases of the overlapping edge removal. The graphs in (a), (c), (e),
(g), and (i) are transformed into those in (b), (d), (f), (h), and (j), respectively.

Fig. 13. OARSMT construction of Fig. 11(e).

D. OARSMT Construction

In this step, we construct an OARSMT. The construc-
tion consists of three steps: 1) overlapping edge removal;
2) redundant-vertex removal; and 3) U-shaped pattern
refinement.
1) Overlapping Edge Removal: For each pair of edges in

the OARST, we classify their relation into five cases, as shown
in Fig. 12(a), (c), (e), (g), and (i), and then transform them
into those in Fig. 12(b), (d), (f), (h), and (j), respectively. By
using Fig. 11(e) as an example, the result after overlapping edge
removal is shown in Fig. 13(a).
2) Redundant-Vertex Removal: A redundant vertex is de-

fined as follows.
Definition 10: A redundant vertex is a non-pin vertex with

the degree of two, and the two edges connecting to it are
parallel.

For a redundant vertex, we merge the two edges connecting
to it. By using Fig. 13(a) as an example, two vertices are
removed, as shown in Fig. 13(b).
3) U-Shaped Pattern Refinement: The total wirelength can

be further improved by some local refinements. Considering the
tradeoff between solution quality and efficiency, we particularly
refine U-shaped patterns because they are relatively easier to be
detected. We could also consider other more complex patterns
or generate some cycles and then remove the longest edges
in those cycles; however, they may involve too many edges
and, thus, significantly lower the efficiency. Accordingly, this
refinement is much more efficient than the maze router’s wire-
straightening technique [4]. The U-shaped pattern refinement
rules are defined as follows.
Definition 11: A vertex satisfies the U-shaped pattern refine-

ment rules if it is not a pin vertex and its degree is two.
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Fig. 14. Two cases of the U-shaped pattern refinement. The graphs in (a) and
(c) are transformed into those in (b) and (d), respectively.

We need to consider two cases for the U-shaped pattern
refinement.

Case 1) Several edges form the shape as shown in Fig. 14(a).
One of the vertices v1 and v2 must satisfy the
refinement rule. In this case, without intersecting
any obstacle, the edge e2 is moved as right as pos-
sible, whereas edges e1 and e3 are still connected
by it. Edges connected to a vertex satisfying the
refinement rule [e1 in Fig. 14(a)] are shortened. The
resulting refinement is shown in Fig. 14(b).

Case 2) Several edges form the shape as shown in Fig. 14(c).
Both vertices v1 and v2 must satisfy the refinement
rules. In this case, without intersecting any obstacle,
the edges e2 and e3 are moved as right as possible,
whereas edges e1 and e4 are still connected by
them. The edge e5 is stretched, but the two edges
connected to a vertex satisfying the refinement rule
[e1 and e4 in Fig. 14(c)] are shortened. The resulting
refinement is shown in Fig. 14(d).

After the U-shaped pattern refinement, the redundant-vertex
removal is applied to ensure that there is no redundant vertex in
the OARSMT. By using Fig. 13(b) as an example, the resulting
removal is shown in Fig. 13(c).

A Steiner vertex is a vertex which is not a pin vertex, and its
degree is more than two. We also mark Steiner vertices. As an
example shown in Fig. 13(c), two Steiner vertices are marked
[see Fig. 13(d)].

E. Optimality

We can construct an optimal OARSMT when the pin number
m = 2. Even for nets with m ≥ 3, our algorithm can still
achieve optimal solutions in many cases. In the following, we
give theorems for the optimality of our algorithm. Note that
these theorems give sufficient but not necessary conditions for
an optimal solution, i.e., more optimal solutions may still be
generated in other cases. Moreover, the U-shaped pattern re-
finement is not necessary for these theorems, implying that our
OASG is indeed complete to generate these optimal solutions.
Theorem 2: If m = 2, our constructed OARSMT is an opti-

mal solution.
Proof: By Theorem 1, the OASG implies a rectilinear

shortest path of any two vertices in P . Hence, its corresponding
path in the OASG is constructed in Section III-B, and this recti-
linear shortest path is trivially constructed by the operations in
Sections III-C and III-D. �

When m = 3, a rectilinear Steiner tree is one of the two
topologies: two simple paths between pin vertices, as shown
in Fig. 15(a), or three pin vertices connected to a single Steiner

Fig. 15. When m = 3, a rectilinear Steiner tree is one of the two topologies:
(a) Two simple paths between pin vertices or (b) three pin vertices connected to
a single Steiner vertex.

vertex, as shown in Fig. 15(b). We can construct an optimal
OARSMT for the first topology.
Theorem 3: If m = 3 and the topology of an optimal so-

lution contains two simple paths between pin vertices, our
constructed OARSMT is an optimal solution.

Proof: The two simple paths are two rectilinear shortest
paths between pin vertices. These rectilinear shortest paths are
generated for the same reasons in Theorem 2. �

Note that none of the aforementioned properties is guaran-
teed by the algorithm in [12] due to the missing “essential”
edges; therefore, the algorithm in [12] cannot guarantee optimal
solutions even for m = 2, as shown in Fig. 4. In addition, most
nets in a real case are two- or three-pin nets, which makes the
aforementioned properties more important for practical applica-
tions. Furthermore, regardless of the topology, we can construct
an optimal OARSMT for a three-pin net if there is no obstacle.
Theorem 4: If m = 3 and there is no obstacle, our con-

structed OARSMT is an optimal solution.
Proof: If m = 3 and there is no obstacle, after the OAST

construction, there are three cases for these three pin vertices.
These cases are exactly the cases shown in Fig. 10(a), (c),
and (e). Therefore, by our transformations, it is trivial that an
optimal solution is generated. �

When m ≥ 4, we can also construct an optimal OARSMT
which contains only simple paths between pin vertices.
Theorem 5: If m ≥ 4 and the topology of an optimal so-

lution contains only simple paths between pin vertices, our
constructed OARSMT is an optimal solution.

Proof: These simple paths are rectilinear shortest paths
between pin vertices. These rectilinear shortest paths are gener-
ated for the same reasons in Theorem 2. �

Similarly, this property is not guaranteed by the algorithm
in [12].

F. Complexity Analysis

1) Number of Edges in the OASG: In the following, we
present two theorems for the number of edges in the OASG
for the worst and average cases. Let n = |P | + |C|. Theorem 6
states that the number of edges in the OASG is O(n2) in the
worst case, whereas Theorem 7 shows that the expected number
of edges in the OASG is O(n lg n).

Theorem 6: The number of edges in the OASG is O(n2).
Proof: There are at most n different vertices (including

pin vertices and corner vertices); therefore, the number of edge
is O(n2). �

To compute the expected number of edges in the OASG, we
first give several notations and lemmas.
Definition 12: Given an instance, G1 : (V1, E1) is defined as

the OASG.
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Fig. 16. Example of G1, G2, and G3. (a) Given an instance, (b) G1 has fewer
edges than (c) G2 which has fewer edges than (d) G3.

Fig. 17. (a) Given the G3, Γ is defined by (b) labeling from 1 to n for vertices
in G3 by the order of their y-coordinates and (c) permuting these labeled
numbers by the order of their x-coordinates, resulting in Γ = 〈2, 1, 3, 5, 4〉.
(d) The six pairs make N4 = 6 which is equal to the number of edges in G3.

Definition 13: Given an instance, G2 : (V2, E2) is defined as
the OASG constructed after regarding all corner vertices as pin
vertices and removing all obstacles from the plane, i.e., there
are totally n pin vertices and no obstacle on the plane.
Definition 14: Given an instance, G3 : (V3, E3) is defined

as the OASG constructed after regarding all corner vertices
as pin vertices, removing all obstacles from the plane, and
moving a small enough distance ε for vertices with the same
x- or y-coordinate so that all vertices have different x- and
y-coordinates (see Fig. 16 for an example of G1, G2, and G3).

Definition 15: Given an instance, a permutation Γ is defined
by labeling from 1 to n for the vertices in G3 by the order of
their y-coordinates and by permuting these labeled numbers by
the order of their x-coordinates.
Definition 16: Given a permutation Γ, N4 is defined as the

number of pairs (i, j), where 1 ≤ i, j ≤ n, and there is no
integer whose value is between i and j and whose position
in the permutation Γ is between the positions of i and j (see
Fig. 17 for an example of the permutation Γ and N4; we have
the following lemmas).
Lemma 3: |E1| ≤ |E2|.

Proof: For any edge in G1, it is always in G2, but there
are some edges in G2 whose corresponding edges in G1 are
blocked by obstacles. As a result, |E1| ≤ |E2|. �
Lemma 4: |E2| ≤ |E3|.

Proof: For any edge (v1, v2) in G2, there is no other vertex
inside or on the boundary of the bounding box of v1 and v2.
Because the moving of each vertex is small enough, there is
still no other vertex inside or on the boundary of the bounding
box of v1 and v2. As a result, (v1, v2) is still in G3, and
|E2| ≤ |E3|. �
Lemma 5: |E3| = N4.

Proof: For vertices v1, v2, and v3 in G3, the y-coordinate
of v3 is between those of v1 and v2 if and only if its labeled
number is between those of v1 and v2; the x-coordinate of v3 is
between those of v1 and v2 if and only if its position in the
permutation Γ is between those of v1 and v2. For any edge
(v1, v2) in G3, there is no other vertex inside or on the boundary

of the bounding box of v1 and v2, resulting in a pair of (i, j) in
Γ where there is no integer whose value is between i and j and
whose position in Γ is between those of i and j. On the other
hand, a pair of (i, j) in Γ, where there is no integer whose value
is between i and j and whose position in Γ is between those
of i and j, means that there is no other vertex inside or on the
boundary of the bounding box of the two corresponding ver-
tices. As a result, |E3| = N4 due to the one-to-one mapping. �
Lemma 6: The expected value of N4 is O(n lg n).

Proof: For any pair (i, i + j), where i ≥ 1, j ≥ 1, and i +
j ≤ n, there are (j + 1)! permutations from i to i + j. Among
these (j + 1)! permutations, (i, i + j) is counted if and only if i
and i + j are permuted successively; otherwise, there is at least
an integer between i and i + j whose position in Γ is between
positions of i and j. Because there are 2j! permutations from i
to i + j, where i and i + j are permuted successively, and there
are n! permutation from 1 to n, the pair (i, i + j) is counted
n!(2j!/(j + 1)!) times among all permutations from 1 to n.

Because there are (n − j) types of pairs (i, i + j), the total
count is

∑n−1
j=1((n − j)n!(2j!/(j + 1)!)) among all permuta-

tions from 1 to n. Therefore, the expected value of N4 is

1
n!

n−1∑
j=1

(
(n − j)n!

2j!
(j + 1)!

)

=
n−1∑
j=1

(
(n − j)

2
j + 1

)

= 2n

n−1∑
j=1

1
j + 1

− 2
n−1∑
j=1

(
1 − 1

j + 1

)

= (2n + 2)
n−1∑
j=1

1
j + 1

− 2(n − 1)

< (2n + 2)

n−1∫
1

(
1
x

)
dx − 2(n − 1)

= (2n + 2) ln(n − 1) − 2(n − 1).

As a result, the expected value of N4 is O(n lg n). �
Theorem 7: The expected number of edges in the OASG is

O(n lg n).
Proof: Given an instance, by Lemmas 3, 4, and 5, the

number of edges in the OASG is less than its corresponding N4.
By Lemma 6, the expected value of N4 is O(n lg n). As a result,
the expected number of edges in the OASG is O(n lg n) since
the probability for each kind of the permutation Γ is the same. �

2) Time Complexity: For the OASG construction in
Section III-A, sorting is applied on the pin vertices and
obstacles to perform the line sweeping algorithms. Assuming
n = |P | + |C|, the time complexity of the sorting is O(n lg n).
By using a tree structure to maintain the pin vertices and
obstacles met by the sweeping line, the insertion, deletion,
and searching can be done in O(lg n). Moreover, the OASG
construction within a region of a vertex is O(n lg n) because
the blocking information is also maintained by a tree structure.
Therefore, the total time complexity for the OASG construction
is O(n2 lg n) in the worst case. However, in practical cases,
the number of blocking information only depends on the local
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TABLE I
COMPARISON ON THE TOTAL WIRELENGTH, WHERE “REF.” IS THE U-SHAPED PATTERN REFINEMENT, “H” IS THE HALF-PERIMETER OF THE

BOUNDING BOX OF ALL PIN VERTICES, AND “—” MEANS THAT THE RESULT IS NOT AVAILABLE. THE IMPROVEMENTS BEFORE “/” ARE ON THE TOTAL

WIRELENGTH, WHEREAS THOSE AFTER “/” ARE ON THE DIFFERENCE FROM THE HALF-PERIMETER OF THE BOUNDING BOX OF ALL PIN VERTICES

topology and can be regarded as a constant, reducing the time
complexity of the OASG construction to O(n lg n).

For the OAST construction in Section III-B, heaps are ap-
plied. Because the number of edges in the OASG is O(n2) in
the worst case, the time complexity of the pin-vertices shortest
path computation in Section III-B1 is O(n3). The time com-
plexity of the initial OAST construction in Section III-B2 and
the local optimization in Section III-B3 are both O(n2). Totally,
the time complexity for the OAST construction is O(n3) in the
worst case. However, in practical cases, the expected number of
edges in the OASG is O(n lg n) [by the least squares fitting to
be presented in Section IV, it is about O(n1.03)], reducing the
time complexity of the pin-vertices shortest path computation
and the OAST construction to O(n2 lg n).

For the OARST construction in Section III-C, sorting is
applied on the edges in the OAST. Because the number of the
edges in the OAST is O(n), the time complexity for the OARST
construction is O(n lg n). For the OARSMT construction in
Section III-D, the time complexity is O(n2) for checking each
pair of edges and each vertex in the OARST. In addition, the
time complexity of the U-shaped pattern refinement is also
O(n2) in the worst case.

Finally, the overall time complexity of our algorithm is
O(n3) in the worst case and O(n2 lg n) for practical applica-
tions (see Section IV for the empirical performance).

IV. EXPERIMENTAL RESULTS

We implemented our algorithm in the C/C++ language on
a 2-GHz AMD-64 machine with 8-GB memory under Ubuntu
6.06 operating system. There are totally 22 benchmark circuits,
five industrial test cases (ind1–ind5) from Synopsys, 12 test
cases used in [5] (rc1–rc12), and five random test cases (rt1–rt5)
generated by us. We removed an overlap of two obstacles in
rc12 because it is invalid. On the other hand, the number of
obstacles is usually much larger than that of pin vertices in a

Fig. 18. Final routing result of rt3, where a pin vertex is represented by a solid
circle.

real design; therefore, we set the ratios of k and m to 5, 10, and
50 to generate the five large random cases. Given the constraints
on the areas and the aspect ratios of obstacles, their positions,
lengths, and widths were randomly generated without overlap-
ping each other. Moreover, the positions of pin vertices were
also randomly generated without locating inside any obstacle.

We compared our algorithm with those presented in [5],
[12], and [13]. We also compared with a maze-routing-based
algorithm, namely, MZ, which constructs a minimum spanning
tree first, starts from one pin as a constructed OARSMT, and
iteratively finds the shortest path from an unconnected pin
to the constructed OARSMT by Clow’s A∗ maze routing in
[2]. The results in [13] are provided by the authors and were
generated from a Unix workstation with 2.66-GHz CPU and
1-GB memory. The results in [5] are directly quoted from the
paper, where the algorithm was performed on a Sun V880
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TABLE II
COMPARISON ON THE CPU TIME, WHERE “—” MEANS THAT THE RESULT IS NOT AVAILABLE

fire workstation with 755-MHz CPU and 4-GB memory. We
implemented the algorithm in [12] and MZ. Different from our
OASG graph construction, the algorithm in [12] only constructs
an edge within each region. In addition, it operates without the
U-shaped pattern refinement, as described in Section III-D3.
We also verified the generated OARSMTs by another program
to ensure that all pin vertices were connected without intersect-
ing any obstacle.

Table I lists the total wirelengths of these algorithms without
any scaling. Fig. 18 shows the resulting layout for the test
case rt3. Considering the differences from the half-perimeter
of the bounding box of all the pin vertices, the respective
average improvements are 6.66%, 27.70%, 5.79%, and 0.93%,
as compared with the algorithms in [5], [12], and [13], and MZ.
The average improvement over the algorithm in [12] with the
OASG alone is about 3.69%, whereas the overall improvement
is about 5.79%. Note that our algorithm is more efficient than
MZ for most cases and can have both shorter wirelengths and
less running times in many cases. In contrast, MZ never obtains
shorter wirelengths and less running times at the same time.
Since the half-perimeter of the bounding box of all pin vertices
is a lower bound for an optimal solution for this OARSMT
problem, these improvements are very significant (if we con-
sider the differences from an optimal solution, the improvement
is even larger). In larger test cases, since the half-perimeters of
these cases are far from their optimal solutions, the improve-
ments seem to be less than those of small cases. In fact, con-
sidering the percentages of the reduced length, the algorithm is
still very effective, independent of the sizes of test cases.

Table II gives the comparison on the CPU times of these
algorithms. Our algorithm is also sufficiently efficient. For
example, when the numbers of pin vertices and obstacles
reach 200 and 800, respectively (rc8), our algorithm takes only
0.83 s and achieves 4.46% and 1.93% improvements over the

algorithm in [12] and MZ, respectively. By the least squares
fitting on the log-log axes, the respective slopes of the fitting
lines for our algorithm, that in [12], and MZ are 1.46, 1.40,
and 1.59, implying that the empirical time complexity of our
algorithm is close to O(n1.46), whereas those in [12] and the
MZ are about O(n1.40) and O(n1.59), respectively. Note that
this is reasonable since we add more edges into our OASGs
to guarantee the optimality described in Section III-E, whereas
the work in [12] does not. Furthermore, the empirical time
complexity is far under the theoretical worst case complexity
of O(n3) in Section III-F2. The much lower empirical time
complexity can be explained by the sizes of our OASGs. The
numbers of edges in our OASGs are listed in the last column of
Table II. By the least squares fitting on the log-log function of
the number of edges to the circuit size, the number of edges in
our OASG grows only about O(n1.03) empirically in the input
size n, which is far under the theoretical worst case complexity
of O(n2). The experimental results show that our algorithm is
very effective and efficient.

V. CONCLUSION

We have proposed an algorithm to construct an OARSMT.
We can achieve an optimal solution for any two-pin net and nets
with more pins in many cases. The experimental results have
shown that our algorithm is very effective and efficient. With
the completeness of the OASG construction, in particular, our
algorithm also provides key insights into the search for more
desirable OARSMT solutions.
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