
 1

Abstract— As semiconductor technology advances into the nanoscale era and more functional blocks are added into
systems on chip (SoC), within-die variation is increasing, resulting in path delay faults. A component of within-die
variation comes from optical lithography, such as the optical proximity effect, lens aberrations, and flare. This paper
presents a methodology to generate test sets to diagnose the sources of within-die variation. Specifically, a delay fault
diagnosis algorithm is developed to link failing signatures to physical mechanisms and to distinguish among different
sources of within-die variation. The algorithm relies on layout-dependent timing analysis, path enumeration, test
pattern generation, and correlation of pass/fail signatures to diagnose lithography-caused delay faults. The effectiveness
in diagnosis is evaluated for ISCAS85 benchmark circuits, and implementation issues are discussed.

* Munkang Choi is currently with Synopsys, CA.

I. INTRODUCTION

IRCUITS manufactured with the same fabrication process flow exhibit variation in performance due to non-uniformity in
process conditions. This variation is quantified by specifying a distribution of process parameters, such as transistor
channel length, width, oxide thickness, etc. This distribution can be broken down into lot-to-lot, wafer-to-wafer, field-to-

field, and within-field variability. Circuit designers account for such variability through worst case analysis [1]. However,
within-field variability, which characterizes parameter variation within a die (chip), is not accounted for by worst case analysis,
and consequently, circuits are vulnerable to yield loss due to such variability (within-die variation).

Unfortunately, within-die variation is increasing for advanced technologies. Consequently, it is important for
manufacturers to diagnose the causes of within-die variation. The purpose of this paper is to provide such a methodology.

A. Physical Causes of Within-Die Variation

An important source of within-die variation is variation from lithography. Such variation impacts circuit delay.
The physical origin of within-die variation from lithography includes the optical proximity effect [2], lens aberrations

[3], and flare [4]. Each of these effects result in distinct fault signatures and lead to distinct correction methods. For example,
local mask correction can be used to counter the proximity effect [2]. Spatial mask correction can counter lens aberrations [5].
And, dummy feature insertion can create uniform mask density and eliminate the effect of flare [4]. Since all of these
techniques increase mask cost, it is important to optimize the use of correction based on product requirements. Therefore, we
must diagnose the physical origin of failures and choose the proper correction strategy.

B. Existing Approaches to Detecting Within-Die Variation

Process variations are parametric faults, which are diagnosed with correlation analysis. Specifically, the correlation is
determined between the yield for a collection of wafers and the average measurement for all test structures in the scribe line. If
the correlation is high for a specific test structure, the parameter associated with the test structure is the likely cause of yield
variation. For example, it may be determined that low yielding wafers are associated with high resistance vias.

If variation exhibits patterns within a wafer, correlations are performed between yield in specific wafer sectors and test
structure measurements to identify the cause of variation.

The specific faults considered in this paper are not easily diagnosed with correlation analysis, because faults caused by
lithography cause variations within a reticle, rather than within a wafer. Typically, only a single copy of each test structure is
included in each reticle. Therefore, the scribe line does not have sufficient granularity to detect such variation. Moreover, even
if the scribe line were populated with sufficient test structures covering variation within a reticle, the range of sources of
variation from lithography is sufficiently large that multiple copies of many test structures in many positions would be required,
which is not practical. Therefore, this paper attempts to determine if we can diagnose such faults via product tests.

Diagnosis of Optical Lithography Faults with Product Test Sets

Munkang Choi* and Linda Milor
 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332

C

 2

C. Path Delay Faults

Within-die variation from lithography causes a circuit’s speed of operation to be reduced. Such variation can be
thought of as a distributed manufacturing defect that cumulatively increases delays within circuit paths. Therefore, the path
delay fault model [6] addresses this failure mode.

Path delay faults are sets of paths that can be sensitized by a transition or sets of transitions at the primary inputs. It
has been shown that only a subset of such paths need to be tested to guarantee temporal correctness of a circuit [7], and this set
is independent of component delays. The set of paths that need to be tested to guarantee temporal correctness is called the set of
primitive delay faults. Several approaches have been developed to identify single and multiple primitive delay faults [8]-[10]
and to generate the appropriate test sets for these faults. However, these methods are applicable to moderately sized circuits, as
indicated in [8]. Sharma et al. [11] propose to overcome this problem by covering delay faults on robustly untestable critical
paths by robustly testing their longest possible segments that are not covered by any of the testable critical paths.

Many of the paths associated with primitive delay faults have delays that are much less than the clock period under
normal operation. Moreover, paths associated with primitive delay faults may not be the longest paths in a circuit. Delay faults
on such paths can only be detected during normal operation if the delay fault is large. Consequently, in order to detect smaller
delay faults, it is desirable to find a set of longest paths. Several papers have been published relating to the selection of the
longest critical paths [11]-[16]. Most papers have focused on selecting paths to ensure topological coverage. Specifically, in
[12],[13], paths are selected to cover each gate in the circuit, i.e. the set of longest paths through each gate are found. As a
result, small delay defects associated with a gate can be detected. To ensure testability, these methods check path sensitization,
but do not consider whether their tests are associated with primitive faults. Moreover, in [11]-[15], the calculated delays of the
critical paths are based on discrete-valued timing models that don’t take into account the signal propagation effect (signal
transition slope dependency). Wang et al. [16] introduced the concept of path correlation in critical path selection using a
statistical timing model. The statistical timing framework has the potential to properly deal with coupling noise, temperature
gradients, power supply gradients, and across-chip linewidth variation [17], but determining the characterization (probability
distribution functions and their correlations) of the underlying transistors and wires is a major unsolved challenge [17],[18].

D. Delay Fault Diagnosis

Diagnosis is the process of identifying the cause of failure. There are a variety of causes for delay faults. They include
local failure mechanisms, such as resistive shorts and opens, and other mechanisms, such as crosstalk-induced delay, delay due
to power supply noise, and delay due to process variations. Traditionally, delay fault diagnosis has focused on local failure
mechanisms. Specifically, the goal of diagnosis is the localization of physical defects in failing circuits, in order to identify the
root cause. Localization involves analyzing input vectors and output responses to determine the defect location.

Methods for localization can be classified as cause-effect and effect-cause analysis [19]. Cause-effect analysis pre-
computes faulty behavior based on the assumed fault model and stores the information in a fault dictionary. The behavior of a
failing chip is compared with the fault dictionary to identify the most probably faults. Effect-cause analysis involves searching
backwards from the failing outputs, deducing internal values, to identify locations of probable faults.

Underlying the diagnosis process is the fault model. A variety of fault models exist that differ from each other based
on fault complexity (stuck-at vs. resistive opens or shorts), temporality (static or dynamic), and cardinality (single or multiple).
Many papers have addressed diagnosis for a variety of fault models, including stuck-at faults, bridging faults, and even
Byzantine defects [20], where defects result in intermediate voltage levels at a gate output and the corresponding fanout
branches are associated with different logic values due to the different logic thresholds of subsequent gates.

D.1. Gate Delay Fault Diagnosis

Resistive shorts and opens, crosstalk, and power supply noise are among the failure mechanisms that may not cause
stuck-at failures, but rather may cause single or multiple transistor delay faults. Several papers [21]-[23] have presented
diagnostic methodologies to isolate delay faults associated with gates (gate delay faults and transition delay faults). Girard et al.
[21] proposed a method to diagnose gate delay faults based on critical path tracing. The method involves logic simulation only,
together with tracking of transitions for sets of patterns. If a transition results in a failing output, the gates in the paths
sensitized by the transition are stored as potential sites for gate delay faults. The method accounts for potential glitches through
the use of six-valued logic simulation. Wang et al. [22] improves the resolution of transition delay fault diagnosis through
pruning impossible fault candidates using circuit timing information. Krstic et al. [23] goes beyond this approach by linking
diagnosis to statistical timing analysis. Specifically, in [23] the delay fault potentially associated with each gate is assumed to
be probabilistic, together with the rise and fall times of the gates. Statistical timing is combined with the probabilistic fault
model to construct a fault dictionary to provide probabilities of failure for all input transitions and faults. However, the delay
distribution of each circuit element is assumed to be known, together with correlations among elements, and statistical
characterization information for all instances is not easily available [17],[18].

 3

D.2. Path Delay Fault Diagnosis
Gate delay fault diagnosis focuses on localizing the cause of a delay fault. However, some failures may be due to

small delay variations in a number of gates that accumulate to produce a delay fault. Path delay fault diagnosis addresses the
isolation of such faults. Specifically, path delay fault diagnosis involves locating input-output paths in a chip that cause the
delay fault. Several methods have been proposed to address this problem [24]-[27].

Diagnosis procedures generally start with a complete fault list, which is pruned by analyzing the applied tests and
responses. In the case of path delay fault diagnosis, the set of potential faults is all sensitizable paths in a circuit. Therefore, the
initial set of faults is exponentially large. When random tests are applied to a circuit, such tests sensitize a number of single and
multiple path delay faults. Pant et al. [24] address this problem using an effect-cause approach where, first, the set of paths
sensitized by each failing vector is determined, and, second, those paths that have been robustly tested by other passing vectors
(guaranteed to be delay fault free) are removed from consideration. The result is the suspect set.

Padmanaban et al. [25] improved this approach by further pruning the suspect set by eliminating paths (single and
multiple path delay faults) that pass validatable non-robust tests.

To further guide diagnosis Sivaraman et al. [26] and Krstic et al. [27] introduce a statistical framework. To aid in
diagnosis, Sivaraman et al. [26] limits test patterns to those that provide single multipath robust tests. And, since each of the
test vector pairs has incompletely specified inputs, the unspecified inputs are set to minimize the number of primary inputs that
have transitions so that the number of side paths that get sensitized are minimized. Then, given a set of failed tests, the sets of
sensitized paths are determined. For each sensitizable path, a model of process parameter variations is used together with
Monte Carlo analysis to find statistical distributions of slack for each path and to weight potential sites for delay faults.
Therefore, sites for likely faults are selected if the corresponding path is sensitized by a test which violates a timing constraint,
and sites are more probable fault sites if tighter timing constraints are placed on the paths through them. In this way, the
method in [26] provides better feedback about the location of faults than [24],[25].

Like [26], Krstic et al. [27] propose a similar path delay fault diagnostic framework, involving three steps. First,
effect-cause analysis identifies a suspect set through logic analysis of failing patterns. Second, cause-effect analysis reduces the
suspect set through statistical timing simulation in the presence of various error sources (modeling errors, single-site random
size timing errors, etc.). And third, the failure mechanism is linked to potential error sources by comparing simulation results
from a collection of circuit instances to the fault dictionary and voting among the faults.

The problem with these approaches is that they just pinpoint a sub-path responsible for circuit failure, and not the
underlying physical cause. Hence, these algorithms must be followed with physical analysis in order to provide useful
information. What is needed is physical evidence of the cause of failure so that appropriate action can be taken.

D.3. Linking Diagnostic Results to Physical Failure Mechanisms

In order to lead to corrective actions, diagnostic procedures must go beyond identifying the failing path to determining
the physical mechanism causing the failure. To this end, several papers have proposed test pattern generation to detect
crosstalk-induced delay [28]-[30], power supply noise [30],[31], and resistive open and short defects [30]. In Chen et al. [28], it
is demonstrated that crosstalk can lead to delay faults, and test patterns are generated for a set of user-supplied single crosstalk-
induced delay faults. Krstic et al. [29] extends this work by adding methods to select crosstalk faults based on performance
sensitivity analysis. Moreover, once the paths have been selected, a genetic algorithm is used to find the test patterns.

Similarly, Krstic et al. [31] identifies path delay faults associated with power supply noise through performance
sensitivity analysis, with a statistical dynamic timing analysis framework. Patterns are found that sensitize the faults using a
genetic algorithm, which assigns unspecified primary inputs such that the power supply noise impact on the delays of signals is
maximized.

Finally, in addition to crosstalk-induced and power supply noise-induced delay faults, Liou et al. [30] considers
interconnect delays coming from resistive open and short defects. Again, a similar methodology is used to identify faults and to
select test patterns to detect the faults.

This paper is similar to these papers in that it aims to design test patterns for specific failure mechanisms which can be
used to activate specific sources of delay faults. It is different because the focus is not on detecting design issues (crosstalk,
power supply noise), but instead targets detection of process problems (within-die variation from lithography). Like crosstalk
and power supply noise, within-die variation is not simulated during conventional design, and therefore designs are vulnerable
to yield loss as a result. Moreover, process monitors in the scribe lines cannot be used for diagnosis. Hence, all of these failure
mechanisms are difficult to diagnose.

This paper differs from the above papers in that the focus is not just to detect the cause of failure but also to use the
generated test patterns to provide diagnostic information of the physical causes of failure to the chip manufacturer. Hence, the
set of failures is directly linked to corrective actions.

E. A Summary of This Paper

 4

This paper proposes a method to diagnose the physical origins of faults from lithography. The methodology includes
the design of test sets to detect each of the failure mechanisms. These test sets are used to construct a dictionary of pass/fail
patterns associated with each fault.

To design such test sets, it is first necessary to enumerate critical paths. We have implemented a tool that provides
efficient path enumeration while considering the transition slope (slew) dependency. The output of the tool is the most
significant critical paths of the fault-free circuits, with delays longer than a fixed threshold. Test patterns are then generated for
these critical paths using a commercial tool.

Next, fault simulation is performed for each delay fault caused by imperfect lithography, via dynamic timing analysis
and using the extracted test patterns. To activate a fault, it is necessary to determine how various sources of within-die variation
affect circuit performance. Thus we have implemented a tool to involve layout-dependent within-die variation in dynamic
timing analysis. The tool inputs layout-dependent information relating to the physical neighborhood, location, and mask density
in the vicinity of each transistor and interconnect segment. It updates transistor and interconnect geometries based on the
physical neighborhood, feature location, and mask density. The revised delays for each test pattern and each fault are
determined. These delays are compared against a fixed delay, which is a function of the test frequency to generate pass/fail
patterns for each fault. The results are for all test patterns and all faults are stored in a dictionary. Diagnosis involves
correlating an observed pass/fail pattern with those in the dictionary.

F. Organization of the Paper

This paper is organized as follows. In Section II, we introduce the lithography delay fault model, and in Section III, we
present a layout-dependent timing analysis flow based on this fault model. In Section IV, we discuss the diagnosis methodology
to determine the cause of lithography faults. In Section V, we present experimental results relating to diagnosis, in Section VI,
we discuss implementation of the methodology, and in Section VII, we summarize our results.

II. MODELING OPTICAL LITHOGRAPHY-CAUSED DELAY FAULTS

Three types of delay faults are caused by imperfect lithography: the proximity effect [2], Coma [3], and lens
aberrations [3]. They are summarized in [32] in detail. In this section, we present the modeling of their layout dependencies. We
focus on the gate layer since circuit speed is most sensitive to this layer [32].

A. The Proximity Effect

The proximity effect causes linewidths in dense areas to be different than linewidths in isolated areas, as well as line-
end shortening, and corner rounding. The proximity effect is caused by variations in light intensity during exposure of the
photoresist, resulting from the presence of neighboring features. This intensity variation modifies the exposure of photoresist
on gate edges, which in turn translates into systematic variation in gate CDs. Thus, the gate critical dimension (CD) is a
function of its neighborhood. We account for the neighborhood by determining the distance to the nearest poly geometry on the
left and on the right of each transistor gate. Each transistor, therefore, has two labels, the distance to the nearest poly geometry
on the left and the distance to the nearest poly geometry on the right, assuming a vertical orientation. Labels for horizontal
transistors correspond to distances to the nearest poly geometry above and below the feature. These two labels combine to
determine the category of each gate.

The distances to the left and to the right are labeled as n1 to n5, where n1 is the minimum poly spacing, and n5 is the
largest distance. These distance categories have been chosen arbitrarily, but they conform to common distances seen in a layout,
i.e. minimum poly spacing, minimum poly spacing if the space contains a contact, etc. The distance categories are illustrated in
Figure 1. Table I illustrates the case where dense patterns (n1n1) are 10% larger than isolated patterns. As can be seen from
the table, intermediate patterns are interpolated.

B. Coma

Coma is a lens aberration that depends on both the neighborhood and location. Coma becomes severe when making
use of resolution enhancement techniques, such as phase shift masks (PSM) and off-axis illumination (OAI). Analyzing Coma
requires that we distinguish between features to the left and features to the right of a specific pattern, since patterns with
asymmetric categories are printed on the wafer differently. We do this by prescribing an order to the two labels that define the
category of each gate. For example, Coma may cause transistors (n5n1) with dense features on the right and isolated features
on the left to have larger CDs than transistors (n1n5) with dense features on the left and isolated features on the right. Table II
illustrates this case for a 10% range of variation.

 5

n1: d <= Smin

n3: 1.5Smin < d <= 2Smin

n2: Smin < d <= 1.5Smin

n4: 2Smin < d <= 2.5Smin

n5: 2.5Smin < d

Poly gateContact

Active Layer

n1: d <= Smin

n3: 1.5Smin < d <= 2Smin

n2: Smin < d <= 1.5Smin

n4: 2Smin < d <= 2.5Smin

n5: 2.5Smin < d

Poly gateContact

Active Layer

Fig. 1. Distance categories for poly gates. Smin is the minimum space design rule between two poly lines with no contacts in
between them.

TABLE I
Proximity Effect ([%])

Category n1 n2 n3 n4 n5

n1 10.00 8.75 7.50 6.25 5.00

n2 8.75 7.50 6.25 5.00 3.75

n3 7.50 6.25 5.00 3.75 2.50

n4 6.25 5.00 3.75 2.50 1.25

n5 5.00 3.75 2.50 1.25 0.00

TABLE II
Coma ([%])

 Right
Left

n1 n2 n3 n4 n5

n1 5.00 3.75 2.50 1.25 0.00

n2 6.25 5.00 3.75 2.50 1.25

n3 7.50 6.25 5.00 3.75 2.50

n4 8.75 7.50 6.25 5.00 3.75

n5 10.00 8.75 7.50 6.25 5.00

C. Lens Aberrations

Lenses have imperfections which can be described by aberrations. Lens aberrations create optical path differences for
each ray through the lens. Accounting for lens aberrations involves determining the location of the pattern in the layout. In our
examples, we model variation from lens aberrations as a CD gradient across the chip.

 6

III. LAYOUT-DEPENDENT TIMING ANALYSIS

Faults from within-die variation due to lithography modify the gate critical dimensions (CDs) based on neighboring
gates in the layout (the proximity effect), the placement of the cells in the layout (lens aberrations), and the density of features
on the mask (flare). Thus, we need to take these factors into account in timing analysis.

The conventional timing analysis tool has two classes: Class GATE_TABLE and GATE_INSTANCE. Class
GATE_TABLE provides the technology information, such as input pin capacitance, delay and leakage tables, of each gate cell.
Class GATE_INSTANCE describes the topology of the circuit (connections of instances of the gate cells). Objects of class
GATE_TABLE are created by reading the technology library, and objects of class GATE_INSTANCE are generated from the
hardware description language (HDL) file, which in our case is verilogHDL. For example, if a circuit has 2000 gates, which are
classified into 30 types, then 2000 objects of class GATE_INSTANCE and 30 objects of class GATE_TABLE are required for
timing analysis. The components that make up conventional timing analysis are shown in Figure 2.

CLASS GATE_TABLE:
Input pin capacitance
Delay table
Leakage table

:

CLASS GATE_INSTANCE:
Input & output nodes

:

Technology library

- cell information

:

CLASS CIRCUIT_GRAPH:
:

HDL file

CLASS GATE_TABLE:
Input pin capacitance
Delay table
Leakage table

:

CLASS GATE_INSTANCE:
Input & output nodes

:

Technology library

- cell information

:

CLASS CIRCUIT_GRAPH:
:

HDL fileHDL file

Fig. 2. Inside the conventional timing analysis flow.

The layout-dependent timing analysis flow adds an array GATE_Tr in class GATE_TABLE, pattern density tables in
class CIRCUIT_GRAPH, and new variables to contain the location of the gate in class GATE_INSTANCE, as shown in Figure
3. Class GATE_Tr contains the proximity effect information, gate length, gate width, and transistor pin connections in the gate
cell, as shown in Figure 4.

The goal of the layout-dependent timing analysis flow is updated critical path delays, which involves updating delays
of cell instances. The delays of cell instances are a function of the CDs of gates within the instances, which in turn depend on
layout features. Therefore layout data is extracted and fed into the timing analyzer, together with data on variations as a
function of layout features (proximity effect, Coma, lens aberrations, flare). Based on this information, it is then
straightforward to generate a new gate cell netlist just by writing the modified gate length and the other variables in GATE_Tr
into class GATE_TABLE. The link between detailed transistor data in GATE_Tr and physical cell characteristics in
GATE_TABLE requires delay re-characterization of the gate cell. This can be determined through various methods, including
using Hspice simulation, analytic gate cell delay models [33], and efficient dynamic simulation [34]. Our work has used Avant!
Hspice [35]. Gate characterization is followed by dynamic timing analysis, which will be discussed in the next section.
 .

 7

CLASS CIRCUIT_GRAPH:

Gate Cell Layout

Gate
Categories

CLASS GATE_TABLE:
Input pin capacitance
Delay table
Leakage table

:
Array of GATE_Tr

CLASS GATE_Tr:
Proximity category

nand3_2x

Chip Layout

nand3_2x

Location
CLASS GATE_INSTANCE:
Input & output nodes

:
Location
Write Spice file with

the gate CD variation

Physical
delay fault

models

Pattern
Density

Density Table

CLASS CIRCUIT_GRAPH:

Gate Cell LayoutGate Cell Layout

Gate
Categories

Gate
Categories

CLASS GATE_TABLE:
Input pin capacitance
Delay table
Leakage table

:
Array of GATE_Tr

CLASS GATE_Tr:
Proximity category

nand3_2x

Chip Layout

nand3_2x

nand3_2x

Chip Layout

nand3_2x

LocationLocation
CLASS GATE_INSTANCE:
Input & output nodes

:
Location
Write Spice file with

the gate CD variation

Physical
delay fault

models

Pattern
Density
Pattern
Density

Density Table

Fig. 3. Inside layout-dependent timing analysis flow.

M4
M3
M2
M1

CLASS GATE_TABLE:
Input pin capacitance
Delay table
Leakage table

:
Array of GATE_Tr

CLASS GATE_Tr:
Proximity category (n1n5)
Gate length
Gate width
Pin info. : 1(drain)

2(gate)
3(source)
4(substrate)

Gate Cell Layout

n1n5

M1 M2

M4M3

Gate Categories

poly gate 1 : n5n3

2 : n3n5

3 : n5n1

4 : n1n5

Netlist Information

1

2
3

4

Straightforward to generate HSPICE netlist

(Write the variables of CLASS GATE_Tr)

M4
M3
M2
M1

M4
M3
M2
M1

CLASS GATE_TABLE:
Input pin capacitance
Delay table
Leakage table

:
Array of GATE_Tr

CLASS GATE_Tr:
Proximity category (n1n5)
Gate length
Gate width
Pin info. : 1(drain)

2(gate)
3(source)
4(substrate)

Gate Cell Layout

n1n5

M1 M2

M4M3

Gate Cell Layout

n1n5

M1 M2

M4M3

Gate Categories

poly gate 1 : n5n3

2 : n3n5

3 : n5n1

4 : n1n5

Netlist Information

1

2
3

4

1

2
3

4

Straightforward to generate HSPICE netlist

(Write the variables of CLASS GATE_Tr)

Fig. 4. Generation of the modified gate cell netlist, which includes neighborhood information for each transistor.

 8

IV. LITHOGRAPHY IMPACTED DELAY FAULT DIAGNOSIS

The delay fault diagnosis methodology begins by extracting the most significant critical paths through efficient path
enumeration of the fault-free circuit. Path enumeration takes into account the transition time dependency and uses a depth first
search algorithm, which is improved by pruning the search space. Next, test patterns are generated for the critical paths using a
commercial tool, which in our case is Synopsys Design Compiler [36]. Using the resulting test patterns, faults are activated, and
dynamic timing analysis is performed by applying the extracted test patterns to obtain delays. The delays are compared with a
fixed threshold to determine if the test pattern generates a pass or fail. Pass/fail data is collected for all test patterns and all
faults to construct the fault dictionary. Observed pass/fail patterns are compared with those in the dictionary through
correlation to link the observed signature to a physical mechanism.

A. Path Enumeration

One disadvantage of the path delay fault model is that practical circuits have a very large number of paths. One of the

ISCAS ’85 benchmark circuits [37], c6288, has 2010 paths. Thus we focus on a set of most significant critical paths, under the
assumption that other paths are unlikely to affect circuit speed. This may not be the case for delay faults caused by resistive
defects, which can cause a large delay in a localized area. It is acceptable for faults caused by within-die variation because such
faults cause many small deviations which when combined together result in faults. Thus we reduce the computational effort
required to handle a huge number of paths by restricting paths to ones with delays over a specified threshold.

Several papers [12]-[15] provide algorithms to enumerate the longest paths. In [14],[15], the K longest paths are
enumerated in the circuit while pruning the search space with the maximum possible delay. In [12],[13], on the other hand, the
longest paths are selected such that they cover each gate in the circuit. In these approaches the search space is pruned by the
maximum delay constraint, and the paths are checked to ensure sensitizability in order to eliminate any false paths. In all of
these approaches the maximum delay to the sink is used for pruning in order to enhance efficiency. However, if the delay
constraint is, say, 90% of the maximum circuit delay, these algorithms may have problems with memory management, since the
number of paths satisfying this constraint can be extremely large. In [15], in order to limit the number of paths that need to be
stored, the algorithm aims to extract the K longest paths. To this end, each node in the circuit graph is associated with a K
array, storing the K longest paths to that node. This, however, could be a very large array and could still lead to memory
problems.

Our work improves the depth first search (DFS) algorithm by pruning the search space through backward signal
propagation, as used in static timing analysis [38]. As in [38], it includes the signal propagation effect, which is important for
timing analysis, as will be explained in Section IV.C.

B. Some Definitions

Combinational circuits have a plurality of inputs and outputs. Combinational circuits may be represented as graphs,
where gates are associated with edges and interconnect is associated with the nodes. Therefore, the signals flow from the input
nodes to the output nodes through the gates (edges). By convention, adding a source node s and a sink node f to the graph
makes the handling of the boundary conditions easier. Therefore, we modify the circuit graph accordingly. In addition, here
are useful definitions relating to the circuit graph.

Definition 1: A timing graph is defined as a directed graph having one source and one sink node: G = {N, E, ns, nf},
where N = {n1, n2,…, nk} is a set of nodes, E = {e1, e2,…, el} is a set of edges, ns  N is a source node, and nf  N is a sink
node. Each edge e  E is simply an ordered pair e = (ni, nj) of nodes, where ni, nj  N.

Definition 2: A path P of a timing graph G = {N, E, ns, nf} is a sequence of its nodes P = (na, nb,…, nz) such that each
pair of adjacent nodes ni and nj has an edge eij = (ni, nj).

Definition 3: The path delay dP of path P is defined as 
Pije

iij sd)(, where dij(si) is a delay of an edge eij on path P

with input transition time si, and the summation is over all edges belonging to path P. The edge delays are also a function of the
loading capacitance, but we have not denoted loading capacitance as an argument since it is fixed for a specific network.

In order to understand the sequence of operations through a path, a graph is divided into layers. The layers begin at the
inputs and end at the outputs. Most static timing analysis algorithms progress from the inputs sequentially through the layers of
the graph until reaching the outputs. Backward signal propagation, on the other hand, starts at the outputs and progresses
through the layers to the inputs.

Definition 4: A node, in , is connected to a set of adjacent nodes, jn , on successive layers by edges, ije . The set of

nodes connected to node, in , on successive layers is called)(iSUCC .

 9

C. Signal Propagation Effect

Previous path enumeration algorithms [12]-[15] assume a fixed edge delay (delay between each of the inputs and the
output of the gate). The gate cell delay is actually a function of the transition time of the input signal and the loading
capacitance. In fact, when two signals arrive at an input, the one that arrives first can determine the longest path if the transition
time (slope) is longer. This is why we need to take into account the signal propagation effect.

The loading capacitance is fixed for a specific network. Therefore, the transition time is only dependent on the path
being investigated. In fact, if two signals are propagating to a single input, i, of a gate, aiS and biS , the edge delays through the

gate, aid and bid , respectively, are different as shown in Figure 5. The result is distinct delays between node i and the sink.

To accurately find the critical paths, we then need to take into account all signal transition times within a path. If we do this by
brute force, the complexity of the problem of finding the K critical paths becomes exponential.

─ Depending on which signal (a or b) is propagated, edge delay (da, db) are different.

That leads to distinct delays of node i to sink.

Sai

Sbi
Sao

Sbo
dadb

node i

Transition time s0 s1 … sm

Maximum delay to sink d0 d1 … dm

─ Depending on which signal (a or b) is propagated, edge delay (da, db) are different.

That leads to distinct delays of node i to sink.

Sai

Sbi
Sao

Sbo
dadb

node i

Transition time s0 s1 … sm

Maximum delay to sink d0 d1 … dm

Sai

Sbi
Sao

Sbo
dadb

node i

Sai

Sbi
Sao

Sbo
dadb

node i

Transition time s0 s1 … sm

Maximum delay to sink d0 d1 … dm

Transition time s0 s1 … sm

Maximum delay to sink d0 d1 … dm

Fig. 5. Transition time dependency of the maximum delay from node i to the sink (outputs), where aiS and biS are distinct

signals arriving at node i.

The estimation of critical path delay in static timing analysis suffers from a similar problem. In [38], this problem is
addressed by backward signal propagation to determine the slack at each node. Based on the initial computations of slack, this
approach maintains a table of the maximum delay to the sink as a function of the transition time at each node, as shown in
Figure 5. As illustrated in Figure 5, each node in the graph stores a table. This table indicates the delay to the sink as a
function of transition time.

We borrow backward signal propagation to overcome the drawback of previous path enumeration approaches.
Specifically, we start at the outputs and progress towards the inputs by creating a table for each preceding node until we reach
the inputs. To create the table, we consider a specific transition time at node, in . We then look up the resulting delay for the

successive edge, ije . We also look up the delay to the sink for the successive node, jn , which has been computed previously.

We add these delays together, and take the maximum among all successive nodes, to create the entries in the table for the given
transition time. This process is repeated for each transition time. Figure 6 shows the backward signal propagation algorithm.

The table at each node stores a set of discrete values of input transition times and delays to the sink. We have assumed
six representative transition times at each node, as in [38], although this choice is arbitrary. Because we obtain the delay by
interpolating the delay table, more transition times make the delay estimate more accurate, but more transition times also
increase computation time and consume more memory.

D. Improved Depth First Search (DFS) Algorithm with Search Space Pruning

As we have the table of the maximum delay to the outputs as a function of the transition time at each node, the DFS
algorithm to determine all critical paths with a delay greater than a threshold can be easily upgraded. While proceeding with
DFS, we start at the inputs and estimate the maximum delay for all paths emanating from each node. At each node, if the delay
is less than the threshold delay, searching for paths emanating from that node is terminated, as shown in Figure 7. All complete
paths that reach a primary output are saved on the hard disk and are not kept in memory. Figure 8 shows the pseudo code of the
pruned DFS path enumeration algorithm.

Once the paths are determined, they are converted to a test set using a commercial ATPG tool which determines the
primary input signals that can sensitize the path and the resulting values at the primary outputs. The test set is then compacted
to minimize the number of patterns required to sensitize the longest paths.

 10

Fig. 6. Backward delay_table_to_sink propagation.

Investigate the successor nj of ni

If ((d + dij + max_delay_to_sink(ij)) < Threshold delay)

searching sub-circuit is pruned.

Else

continue searching.

nins

nj

nk

nf

.

.

.

.

.

X
dij

max_delay_to_sink(ij)

d

Investigate the successor nj of ni

If ((d + dij + max_delay_to_sink(ij)) < Threshold delay)

searching sub-circuit is pruned.

Else

continue searching.

nins

nj

nk

nf

.

.

.

.

.

X
dij

max_delay_to_sink(ij)

d
nininsns

njnj

nknk

nfnf

.

.

.

.

.

X
dij

max_delay_to_sink(ij)

d

Fig. 7. Pruning in the DFS path enumeration algorithm. The maximum delay to a sink (output) is stored at each node. If this
delay is below a threshold at a specific node, enumeration of paths that involve branches beyond that node is terminated.

Initialize the delay table of the sink node nf as a function
of the transition time.

{Backward propagation}
Visit a node layer in reverse topological order.
 For each node i in the same order
 {
 For each edge eij = (ni, nj), where)(iSUCCj .

 {
 Propagate the delay table from nj through eij

 using Dij(s) = Dj(sij(s)) + de(s),
 where sij(s) = transition time at nj,
 Dj(sij(s)) = maximum delay of nj to sink,
 de(s) = edge eij delay.
 }
 Establish the delay table of ni
 using Di(s) = max(Dij(s), Dik(s), …).
 }

 11

Fig. 8. Pruned DFS path enumeration algorithm pseudo code.

E. Dynamic Timing Analysis for Fault Simulation

Path enumeration has not taken into account details about the signal train. Therefore, we use dynamic timing analysis
to verify temporal correctness of the selected test patterns and to perform fault simulation.

In dynamic timing analysis the signal is propagated through the gates in topological order, just as with static timing
analysis. The signal train is input into each gate. The signal train consists of the arrival time train, the transition time train, and
the logic state train, as shown in Figure 9.

Timing train array

node i…
…

…

…
…

…

Chip

PI’s PO’s

ln
…l0Logic state

sn
…s0Transition slope

tn
…t0Arrival time

Timing train array

node i…
…

…

…
…

…

Chip

PI’s PO’s

ln
…l0Logic state

sn
…s0Transition slope

tn
…t0Arrival time

ln
…l0Logic state

sn
…s0Transition slope

tn
…t0Arrival time

Fig. 9. A node has signal train for dynamic timing analysis.

The input signals to the gate are propagated to the output, as in Figure 10. First, the output arrival time and logic state
trains are obtained with zero gate delay. Second, for each transition of the output, it is determined which input changes the
output, and the gate delay and transition times caused by each input transition are obtained from the gate cell delay table.
Finally, the output arrival time train is updated by adding the delay, and the transition time train at the output is established.

Fault simulation relies on dynamic timing analysis. To simulate a fault, the revised delay tables that reflect faulty
behaviors are generated. The dynamic timing analyzer then inputs the revised faulty delay tables and test patterns to determine
the delay associated with each test pattern.

T = threshold delay, looking for paths over T in G.

{Create the source node s and the sink node f.}
{Compute the maximum delays to sink.}
{Sort the successors of each node.}

{Path enumeraton using pruned DFS algorithm}
 prunedDFS (s);

 prunedDFS (Node i)
 {

If (i = sink node)
 save path information;
 return;

 For each)(iSUCCj

 {
 If ((d + dij + max_delay_to_sink(j)) < T)
 Return;
 Else
 save arrival time (d + dij) and transition time;
 prunedDFS (j);
 }
 }

 12

In our implementation of dynamic timing analysis, we do not consider signal coupling between interconnect lines
(crosstalk) [39], data dependent delays [40]-[42], and the closeness dependency of input transitions.

d0, d2 : Gate delay when the pin A is rising

d1, d3 : Gate delay when the pin B is falling

time
0 1 2 3 4 5 6

0 1 4 5
: Zero gate delay

0+d0 1+d1 4+d2 5+d3

Y

A

B

C : Real gate delay

d0, d2 : Gate delay when the pin A is rising

d1, d3 : Gate delay when the pin B is falling

time
0 1 2 3 4 5 6

0 1 4 5
: Zero gate delay

0+d0 1+d1 4+d2 5+d3

Y

A

B

C : Real gate delay

d0, d2 : Gate delay when the pin A is rising

d1, d3 : Gate delay when the pin B is falling

time
0 1 2 3 4 5 6

0 1 4 5
: Zero gate delay

0+d0 1+d1 4+d2 5+d3

Y

A

B

C : Real gate delay

time
0 1 2 3 4 5 6

time
0 1 2 3 4 5 6

0 1 4 50 1 4 5
: Zero gate delay

0+d0 1+d1 4+d2 5+d30+d0 1+d1 4+d2 5+d3

Y

A

B

C : Real gate delay

Fig. 10. Dynamic signal propagation with a signal train.

F. Fault Diagnosis

The patterns selected for test application have delays greater than a threshold. For our examples, this threshold was set
to 90% of the maximum delay. Therefore, for the 90% threshold, all selected test patterns, t, have delay max9.0 ddt  . Then,

if the clock frequency is increased to max9.01 df  , all of the selected patterns, with delay greater than 90% of the maximum

delay will fail for fault-free circuits. Even in the presence of die-to-die variation, because die-to-die parameter variation is
almost 100% correlated, all of the selected patterns will fail. However, if the circuit contains a fault caused by within-die
variation, it is possible that some of the patterns will pass. The patterns that pass are associated with specific faults, and each
fault is associated with a pass/fail signature for the applied test patterns. Consequently, the test methodology involves
determining the maximum delay, maxd , for each circuit instance, applying test patterns at max9.01 df  , and determining the

passing patterns, where maxd is a function of process parameters and the fault being considered. Faults are detectable if there

is at least one passing pattern. Faults are diagnosed by correlating the pass/fail signatures, i.e. if the pass/fail patterns match
those in the dictionary.

V. EXPERIMENTAL RESULTS

The methodology described in the previous section has been implemented in Java on a Solaris 2.8 running on a Sun E-
450 Server with four CPUs and 4GB RAM. Experiments have been performed on ISCAS85 circuits [37]. Table III shows the
execution time for critical path extraction and test pattern simulation. It also shows the number of critical paths, true paths, test
vectors, and the maximum delay for each circuit under fault-free conditions.

TABLE III

Execution Times and Experimental Results
Circuit DFS Time

[sec]
Pruned DFS
Time [sec]

Paths* True Paths** Test Vectors Maximum
Dynamic

Delay
[nsec]

Test
Pattern

Simulatio
n Time

[sec]
c432 16.5 8.2 16,598 40 40 5.85 42.8
c499 2.4 0.7 1340 181 62 2.81 25.8
c880 3.8 0.2 112 95 63 3.72 55.6

c1355 976.1 229.8 229,660 4441 332 3.71 148.8
c1908 185.0 25.9 25,232 1025 942 4.61 1581.6
c2670 395.7 379.0 383,839 18 18 5.15 50.7
c3540 7417.4 233.9 159,305 225 225 6.58 483.3
c5315 486.2 79.8 71,410 1874 1874 6.04 7948.6
c7552 248.4 10.9 11,095 139 139 4.98 835.7

*Paths with delays over 90% maximum static circuit delay (c2670: over 70%)
** Sensitizable Paths

In the table, the DFS time refers to the time required to enumerate all paths with a delay above 90% of the maximum

circuit delay, except for c2670, where a 70% threshold is used. The pruned DFS time is the execution time when pruning is
used, as described in Section IV.D. For c2670, the threshold was set to 70% to obtain a reasonable number of true paths. We
can see that the execution time for the pruned DFS algorithm is 10 times faster than DFS on average.

 13

Circuits c432 and c2670 did not get much reduction in execution time due to pruning. In the case of c2670, 56% of the
total paths have delays over 70% of the maximum circuit delay. In the case of c432, 20% of the total paths have delays over
90% of the maximum circuit delay. In other words, both of these circuits have a large number of long paths. Besides these two
circuits, the other circuits have many short paths. Therefore, the search space was reduce to below 20% of the paths in these
circuits, and pruning was effective.

Table III also lists the number of “true paths”. It’s well known that ISCAS ’85 circuits are poorly testable, except for
c880 [43], where almost all paths are true paths.

For each true path, test vectors are simultaneously extracted. The test vectors are compacted by eliminating unknowns
in the input patterns. The number of test vectors is shown in Table III. Finally, fault simulations are performed for each test
pattern, using dynamic timing simulation. The dynamic fault simulation time required to generate the entire fault is shown in
the last column of Table III.

The optical lithography faults tested in the experiment are shown in Table IV. In order to generate the fault dictionary
for pass/fail signatures a maximum variation of 10% of the gate length is assumed for each fault.

TABLE IV
Physical Origins of Faults Considered

Physical Origin Code Optical Effects
0 Optical proximity effect (large n1n1, small n5n5)
1 Coma (large n5n1, small n1n5)
2 Lens aberrations (Left->Right)
3 Optical proximity effect (Reverse trend)
4 Coma (Reverse trend)
5 Lens aberrations (Right->Left)
6 Lens aberrations (Bottom->Top)
7 Lens aberrations (Top->Bottom)

Before we look at diagnosability of the causes of within-die variation, we need to look at detectability. To be

detectable, at least one pattern has to pass tests applied at frequency max9.01 df  . The results are shown in Figure 11. This

figure indicates that detectability increases for larger ranges of variation, i.e. 15% variation is more easily detectable than 5%
variation. Moreover, some circuits displayed poor detectability, while within-die variation faults in others appear to be
detectable. To better understand the detectability results, delay distributions for a selected set of circuits are shown in Figure 12.
It appears that larger circuits show improved detectability compared to smaller circuits, indicating potentially improved results
for large circuits. Secondly, the circuits for which larger numbers of test vectors could be generated had improved detectability.
Specifically, more than 900 test vectors were generated for c1908 and c5315, and these circuits displayed the best detectability.
Detectability versus the number of test vectors is illustrated in Figure 13.

0
10
20
30
40
50
60
70
80
90

100

c4
32

c4
99

c8
80

c1
35

5

c1
90

8

c2
67

0

c3
54

0

c5
31

5

c7
55

2

P
er

ce
n

ta
g

e
o

f
D

et
ec

ta
b

le
 F

au
lt

s

5% 10% 15%

Fig. 11. Percentage of detectable faults as a function of range of within-die variation (5%, 10%, 15%).

 14

0

10

20

30

40

50

60

70

80

4.15 4.25 4.35 4.45 4.55 4.65

Path delay [ns]

N
u

m
b

er
 o

f
p

at
h

s

0

50

100

150

200

250

5.45 5.55 5.65 5.75 5.85 5.95 6.05

Path delay [ns]

N
u

m
b

er
 o

f
p

at
h

s

(a) c1908 (b) c5315

0

2

4

6

8

10

12

14

16

18

20

4.5 4.6 4.7 4.8 4.9 5

Path delay [ns]

N
u

m
b

er
 o

f
p

at
h

s

0

1

2

3

4

4.65 4.75 4.85 4.95 5.05 5.15

Path delay [ns]

N
u

m
b

er
 o

f
p

at
h

s

(c) c7552 (d) c2670

0

5

10

15

20

25

30

35

5.95 6.05 6.15 6.25 6.35 6.45 6.55

Path delay [ns]

N
u

m
b

er
 o

f
p

at
h

s

(e) c3540

Fig. 12. Delay distribution for some ISCAS ’85 circuits in the delay range from 0.9·dmax to dmax . Most path delays in c2670
and c3540 are crowded closer to dmax. Since the test method requires passing vectors, with delay < 0.9·dmax , these circuits
require very large amonts of within die variation to generate passing vectors. The path delays in c1908, c5315, and c7552 are
distributed evenly between 0.9·dmax and dmax .

 15

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 500 1000 1500 2000

Test Vectors

P
er

ce
n

ta
g

e
o

f
D

et
ec

ta
b

le

F
au

lt
s

Fig. 13. Detectability vs. the number of test vectors for 15% range of variation.

Diagnosis requires that we distinguish among different faults. In order to do this, the correlation between the pass/fail

patterns associated with the fault to be diagnosed must be significantly higher than correlations with other faults in the
dictionary. We first consider constructing the dictionary containing faults associated with a 10% range of variation, and testing
each circuit instance at frequency max9.01 df  , where maxd is the maximum operating frequency of the faulty circuit

instance. The patterns in the dictionary are denoted ikp , where i is the physical origin code and %10k , the range of

variation of the fault. In order to evaluate diagnosability, we then suppose that a circuit contains a fault, j, where j is the
physical origin code, or size l, where l is the range of variation, and determine the pass/fail pattern, jlp , for tests applied at

frequency max9.01 df  , where maxd is the maximum operating frequency of the faulty circuit instance. Correlations are

then performed with all patterns in the dictionary, i.e. we compute),(ikjl pp . The fault is correctly diagnosed if

),(max),(ikjl
ji

ikjl pppp 


 , where %10k and l is an arbitrary range of variation. Otherwise, we say that a fault is mis-

diagnosed.
In our examples, we considered three circuits where faults with a 10% range of variation are mostly detectable: c1908,

c5315, and c7552. Figures 14, 15, and 16 compare),(ikjl pp and),(max ikjl
ji

pp


 for c1908, c5315, and c7552,

respectively. These figures indicate that faults with a 10% and 15% range of variation are diagnosable for c1908 and c5315.
Diagnosability decreases for a 5% range of variation. Diagnosability for c7552 is less successful, because the number of test
vectors is much smaller than c5315 and c1908. As a result, the set of vectors that can be used to distinguish among the faults is
too small.

In order to attempt to improve diagnosability for smaller ranges of variation, we have considered adding pass/fail
patterns associated with a 5% range of variation to the dictionary. As a result, the dictionary contains patterns, ikp , where i is

the physical origin code and %5k and 10%, the range of variation of the fault. Then, we determine jlp for an arbitrary fault

with physical origin code j and range of variation l and check to see if the fault is correctly diagnosed by determining if
),(max),(max

%10%,5,%10%,5
ikjl

kji
ikjl

k
pppp 


 where %5k and 10% and l is an arbitrary range of variation. Figures 17

and 18 compare),(max
%10%,5

ikjl
k

pp


 and),(max
%10%,5,

ikjl
kji

pp


 for c1908 and c5315, respectively. These figures indicate

that diagnosability of 5% faults in improved, as the expense of a few of the 15% faults.

 16

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0,
 5

%
1,

 5
%

2,
 5

%
3,

 5
%

4,
 5

%
5,

 5
%

6,
 5

%
7,

 5
%

0,
 1

0%

1,
 1

0%

2,
 1

0%

3,
 1

0%

4,
 1

0%

5,
 1

0%

6,
 1

0%

7,
 1

0%

0,
 1

5%

1,
 1

5%

2,
 1

5%

3,
 1

5%

4,
 1

5%

5,
 1

5%

6,
 1

5%

7,
 1

5%

C
o

rr
e

la
ti

o
n

s

Actual Fault Max. for All Other Faults

Fig. 14. Correlations between pass/fail patterns for faults as a function of range of within-die variation (5%, 10%, 15%) for
c1908. The labels indicate the physical origin code and the range of variation of the fault. Each pair compares the correlation
are the actual fault in the dictionary (where the range of variation is 10%) and the maximum correlations between pass/fail
patterns for all other faults in the dictionary (excluding the actual fault).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0,
 5

%
1,

 5
%

2,
 5

%
3,

 5
%

4,
 5

%
5,

 5
%

6,
 5

%
7,

 5
%

0,
 1

0%

1,
 1

0%

2,
 1

0%

3,
 1

0%

4,
 1

0%

5,
 1

0%

6,
 1

0%

7,
 1

0%

0,
 1

5%

1,
 1

5%

2,
 1

5%

3,
 1

5%

4,
 1

5%

5,
 1

5%

6,
 1

5%

7,
 1

5%

C
o

rr
e

la
ti

o
n

s

Actual Fault Max. for All Other Faults

Fig. 15. Correlations between pass/fail patterns for faults as a function of range of within-die variation (5%, 10%, 15%) for
c5315. The labels indicate the physical origin code and the range of variation of the fault. Each pair compares the correlation
are the actual fault in the dictionary (where the range of variation is 10%) and the maximum correlations between pass/fail
patterns for all other faults in the dictionary (excluding the actual fault).

 17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1,
 5

%
2,

 5
%

3,
 5

%
4,

 5
%

5,
 5

%
6,

 5
%

1,
 1

0%

2,
 1

0%

3,
 1

0%

4,
 1

0%

5,
 1

0%

6,
 1

0%

1,
 1

5%

2,
 1

5%

3,
 1

5%

4,
 1

5%

6,
 1

5%

7,
 1

5%

C
o

rr
e

la
ti

o
n

s

Actual Fault Max. for All Other Faults

Fig. 16. Correlations between pass/fail patterns for detectable faults as a function of range of within-die variation (5%, 10%,
15%) for c7552. The labels indicate the physical origin code and the range of variation of the fault. Each pair compares the
correlation are the actual fault in the dictionary (where the range of variation is 10%) and the maximum correlations between
pass/fail patterns for all other faults in the dictionary (excluding the actual fault).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0,
 5

%

1,
 5

%

2,
 5

%

3,
 5

%

4,
 5

%

5,
 5

%

6,
 5

%

7,
 5

%

0,
 1

0%

1,
 1

0%

2,
 1

0%

3,
 1

0%

4,
 1

0%

5,
 1

0%

6,
 1

0%

7,
 1

0%

0,
 1

5%

1,
 1

5%

2,
 1

5%

3,
 1

5%

4,
 1

5%

5,
 1

5%

6,
 1

5%

7,
 1

5%

C
o

rr
el

at
io

n
s

Actual Fault Max. for All Other Faults

Fig. 17. Correlations between pass/fail patterns for faults as a function of range of within-die variation (5%, 10%, 15%) for
c1908. The labels indicate the physical origin code and the range of variation of the fault. Each pair compares the correlation
are the actual fault in the dictionary (where the range of variation is 10%) and the maximum correlations between pass/fail
patterns for all other faults in the dictionary (excluding the actual fault).

 18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0,
 5

%

1,
 5

%

2,
 5

%

3,
 5

%

4,
 5

%

5,
 5

%

6,
 5

%

7,
 5

%

0,
 1

0%

1,
 1

0%

2,
 1

0%

3,
 1

0%

4,
 1

0%

5,
 1

0%

6,
 1

0%

7,
 1

0%

0,
 1

5%

1,
 1

5%

2,
 1

5%

3,
 1

5%

4,
 1

5%

5,
 1

5%

6,
 1

5%

7,
 1

5%

C
o

rr
el

at
io

n
s

Actual Fault Max. for All Other Faults

Fig. 18. Correlations between pass/fail patterns for faults as a function of range of within-die variation (5%, 10%, 15%) for
c5315. The labels indicate the physical origin code and the range of variation of the fault. Each pair compares the correlation
are the actual fault in the dictionary (where the range of variation is 10%) and the maximum correlations between pass/fail
patterns for all other faults in the dictionary (excluding the actual fault).

VI. IMPLEMENTATION ISSUES

The application of delay test patterns in scan-based designs has several issues. First, we must consider the method for
test pattern application, and second, we must consider clock generation.

Test pattern application requires a sequence of two patterns, one to initiate the logic into a known state and a second to
trigger the targeted transitions in the circuit. Transitions are launched from a path’s starting point and captured at the path’s end
point. It is straightforward to scan in the initial vector, and capture the output in scan cells. The challenge is the application of
the second vector at the input scan cells. There are two approaches to generating the second vector: launch-off-shift and broad-
side. Both of these approaches suffer limitations, in that they restrict the set of patterns that can be applied. In the launch-off-
shift approach, the second vector is required to be the next (i.e. one bit shift) pattern in the scan chain. This creates shift
dependencies, and is limited by correlations between bits in the first and second vectors. In the broad-side approach, the second
vector is applied through the logic. This approach is restricted by the ability to generate the required second vector through the
incoming logic cone.

Implementation of delay test requires precise control of the time interval between launch and capture clocks, there the
interval between the launch and capture clocks is governed by the required operating frequency. In general, at-speed test at
wafer probe is most easily achieved by generating the clock on chip with a phase-locked loop, and many chips incorporate
phase-locked loops for internal clock generation. However, test application may suffer from excessive power dissipation. And,
in wafer probe, an appropriate cooling environment may not be available. The alternative is to operate test at a much lower
frequency, except for the targeted transition being testing, i.e. the transition between launch and capture. This requires
generating two test clock signals with a will controlled interval between launch and capture signals. One approach to achieve
this is through a delay-locked loop (DLL). We have designed such a delay-locked loop using 0.18um technology. The DLL
produces delayed versions of the core clock. Details of the design are described in the following sections.

A. Circuit Architecture

A DLL can provide multiple phase-shifted clock signals from which the two desired test clocks can be chosen.
Moreover, the negative feedback mechanism of a DLL ensures that the delay of the entire VCDL is always one clock period of
the input signal. This delay does not vary with process, supply voltage, and temperature (PVT).

The architecture of the proposed DLL clock generator is shown in Figure 19. Low power, wide lock range, short
locking time, and low jitter are the focuses of the design. Wide locking range allows the design to be used for a wide variety of
applications, since the DLL will lock to a wide set of frequencies. Short locking time aids in test execution, since if the locking

 19

time is short, large numbers of cycles to not have to be wasted before making a measurement. Finally, low jitter enables
accurate measurement.

Fig. 19. Architecture of the proposed DLL clock generator.

The DLL clock generator is composed of a combined phase detector and charge pump circuit, a loop filter, a VCDL,
and a start-control circuit. In the DLL, the input clock signal propagates through the VCDL and develops phase shift at every
delay stage. The phase shift (or delay) of each stage is controlled by the voltage of the loop filter. The phase of the output
signal from the end of the delay line is compared with the phase of the input clock signal in the phase detector. The phase error
information is then transferred to the charge pump to adjust the voltage of the loop filter which, in turn, changes the delay of the
VCDL. Due to such a negative feedback mechanism, the phase error is gradually reduced until it finally approaches zero. At
that time, the delay of the entire VCDL becomes exactly one clock period, and the voltage of the loop filter is stabilized, which
indicates that delay lock has been established.

B. Component Design

The phase detector (PD) and the charge pump (CP) are two of the most critical components within a DLL. The task of
the phase detector is to detect the phase difference between the reference signal and the VCDL output signal. The charge pump
performs the function of adjusting the voltage of the loop filter in response to the detected phase error information.

B.1. Phase Detector and Charge Pump

In practical designs, it is desirable to integrate the phase detector and the charge pump together in order to minimize
die area and power dissipation, as well as to reduce jitter. Such an approach was previously taken in [44]. However the design
in [44] suffers from two drawbacks. Firstly, the charging or discharging current varies during the charging or discharging
process, which may slow down the DLL locking process. Secondly, the charging and discharging currents are not very well
matched, which can result in higher phase noise and greater clock skew. We address these two problems by using fixed
charging and discharging currents, as well as a high-precision current mirror to improve the matching between the charging and
discharging currents.

The phase detector detects the phase difference between the output signal from the VCDL and the input reference
signal. An XOR gate implements the phase detector function. It generates UP and DOWN signals indicating if the frequency
needs to be increased or decreased. This signal is input to the charge pump in terms of pulses. The charge pump adjusts the
voltage of the loop filter and thereby alters the VCDL delay according to the phase error information from the phase detector.
In principle, the CP consists of two controlled switches, one current source, one current sink, as shown in Figure 20, where the
switches are controlled by the UP and DOWN pulses. The charge pump adds or subtracts charge from the loop filter
(capacitor). This charging or discharging process continues until lock is achieved. After lock is achieved, equal charging and
discharging pulses continue in order to minimize jitter [45].

 20

Fig. 20. A simplified phase detector and charge pump diagram.

In the design of the charge pump, an important choice must be made between a single-ended topology and a
differential topology. A single-ended topology has the advantages of smaller area and lower power dissipation. However, a
single-ended topology is more vulnerable to supply and substrate noise compared to a differential topology. Our DLL uses a
single-ended topology because of its simpler structure and lower power dissipation.

In general, there are three different configurations for single-ended charge pumps: switching in the source, switching
in the drain, and switching in the gate [46]. Among the three configurations, switching in source is preferred due to its simpler
structure, lower power dissipation, and faster switching time [46]. Furthermore, it is known that for CMOS circuits, current
switching provides a faster switching speed than voltage switching if all other conditions are the same [47].

Based on the above considerations, a combined phase detector and charge pump circuit has been designed which
provides a fast switching speed and excellent charging and discharging current matching. Moreover, the proposed structure
introduces very little charge injection and clock feedthrough. As a result, phase noise is reduced. The circuit is shown in
Figure 21.

Fig. 21. Combined PD and CP circuit.

The circuit is composed of three functional blocks: the phase error detection block, which includes transistors MN1 to
MN6 and MN15 to MN16; the current switching block, which includes transistors MN7 to MN8 and MP1 to MP4; and the
current mirror block, which includes transistors MN9 to MN14 and MP5 to MP10. The operation of the circuit is described as
follows.

The phase error detection block is composed of three AND gates, shown in Figure 22. Each AND gate is composed of
two or three series-connected NMOS transistors. During the locking process, one of the AND gates is turned on corresponding
to the phase relationship between REFCkR _ and outCkR _ . The corresponding current source, MN7 or MN8, is activated

and a fixed current is generated and mirrored to charge or discharge the loop capacitor C . Such an implementation of the
AND gates generates simultaneous charging and discharging current pulses upI and downI for equal durations during every

clock cycle after the loop is locked (i.e., in the steady state), which are needed to avoid a dead-band region in the phase detector
and thus to avoid additional input tracking jitter. The simultaneous pulses upI and downI must be identical as well as very

narrow in order to avoid possible disturbances of the loop filter voltage in steady state. The current pulses generated by the

 21

series transistor structure are significantly narrower than what is possible with a voltage signal [44]. Moreover, the current
switching block further narrows the current pulses. The simulated current pulses in steady state are shown in Figure 23.

Fig. 22. Three pseudo AND gates.

Fig. 23. Simultaneous current pulses in steady state.

The three AND gates are controlled by the two clock signals, refCkR _ and outCkR _ , plus their complements, as

well as MOVE and EN, which are used to select the time window during which the AND gates become active. The MOVE and
EN signals are generated by the circuits shown in Figure 24.

 (a) (b)

Fig. 24. Generation of the SETTLE, MOVE, and EN signals: (a) MOVE and SETTLE and (b) EN.

If the phase difference between refCkR _ and outCKR _ is less than half of the clock period, the values of MOVE

and SETTLE are LOW and HIGH, respectively. In this case, the AND gate controlled by MOVE, and outCkR _ will be

disabled. The other two AND gates work together with the current sources MN7 and MN8.
As can be seen in Figure 24, the enable signal is asserted as soon as both refCkR _ and outCkR _ become low and

remains asserted until both of them become high. In response to the asserted EN signal, the phase error detection block starts
its operation and generates output pulses with the same width as the phase difference between refCkR _ and outCkR _ . The

pulses turn on the corresponding current source to start the charging or discharging process. Due to the negative feedback
mechanism, the phase difference becomes smaller and smaller, eventually approaching zero.

On the other hand, if the phase difference between refCkR _ and outCkR _ is greater than half the clock period, the

MOVE signal is asserted and the SETTLE signal becomes LOW. Because the MOVE signal is HIGH, the AND gate which is

 22

controlled by MOVE and outCkR _ takes over. This AND gate, together with the current source MN7 produces a discharging

current to increase the phase delay of outCkR _ , i.e. to reduce the phase difference between refCkR _ and outCkR _ from

greater than half the clock period to less than half the clock period. Once the phase difference between refCkR _ and

outCkR _ becomes less than half the clock period, the MOVE signal is deasserted and the other two AND gates take over.

Owing to the above mechanism, the DLL achieves lock as long as (min)VCDLD is less than one clock period REFT , which is

significantly wider than existing designs.
The second functional block is the current switching block. The charging and discharging currents are supplied by

two identical current sources with the same PMOS loads. Two pull-up transistors, MP2 and MP3, are added to further enhance
the switching speed. The current switching happens when charging immediately follows discharging, or vice versa. For
example, in the case that the discharging process happens immediately after the charging process, the current source MN7 is
turned on to supply the discharging current downI . At the same time, both MP1 and MP2 will be turned on since they have the

same source-gate voltage. Transistor MP1 is used to conduct the discharging current downI , while MP2 is used to charge the

gate of MP4 so that MP4 can be turned off very quickly. In this way, the transition from the charging process to the
discharging process is reduced. A similar scenario happens when charging immediately follows discharging.

The third functional block is the current mirror block. High-precision current mirrors are used so that the charging
current upI and the discharging current downI can be matched very well. Transistors MN13 and MP9 are used to enhance the

matching accuracy and to boost the output impedance. Specifically, the introduction of current branch MN13 guarantees that
the drain-source voltages of MN9 and MN10 are exactly the same. Similarly, the introduction of current branch MP9
guarantees that the drain-source voltages of MP7 and MP4 are exactly the same. Therefore, MN9 and MN10 have the same
gate-source voltage as well as the same drain-source voltage. Consequently, the currents flowing through MN9 and MN10 are
exactly equal to each other. Similarly, the currents flowing through MP7 and MP4 are also the same.

The combined phase detector and charge pump circuit was simulated with 0.18  m TSMC process models in
HSPICE. Figure 25 illustrates the charge pump output voltage in a simulated pump-up process, assuming a fixed phase error.

Fig. 25. A simulated pump-up process.

B.2. Start-Control Circuit
The operation of the DLL clock generator is started by the assertion of a START signal. Before the DLL begins the

locking process, the START signal is low and the initial voltage of the loop filter is set to a maximum. Consequently, the initial
VCDL delay is set to a minimum. After the DLL starts the locking process, the delay of the VCDL gradually increases until it
becomes equal to one clock period of the input reference signal. As discussed before, setting the VCDL delay to a minimum in
the beginning helps the DLL avoid the false locking problem and extends the lock range. The other purpose of the start-control
circuit is to preprocess the refCk and outCk waveforms for the subsequent phase detector. The output signals, refCkR _ and

outCkR _ , from the start-control circuit become inputs to the succeeding PD+CP. The phase difference between refCk and

outCk is the same as the phase difference between refCkR _ and outCkR _ . The start-control circuit is shown in Figure 26.

 23

 (a) (b)

Fig. 26. Start-control circuit: (a) circuit design and (b) waveforms.

B.3. Voltage-Controlled Delay Line
In order to minimize the sensitivity to supply and substrate noise and to achieve a wide tuning range, the delay stage

developed in [45] is used in the DLL. The delay stage is built with a differential topology using symmetrical loads and replica-
feedback biasing [45]. Figure 27 illustrates the VCDL delay stage.

 (a) (b)

Fig. 27. VCDL delay stage: (a) delay stage and (b) replica-feedback biasing for the VCDL.

Simulation shows that for an 8-stage VCDL, (min)VCDLD is approximately 180ps. Therefore, the DLL is able to

operate as long as the operating frequency is less than 700MHz for nominal device characteristics, supply voltage, and room
temperature. However, the output signal is distorted when bpV is close to ddV . Since bpV is generated from the CP control

voltage, controlV , the usable range of the control voltage, controlV is limited, which effectively limits the operating frequency

range in practice. Therefore, due to the output swing limitation, the actual operating frequency range is approximately 160MHz
to 700MHz for nominal device characteristics, supply voltage, and room temperature.

In the DLL clock generator, the correctness of the generated setup clock and hold clock signals relies on the matching
between the delay stages. In order to improve matching, a shift-averaging VCDL [48] is used in the design. The shift-
averaging technique equalizes the delay of each delay stage as well as improves the duty cycle of the generated clock signals
[48]. This technique requires the VCDL to have even number of delay stages. The shift-averaging VCDL is shown in Figure
28.

 24

Fig. 28. Eight-stage shift averaging DLL.

A design trade-off exists in the number of delay stages in the VCDL. More delay stages can enhance the phase

resolution of the VCDL output signals. On the other hand, fewer delay stages may boost the high end of the DLL operating
frequency range. Eight stages are used in our DLL clock generator.

Since the DLL can only generate clocks from the outputs of a finite number of delay stages, the number of available
phase shifts is limited by the number of delay stages in the VCDL. As a result, we are limited to the generation of delays that
are multiples of the phase delay of a single delay cell. In other words, the target specifications influence the choice of the
number of stages used in the VCDL. For example, if the operating frequency is 250MHz, the delays that can be generated are
0.5ns, 1.0ns, 1.5ns, 2.0ns, 2.5ns, 3.0ns, and 3.5ns.

C. Circuit Performance under Process, Supply Voltage and Temperature Variations

Extensive simulations have been done to verify the performance of the circuit under process, supply voltage, and
temperature variations. Table V summarizes the performance of the circuit. Process variations are assumed to be limited to
variations in device performance, modeled as fast, typical, and slow n-channel and p-channel transistors. The standard

commercial temperature range of o0 C to o70 C was considered, together with supply voltage variations from 1.53V to 2.07V.
In our analysis of process corners, we considered four circuit performances: jitter, static phase error, lock range, and lock time.

TABLE V

DLL Performance Summary
Technology TSMC 0.18um 1P6M CMOS

Power Supply 1.8V

Active Die Area 0.06 2mm
Worst Case Operating Frequency 180MHz – 610MHz

Charge Pump Current 10uA
Loop Bandwidth 0.07* REF

Worst Case Lock-In Time 13 cycles @ 250MHz

C.1.. Jitter

Jitter refers to the random variations in the period of the output clock signal. Assuming that nt is the time point when

the nth minus-to-plus zero crossing happens, the nth clock cycle period is then nnn ttT  1 . Ideally, the clock signal has a

clock period of T . The difference nT between nT and T (TTT nn ) is an indicator of jitter [49]. Absolute jitter

)(NTabs represents the accumulated jitter in the first N clock cycles. Cycle jitter is the long term RMS value of nT :




N

n
n

N
c T

N
T

1

21
lim .

Cycle jitter represents the long term average effect of clock cycle fluctuation. Cycle-to-cycle jitter is the RMS difference
between two consecutive clock cycles:

 





N

n
nn

N
cc TT

N
T

1

2
1)(

1
lim

All of the above three parameters describe jitter characteristics. In general, absolute jitter is used to describe a PLL as there is
significant jitter accumulation in a PLL. For other timing circuits, including DLLs, the other two parameters are usually used
[49]. In this work, we use cycle-to-cycle jitter to quantify jitter.

 25

The jitter of a DLL’s output signal has several sources. They include jitter of the input reference signal, jitter
contributed by the VCDL, and jitter due to switching noise on power supplies and ground bounce [50]. Ideally, because of our
application, where we would like to capture any delays due to noise in the core clock, we would like to transfer all noise from
the input reference clock to the output. However, as mentioned earlier, this is not possible, since the DLL performs a low pass
filter function and stability requirements dictate the bandwidth. However, as it is important that the DLL does not introduce
additional jitter, the focus of our analysis is on the jitter caused by the delay stages of the VCDL.

For active MOSFET transistors, device noise mainly consists of thermal noise and flicker noise. As proposed in [51],
to simulate device noise, an equivalent white noise source and an equivalent flicker noise source is associated with each
transistor. Equivalent noise voltages are converted into equivalent noise currents and injected into the signal path. Transcient
analysis is performed to find the zero crossing points, from which cycle-to-cycle jitter. The results over process, supply
voltage, and temperature are shown in Table VI.

TABLE VI
Cycle-to-Cycle Jitter of the DLL Output Signal @ 250MHz (in ps)

 Room
Temperature and

Vsupply=1.8V

Temperature= o0 C
and Vsupply=2.07V

Temperature= o0 C
and Vsupply=1.53V

Temperature= o70
C and

Vsupply=2.07V

Temperature= o70
C and

Vsupply=1.53V
TT 25.2 13.6 14.5 53.3 55.2
FF 32.8 15.8 15.6 56.4 57.4
SS 38.2 16.7 16.9 58.1 57.8
FS 37.0 16.0 16.9 56.5 57.1
SF 36.3 16.2 16.5 56.6 57.5

Process sensitivities can be best visualized by fitting a statistical model [52]. The model data vs. temperature and

supply are shown in Figure 29. It can be seen that jitter increases as a function of temperature. This is because for the TSMC
0.18um process, thermal noise dominates flicker noise when the operating frequency is higher than 10MHz, and the spectral
density of thermal noise increases linearly with temperature.

0 27 70
2.07

1.8

1.53

Temperature

Supply Voltage

Jitter vs. Temperature and Supply

60-65
55-60
50-55
45-50
40-45
35-40
30-35
25-30
20-25
15-20

Fig. 29. Cycle-to-cycle jitter vs. supply and temperature for typical transistors.

C.2. Static Phase Error
Static phase error refers to the phase difference between the output signal of the last stage of the VCDL and the input

reference signal. In the ideal case, after the DLL is locked, the phases of these two signals should be perfectly matched.
However, due to the limited phase resolution of the PD+CP, some static phase error exists. Table VII shows the static phase
error of the DLL as a function of device speed, power supply voltage, and temperature.

The results can be visualized in Figure 30. Sensitivities to device speed, power supply voltage, and temperature were
found by analyzing the data, fitting a model, and checking for significance of model coefficients. It can be seen from the figure
that static phase error increases for slow n and p-channel devices and is very sensitive to device speed. Static phase error
increases with temperature, as well. Static phase error becomes larger for slower devices because slow switching in the PD and
CP circuit may lead to the voltage of the loop filter (capacitor) to be in an equilibrium state when phase alignment has not been
achieved. High temperature also contributes to large static phase error because the transistor mobility is inversely proportional
to temperature. Low mobility causes transistors to switch slowly, similar to the behavior of slow devices.

 26

TABLE VII
Static Phase Error @ 250MHz (in ps)

 Room
Temperature and

Vsupply=1.8V

Temperature= o0 C
and Vsupply=2.07V

Temperature= o0 C
and Vsupply=1.53V

Temperature= o70
C and

Vsupply=2.07V

Temperature= o70
C and

Vsupply=1.53V
TT 80 70 80 80 80
FF 60 60 60 70 70
SS 110 100 100 110 110
FS 80 70 80 90 90
SF 70 70 70 80 90

slow n typical n fast n
fast p

typical p

slow p
Static Phase Error vs. Device Characteristics

100-105
95-100
90-95
85-90
80-85
75-80
70-75
65-70

0 27 70
2.07

1.8

1.53

Temperature

Supply Voltage

Static Phase Error vs. Temperature and Supply

82.5-85
80-82.5
77.5-80
75-77.5
72.5-75
70-72.5

Fig. 30. Static phase error vs. device characteristics and temperature and supply voltage.

C.3. Lock Range

Lock range refers to the frequency range in which a DLL is able to achieve lock. The lock range for our DLL is shown
in Table VIII as a function of device speed, power supply, and temperature.

TABLE VIII

Lock Range (in MHz)
 Room

Temperature and
Vsupply=1.8V

Temperature= o0 C
and Vsupply=2.07V

Temperature= o0 C
and Vsupply=1.53V

Temperature= o70
C and

Vsupply=2.07V

Temperature= o70
C and

Vsupply=1.53V
TT 160-700 170-810 150-610 180-850 150-630
FF 170-700 180-820 150-620 180-850 160-650
SS 160-680 170-800 150-610 170-840 140-610
FS 160-690 170-810 150-610 170-840 150-620
SF 160-680 180-810 150-610 170-840 150-620

The lower and upper lock range limits are limited for different reasons. Lower lock range has a small sensitivity to the
power supply voltage, since the supply voltage limits the usable range of the CP control voltage. However, this sensitivity does
not exceed the noise level in the data.

On the other hand, the upper limit of the lock range is sensitive to device speed, power supply voltage, and temperature
are shown in Figure 31. The slow NMOS and slow PMOS corner, combined with the lower value of supply voltage, provides
the lower limit on the lock range, since slow transistors and a lower supply voltage result in a longer minimum VCDL delay.
Specifically, slower transistors and lower power supply values results in slower charging/discharging currents of the VCDL.

 27

slow n typical n fast n
fast p

typical p

slow p
Upper Lock Range Limit vs. Device Characteristics

705-710
700-705
695-700
690-695
685-690
680-685
675-680
670-675

0 27 70
2.07

1.8

1.53

Temperature

Supply Voltage

Upper Lock Range Limit vs. Temperature and Supply

810-830
790-810
770-790
750-770
730-750
710-730
690-710
670-690
650-670
630-650
610-630

Fig. 31. Upper lock range limit vs. device characteristics and temperature and supply voltage.

C.4. Lock Time

Lock time refers to the time interval that the DLL takes to achieve lock. Table IX lists the lock times under different
temperature, supply, and process variations. Fitting the data with a statistical model revealed no significant sensitivities. The
average lock time is 12.4 clock cycles and the worst case simulated value is 13 clock cycles.

TABLE IX

Lock Time at Lowest Operating Frequency (in cycles)
 Room

Temperature and
Vsupply=1.8V

Temperature= o0 C
and Vsupply=2.07V

Temperature= o0 C
and Vsupply=1.53V

Temperature= o70
C and

Vsupply=2.07V

Temperature= o70
C and

Vsupply=1.53V
TT 11 12 12 13 12
FF 12 13 13 12 12
SS 12 13 13 13 13
FS 11 12 13 13 12
SF 12 12 13 13 12

C.5. Impact on Test Accuracy

Two parameters that directly impact measurement accuracy are static phase error and jitter. We use the statistical
characteristics of these two parameters to find a 95% confidence bound on error. Specifically, the mean error is given by the
static phase error, and the standard deviation is computed from jitter. The results are shown in Table X. These errors are upper
bounds in measurement error if only a single measurement is used. If, however, multiple measurements are averaged, then
static phase error, as shown in Table VII, defines the upper bound on measurement error. In this case, the nominal
measurement error is 80ps, and the maximum over process, temperature, and supply variations is 110ps.

TABLE X

 95% Confidence Bound on Measurement Error (in ps)
 Room

Temperature
and

Vsupply=1.8
V

Temperature= o0
C and

Vsupply=2.07V

Temperature= o0
C and

Vsupply=1.53V

Temperature= o70
C and

Vsupply=2.07V

Temperature= o70
C and

Vsupply=1.53V

TT 115 89 100 154 157
FF 105 82 82 148 150
SS 163 123 123 191 190
FS 131 92 103 168 169
SF 120 92 93 158 170

D. Implementation

The BIST circuit has been implemented and fabricated with a TSMC 0.18um one-poly six-metal CMOS process
(CL018). The full chip layout is shown in Figure 32. The layout focused on three issues that are critical for analog designs: (a)
matching, (b) substrate and power supply noise, and (c) minimizing crosstalk.

 28

Fig. 32. Layout of the chip.

VII. CONCLUSIONS

We have presented a methodology to diagnose the physical origin of path delay faults caused by known imperfections
in optical lithography. Our methodology involves layout-dependent timing analysis, taking into account deterministic within-
die variation (gate length variation as a function of the local neighborhood, location in the reticle, and pattern density). Critical
paths are extracted by pruned DFS and used to establish test patterns and pass/fail patterns associated with each fault. The
results are stored in a dictionary. Observed faults are matched with simulated pass/fail patterns to diagnose the physical origin
of within-die variation and to help us properly allocate mask correction effort.

Implementation of the delay test methodology requires analysis of methods to input two pattern sequences into the
scan chain. Two approaches have been discussed: launch-off-shift and broad-side. Both limit the set of possible two pattern
sequences that can be applied. In addition, delay test implementation is limited by the clocking methodology. At-speed test
with an on-chip phase lock loop is one approach, but is limited by power dissipation. The alternative is to generate two clocks
that are separated by a fixed phase shift. Our approach to the design of such clocks, using a delay-locked loop, which are
invariant to temperature, supply voltage, and process, has been discussed.

ACKNOWLEDGMENT

The authors thank the Semiconductor Research Corporation for their financial support, under Task 1176.001.

REFERENCES

[1] S.R. Nassif, A.J. Strojwas, and S.W. Director, “A methodology for worst-case analysis of integrated circuits,” IEEE Trans.
Computer-Aided Design, vol. 5, no. 1., pp. 104-113, Jan. 1986.

[2] H. J. Levinson, Principles of Lithography. SPIE PRESS, 2001.
[3] T.A. Brunner, “Impact of lens aberrations on optical lithography,” IBM J. Research and Development, vol. 41, pp. 57-67,

Jan./March 1997.
[4] C. A. Mack, “Measuring and Modeling Flare in Optical Lithography,” Proc. SPIE, vol. 5040, pp. 151-161, 2003.
[5] M. Orshansky, L. Milor, and C. Hu, “Characterization of spatial-intra-field gate CD variability, its impact on circuit

performance, and spatial mask-level correction,” IEEE Trans. Semi. Manufacturing, vol. 17, no. 1, pp. 2-11, Feb. 2004.
[6] G. L. Smith, “Modeling for delay faults based upon paths,” Proc. Int. Test Conf., 1985, pp. 342-349.
[7] W. Ke and P.R. Menon, “Synthesis of delay-verifiable combinational circuits,” IEEE Trans. Computers, vol. 44, no. 2, pp.

213-222, Feb. 1995.
[8] R.C. Tekumalla and P.R. Menon, “Identification of primitive faults in combinational and sequential circuits,” IEEE Trans.

Computer-Aided Design, vol. 20, pp. 1426-1442, Dec. 2001.
[9] M. Sivaraman and A.J. Strojwas, “Primitive path delay faults: Identification and their use in timing analysis,” IEEE Trans.

Computer-Aided Design, vol. 19, pp. 1347-1362, Nov. 2000.
[10] A. Krstic, K.-T. Cheng, and S.T. Chakradhar, “Primitive delay faults: Identification, testing, and design for testability,”

IEEE Trans. Computer-Aided Design, vol. 18, pp. 669-684, June 1999.
[11] M. Sharma and J.H. Patel, “Testing of critical paths for delay faults,” Proc. Int. Test Conf., 2001, pp. 634-641.
[12] M. Sharma and J. H. Patel, “Finding a small set of longest testable paths that cover every gate” Proc. Int. Test Conf., 2002,

pp. 974-982.

 29

[13] W. Qiu and D.M.H. Walker, “An efficient algorithm for finding the K longest testable paths through each gate in a
combination circuit,” Proc. Int. Test Conf., 2003, pp. 592-601.

[14] S.H.C. Yen, D.H.C. Du, and S. Ghanta, “Efficient algorithms for extracting the K most critical paths in timing analysis,”
Proc. Design Automation Conf., 1989, pp. 649-654.

[15] S. Kundu, “An incremental algorithm for identification of longest (shortest) paths,” Integration the VLSI Journal, pp. 25-
31, 1994.

[16] L.-C. Wang, J.-J. Liou, and K.T. Cheng, “Critical path selection for delay fault testing based upon a statistical timing
model,” IEEE Trans. Computer-Aided Design, vol. 23, pp. 1550-1565, Nov. 2004.

[17] C. Visweswariah, “Death, taxes and failing chips,” Proc. Design Automation Conf., 2003, pp. 343-347.
[18] S.R. Nassif, D. Boning, and N. Hakim, “The care and feeding of your statistical static timer,” Proc. Int. Conf. on

Computer-Aided Design, 2004, pp. 138-139.
[19] M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Systems Testing and Testable Design, IEEE Press, 1990, ch. 12.
[20] X. Wen et al., “On per-test fault diagnosis using X-fault model,” Proc. Int. Conf. on Computer-Aided Design, 2004, pp.

633-640.
[21] P. Girard, C. Landrault, and S. Pravossoudovitch, “A novel approach to delay-fault diagnosis,” Proc. Design Automation

Conf., 1992, pp. 357-360.
[22] Z. Wang, et al., “Delay-fault diagnosis using timing information,” IEEE trans. Computer-Aided Design, vol. 24, pp. 1315-

1325, Sept. 2005.
[23] A. Krstic et al., “Delay defect diagnosis based upon a statistical timing model – the first step,” IEE Proc. – Computers and

Digital Techniques, vol. 150, pp. 346-354, Sept. 2003.
[24] P. Pant, et al., “Path delay fault diagnosis in combinational circuits with implicit fault enumeration,” IEEE Trans.

Computer-Aided Design, vol. 20, pp. 1226-1235, Oct. 2001.
[25] S. Padmanaban and S. Tragoudas, “An implicit path-delay fault diagnosis methodology,” IEEE Trans. Computer-Aided

Design, vol. 22, pp. 1399-1408, Mar. 2003.
[26] M. Sivaraman and A. J. Strojwas, “Path delay fault diagnosis and coverage-A metric and an estimation technique,” IEEE

Trans. Computer-Aided Design, vol. 20, pp. 440-457, Mar. 2001.
[27] A. Krstic et al., “Diagnosis-based post-silicon timing validation suing statistical tools and methodologies,” Proc. Int. Test

Conf., 1999, pp. 558-567.
[28] W.-Y. Chen, S.K. Gupta, and M.A. Breuer, “Test generation for crosstalk-induced delay in integrated circuits,” Proc. Int.

Test Conf., 1999, pp. 191-200.
[29] A. Krstic, et al., “Delay testing considering crosstalk-induced effects,” Proc. Int. Test Conf., 2001, pp. 558-567.
[30] J.-J. Liou, et al., “Modeling, testing, and analysis for delay defects and noise effects in deep submicron devices,” IEEE

Trans. Computer-Aided Design, vol. 22, pp. 756-769, Jun. 2003.
[31] A. Krstic, Y.-M. Jiang, and K.-T. Cheng, “Pattern generation for delay testing and dynamic timing analysis considering

power-supply noise effects,” IEEE Trans. Computer-Aided Design, vol. 20, pp. 416-425, Mar. 2001.
[32] M. Choi and L. Milor, “The impact on circuit performance of deterministic within-die variation in nanoscale semiconductor

manufacturing,” IEEE Trans. Computer-Aided Design, vol. 25, pp. 1350-1367, July 2006.
[33] A. Chatzigeorgiou, S. Nikolaidis, and I. Tsoukalas, “A modeling technique for CMOS gates,” IEEE Trans. Computer-

Aided Design, vol. 18, pp. 557-575, May 1999.
[34] Y.-H. Shih, Y. Leblebici, and S. M. Kang, “ILLIADS: A fast timing and reliability simulator for digital MOS circuits,”

IEEE Trans. Computer-Aided Design, vol. 12, pp. 1387-1402, Sep. 1993.
[35] Star-Hspice Manual, Avant!, 1998.
[36] Design Compiler Reference Manual, Synopsys, 2000.
[37] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinatorial benchmark circuits,” Proc. Int. Symp. Circuits and

Systems, 1985, pp. 695–698.
[38] D. Lee, V. Zolotov, and D. Blaauw, “Static timing analysis using backward signal propagation,” Proc. Design Automation

Conf., 2004, pp. 664-669.
[39] W.-Y. Chen, S.K. Guota, and M.A.Breuer, “Analytical models for crosstalk excitation and propagation in VLSI circuits,”

IEEE Trans. Computer-Aided Design, vol. 21, pp. 1117-1131, Oct. 2002.
[40] S.-Z. Sun, D.H.C. Du, and H.-C. Chen, “Efficient timing analysis for CMOS circuits considering data dependent delays,”

IEEE Trans. Computer-Aided Design, vol. 17, pp. 546-552, June 1998.
[41] A. Pierzynska and S. Pilarski, “Pitfalls in delay fault testing,” IEEE Trans. Computer-Aided Design, vol. 16, pp. 321-329,

March 1997.
[42] C.T. Gray, et al., “Circuit delay calculation considering data dependent delays,” Integration, the VLSI Journal, pp. 1-23,

1994.
[43] K. Fuchs, F. Fink, and M.H. Schulz, “DYNAMITE: An efficient automatic test pattern generation system for path delay

faults,” IEEE Trans. Computer-Aided Design, vol. 10, pp. 1323-1335, Oct. 1991.
[44] R. Farjad-Rad et al., “A low-power multiplying DLL for low-jitter multigigahertz clock generation in highly integrated

digital chips,” IEEE J. Solid-State Circuits, vol. 37, pp. 1804-1812, Dec. 2002.

 30

[45] J. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE J. Solid-State Circuits,
vol. 31, pp. 1723-1732, Nov. 1996.

[46] W. Rhee, “Design of high performance CMOS charge pumps in phase-locked loops”, Proc. Intl. Symp. on Circuits and
Systems, vol. 1, 1999, pp. 545-548.

[47] High Speed Design Techniques, Analog Devices Technical Reference Books, Analog Devices, Inc., 1996.
[48] H-H. Chang, C-H. Sun, and S-I. Liu, “A low-jitter and precise multiphase delay-locked loop using shifted averaging

VCDL,” Proc. Int. Solid-State Circuits Conf., Feb. 2003, pp. 177-180.
[49] M. Mansuri and C-K. K. Yang, “Jitter optimization based on phase-locked loop design parameters,” IEEE J. Solid-State

Circuits, vol. 37, pp. 1375-1382, Nov. 2002.
[50] G. Chien and P.R. Gray, “A 900-MHz local oscillator using a DLL-based frequency multiplier technique for PCS

applications,” IEEE J. Solid-State Circuits, vol. 35, pp. 1996-1999, Dec. 2000.
[51] C.W. Zhang, X.Y. Wang, and L. Forbes, “Simulation techniques for noise and timing jitter in electronic oscillators,” IEE

Proc. Circuits Devices Syst., vol. 151, no. 2, pp. 184-189, April 2004.
[52] B.E.P. Box, W.G. Hunter, and J.S. Hunter, Statistics for Experimenters, John Wiley & Sons, New York, 1978.

