
Fast and Accurate Statistical Criticality
Computation under Process Variations

Hushrav D Mogal, Haifeng Qian,Member, IEEE,Sachin S Sapatnekar,Fellow, IEEE,
and Kia Bazargan,Member, IEEE

Abstract— With ever shrinking device geometries, process
variations play an increased role in determining the delay of a
digital circuit. Under such variations, a gate may lie on thecritical
path of a manufactured die with a certain probability, called the
criticality probability. In this paper, we present a new technique
to compute the statistical criticality information in a dig ital circuit
under process variations by linearly traversing the edges in its
timing graph and dividing it into “zones”. We investigate the
sources of error in using tightness probabilities for criticality
computation with Clark’s statistical maximum formulation . The
errors are dealt with using a new clustering based pruning
algorithm which greatly reduces the size of circuit-level cutsets
improving both accuracy and runtime over the current state of
the art. On large benchmark circuits, our clustering algorithm
gives about a250X speedup compared to a pairwise pruning
strategy with similar accuracy in results. Coupled with a localized
sampling technique, errors are reduced to around5% of Monte
Carlo simulations with large speedups in runtime.

I. I NTRODUCTION AND PREVIOUS WORK

With scaling technology trends, process parameter varia-
tions render the delay of the circuit as unpredictable [10],
making sign-off ineffective in assuring against chip failure.
Moreover, conventional Static Timing Analysis (STA) is un-
able to cope with a large process corner space. To tackle this
problem, over the recent years, CAD tools have accounted
for variability in the design flow. Of foremost concern is to
predict the circuit delay in the face of these process parameter
variations. Recent works concerning Statistical Static Timing
Analysis (SSTA) in [1], [13] deal with this issue by treating
the delay of gates and interconnects as random variables with
Gaussian distributions. The techniques developed effectively
predict the mean and variance of circuit delay distributionto
an accuracy level of under a few percent.

The unpredictability in circuit delay also undermines design
optimizations with timing considerations. For one, a gate
sizing operation typically proceeds by finding the most critical
path in a circuit and sizing the gates on this critical path. With
process variations in a design, no one path dominates the delay
of the circuit [8]. We therefore need the notion of probability
to make informed decisions as to the relative importance of
different gates in a design. The authors in [13] propose the
concept of a path criticality, which is the probability thata

H. Mogal, S. Sapatnekar and K. Bazargan are with the Electrical Engineer-
ing Department, University of Minnesota, Minneapolis, MN 55455.

H. Qian is with IBM Research, Yorktown Heights, NY.
This work was supported in part by the SRC under award 2007-TJ-1572.
Copyright (c) 2008 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

path in the manufactured chip is critical. This concept is also
extended to edge (node) criticalities in the timing graph of
a circuit, i.e., the probability that a path passing throughthe
edge (node) is critical. To this end, works like [2], [8] and [15]
attempt to compute the criticality probability of edges in a
timing graph, using a canonical first order delay model.

One of the earliest attempts to compute edge criticalities was
proposed in [13]. The authors in [13] perform a reverse traver-
sal of the timing graph, multiplying criticality probabilities of
nodes with local criticalities of edges, incorrectly assuming
the independence of edge criticalities despite structuraland
spatial correlations in the circuit. Subsequently, the work in [8]
defined the statistical sensitivity matrix of an edge in the
timing graph with respect to the circuit output delay, computed
by using the chain rule in the backward propagation of the
timing graph. Due to the matrix multiplications involved,
the complexity of their approach, although linear in circuit
size, could be potentially cubic in the number of principal
components if the matrices are not sparse.

In [2] the authors perturb gate delays to compute its effect
on the circuit output delay. The complexity of computation is
reduced using the notion of a cutset belonging to a node in the
timing graph. A cutset is a minimal set of edges, the removal
of which divides the timing graph into two disconnected
components. A key property is that the statistical maximum
of the sum of arrival and required times across all the edges
of a cutset gives the circuit delay distribuition. A gate sizing
operation on the source node of a cutset affects only the
arrival time of some of its edges. The circuit delay is then
incrementally updated to efficiently compute the circuit yield
gradient to gate sizing. This approach however, is potentially
quadratic in the size of the timing graph.

The cutset-based idea is extended in [15], to compute the
criticality of edges by linearly traversing the timing graph. The
criticality of an edge in a cutset is computed using a balanced
binary partition tree. Edges recurring in multiple cutsetsare
kept track of in an array based structure while performing the
timing graph traversal.

This paper, a preliminary version of which appears in [9],
makes the following contributions. First, similar to [15],we
propose an algorithm to compute the criticality probability of
edges (nodes) in a timing graph using the notion of cutsets.
Edges crossing multiple cutsets are dealt with using a zone-
based approach, similar to [16], in which old computations
are reused to the greatest possible extent. Second, unlike [9]
we investigate the effect of independent random variationson
criticality computation and devise a simple scheme to keep

2

track of structural correlations due to such variations. Third,
and more importantly, we examine the sources of error in
criticality computations due to Clark’s [3] formulation and
propose a clustering based pruning algorithm to effectively
eliminate a large number of non-competing edges in cutsets
with several thousand edges. The proposed scheme can also
help order statistical maximum operations in a set, a source
of significant error as shown in [12]. Localized sampling on
the pruned cutset further reduces errors in edge criticalities to
within 5% of Monte Carlo simulations, with large speedups
in runtime compared to a pairwise pruning strategy. Finally,
we compare the clustering scheme with our implementation
of [15] to show the improvement in runtime and accuracy.

The rest of this paper is organized as follows. Section II
describes the correlation model and provides definitions used
in the paper. Section III details our approach to compute
edge criticalities using zones. Section IV discusses the er-
rors involved in criticality computation. Our clustering based
framework for criticality computation is described in Sec-
tion V. Section VI gives details about techniques used by our
algorithm to further reduce errors. We present the results in
Section VII, followed by the conclusion in Section VIII.

II. BACKGROUND

This section briefly describes the correlation model used to
capture the process variations and provides definitions which
are used throughout the rest of the paper.

A. Correlation Model and SSTA

We use the spatial correlation model in [1] to model intra-
die parameter correlations. Briefly, the chip is divided into a
uniform grid in which gates in a grid square are assumed to
have perfect correlation and gates in far-away grid squares
have weak correlations. A covariance matrix of size equal
to the number of grid squares is obtained for each modeled
parameter. The model includes a global (inter-die) component
of variation common to each entry of the matrix. We model the
length and width of gates, and the thickness, width and inter-
layer dielectric thickness for interconnects. It is assumed that
zero-correlations exist between different types of parameters,
for example the length and width of a gate. We also model the
gate oxide thickness,tox, assuming independence between the
different gates on the chip. Although we do not model random
dopant fluctuations in this work, they can be dealt with in a
manner similar totox. All process parameters are assumed to
have a Gaussian distribution.

Delays of the edges in the timing graph (from gate fanins
to gate outputs and from gate outputs to gate fanouts) are
modeled in terms of their first order Taylor series expansions
with respect to the process parameters. The correlated process
parameters are orthogonalized using the principal component
analysis (PCA) technique wherein each correlated parameter is
expressed as a sum of independent and identically distributed
normal random variables, called the principal components
(PCs). Substituting the PCs back into the Taylor expansion
gives a first order canonical edge delay model. SSTA is then
performed by a forward propagation on the timing graph, as
in a regular STA. For more details, readers are referred to [1].

B. Definitions

Definition II.1 (Timing Graph). A timing graphG(V, E) of
a circuit is a directed acyclic graph withV nodes representing
gate terminals andE edges representing connections between
the terminals. Primary inputs and outputs are connected,
respectively, to a virtual source node,vs, and a virtual sink
node,vt. The delay of an edge inG is a random variable with
an associated probability density function (pdf).

Definition II.2 (Cutset). A cutset,Σ, is a set of edges/nodes
in G such thatevery vs to vt path passes exclusively through
a single member ofΣ.

Definition II.3 (Arrival Time (Required Time)). The arrival
time AT σ

i (required timeRTσ
i) at an edge/node,ei, in timing

graph,G, is the statistical maximum delay from any primary
input (output) to the edge/node. Like delays, these are also
random variables and have associatedpdfs. Traditionally,
RAT σ

i = T −RT σ
i , whereRAT σ

i is the required arrival time
at ei andT is the circuit timing specification.

Definition II.4 (Path Delay). The path delay of an edge/node
ei in G, denotedeσ

i , is defined as the sum of its arrival and
required times and is a random variable with apdf .

eσ
i = AT σ

i + RT σ
i (1)

In other words, the path delay of an edge/node represents the
statistical maximum delay of all paths passing through it. Each
path delayeσ

i is represented in canonical form in terms of the
independent and identical principal components (PCs)pj , as

eσ
i = µi +

∑j=k
j=1

aij · pj + ζi · ri (2)

Here aij is the sensitivity of edgeei to PC pj and k is the
total number of PCs. The mean of the edge path delay is
given byµi. Every edgeei is also associated with a random
uncorrelated componentri with sensitivityζi.

Definition II.5 (Complementary Path Delay). Given a cut-
set,Σ, in a timing graph,G, the complementary path delay,
eσ

i
′ , of an edge/nodeei ∈ Σ ⊂ G, is defined as

eσ
i
′ = MAXσ(eσ

j , ∀ej : ej ∈ Σ, ej 6= ei) (3)

where MAXσ denotes the statistical maximum operator
which returns the statistical maximum of a set of random
variables. Also,ei

′ is a fictional edge with path delayeσ
i
′ .

Definition II.6 (Critical Path). A critical path of a circuit
implemented on a silicon die is the path which determines
the maximum circuit delay. With process variations, different
paths can be critical on different dies. Therefore, in a proba-
bilistic scenario, every path of a circuit timing graph,G, has
a certain probability of being the critical path.

Definition II.7 (Local Criticality). The local criticality,τij , of
edgeei with respect toej, is defined as the probability that at
least one path of timing graphG passing through edgeei takes
on a value greater than or equal to any path passing through
edgeej , over all manufactured dies. The local criticality is
given by the tightness probability in [13] and computed as,

τij = Φ(
µi−µj

θ
) (4)

3

with θ =
√

σ2
i + σ2

j − 2 · ρij · σi · σj (5)

HereΦ is the cumulative distribution function (cdf) of a unit
normal random variable,N (0, 1). The mean and standard
deviation of an edge,ei, is given byµi and σi respectively.
The correlation between edgesei andej is given byρij .
Local criticality τij can be thought of as thedegree of domi-
nation of edgeei overej . It is easy to see thatτji = 1− τij .

Definition II.8 (Global Criticality). The global criticalityTi

(also referred to as criticality hereon) of edgeei in cutsetΣ
is the probability that it has maximum delay among all the
edges in the cutset, i.e.,

Ti = Pr(eσ
i ≥ eσ

j) { ∀ ej ∈ Σ, ej 6= ei }

= Pr(eσ
i ≥ eσ

i
′) (see Def. II.5)

= τii
′ (from Eq. 4)

(6)

In other words,Ti represents the probability that at least one
path passing throughei has a delay greater than any other path
not passing through it, over all the manufactured dies.Ti is
also referred to as thecriticality probability of ei.

Physically, the local criticality of an edgeei in a cutset
corresponds to a comparison of its path delay with respect
to another edge of the cutset whereas the global criticalityof
an edge corresponds to a comparison of its path delay with
respect to all other edges in the cutset. It follows that the global
criticality of ei ∈ Σ cannot be greater than its local criticality
with respect to any other edge inΣ, i.e.,

Ti ≤ τij { ∀ ej ∈ Σ, ej 6= ei } (7)

Definition II.9 (MAXθ). The statistical maximum,MAXθ,
of two normal random variables,x and y, in canonical form
(see Eq. 2) using Clark’s formulation [3], is given byz =
MAXθ(x, y), whereφ is the normalized Gaussian probability
density function (pdf), N (0, 1), θ is defined in Eq. 5 and

µz = τxy · µx + τyx · µy + θ · φ
(µx−µy

θ

)

σ2
z = τxy · (σ2

x + µ2
x) + τyx · (σ2

y + µ2
y)

+(µx + µy) · θ · φ
(µx−µy

θ

)

− µ2
z

azi = τxy · axi + τyx · ayi

ζz =
√

(τxy · ζx)
2

+ (τyx · ζy)
2

(8)

Here µz and σz are the mean and standard deviation ofz
respectively andazi is the computed sensitivity to principal
component,pi, in the canonical representation ofz (defined
in Def. II.4). A weighting factor is applied toazi and the
random componentζz to equate the variance ofz to σ2

z .
Note thatMAXθ is a linear approximation of the maximum

of two Gaussian random variables as another Gaussian and is
a particular implementation of the general statistical maximum
operatorMAXσ. For the rest of the paper it is assumed that
the time taken to computeτxy is similar to that taken to
computeMAXθ(x, y).

Fig. 1. Example timing graph,G with cutsets,Σ(1)−Σ(4).
The shaded portions are nodes and edges used to compute the
arrival and required time of edgeeen. The complementary path
delay ofeen is the statistical maximum delay of all paths not
passing through it, i.e.,eσ

en
′ = MAXσ(eσ

em, eσ
bm, eσ

fg, e
σ
ap).

III. STATISTICAL CRITICALITY COMPUTATION

We mention at the outset that our idea to compute edge
criticalities in a timing graph,G(V, E), is similar to [15], in
which the notion of cutsets is used. Although both algorithms
asymptotically take time linear in the number of edges inG,
we use a zone-based approach. Section III-A illustrates the
cutset computation procedure, followed by outlining a simple
statistical criticality algorithm, BSC, with runtime complexity
quadratic in the number of edges inG, in Section III-B.
The runtime complexity is reduced in Section III-C using
linear book-keeping data structures. The authors in [15] use a
binary tree like data structure for this purpose. Sections III-D
and III-E detail our zone-based approach, which reduces the
criticality computation runtime complexity to linear in the
number of edges inG. In [15], an array based structure is used
for this purpose. The primary advantage of our method is that
the cutsets can be processed in any order, i.e., to compute the
criticality of an edge in a cutset we need not compute the edge
criticalities in any of its predecessor or successor cutsets.

A. Cutset Computation

Fig. 1 illustrates the computation of cutsets on a timing
graphG(V, E). We topologically order the nodes inG from
the virtual source to virtual sink node, followed by grouping
them according to levels inG, such that nodes with a level
lower thanl are predecessors and nodes with a level greater
than l are successors of nodes at levell, denotedΣn(l). For
instance,Σn(2) = {ne, nf}. Edges crossingl are denoted by
Σe(l) and these are called mc-edges.

Definition III.1 (mc-edge). An mc-edge is an edge with end-
level at least two greater than its start-level.

Thus, with our level enumerated cutsets, these are edges
which cross over at least one cutset. In Fig. 1,eap andebm ∈
Σe(2) are a set of mc-edges crossing level2. However, edges
like efg and een are not mc-edges since they start at level
2 and end at level3 with no cross over. Consider the set of
nodes and edges given by,

Σ(l) = Σn(l) ∪ Σe(l) (9)

4

Algorithm 1 BSC (G(V, E)) // G = circuit timing graph
1: Perform a forward and reverse SSTA onG
2: Topologically orderG and find its cutsetsΣ
3: for all cutsetsΣ ∈ G do
4: for all edgesei ∈ Σ do
5: Computeeσ

i
′ // see Def. II.5

6: Ti = τii
′ // see Def. II.8

7: end for
8: end for

By Def. II.2, Σ(l) forms a cutset since everyvs to vt path
in G must pass through at least one member ofΣ(l) and its
elements are disjoint. Our aim is to compute the criticalities
of all edges inG, using Def. II.8. The topological level-
enumerated cutsets are necessary and sufficient because they
cover all the nodes and edges inG and no cutset is fully
contained in another cutset. The number of such cutsets equals
the number of levelsL in G. To compute the criticality of
all edges inG, we substitute nodes inΣn with their fanout
edges. For instance, at level2, we obtain the cutset of edges
Σ(2) = {eap, efg, ebm, eem, een}.

B. BSC: Basic SC Algorithm

The simplistic approach called BSC, shown in Algorithm 1,
computes global criticalities of all edges in timing graphG.
Step 1 performs a forward and reverse SSTA to compute path
delays (see Def. II.4) of all edges (nodes) inG followed by
topologically orderingG into levels to compute cutsets,Σ.
Steps 3-8 compute the criticality of an edge inΣ by first
computing its complementary path delay and then using Eq. 6.

Due to the presence of mc-edges, each cutset,Σ, potentially
contains O(E) edges, whereE is the number of edges
in the timing graph. Moreover, since Step 5 computes the
complementary path delay of an edge in time linear in the size
of Σ, this step takes quadratic time,O(E2) over all edges inΣ.
Over all cutsets inG, Algorithm 1 therefore has a complexity
of O(L · E2). Sections III-C and III-D discuss methods to
reduce the time complexity of the basic approach.

C. Linear Time Book-keeping

From the previous discussion, computing the complemen-
tary path delay of all edges in a cutset takes quadratic time.
Fig. 2 shows a cutset,Σ = {e1, e2, . . . , e5}. To compute the
complementary path delay of edgese1 ande2, we compute

eσ
1
′ = MAXσ(eσ

2 , eσ
3 , eσ

4 , eσ
5)

eσ
2
′ = MAXσ(eσ

1 , eσ
3 , eσ

4 , eσ
5)

(10)

Clearly, MAXσ(eσ
3 , eσ

4 , eσ
5) is a common term in Eq. 10

above. To speed up the computation of the complementary
path delay of edges in a cutset, our book-keeping ordered lists
aim to keep track of this common information.

Definition III.2 (Ordered Lists). Given an arbitrary setΣ =
{e1, e2, . . . , en} of n random variables, we define forward and
reverse ordered lists, denotedΥF andΥR respectively, as

ΥF (i) = MAXσ(eσ
1 , . . . , eσ

i) (11)

ΥR(i) = MAXσ(eσ
i , . . . , eσ

n) (12)

Fig. 2. Illustration of forward and reverse linear book-keeping
data structures,ΥF and ΥR, to compute the complementary
path delay ofe3 in cutset,Σ(2) = {eap, efg, ebm, eem, een},
from Fig. 1, with edges relabelede1, e2, e3, e4, e5 respectively.

The global criticality of an edgeei ∈ Σ (Def. II.8) can now
be computed as

Ti = Pr
(

eσ
i ≥ MAXσ(eσ

1 , . . . , eσ
i−1, e

σ
i+1, . . . , e

σ
n)

)

= Pr
(

eσ
i ≥ MAXσ(ΥF (i − 1), ΥR(i + 1)

)

(13)
Computation ofΥF and ΥR takes 2n MAXσ operations.
Eq. 13 takes twoMAXσ operations for a total of4n MAXσ

operations over all edges inΣ. The ordered lists help compute
criticalities of cutset edges inO(n) time, i.e., linear in the size
of the cutset. Fig. 2 illustrates this computation for edgee3.

D. Zone Computation

Using ΥF and ΥR, Steps 5-6 of Algorithm 1 now take
O(E) as compared toO(E2) time. Typical circuits however
contain many mc-edges (Def. III.1), as a result of which every
cutset potentially hasO(E) edges. Over allL cutsets, we could
takeO(L · E) time, still a considerable slowdown.

To see why we can do better, example timing graphG in
Fig. 3, depicts mc-edgese1, e2, e3, e4, e5 and e6. Consider
traversingG to compute the criticality of its edges using
Algorithm 1. To compute the criticality of an edge, sayex, at
level 1, we compute its complementary path delay,eσ

x
′ , which

includes MAXσ(eσ
1 , eσ

2). At level 2, for eσ
y
′ , we compute

MAXσ(eσ
1 , eσ

2 , eσ
3 , eσ

4). Clearly, the only information needed
at level2 with regard to edgese1 ande2 is MAXσ(eσ

1 , eσ
2),

already computed at level1. Algorithm 1 redundantly re-
computes this information at level2, thus accounting for the
multiplicativeL factor in the computation cost. The basic idea
of zones is to abstract out the maximum of the mc-edges
thereby reusing information to the greatest possible extent.

Let us reconsider traversing the timing graph in Fig. 3. At
level 1 we would like to forward accumulate the maximum
of mc-edgese1 and e2, used to compute the criticality of
edges at higher levels. We thus enter an accumulation phase
beginning at level1, to obtainZ1F = {e1, e2} andZσ

1F (1) =
MAXσ(eσ

1 , eσ
2), useful at level2 to find the maximum of

the mc-edges crossing it (to computeeσ
y
′). At level 2 we

accumulate edgese3 and e4 to obtainZ1F = {e1, e2, e3, e4}
andZσ

1F (2) = MAXσ(Zσ
1F (1), eσ

3 , eσ
4). The indices ofZσ

1F ,
denotedz1F , are time points recording the order in which

5

Fig. 3. An example timing graph,G, with mc-edges,Σe =
{e1, e2, . . . , e6}. Edgesex andey are not mc-edges.

mc-edges accumulate inZ1F . At level 3 however, we can no
longer accumulatee5 in Z1F , sincee2 has reached its end level
and does not contribute to the accumulated maximum inZσ

1F .
Z1F is thus a maximal set representing all edges accumulated
in phase1. Note that at this point,Zσ

1F is not useful to us.
We now begin a reverse accumulation phase, to compute the

order in which edges belonging toZ1F leave timing graph,G.
Once again, this is precomputed by a traversal ofG as,Z1R =
{e1, e3, e4} and Zσ

1R(1) = MAXσ(eσ
1 , eσ

3 , eσ
4) at time point

1. Similarly at time point2, Z1R = {e4} and Zσ
1R(2) = eσ

4 .
The indices ofZσ

1R, denotedz1R, are time points that record
the order in which mc-edges leaveZ1R. We concurrently start
a new accumulation phase beginning with edgee5 asZ2F =
{e5} andZσ

2F (1) = eσ
5 . The maximum of mc-edges crossing

levels greater than3 (for example at level4), can now be
computed usingMAXσ(Zσ

1R(1), Zσ
2F (1)).

Definition III.3 (Zone). A zoneZi is a set of mc-edges with
the end-level of any edge higher than the start-level of all
edges inZi, i.e., edges enter a zone before any edge exits it.

From the above description, at a particular level,l, of the
timing graph, the different mc-edges that cross it can be active
in different zones. At levell, the contribution,Zσ

iMAX , of
mc-edges belonging to zoneZi, is given respectively by the
appropriately indexed entry ofZσ

iF or Zσ
iR, depending on the

forward or reverse accumulation phase of the zone. The statis-
tical maximum of mc-edges crossing levell, denotedZσ

MAX ,
is obtained by computing the maximum of the contributions
of each zone,Zσ

iMAX , over all the zones.
Formally, mc-edges represent half-open intervals, from their

source to sink level, as in Fig. 4(a), denotedΣe, with the
corresponding interval graph representation shown in Fig.4(b),
denotedGe. The interval graph is a one-to-one representation
of intervals to vertices, with two vertices connected by an edge
if and only if their corresponding intervals overlap [4]. Inwhat
follows, the term interval is used interchangeably with edge.

By Def. III.3, a zone is any set of overlapping intervals.
In the interval graph representation, a zone is a clique (not
necessarily maximal). Hence, like [16], we aim to compute
the cliques in the interval graph. Since an mc-edge belongs
to a single zone, the cliques must be mutually exclusive.
Fig. 4(b) shows one set of mutually exclusive cliques which
forms the zones. We begin with edgee2 and greedily compute

(a) (b)

Fig. 4. Fig. 4(a) shows the mc-edges,Σe = {e1, . . . , e6}, of
the timing graph in Fig. 3, represented as half-open intervals.
Fig. 4(b) shows the corresponding interval graph representa-
tion, Ge, with zones,Z1 = {e1, e2, e3, e4} andZ2 = {e5, e6},
identified as mutually exclusive maximal cliques.

the maximal clique{e1, e2, e3, e4} to form zoneZ1. Next, with
e5 we get zoneZ2 with maximal clique{e5, e6}.

In the worst case, the number of zones,K, in a timing
graph with L levels is O(L). The idea is to minimizeK
so as to reduce the number ofMAXσ operations over all
zones to computeZσ

MAX . The Algorithm described in [6]
computes a minimum clique covering of an interval graph,
Ge. A simplicial vertex ofGe is defined as follows.

Definition III.4 (Simplicial edge). A simplicial vertex,vs,
of an interval graph,Ge, is a vertex, all of whose neighbors
form a clique withvs [4]. The intervales in the corresponding
interval representation,Σe, of Ge is called a simplicial edge.
It is easy to verify that an interval with minimum end-level is
a simplicial edge inΣe. In fact, the neighbors ofvs form a
clique which is maximal. In Fig. 4,e2 is a simplicial edge.

Algorithm 2, like [6], finds a minimum size clique covering
of the interval graph,Ge, by repeatedly finding a simplicial
edge inΣe, and removing all the edges overlapping it, i.e.,
it repeatedly computes mutually exclusive maximal cliquesin
Ge. These cliques form the zones in our criticality computation
algorithm. However, unlike [6], a separate step to sort the
intervals according to their end points is not needed, because
of the topological ordering of the timing graph described in
Section III-A. For the example interval representation in Fig. 4,
we computee2 ∈ Σe as the first simplicial edge, with zone
Z1 = {e1, e2, e3, e4}, followed by e5 ∈ {Σe − Z1}, as the
second simplicial edge, with zoneZ2 = {e5, e6}.

Algorithm 2 computes zones linearly traversing timing
graph,G, from the virtual source to virtual sink node, identi-
fying mc-edges and reporting the mutually exclusive maximal
cliques by keeping track of when an edge enters (Steps 13-
16) and leaves (Steps 4-12)G. The zones are computed as
Z = {Z1 ∪ Z2 ∪ . . . ∪ ZK}, and the claim is thatK is the
minimum number of zones (cliques) needed to coverΣe (the
interval graph,Ge). The following property proves this claim.

Property III.1. In Algorithm 2, the first edge,es
j , to exit its

zone,Zj , is a simplicial edge of the intervals corresponding
to Σe − {Z1 ∪ Z2 ∪ . . . ∪ Zj−1}.

Proof: Step 7 computes the first edge,es
j , to exit its zone,

6

Algorithm 2 Z = ComputeZones (Σe)
// Σe = mc-edges in the timing graph organized as per levels
// Z = list of mutually exclusive zones,{Z1, . . . , ZK}

1: K = 1, Z = { } // initialize the list of zones
2: ZK =

{

ZKF = { }, ZKR = { }
}

, zKF = zKR = 0
// ZKF (ZKR) records the history of edges entering
// (leaving) zoneZK , indexed by pointerzKF (zKR)

3: for all levels l ∈ G do
4: for all ej ∈ Σe with end levell do
5: Zj = zone ofej

6: Insertej into ZjR, ++zjR // ej exits zoneZj

7: if Zj == ZK then // es
j = ej is the first to exitZj

8: ++K // create new zone
9: ZK =

{

ZKF = {}, ZKR = {}
}

, zKF = zKR = 0
10: InsertZK into Z
11: end if
12: end for
13: for all ei ∈ Σe with start levell do
14: Set zone ofei to ZK

15: Insertei into ZKF , ++zKF // ei enters zoneZi

16: end for
17: end for

// Compute book-keeping lists for all zones
18: for all Zi ∈ Z do
19: ComputeΥiF (ΥiR) for ZiF (ZiR) // Eq. 11 (12)
20: end for
21: return Z

Zj . Edgees
j has minimum end-level,lj , in Σe − {Z1 ∪ Z2 ∪

. . . ∪Zj−1} and therefore is a simplicial edge inΣe − {Z1 ∪
Z2 ∪ . . . ∪ Zj−1}. If this was not the case, consider another
edge,en, with end-level,ln < lj, en /∈ {Z1∪Z2∪. . .∪Zj−1}.
Clearly,en /∈ Zk, k > j, because edges are assigned to zones
in sequence implying its start-level (and thereby its end-level,
ln) must be greater thanlj . Thereforeen ∈ Zj, which is again
a contradiction since it impliesln ≥ lj .

Using Property III.1, Algorithm 2 like [6] repeatedly finds
simplicial edges inΣe to compute a minimum size clique
cover of its corresponding interval graph representation,Ge.

Lists ZiF andZiR record the history of mc-edges entering
and exiting zoneZi, indexed by pointersziF andziR respec-
tively (Steps 15 and 6). For the example in Fig. 4(a), the lists
for zonesZ1 andZ2 are computed as,

Z1F = {e1, e2, e3, e4} Z2F = {e5, e6}

Z1R = {e4, e3, e1, e2} Z2R = {e6, e5}
(14)

For each zoneZi, Step 19 computes the forward (ΥiF) and re-
verse (ΥiR) book-keeping lists, forZiF andZiR respectively.

In terms of computational complexity, Steps 3-17 of Algo-
rithm 2 process each edge inΣe twice, first at its start-level
and then at its end-level. Step 19 computes the forward and
reverse book-keeping lists for the mutually exclusive zones in
O(|Z1|)+O(|Z2|)+ . . .+O(|ZK | = O(|Σe|) time, where|Zi|
is the number of edges in each zone andK is the minimum
number of zones to cover the mc-edge interval representation,
Σe, of the timing graph. Overall, the runtime of Algorithm 2

Algorithm 3 ZSC (G(V, E)) // G = circuit timing graph
1: Perform a forward and reverse SSTA onG
2: Topologically orderG and find its cutsetsΣ
3: ComputeΣe, the set of mc-edges
4: Z = ComputeZones(Σe)
5: for all levels l ∈ G do
6: for all ej ∈ Σe with end-levell do
7: ++zjR // ej exits zoneZj , update reverse pointer
8: ZjMAX = ΥjR(zjR)
9: end for

10: for all ei ∈ Σe with start-levell do
11: ++ziF // ei enters zoneZi, update forward pointer
12: ZiMAX = ΥiF (ziF)
13: end for
14: Zσ

MAX = −∞ // maximum over all active zones
15: for all Zk ∈ Z do
16: Zσ

MAX = MAXσ(Zσ
MAX , Zσ

kMAX)
17: end for
18: Create fictional edgeZMAX with path delayZσ

MAX

19: Σ = {Fanout edges of the nodes inΣn(l)} ∪ ZMAX

// see Section III-A
20: CreateΥF andΥR for Σ // see Section III-C
21: ComputeTi ∀ ei ∈ Σ // see Def. II.8
22: end for

is O(|Σe|), i.e., linear in the number of mc-edges.
It should be noted that as shown in [6], this approach is

optimal, i.e., the lower bound on the computational complexity
of computing a minimum clique cover isΩ(|Σe| log |Σe|), if
the mc-edges are not sorted by their end points.

E. ZSC: Zone Based SC Algorithm

Our zone-based criticality computation technique, ZSC, is
shown in Algorithm 3. Step 4 computes zones in timing graph
G, in time linear in the size ofΣe, the set of mc-edges. We
then forward traverseG from vs to vt. Steps 6-13 update
the forward and reverse history pointers of each zone, to
compute the contribution,Zσ

iMAX , of the mc-edges belonging
to zone,Zi, in constant time. Steps 14-17 computeZMAX , a
fictional edge representing the statistical maximum,Zσ

MAX

of mc-edges crossing a particular level, depending on the
contribution,Zσ

iMAX , to each zoneZi. Since we have on the
order ofO(L) number of zones, over all levels ofG, this step
takesO(L2) time. Finally, using the book-keeping ordered lists
from Section III-C, we compute global criticalities of edges
in cutsetΣ, in time linear in the number of edges inΣ. The
overall runtime of the ZSC algorithm is thereforeO(E +L2),
which for a reasonably sized practical circuit isO(E).

In summary, like [15], the zone-based approach computes
the criticality of edges in timing graphG(V, E), with a
linear runtime complexityO(E). Although both algorithms
asymptotically takeO(L) time to compute theMAXσ of
mc-edges crossing a level, Algorithm 2 computes a minimum
clique cover and helps to reduce the total number ofMAXσ

operations computed in Steps 14-17 over all the cutsets. More
importantly, our algorithm can compute the criticality of edges
in a cutset, independently of other cutsets.

7

TABLE I
COMPARISON OFMONTE CARLO AND MAXθ FOR THEabcPROBLEM

Method Ta Tb Tc

MC 0.923 0.000 0.077
Clark 0.356 0.297 0.079
% Error δ 56.7% 29.7% 0.2%

IV. ERRORS INZSC

We ran Algorithm 3 on a subset of the ISCAS89 bench-
marks to compute the global criticalities of all edges in the
timing graph,G. We compared our implementation with a
Monte Carlo (MC) simulation of10000 samples and noted
the absolute maximum difference in the criticalities of edges
(denotedδ hereon). The difference was larger than50% (for
example, an edge reported by MC as80% critical was reported
by Algorithm 3 as30% critical). In the following sections, we
illustrate the sources of these errors with3 random variables
in a simple example we call theabc problem.

A. The abc Problem

As an illustration of these errors, consider a cutsetΣ with
random variablesa, b andc, each with independent principal
components (PCs)p1 and p2 (where pi is a unit normal
Gaussian,N (0, 1)), shown below,

a = 4.000 + 0.5000 · p1 + 0.5000 · p2

b = 3.999 + 0.4999 · p1 + 0.5001 · p2

c = 3.800 + 0.6001 · p1 + 0.3999 · p2

(15)

It can be observed thata and b are nearly identical highly
correlated random variables, and for any sample value of the
pi

′s, a ≥ b (high correlation coupled with the difference in
means ensures thatPr(b ≥ a) ≈ 0.0).

We ran a MC simulation with100000 samples to determine
the global criticalities ofa, b andc. Table I shows a comparison
with Clark’s formulation,MAXθ (see Def II.9). The columns
Ti, i ∈ {a, b, c}, depict the global criticality of variablei. As
seen in the last row of Table I, errors of57% in the global
criticality of a and30% in that of b were observed.

B. Local and Global Errors

For a better illustration of theabc problem, Fig. 5 depicts
the scenario of Eq. 15, using just one PC,p. We make the
following observations.

1) The local criticality ofb with respect toa, i.e., τba ≈ 0.
This is indicated by a large value ofγ ≫ 3σp (the region
where b ≥ a). Moreover, Clark’s tightness probability
formulation from Eq. 4 also givesτba ≈ 0.

2) Global criticality ofb, Tb ≈ 0. This is evident in Fig. 5
where regionsa ≥ MAXθ(b, c) and c ≥ MAXθ(a, b)
cover the entire probability space.

Observations 1 and 2 are consistent with Eq. 7. Now
consider computing the global criticality ofb, using the cutset
approach. We first compute its complementary path delay
b′ = MAXσ(a, c). It follows from Def. II.8 thatTb = Pr(b ≥

Fig. 5. A pictorial depiction (not to scale) of theabcexample
with random variablesa, b andc with one PC,p.

MAXσ(a, c)). With Clark’s formulationMAXθ, for the sta-
tistical MAXσ, we getTb = Pr(b ≥ MAXθ(a, c)) = 0.297.

Intuitively, for this scenario, Clark’s formulation is accurate
with respect to local criticalitytba of b, but it overestimates
its global criticalityTb, and is inconsistent with Eq. 7.

Definition IV.1 (Local Errors). With respect to Clark’s
formulation, edgeei in cutsetΣ is said to havelocal errors
iff there exists some edgeej ∈ Σ with respect to which its
local criticality is less than its global criticality, i.e.,

{ ∃ ej ∈ Σ, ej 6= ei } : τij < Ti (16)

In other words, Eq. 7 does not hold. By definition, local errors
always overestimate the criticality of an edge inΣ. In our
toy example,b exhibits local errors of magnitude0.297, with
respect toa. Local errors were found to propagate in the ZSC
algorithm, where variables (edges) likeb that should not have
been critical, were found to have a significant criticality.

It must be pointed out that as was shown in [12], the order
of variables plays an important role due to Clark’sMAXθ

approximation. For theabc problem however, ordering vari-
ables (a and c) in the MAXθ operation will not eliminate
local errors inb. Local errors are an artifact of the manner in
which we compute global criticalities.

Local errors only present a part of the picture with respect
to the overall errors seen in criticality computation. This
is because of the inherent inconsistencies in using Clark’s
formulation,MAXθ, to approximate the maximum of a set
of Gaussian random variables as another Gaussian. The works
in [12] and [17] for instance, give a detailed analysis of the
errors involved in such an approximation.

Definition IV.2 (Global Errors). With respect to Clark’s
formulation, edgeei in a cutsetΣ is said to haveglobal errors,
iff its computed criticalityTi differs from its true criticality
and the edge does not exhibit local errors, i.e.,

Ti ≤ τij { ∀ej ∈ Σ, ej 6= ei } and Ti in error. (17)

Global errors cause erroneous values of the global criticality
of an edge,ei, in a cutset, due to the inaccuracies in the com-
putation of its complementary path delay,eσ

i
′ , using Clark’s

approximation. For theabc example,Ta is underestimated by

8

0.567. Note that the value ofTa is consistent with Eq. 7, since
both τab = 1.0 andτac = 0.921 are greater thanTa = 0.356.

Two observations motivate the need for the pruning based
criticality algorithm, described in Section V. First, withrespect
to local errors in variableb, if we choose to “ignore” variable
c and compute the criticality ofb directly with respect to
a, we get,Tb = τba = 0.0, a better result, sincea almost
completely dominatesb. Second, with respect to global errors
in variablea, if we choose to “ignore” variableb due to its
high dominance with respect toa and compute the criticality
of a directly with respect toc, we get,Ta = τac = 0.921, a
better result, since the computation ofMAXθ(b, c) (and hence
the inaccuracy involved in it) is avoided.

In summary, although local and global errors result from
Clark’s MAXθ linear approximation, local errors are an arti-
fact of the manner in which we compute global criticalities of
edges in a cutset whereas global errors are more fundamental,
arising due to the inherent approximation ofMAXθ.

V. CLUSTERING BASED STATISTICAL CRITICALITY

COMPUTATION

Definition V.1 (Dominant and Non-dominant Edges). An
edge,ei, in set,Σ, is dominant iff its local criticality with
respect to all other edges inΣ is above a thresholdε, i.e.,

τij > ε { ∀ ej ∈ Σ, ej 6= ei } (18)

Otherwise, edgeei is said to benon-dominant in Σ, i.e.,

{ ∃ ej ∈ Σ, ej 6= ei } : τij ≤ ε (19)

Definition V.2 (Mutually-dominant Edges). A set, Σ, of
edges are said to bemutually dominant iff each edge inΣ
is dominant, i.e.,

τij > ε { ∀ ei, ej ∈ Σ, ej 6= ei } (20)

As seen in the previous section, non-dominant edges (likeb
in Fig. 5) in a cutset exhibit local errors. Moreover, they also
contribute to global errors of other edges in the cutset (like
a in Fig. 5). To avoid the bulk of these errors, we propose
to prune the cutset, eliminating its non-dominant edges from
injecting errors in global criticality computations.

Pruning is justified by Eq. 7, wherein eliminating edgeei

with local criticality lower than a sufficiently small threshold
valueε does not hurt global criticality computations because
Ti ≤ ε. The benefits are accentuated in cutsets with dominant
edges that have large global criticalities, since the sum of
global criticalities across a cutset must equal1.0 (implying
that many edges have very small local criticalities).

However, not every edge with global criticality belowε can
be eliminated by pruning, particularly if its local criticality is
greater thanε. Such edges cause global errors in the cutset.

A. nC2 Cutset Pruning

A straightforward approach to prune a cutset would be to
perform a pairwise comparison of edges, eliminating those that
have a local criticality less than a predefined thresholdε. The
main drawback of this approach is its prohibitive quadratic
runtime complexity ofO(n2), due to nC2 local criticality
computations, wheren is the number of edges in the cutset.

Algorithm 4 K = KCenterPrune (Σ, ε, S)
// Σ = cutset of edges;ε = pruning threshold;
// S = maximum cluster size;K = # clusters
1: Ω = { } // set of clusters
2: σ = { } // initialize the1st cluster
3: K = 0 // total number of clusters present inΩ
4: seedχ ∈ Σ = object (or edge) with maximum meanµ
5: Insertχ as the center of clusterσ
6: for all i ∈ Σ do
7: if τiχ > ε then // see Def. II.7
8: Inserti in σ // object i not dominated byχ
9: end if

10: if τχi ≤ ε then
11: Mark χ = pruned // objectχ dominated byi
12: end if
13: end for
14: Compute radius,rσ and distal element,Rσ of σ
15: Insert clusterσ into Ω; ++K
16: while (maximum size of a cluster inΩ > S) do
17: σ = CreateNewCluster (Ω)
18: Insert new clusterσ into Ω; ++K
19: end while
20: Insert all un-pruned objects ofΩ in Σ and returnK

B. Clustering Based Cutset Pruning and Ordering

To overcome the quadratic runtime complexity overhead of
the aforementionednC2 approach, we present a new clustering
based pruning technique which uses theK-center clustering
algorithm of [5].

The basic idea is to prune the non-dominating edges from
the cutset to return a set of mutually dominant edges. Through-
out the execution of the algorithm, a dominant edge, selected
from the current set of edges,Σ, is used to prune out non-
dominant edges fromΣ. Clustering facilitates the selection of
dominant edges. The variables used in the algorithm are:

σ: A cluster containing at least one object.
κ: Each clusterσ contains a center,κ.

diκ: Distance of an object,i, from its cluster center,κ, is its
local criticality, τiκ, with respect toκ.

rσ: Radius of clusterσ, is the distance of the object farthest
from centerκ, i.e., rσ = max(diκ) ∀i ∈ σ.

Rσ: A distal object of clusterσ is an object with maximal
distance fromκ, i.e., Rσ = j : djκ = rσ. In case of
multiple distal elements we choose one arbitrarily.

Algorithm 4 describes the procedure. We first choose the
seed χ, as the object with maximum mean in cutset,Σ
(Steps 4-5). Next, Steps 7-9 pruneΣ with respect to seed,
χ, also markingχ as pruned if its local criticality with
respect to any other object inΣ is less thanε (Steps 10-12).
Steps 16-19 iteratively compute new clusters from existing
ones (Algorithm 5) until no cluster has size exceedingS.
Step 20 returns the remaining un-pruned objects inΣ.

In Algorithm 5, the distal element,χ, of the cluster,m, with
maximum radius is chosen as the center of a newly created
cluster,σ (Steps 1-4). Intuitively,χ is the object upon which
its center has the lowest degree of domination (Def II.7) and

9

Algorithm 5 σ = CreateNewCluster (Ω)
// Ω = set of clusters;σ = new cluster
1: σ = { } // initialize new clusterσ
2: m = cluster with maximum radius inΩ
3: χ = Rm // distal element of clusterm
4: Insertχ as center of newly created clusterσ

// PruneΩ with respect toχ
5: for all j ∈ Ω, j 6= κ, κ = center of a cluster inΩ do
6: if τjχ < ε then // χ dominatesj (see Def. II.7)
7: Deletej from Ω // prunej
8: else if τjχ < djκ then // χ dominatesj more thanκ
9: Removej from its current cluster, insertj in σ

10: end if
11: end for
12: if ∃ j ∈ Ω : (1 − τjχ) ≤ ε then // j dominatesχ
13: Mark χ = pruned
14: end if
15: Computerσ andRσ for σ and all existing clusters inΩ
16: return σ

Fig. 6. Illustration of the clustering based pruning procedure
of Algorithm 4. Crosses indicate dominant objects and dots
indicate non-dominant objects. The clustering distance isthe
local criticality (τai) of an edge (i) from its cluster center (a).

hence a good candidate to facilitate the pruning of other edges
in the cutset. Therefore it is chosen as the center of the new
cluster. Step 7 usesχ to prune objectsj (with local criticality
with respect toχ less thanε) from their respective clusters.
If χ has a higher degree of domination overj compared to
its current centerκ, j is removed from its current cluster and
inserted into new clusterσ (Steps 8-10). Intuitively, a greater
degree of domination between two edges results in smaller
global errors inMAXθ. If the newly added cluster center
χ, is dominated, it is marked pruned (Step 13).We return the
newly created clusterσ after adjusting the radius and the distal
element of all currently existing clusters inΩ (Steps 15-16).

Fig. 6 illustrates the execution of Algorithm 4 on a cutset of
9 objects labeleda-i with pruning thresholdε = 0.05, taken
from one of the ISCAS89 benchmarks (s9234). The relevant
local criticalities of the objects are,τba = 0.19, τca = 0.18,
τda = 0.01, τea = 0.0, τfa = 0.17, τga = 0.17, τha = 0.17,
τia = 0.17, τfb = 0.02, τgb = 0.02, τib = 0.06 and τhc =

0.03. Initially, a is chosen as the center of the1st cluster,
pruning out objectsd ande. Next,b, a distal element of cluster
1 becomes the center of cluster2, pruning out objectsf andg.
Also, sinceτib < τia, objecti is absorbed into cluster2. Next
c, the distal element of cluster1, the cluster with maximum
radius, is chosen as the center of cluster3, pruning object
h. Finally, objecti becomes the center of cluster4 and the
algorithm returns mutually dominant objectsa, b, c and i.
The algorithm has the following properties.

Property V.1. At any iteration, all objects inΩ (excluding
cluster centers marked pruned) are dominant with respect to
all existing cluster centers.

Proof: To avoid being pruned, objects must be dominant
with respect to seedχ, which is also the center of the1st

cluster (Step 8 of Algorithm 4). Moreover, every objectj is
compared with all newly added cluster centers in Line 7 of
Algorithm 5. Clearly, any objectj must be dominant with
respect to these centers to avoid being pruned. Moreover,
Lines 11 of Algorithm 4 and 13 of Algorithm 5 compare every
cluster center with every object for dominance. Although not
immediately removed fromΩ, centers are marked pruned if
they are non-dominant with respect to other cluster objects.

Property V.2. With S = 1, KCenterPrune(Σ, ε, 1) returns a
set of mutually dominant edges (see Def.V.2) inΣ.

Proof: When S = 1, each cluster inΩ contains only
one object, its cluster center. From Property V.1 above we
know that these are either marked pruned or are dominant
with respect to other cluster centers. It follows from step 20
of Algorithm 4 (which returns all un-pruned objects ofΩ), Σ
contains mutually dominant objects.

Property V.3. For any clusterσ ∈ Ω, its center,χ, has a
higher degree of dominationover its members than any other
cluster centerκ, i.e.,

τχj > τκj { ∀ j ∈ σ, κ ∈ Ω, κ 6= χ} (21)

Proof: This is evident from Steps 8-10 of Algorithm 5.
Each object inΩ is compared with the new cluster centerχ.
The conditionτjχ < djκ is equivalent toτχj > τκj , i.e., the
new cluster center,χ, has a higher degree of domination over
objectj than its cluster center,κ.

Property V.4. For a cutsetΣ of sizen andK clusters returned,
KCenterPrune takesO(nK) time.

Proof: A single run of Algorithm 5 compares every object
in Σ with centerχ of the new clusterσ, taking O(n) time.
Since each iteration in Algorithm 4 returns a new cluster, with
K clusters returned, the overall runtime isO(nK).

C. CPSC: Clustering Based SC Algorithm

Algorithm 6 derives mainly from Algorithm 3 combined
with Algorithm 4 to compute the statistical criticality (SC).
The main difference is Steps 3-15 (differ from Steps 6-13 of
Algorithm 3), which update the zone information, accounting
for pruned edges in cutsets from previous levels. Unlike Algo-
rithm 3, we only compute the contribution of an mc-edge,ei,
to its zone,Zi, if it is un-pruned in previous levels. Therefore

10

Algorithm 6 CPSC (G(V, E), ε)
// G = circuit timing graph;ε = pruning threshold
1: Algorithm 3, Steps 1-4 to obtain a cutsetΣ of edges
2: for all levels l ∈ G do
3: for all ej ∈ Σe with end-levell do
4: if ej is the first edge to exit zoneZj then
5: Remove pruned edges fromZjR; RecomputeΥjR

6: end if
7: if ej is un-prunedthen
8: ++zjR // ej exits zoneZj , update reverse pointer
9: ZjMAX = ΥjR(zjR)

10: end if
11: end for
12: for all un-prunedei ∈ Σe with start-levell − 1 do
13: Zi = zone ofei

14: Zσ
iMAX = MAXσ(Zσ

iMAX , eσ
i)

15: end for
16: Algorithm 3, Steps 14-19 to compute cutsetΣ
17: K = KCenterPrune (Σ, ε, 1) // pruningΣ
18: KCenterPrune (Σ, ε, S) // orderingΣ
19: Algorithm 3, Steps 20-22 to compute the global criti-

cality of all edges in the prunedΣ
20: end for

we do not need forward book-keeping data structureΥiF , to
computeZσ

iMAX , the maximum of mc-edges belonging toZi,
crossing the current level. Instead,Zσ

iMAX is computed online,
in Steps 12-15. Due to pruning, the computed reverse book-
keeping data structure,ΥjR, of a zoneZj , may be invalid. On
encountering the first edge leaving this zone, we recompute
ΥjR, removing all pruned edges from it (Steps 4-6). This is
allowed because all edges enter a zone (and therefore it is
known if they have been pruned) before any edge exits it.

Step 17 derives a set of mutually dominant edges from
cutsetΣ, facilitated using Property V.2. Step 18 orders cutset
Σ, facilitated by Property V.3. There can be many different
orderings when performing the statistical maximum of edges
in the cutset [12]. Property V.3 proves that a cluster center
has a higher degree of domination over its members than any
other cluster center. Therefore, in the order of edges returned,
an edge is closer to its most dominating center (as opposed to
the case in which a purely random order were chosen). The
intuition is that a greater degree of domination between two
edges would result in smaller errors in theMAXθ operation,
as shown in [17]. Algorithm 4 stops execution when the
maximum cluster size equalsS. If S were set to a large
number, like the size of the cutset, the algorithm would exit
without any clustering iterations and a random ordering would
result. For our experiments, we heuristically chose a cluster
sizeS equal to the square root of the number of edges in the
cutset, to balance out the number of edges in each cluster and
help to reduce the runtime of the ordering step by performing
a fewer number of iterations. Our framework is also flexible
enough to accommodate other error metrics like [12] or the
skewness. Such an ordering cannot be obtained with thenC2

pruning strategy of Section V-A. Section VI-A, discussed

later, uses a sampling technique which obviates the need
for the ordering step. Property V.4 ensures that in a cutset
with n edges having a small number of dominant edges,K
(K ≪ n), Algorithm 4 runs inO(n) or linear time.

In summary, our clustering based algorithm eliminates non-
dominant edges from the cutset so as to reduce errors (due to
Clark’s maximum operation,MAXθ) in the global criticality
computation of the dominant edges. Ideally, computing the
maximum operation accurately would significantly reduce
errors in global criticality. Various techniques have beenused
to try to reduce the errors in the linear approximation of a
set of Gaussian random variables. In [12], the authors give
a detailed treatment of the errors in theMAXθ operation
by using error preserving transformations and precomputed
lookup tables. These tables are used heuristically to ordera set
of random variables and compute their statistical maximum.
In [17] the authors postpone the computation of the linear
maximum during SSTA, if it results in significant non-linearity
(distribution skewness is used as a measure of non-linearity).
The maximum is propagated as a maximum tuple in such
cases. At the primary outputs, a Monte Carlo simulation is
performed on the tuple to obtain a better estimation of the
circuit delaypdf . The authors in [7] use a moment matching
technique to compute non-linear distributions more accurately.
Such a technique can be used to get rid of the linearity
restriction of theMAXθ operation to reduce the errors in
criticality computation.

VI. REDUCING ERRORS

This section describes a simple solution to deal with global
errors not eliminated by pruning. We then explore a popular
graph reduction technique to speed up criticality computation
and finally deal with errors due to independent parameter
variations like gate oxide thickness,tox.

A. LS: Localized Sampling

To tackle edges having global errors (Def. IV.2), we perform
a quick localized Monte Carlo sampling of the edges in
a cutsetΣ, pruned using Algorithm 4. The procedure is
described in Algorithm 7. The inputs areΣ; Nls samples of
the k independent and identically distributed (i.i.d.) Gaussian
principal components (PCs) (Eq. 2) stored inΨp; arrayR of
Nls i.i.d. Gaussian samples for each edge inΣ. Every sample
is used to instantiate the edgesei in Σ (Steps 2-4), from which
we compute the edge with maximum delay (Step 5). Array
entry M [i] keeps count of the number of samples for which
an edgeei takes on the maximum delay. This helps us compute
the global criticality,Ti, of all edgesei ∈ Σ in Step 7.

Consider a cutsetΣ = {e1, . . . , en} with edge path delays,
{eσ

1 , . . . , eσ
n}, represented in terms of thek PCs (for the

purpose of simplicity we ignore the spatially uncorrelated
random component of variationri). In the k-dimensional
space, letR be the region whereeσ

i takes on the greatest value
in the probability space, i.e.,R is the region of dominance of
edgeei in the cutset. The global criticalityTi of edgeei is
given by the volume integral of the jointpdf of the k i.i.d.

11

Algorithm 7 LS (Σ, Ψ, R)
// Σ = cutset;Ψp = Nls x k array of i.i.d. gaussian samples
// R = Nls x |Σ| array of i.i.d. gaussian samples
1: for n = 1 to Nls do
2: for all ei ∈ Σ do
3: di = µi +

∑j=k
j=1

aij · Ψp[n][j] + ζi · R[n][i]

// Ψp[n][j] = value of thejth PC, pj, and
// R[n][i] = value of random component,ri,
// for edgeei at simulation pointn (see Eq. 2)

4: end for
5: Increment countM [i] of edgeei with maximumdi

6: end for
7: ComputeTi = M [i]/Nls for all ei ∈ Σ

PCs overR. The LS procedure in Algorithm 7 is a Monte
Carlo simulation to compute the volume integral of the joint
pdf over regionR. The accuracy of LS therefore depends
on the number of samplesNls and the accurate computation
of the path delay for every edge in the timing graph, or in
other words, the forward and reverse SSTA to capture the
sensitivities of edge path delays to thek i.i.d. PCs. Intuitively,
since edges with high global criticality (large volume integral)
have a region of dominanceR near (or including) the origin,
the number of samples needed for convergence is not very
large. This will be seen in the results Section VII.

It should be noted that we apply the LS procedure to every
cutset of the timing graph. The speedup in LS stems from the
reduction of the cutset size using the clustering based pruning
procedure of Algorithm 4.

B. Timing Graph Reduction

Since we perform a localized sampling on all the levels of
the timing graph,G, reducing the number of levels,L, can
speed up the runtime. We exploit the fact that the criticality
of a node inG is equivalent to the sum of its fanin edge
or fanout edge criticalities. To do this, we perform a timing
graph reduction (TGR) procedure on nodes with a single fanin
or fanout. A straightforward and practical example of this
reduction is an inverter chain, wherein a path enters the chain
if and only if it passes through all the edges in the chain.
Therefore, the criticality of all these edges is the same.

The idea of TGR is borrowed from [14], wherein the objec-
tive is to eliminate timing graph nodes to reduce the number
of variables and constraints in circuit timing optimization. To
perform a TGR we scan timing graphG in the forward and
reverse directions merging fanins of single fanout nodes into
their fanout and fanouts of single fanin nodes into their fanin
respectively. Table II shows the effect of TGR on the number
of levels,L, and maximum cutset size,η, on the five largest
benchmark circuits. Column2 shows the size of the circuit.
As their names imply, columns “TGR” and “No TGR” are
results with and without TGR respectively, applied toG.

C. Spatially Uncorrelated Independent Parameter Variations

Revisiting Eq. 2, independent (spatially uncorrelated) pa-
rameter variations like the variation in oxide thickness,tox,

TABLE II
THE ISCAS89BENCHMARKS WITH NUMBER OF GATES, NG , AND

INDEPENDENT SOURCES OF VARIATION, Nζ . THE EFFECT OFTGR ON
CIRCUIT DEPTH, L, AND MAXIMUM CUTSET SIZE , η IS ALSO SHOWN.

Name # of Nζ L η

Gates TGR No TGR TGR No TGR
s13207 7951 22330 63 16 1329 2599
s15850 9772 27290 86 21 1688 2411
s38417 22179 64056 51 13 2821 6638
s35932 16065 56538 33 10 5473 10742
s38584 19253 65512 60 19 5680 10374

Fig. 7. A reconvergent structure from one of the ISCAS89
benchmarks with a high criticality path indicated using bold
lines. Arrival time correlations of fanouts in cutsetΣ, denoted
ri, due to variation in oxide thickness,∆tox, of gate G11,
cause structural correlations in reconvergent fanouts like G41.

of a transistor, are captured by the single random variableri.
This is done to avoid tracking the individual contribution of
tox for every transistor in the design as a separate term in the
canonical form, as done in [8]. However, errors can occur in
the path delay of reconvergent paths, as shown in Fig. 7 taken
from one of the ISCAS89 benchmarks.

The figure shows gateG11 driving 5 other gates. The arrival
time (Def. II.3) at the fanouts ofG11 consists of a structurally
correlated term to capture the variation in the oxide thickness
of transistorG11, denoted∆tox. Since the canonical form
consists of a single term to capture spatially uncorrelated
variations,ri, in cutsetΣ, these are considered independent,
and may cause errors in high criticality paths (shown in bold)
particularly when such fanouts have a high degree of correla-
tion. In our experiments, ignoring the structural correlations
led to errors of upto60%, the main culprits being cutsets
with reconvergences similar to Fig. 7. Also, to calculate the
statisticalMAXσ at the convergence of the paths containing
gatesG21, G22, . . . , G25, i.e., at gateG41, we need to factor
in the common∆tox of gateG11 to reduce inaccuracies in
MAXσ. To keep track of the structural correlations due to
spatially uncorrelated independent parameter variationslike
∆tox, on encountering a multiple fanout gate likeG11, we
expand the canonical form of the path delay with its∆tox vari-
ation to accurately compute the arrival time of the downstream

12

TABLE III
CRITICALITY RUN -TIMES AND ERRORS FOR VARIOUS BENCHMARKS; ε = 5% AND Nls = 1000 ZSC - ZONE BASED CRITICALITY, nC2 - PAIRWISE

PRUNING SCHEME, CPSC -CLUSTERING BASED PRUNING SCHEME, TGR - TIMING GRAPH REDUCTION, LS - LOCALIZED SAMPLING

Metric Pruning Benchmark

Scheme s3271 s3330 s3384 s4863 s5378 s6669 s9234 s13207 s15850 s38417 s35932 s38584

ZSC 44.51 36.19 43.23 31.82 59.95 40.24 38.17 41.75 44.56 34.78 21.11 48.21

maximum nC2 4.70 3.82 0.03 17.40 26.94 26.74 36.63 15.72 32.20 30.29 14.95 20.28

% δ CPSC 4.70 1.42 0.03 17.40 37.41 30.25 36.57 15.64 37.32 30.29 14.95 21.18

CPSC+TGR+LS 4.70 1.62 0.03 9.08 7.18 2.90 3.28 2.33 4.52 4.70 1.82 15.88

ZSC 0.05 0.04 0.07 0.11 0.12 0.16 0.19 0.24 0.28 1.43 1.32 1.47

runtime nC2 0.11 0.09 0.18 0.52 0.51 0.91 1.15 2.36 2.65 58.15 74.69 59.23

(sec) CPSC 0.01 0.01 0.01 0.03 0.02 0.06 0.05 0.03 0.05 0.16 0.36 0.11

CPSC+TGR+LS 0.01 0.02 0.01 0.12 0.04 0.25 0.15 0.06 0.14 0.25 0.25 0.22

ZSC 622 451 603 528 593 965 644 1329 1688 2821 7340 5680

η nC2 2 13 1 6 7 11 19 7 8 14 66 15

CPSC 2 13 1 6 7 11 19 7 8 14 66 15

CPSC+TGR+LS 2 13 1 7 6 12 17 7 8 12 66 15

gates in the circuit. A similar expansion is performed for gates
with multiple fanins while reverse traversing the timing graph
to compute the required times of upstream edges. Although
the number of terms in the canonical form increases, using a
linear sparse array, we only keep track of terms with non-zero
sensitivities in the edge path delay. Table II shows the total
number of independent sources of variation for the benchmarks
under column three, labeledNζ. As seen in Section VII, this
does not adversely impact the runtime.

VII. R ESULTS

Our algorithms were implemented in C++ on top of an
SSTA engine [1] and exercised on the12 largest ISCAS89
benchmarks, with parameter values corresponding to the
100nm technology node [11]. Experiments were conducted
on a Linux PC with a 3.0-GHz CPU and 2GB RAM. The
average ratio of the standard deviation to the mean of circuit
delay was about12%. We compared four schemes with Monte
Carlo simulations using 10000 samples, shown in Table III.

The first scheme is the zone-based ZSC approach in Algo-
rithm 3. SchemenC2 additionally implements the pairwise
pruning strategy of Section V-A with a pruning threshold,
ε = 5%. CPSC implements Algorithm 6 using our clustered
pruning and ordering technique. CPSC+LS+TGR performs
clustered pruning on the reduced timing graph (TGR) and
computes criticalities using the LS procedure (Algorithm 7)
with Nls = 1000 samples. All approaches excluding ZSC ac-
count for structural correlations due to independent parameter
variations as described in Section VI-C. Row “maximum% δ”
reports the maximum difference between the edge criticality
computed using any of the above mentioned schemes and the
Monte Carlo simulations, row “runtime” reports the running
time in seconds and “η” reports the maximum number of edges
in any cutset of the timing graph after pruning. We exclude
the times for SSTA and generating theNls samples in LS.

From Table III, ZSC, which computes criticalities using
Clark’s MAXθ formulation results in large errors (the largest
being about60%). As described in Section IV, this is mainly
due to the propagation of local errors. CPSC with cutset

Fig. 8. Runtime of criticality computation as a fraction of
SSTA runtime. The two cases shown are with and without the
zone-based algorithm to compute the statistical maximum of
mc-edges crossing a level in the timing graph.

pruning and ordering does better than ZSC in accuracy and
runtime. For circuits exhibiting large global errors, the LS
procedure helps reduce them further. Rows in bold compare
ZSC with CPSC+TGR+LS. The combined approach greatly
reduces the errors and runtime, due to pruning. Moreover,
runtime increase is negligible compared to CPSC (an anomaly
is s35932 wherein runtime decreases due to TGR). For the
3 large benchmarks we obtain about an order of magnitude
difference in run-times of ZSC and the combined approach.
Most circuits have errors below10%, except for s38584. On
investigation, it was found that for large fanout structures, path
delays themselves (computed in terms of the PCs) contained
large errors and hence the LS procedure does not completely
eliminate global errors. In terms of the efficacy of our pruning
strategy, as expected we vastly outperform thenC2 procedure
in runtime (about two orders of magnitude for the larger
benchmarks). Each circuit also contained an identical number
of edges remaining in the cutsets using thenC2 and CPSC
pruning strategies, seen from the entries in row “η”.

To evaluate the runtime effectiveness of the zone-based

13

Fig. 9. Tradeoff showing number of LS samples,Nls,
vs the overall criticality computation runtime and maximum
percentage error (with respect to a Monte Carlo simulation
with 10000 samples), for the s38417 ISCAS89 benchmark.
Runtimes are normalized to the case withNls = 50 and the
error is normalized to the case withNls = 10000.

approach, Fig. 8 shows the criticality computation runtime
with (denoted ‘Criticality with zones’) and without (denoted
’Criticality without zones’) zones as a fraction of the SSTA
runtime. In all cases, structural correlations due to independent
parameter variations were not taken into account. On average,
criticality computation with zones is about10X faster than
SSTA and we obtain a speedup of about2.7X in the runtime
compared to the case without zones. The runtime for the zone
computation procedure of Algorithm 2 on average was less
than0.5% of the SSTA runtime.

In decidingNls, we observed that as the number of samples
increases, the improvement in accuracy diminishes. Fig. 9
shows the tradeoff between the number of samplesNls and the
maximum percentage errorδ, obtained between our clustering
based approach and a Monte Carlo analysis with10000 runs.
As expected, with a small number of LS samples,Nls < 500,
the error is more than double that withNls = 10000. However,
as the number of samples increases, say from1000 to 5000, the
overall runtime almost triples, without much reduction in error.
Moreover, asNls increases, the overall runtime is dominated
by the time for LS. In our algorithm, to maintain a reasonable
tradeoff of accuracy and runtime, we choseNls = 1000.

Fig. 10 shows the variation of runtime and accuracy (aver-
aged over all benchmarks) when pruning threshold,ε, is var-
ied. With an increase inε, the cutset size decreases, reducing
the overall criticality runtime (mainly due to reduction inthe
runtime for LS). For pruning thresholds below5%, the error is
relatively constant since the non-dominant edges eliminated do
not adversely affect the global criticality of dominant edges.
Therefore in our algorithm, we chose a pruning threshold of
5% to obtain good accuracy with a reasonable runtime.

Finally, we implemented the approach of Xionget al.
in [15] and compared its performance with our clustering
based approach for the benchmarks shown in Table III. For a
fair comparison, we ignored independent parameter variations
when comparing the two approaches. On average, we obtain
a speedup of about5X over the approach in [15]. This is

Fig. 10. Tradeoff showing pruning threshold,ε, vs the overall
criticality computation runtime and maximum percentage error
(with respect to a Monte Carlo simulation with10000 sam-
ples), averaged over the7 largest ISCAS89 benchmarks. The
runtimes and error are normalized to the case withε = 1%.
The number of samples used in LS,Nls = 1000.

Fig. 11. Comparison of runtime ratio and difference in max-
imum criticality percentage error between our implementation
of the approach in [15] and the clustering based approach,
referenced to a Monte Carlo simulation of 10000 samples.
The number of samples used in LS,Nls = 1000, and the
pruning threshold,ε = 5%.

mainly attributed to cutset pruning, which eliminates a large
number of non-dominant edges, thereby reducing the number
of criticality computations. The advantage of cutset pruning is
particularly pronounced for the larger sized benchmarks.

The difference in maximum percentage error (% δ) when
compared to a Monte Carlo simulation of 10000 runs, is
shown in Fig. 11 on the secondary axis. On average, over
all the benchmarks, we see that if our algorithm reported the
maximum criticality difference with a Monte Carlo simulation
of x%, the approach in [15] reported a maximum criticality
difference ofx + 35%. The errors are of similar magnitude
to our zone-based scheme, ZSC, implemented without cutset
pruning (Table III), since fundamentally both the approaches
are similar. Hence, as was seen in theabc problem, local and
global errors contribute to large overall errors in criticality
computation (Table I).

VIII. C ONCLUSION

This paper presents a new linear time technique to compute
statistical criticalities in a timing graph. We use the ideaof
interval zones to process edges crossing multiple cutsets in
linear time. We have also developed a new clustering based
heuristic capable of both pruning and ordering edges in a
cutset to reduce local and global errors resulting from Clark’s
tightness probability formulation. Our clustering based pruning
competes very well with a pairwise pruning strategy with large
speedups in runtime. Using our pruning technique with local-
ized sampling and timing graph reduction, our computations
produce errors of around5% when compared to Monte Carlo
simulations, even in the face of large gate delay variations. An
important topic for future work is to use our clustering based
framework to compute criticality incrementally.

REFERENCES

[1] H. Chang and S. S. Sapatnekar, “Statistical timing analysis under spatial
correlations,”IEEE TCAD, vol. 24, no. 9, pp. 1467–1482, Sep. 2005.

[2] K. Chopra, S. Shah, A. Srivastava, D. Blaauw, and D. Sylvester,
“Parametric yield maximization using gate sizing based on efficient
statistical power and delay gradient computation,” inIEEE/ACM ICCAD.
IEEE Computer Society, 2005, pp. 1023–1028.

[3] C. E. Clark, “The greatest of a finite set of random variables,”Operations
Research, vol. 9, no. 2, pp. 145–162, Mar-Apr 1961.

[4] M. C. Golumbic,Algorithmic Graph Theory and Pefect Graphs. Boston,
MA: Elsevier, 2004.

[5] T. F. Gonzalez, “Clustering to minimize the maximum intercluster
distance,”Theoretical Computer Science, vol. 38, no. 2-3, pp. 293–306,
1985.

[6] U. I. Gupta, D. T. Lee, and J. Y.-T. Leung, “Efficient algorithms for
interval graphs and circular-arc graphs,”Networks, vol. 12, no. 4, pp.
459–467, 1982.

[7] X. Li, J. Le, P. Gopalakrishnan, and L. T. Pileggi, “Asymptotic proba-
bility extraction for nonnormal performance distributions,” IEEE TCAD,
vol. 26, no. 1, pp. 16–37, Jan. 2007.

[8] X. Li, J. Le, M. Celik, and L. T. Pileggi, “Defining statistical timing
sensitivity for logic circuits with large-scale process and environmental
variations,” IEEE TCAD, vol. 27, no. 6, pp. 1041–1054, Jun. 2008.

[9] H. D. Mogal, H. Qian, S. S. Sapatnekar, and K. Bazargan, “Cluster-
ing based pruning for statistical criticality computationunder process
variations,” in IEEE/ACM ICCAD. IEEE Press, 2007, pp. 340–343.

[10] S. R. Nassif, “Design for variability in DSM technologies,” in IEEE
ISQED. IEEE Computer Society, 2000, p. 451.

[11] Predictive technology model (PTM). [Online]. Available: http://www.
eas.asu.edu/∼ptm/

[12] D. Sinha, H. Zhou, and N. V. Shenoy, “Advances in computation of the
maximum of a set of gaussian random variables,”IEEE TCAD, vol. 26,
no. 8, pp. 1522–1533, Aug. 2007.

[13] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, S. Narayan,
D. K. Beece, J. Piaget, N. Venkateswaran, and J. G. Hemmett, “First-
order incremental block-based statistical timing analysis,” IEEE TCAD,
vol. 25, no. 10, pp. 2170–2180, Oct. 2006.

[14] C. Visweswariah and A. R. Conn, “Formulation of static circuit opti-
mization with reduced size, degeneracy and redundancy by timing graph
manipulation,” inIEEE/ACM ICCAD. IEEE Press, 1999, pp. 244–252.

[15] J. Xiong, V. Zolotov, N. Venkateswaran, and C. Visweswariah, “Crit-
icality computation in parameterized statistical timing,” in IEEE/ACM
DAC. ACM Press, 2006, pp. 63–68.

[16] T. Yoshimura and E. S. Kuh, “Efficient algorithms for channel routing,”
IEEE TCAD, vol. 1, no. 1, pp. 25–35, Jan. 1982.

[17] L. Zhang, W. Chen, Y. Hu, and C. Chen, “Statistical static timing
analysis with conditional linear max/min approximation and extended
canonical timing model,”IEEE TCAD, vol. 26, no. 8, pp. 1522–1533,
Aug. 2007.

Hushrav Mogal received the B.E. degree from the
University of Mumbai, Mumbai, India, in Elec-
tronics Engineering in 2001 and the M.S. degree
in Electrical Engineering from the University of
Minnesota at Twin Cities in 2003. He is currently
a doctoral candidate at the University of Minnesota
Twin Cities, pursuing his Ph.D. in Electrical Engi-
neering. His research interests are in timing analysis
and thermal aware CAD.

Haifeng Qian received the B.E. degree from Ts-
inghua University, Beijing, China, in 2000, the M.S.
degree from the University of Texas at Dallas in
2002, and the Ph.D. degree from the University
of Minnesota in 2006, all in electrical engineering.
Since 2006, he has been a research staff member
at the IBM T. J. Watson research center, Yorktown
Heights, NY. He received a Best Paper Award at the
Design Automation Conference (DAC) 2003, and
the ACM Outstanding Ph.D. Dissertation Award in
Electronic Design Automation in 2007.

Sachin S. Sapatnekarreceived the Ph.D. degree
from the University of Illinois at Urbana-Champaign
in 1992, and is currently on the faculty of the De-
partment of Electrical and Computer Engineering at
the University of Minnesota. He has authored several
books and papers in the areas of timing and layout,
and has held positions on the editorial board of the
IEEE Transactions on CAD, the IEEE Transactions
on Circuits and Systems II, IEEE Design and Test,
and the IEEE Transactions on VLSI Systems. He
has served on the Technical Program Committee for

various conferences, and as Technical Program and General Chair for Tau
and ISPD, and is currently Vice-Chair for DAC. He is a recipient of the NSF
Career Award, four conference best paper awards, and the SRCTechnical
Excellence award.

Kia Bazargan received his Bachelors degree in
Computer Science from Sharif University in Tehran,
Iran, and his M.S. and PhD in Electrical and Com-
puter Engineering from Northwestern University in
Evanston, IL in 1998 and 2000 respectively. He
is currently an Associate Professor in the Electri-
cal and Computer Engineering at the University of
Minnesota. He has served on the technical program
committee of a number of IEEE/ACM sponsored
conferences (e.g., FPGA, FPL, DAC, ICCAD, IC-
CAD, ASPDAC). He was a guest co-editor of ACM

Transactions on Embedded Computing Systems (ACM TECS), Special Issue
on Dynamically Adaptable Embedded Systems in 2003. He is an Associate
Editor of IEEE Transaction on Computer- Aided Design of Integrated Circuits
and Systems. He was a recipient of NSF CAREER award in 2004.

