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Abstract— With ever shrinking device geometries, process path in the manufactured chip is critical. This concept &al
variations play an increased role in determining the delay 6a extended to edge (node) criticalities in the timing graph of
digital circuit. Under such variations, a gate may lie on thecritical a circuit, i.e., the probability that a path passing throtig

path of a manufactured die with a certain probability, called the ; L 4 .
criticality probability. In this paper, we present a new technique edge (node) is critical. To this end, works like [2], [8] arib]

to compute the statistical criticality information in a digital circuit ~ attempt to compute the criticality probability of edges in a
under process variations by linearly traversing the edgesni its timing graph, using a canonical first order delay model.

timing graph and dividing it into “zones”. We investigate the  One of the earliest attempts to compute edge criticalities w
sources of error in using tightness probabilities for criticality proposed in [13]. The authors in [13] perform a reverse trave

computation with Clark’s statistical maximum formulation . The | of the timi h ltiolvi iticalit bakils of
errors are dealt with using a new clustering based pruning Sal of the uming graph, muitiplying critcality probafigs o

algorithm which greatly reduces the size of circuit-level atsets nodes with local criticalities of edges, incorrectly assgn

improving both accuracy and runtime over the current state d the independence of edge criticalities despite structanal

the art. On large benchmark circuits, our clustering algorithm  gpatial correlations in the circuit. Subsequently, thekini{8]

gives about a250.X speedup compared fo a pairwise pruning  jefined the statistical sensitivity matrix of an edge in the

strategy with similar accuracy in results. Coupled with a lccalized . . . L

sampling technique, errors are reduced to around5% of Monte tlmlng. graph with .respect.to the circuit output delay, pomsqnb

Carlo simulations with large speedups in runtime. by using the chain rule in the backward propagation of the
timing graph. Due to the matrix multiplications involved,
the complexity of their approach, although linear in citcui

. INTRODUCTION AND PREVIOUS WORK size, could be potentially cubic in the number of principal

With scaling technology trends, process parameter vargemponents if the matrices are not sparse.
tions render the delay of the circuit as unpredictable [10], In [2] the authors perturb gate delays to compute its effect
making sign-off ineffective in assuring against chip faéu on the circuit output delay. The complexity of computatien i
Moreover, conventional Static Timing Analysis (STA) is unreduced using the notion of a cutset belonging to a node in the
able to cope with a large process corner space. To tackle ttising graph. A cutset is a minimal set of edges, the removal
problem, over the recent years, CAD tools have accountefl which divides the timing graph into two disconnected
for variability in the design flow. Of foremost concern is tacomponents. A key property is that the statistical maximum
predict the circuit delay in the face of these process pat@meof the sum of arrival and required times across all the edges
variations. Recent works concerning Statistical Statimifig of a cutset gives the circuit delay distribuition. A gateirsig
Analysis (SSTA) in [1], [13] deal with this issue by treatingoperation on the source node of a cutset affects only the
the delay of gates and interconnects as random variablés witrival time of some of its edges. The circuit delay is then
Gaussian distributions. The techniques developed effdgti incrementally updated to efficiently compute the circuilgi
predict the mean and variance of circuit delay distribution gradient to gate sizing. This approach however, is potigntia
an accuracy level of under a few percent. guadratic in the size of the timing graph.

The unpredictability in circuit delay also undermines daesi  The cutset-based idea is extended in [15], to compute the
optimizations with timing considerations. For one, a gatgiticality of edges by linearly traversing the timing ghaghe
sizing operation typically proceeds by finding the mosticait criticality of an edge in a cutset is computed using a baldnce
path in a circuit and sizing the gates on this critical patfithW binary partition tree. Edges recurring in multiple cutsats
process variations in a design, no one path dominates thg deédept track of in an array based structure while performireg th
of the circuit [8]. We therefore need the notion of probapili timing graph traversal.
to make informed decisions as to the relative importance ofThis paper, a preliminary version of which appears in [9],
different gates in a design. The authors in [13] propose theakes the following contributions. First, similar to [15}e
concept of a path criticality, which is the probability that propose an algorithm to compute the criticality probapitif
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track of structural correlations due to such variationsirdth B. Definitions

ar_lq more importar_wtly, we examine the sources of error fefinition 1.1 (Timing Graph). A timing graphG(V, E) of
criticality computations due to Clarks [3] formulation @n g circuit is a directed acyclic graph with nodes representing
propose a clustering based pruning algorithm to effegtivejate terminals and edges representing connections between
eliminate a large number of non-competing edges in cutsgg terminals. Primary inputs and outputs are connected,
with several thousand edges. The proposed scheme can ?é%‘?)ectively, to a virtual source node, and a virtual sink
help order statistical maximum operations in a set, a sourggde v,. The delay of an edge i@ is a random variable with

of significant error as shown in [12]. Localized sampling 0@ associated probability density functignif).
the pruned cutset further reduces errors in edge critiealtb

within 5% of Monte Carlo simulations, with large speedup®€finition 1.2 (Cutsef). A cutset,%, is a set of edges/nodes
in runtime compared to a pairwise pruning strategy. Finall{ G Such thaievery v, to v; path passes exclusively through
we compare the clustering scheme with our implementatiénSingle member of.

of [15] to show the improvement in runtime and accuracy. pefinition 11.3 (Arrival Time (Required Time) ). The arrival
The rest of this paper is organized as follows. Section {iine AT? (required timeRT?) at an edge/node;, in timing
describes the correlation model and provides definitiorsl usyraph, G, is the statistical maximum delay from any primary
in the paper. Section IIl details our approach to compuigpyt (output) to the edge/node. Like delays, these are also
edge criticalities using zones. Section IV discusses the @indom variables and have associatedfs. Traditionally,

rors involved in criticality computation. Our clustering$ed p 479 — 7 RT?, where RAT? is the required arrival time
framework for criticality computation is described in Secat ¢, andT is the circuit timing specification.

tion V. Section VI gives details about techniques used by our
algorithm to further reduce errors. We present the resalts Pefinition Il.4 (Path Delay). The path delay of an edge/node

Section VII, followed by the conclusion in Section VIIl. ¢ in G, denotede?, is defined as the sum of its arrival and
required times and is a random variable withd .
II. BACKGROUND
el = AT? + RTY Q)

This section briefly describes the correlation model used to
capture the process variations and provides definitionshvhiln other words, the path delay of an edge/node represents the

are used throughout the rest of the paper. statistical maximum delay of all paths passing throughaichc
path delaye? is represented in canonical form in terms of the
A. Correlation Model and SSTA independent and identical principal components (R&shs

We use the spatial correlation model in [1] to model intra- o _ _ =k o
die parameter correlations. Briefly, the chip is dividediat G T M 2-7:1 @ij Pj + G i @
uniform grid in which gates in a grid square are assumed kgre a;; is the sensitivity of edge; to PCp; andk is the
have perfect correlation and gates in far-away grid squaf@éal number of PCs. The mean of the edge path delay is
have weak correlations. A covariance matrix of size equéiven by ;. Every edgee; is also associated with a random
to the number of grid squares is obtained for each modelé@correlated component with sensitivity ¢;.

parameter. The model includes a global (inter-die) compdneygtinition 11.5 (Complementary Path Delay. Given a cut-
of variation common to each entry of the matrix. We model t t,%, in a timing graph,G, the complementary path delay,
length and width of gates, and the thickness, width and-int%uz, of an edge/node; € X C G, is defined as
layer dielectric thickness for interconnects. It is assdrif@t *

zero-correlations exist between different types of patanse e, = MAXy(e], Vej:ej € X,ej # ¢) (3)
for example the length and width of a gate. We also model ﬂ\}venere MAX, denotes the statistical maximum operator

gate oxide thickness,,, assuming independence between thv?/hich returns the statistical maximum of a set of random

different gates on the chip. Although we do not model random) . , - .
dopant fluctuations in this work, they can be dealt with in \Z?:lrlables. Also; s a fictional edge with path delay; .
manner similar ta,,. All process parameters are assumed foefinition 1.6 (Critical Path). A critical path of a circuit
have a Gaussian distribution. implemented on a silicon die is the path which determines
Delays of the edges in the timing graph (from gate fanirtke maximum circuit delay. With process variations, dfetr
to gate outputs and from gate outputs to gate fanouts) a&ths can be critical on different dies. Therefore, in a prob
modeled in terms of their first order Taylor series exparsiobilistic scenario, every path of a circuit timing grapgh, has
with respect to the process parameters. The correlate@gso@ certain probability of being the critical path.
parameters are orthogonalized using the principal conmonB
analysis (PCA) technique wherein each correlated pararisete
expressed as a sum of independent and identically distidbu
normal random variables, called the principal components . _i.e areater than or equal to anv path passing throuah
(PCs). Substituting the PCs back into the Taylor expansiog 9 qual Y path passing throug
. , . . edgee;, over all manufactured dies. The local criticality is
gives a first order canonical edge delay model. SSTA is then . o
. C iven by the tightness probability in [13] and computed as,
performed by a forward propagation on the timing graph, gs

in a regular STA. For more details, readers are referred]to [1 Tij = @(%) 4)

efinition 1.7 (Local Criticality ). The local criticality,r;;, of
dgee; with respect tae;, is defined as the probability that at
{esast one path of timing grapH passing through edge takes



with 0 = \/01»2-1‘0]2»—2'01‘3"01"03' (5)

Here ® is the cumulative distribution functioredf) of a unit
normal random variableN'(0,1). The mean and standard
deviation of an edgeg;, is given byu,; ando; respectively.
The correlation between edgesande; is given byp;;.

Local criticality 7;; can be thought of as th#egree of domi-
nation of edgee; overe;. It is easy to see that; = 1 — 7;;.

Definition 11.8 (Global Criticality ). The global criticalityT;
(also referred to as criticality hereon) of edgein cutsety. Fig. 1. Example timing graphG with cutsets (1) — ¥(4).
is the probability that it has maximum delay among all th&he shaded portions are nodes and edges used to compute the

edges in the cutset, i.e., arrival and required time of edge,,. The complementary path
delay ofe.,, is the statistical maximum delay of all paths not
T; = Pr(ef >2ef) {Ve; € X, ej#ei} passing through it, i.ec” , = MAX,(eZ,,, €f,,, €5, €2,)-
= Pr(ef >e7) (see Def. IL5) (6)
= T (from Eq. 4)

II1. STATISTICAL CRITICALITY COMPUTATION

In other words,T; represents the probability that at least one We mention at the outset that our idea to compute edge

path passing through has a delay greater than any other patéxiticalities in a timing graph(V, E), is similar to [15], in

not passing through it, over all the manufactured diEsis which the notion of cutsets is used. Although both algorihm

also referred to as theriticality probability of e;. asymptotically take time linear in the number of edges:in
Physically, the local criticality of an edge; in a cutset we use a zone-based approach. Section IlI-A illustrates the

corresponds to a comparison of its path delay with respexitset computation procedure, followed by outlining a damp

to another edge of the cutset whereas the global criticafity statistical criticality algorithm, BSC, with runtime conegity

an edge corresponds to a comparison of its path delay wifbadratic in the number of edges @, in Section IlI-B.

respect to all other edges in the cutset. It follows that bba@ The runtime complexity is reduced in Section IlI-C using

criticality of e; € X cannot be greater than its local criticalitylinear book-keeping data structures. The authors in [16]ais

with respect to any other edge ki i.e., binary tree like data structure for this purpose. SectiohB |
and llI-E detail our zone-based approach, which reduces the
T, < 7y {Ve; €5, ej#e} (7)  criticality computation runtime complexity to linear in eh

o o ) number of edges i In [15], an array based structure is used
Definition 1.9 (M AX ). The statistical maximuml/ AXy, for this purpose. The primary advantage of our method is that
of two normal random variables; andy, in canonical form the cutsets can be processed in any order, i.e., to compite th
(see Eqg. 2) using Clark's formulation [3], is given By= " criticality of an edge in a cutset we need not compute the edge

MAXq(z,y), whereg is the normalized Gaussian probabilitycriticalities in any of its predecessor or successor csitset
density function gdf), N'(0,1), 6 is defined in Eqg. 5 and

A. Cutset Computation

[z = Tay- o+ Tyo - iy + 0 - S(L52) Fig. 1 illustrates the computation of cutsets on a timing
02 = Tay (024 p2) + Tys - (03 + Mi) grath(M E). We top_ologlca}lly order the nodes i@ from.
[ ) the virtual source to virtual sink node, followed by groupin
e + py) - 0 (F5H) — 42 (8) them according to levels i, such that nodes with a level
(zi = Trpy - Oxi T Tye - Qyi lower than! are predecessors and nodes with a level greater
2 2 than! are successors of nodes at levetlenoted®,, (7). For
¢ = \/(Tmy Ga) " (e Gy) instance X, (2) = {n.,ns}. Edges crossing are denoted by

Here y, and o, are the mean and standard deviationzof 2.(l) and these are called mc-edges.

respectively and:.; is the computed sensitivity to principalDefinition IIl.1 (mc-edgg. An mc-edge is an edge with end-
componentp;, in the canonical representation ef(defined level at least two greater than its start-level.

in Def. 1l.4). A weighting factor is applied ta.; and the Thus, with our level enumerated cutsets, these are edges

random componeny, to equate the variance afto o2. . :
P r!;[z . q . . Tzr which cross over at least one cutset. In Figed, andey,, €
Note thatM AXy is a linear approximation of the maximum .
1g2) are a set of mc-edges crossing le2eHowever, edges

of two Gaussian random variables as another Gaussian an? .
iké ef, ande., are not mc-edges since they start at level

a particular implementation of the general s_tafustlcal (AT 2tand end at leveB with no cross over. Consider the set of
operatorM AX . For the rest of the paper it is assumed tha .
nodes and edges given by,

the time taken to compute,, is similar to that taken to
computeM AXg(x,y). (1) = Z()uxe() 9
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Algorithm 1 BSC (G(V, E)) I/ G = circuit timing graph

1: Perform a forward and reverse SSTA 6n E O i i m@ ?
2: Topologically orderG and find its cutset R o= @) Al
3: for all cutsets: € G do Ly 1 © & i
4: for all edgese; € ¥ do i i i ._,_,. A
5: Computee?, // see Def. 1.5 Py ® 1S () AR
6: T, = 7,; Il see Def. 11.8 ' ,'/ RN
7:  end for LY R NERE
8: end for i @,Le’@ iiiii

ey’ = MAX (Y (3), Yr(3)) Yr

By Def. 1.2, ¥(I) forms a cutset since every, to v, path Fig. 2. lllustration of forward and reverse linear book-ieg
in G must pass through at least one membeE¢@f) and its data structuresY » and YT, to compute the complementary
elements are disjoint. Our aim is to compute the criticaditi path delay ofe; in cutset,X(2) = {eap, €£g, €bm, Eems €en
of all edges inG, using Def. 11.8. The topological level- from Fig. 1, with edges relabeled, e, e3, e4, e5 respectively.
enumerated cutsets are necessary and sufficient becayse the
cover all the nodes and edges @ and no cutset is fully
contained in another cutset. The number of such cutsetdeeqidie global criticality of an edge; € ¥ (Def. 11.8) can now
the number of leveld in G. To compute the criticality of be computed as

all edges inG, we substitute nodes iﬁ]n with their fanout T, = Pr(ef > MAX (e],....e7 1,¢00,. .. €5))
edges. For instance, at leval we obtain the cutset of edges  Pr(e? > MAX (T rli— 1) T+ 1
2(2) = {eapvefgaebmaeemaeen}- B r(ei - U( F(l - )’ R(l+ )) (13)

B. BSC: Basic SC Algorithm Computation of Y and Ty ta_kes2n MAX, operations.
Eq. 13 takes twal/ AX , operations for a total ofn M AX,
loperations over all edges . The ordered lists help compute
criticalities of cutset edges i@ (n) time, i.e., linear in the size

p%tlhthe cutset. Fig. 2 illustrates this computation for edge

The simplistic approach called BSC, shown in Algorithm
computes global criticalities of all edges in timing gra@gh
Step 1 performs a forward and reverse SSTA to compute
delays (see Def. I1.4) of all edges (nodes)Ghfollowed by
topologically orderingG into levels to compute cutsets;. _
Steps 3-8 compute the criticality of an edge dhby first D Zone Computation
computing its complementary path delay and then using Eq. 6Using T and Y, Steps 5-6 of Algorithm 1 now take

Due to the presence of mc-edges, each cutsghotentially O(E) as compared t@)(E?) time. Typical circuits however
contains O(E) edges, whereE is the number of edges contain many mc-edges (Def. 11l.1), as a result of which gver
in the timing graph. Moreover, since Step 5 computes tlaitset potentially ha®(E) edges. Over all cutsets, we could
complementary path delay of an edge in time linear in the sike O(L - E) time, still a considerable slowdown.
of ¥, this step takes quadratic tim@( E?) over all edges irx. To see why we can do better, example timing grapin
Over all cutsets i, Algorithm 1 therefore has a complexityFig. 3, depicts mc-edges, es, e3, 4, e; and eg. Consider
of O(L - E?). Sections IlI-C and 1lI-D discuss methods tdraversing G to compute the criticality of its edges using

reduce the time complexity of the basic approach. Algorithm 1. To compute the criticality of an edge, say, at
_ _ _ level 1, we compute its complementary path delefy, which
C. Linear Time Book-keeping includes MAX,(e9,e3). At level 2, for e, we compute

From the previous discussion, computing the complemeht AX, (e9,e3, e, eq). Clearly, the only information needed
tary path delay of all edges in a cutset takes quadratic tina.level2 with regard to edges; ande; is MAX,(e7,¢9),

Fig. 2 shows a cutseb) = {ej,es,...,e5}. To compute the already computed at level. Algorithm 1 redundantly re-

complementary path delay of edgesandes, we compute  computes this information at leve| thus accounting for the
%, = MAX, (¢S, e3,eq,e2) multiplicative L factor in the computation cost. The basic idea
1/ - b b )

- e o (10) of zones is to abstract out the maximum of the mc-edges
¢y = MAXo(ef,c§, ef,ef) thereby reusing information to the greatest possible éxten
Clearly, MAX ,(e3,e,ef) is a common term in Eq. 10 Let us reconsider traversing the timing graph in Fig. 3. At

above. To speed up the computation of the complementdayel 1 we would like to forward accumulate the maximum
path delay of edges in a cutset, our book-keeping ordertsd lisf mc-edgese; and e, used to compute the criticality of
aim to keep track of this common information. edges at higher levels. We thus enter an accumulation phase
beginning at level, to obtainZ,r = {e1,e2} and Z7,(1) =
M AX,(e],€5), useful at level2 to find the maximum of
the mc-edges crossing it (to compurtg,). At level 2 we
accumulate edges; andey to obtainZ,p = {e1, e2,e3,¢e4}
Tp(i) = MAX(e],... €]) (11)  andZ7,(2) = MAX,(Z7,(1), e, e). The indices ofZ7,,
Tr(i) = MAX,(e,...,e7) (12) denotedz;r, are time points recording the order in which

’r n

Definition IIl.2 (Ordered Lists). Given an arbitrary setl =
{e1,ea,...,e,} of n random variables, we define forward an
reverse ordered lists, denot&d- and Y i respectively, as
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Fig. 4. Fig. 4(a) shows the mc-edgés, = {e1,...,eq}, Of
the timing graph in Fig. 3, represented as half-open interva
Fig. 4(b) shows the corresponding interval graph represent
tion, G, with zones/; = {61, €9, €3, 64} anng = {65, 66},
identified as mutually exclusive maximal cliques.
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Fig. 3. An example timing graph@, with mc-edgesy.. =
{e1, €2, ..., es}. Edgese, ande, are not mc-edges.

mc-edges accumulate i, 7. At level 3 however, we can no

longer accumulate; in Z; g, sincees has reached its end level

and does not contribute to the accumulated maximuip.  the maximal cliqugles, es, e3, e4} to form zoneZ, . Next, with

Z1r is thus a maximal set representing all edges accumula{%dv\,e get zoneZ, with maximal clique{es, eq}.

in phasel. Note that at this pointZ{, is not useful to us. In the worst case, the number of zonds, in a timing
We now begin a reverse accumulation phase, to compute H}gph with L levels is O(L). The idea is to minimize

order in which edges belonging & » leave timing grapht:. g4 a5 to reduce the number 81 AX, operations over all

Once again, this is precomputed by a traversak@ls,Zir = zones to computeZ, , . The Algorithm described in [6]

{e1,e3,ea} and Z7p(1) = MAX,(e], €3, e]) at time point o505 tes 2 minimum clique covering of an interval graph,

L. Similarly at ime point2, Zir = {ea} and Z75(2) = ef. A simplicial vertex ofG. is defined as follows.
The indices ofZ7, denotedz; r, are time points that record

the order in which mc-edges leavg . We concurrently start Definition 111.4  (Simplicial edge). A simplicial vertex,v?,

a new accumulation phase beginning with edgeas Z, = of an interval graph(-., is a vertex, all of whose neighbors
{es} and Zg,.(1) = eZ. The maximum of mc-edges crossingorm a clique withv* [4]. The intervale® in the corresponding

levels greater thar (for example at level), can now be interval representatiort;., of G. is called a simplicial edge.

computed usingW AX ,(Z75(1), Z$p(1)). It is easy to verify that an interval with minimum end-levsl i

finiti 3 . ¢ q ith a simplicial edge in.. In fact, the neighbors of* form a
Definition 111.3 (Zone). A zoneZ; is a set of mc-edges wit c|ique which is maximal. In Fig. 4¢, is a simplicial edge.

the end-level of any edge higher than the start-level of al
edges inZ;, i.e., edges enter a zone before any edge exits it.Algorithm 2, like [6], finds a minimum size clique covering
of the interval graph(., by repeatedly finding a simplicial
edge inY,., and removing all the edges overlapping it, i.e.,
it repeatedly computes mutually exclusive maximal cligires
G.. These cliques form the zones in our criticality computatio

algorithm. However, unlike [6], a separate step to sort the
appropriately indexed entry df7. or Z7,, depending on the gor! wever, unlike [6] p P

; d \ati h fh Thesst intervals according to their end points is not needed, &xau
orward or reverse accumulation phase ot Ine zone. Th&s allt the topological ordering of the timing graph described in
tical maximum of mc-edges crossing leveldenoted?§, , .,

: . . _ AX:  Section IlI-A. For the example interval representationii. B,
is obtained by computing the maximum of the contrlbutlorwe computec, € ¥, as the first simplicial edge, with zone

of each zoneZz?,, , x, over all the zones. . 71 = {e1,e0,¢3,e4}, followed by es € {S. — Z1}, as the
Formally, _mc—edges rep_rese_nt half-open mtervals_, fromir th second simplicial edge, with zor, = {es, e}

source to S.'nk_ level, as in Fig. 4(a), d_enotﬁq, W'_th the Algorithm 2 computes zones linearly traversing timing

corresponding mFervaI graph representanon shown inl), . graph,G, from the virtual source to virtual sink node, identi-

denotedG.. The interval graph is a one-to-one representa\tl%mg mc-edges and reporting the mutually exclusive makima

.Of mtervals.to ve_rtlces, with tV\.lo v_ert|ces connected by dge cligues by keeping track of when an edge enters (Steps 13-
if and only if their corresponding intervals overlap [4].Wwhat 16) and leaves (Steps 4-12). The zones are computed as

follows, the term interval is used interchangeably with edg 7 = {Z1UZyU...U Zic}, and the claim is thaf< is the

By pef. lll.3, a zone is any set of overlappmg 'n.tervalsminimum number of zones (cliques) needed to cover(the
In the interval graph representation, a zone is a clique (

NRterval graph. ). The following property proves this claim.
necessarily maximal). Hence, like [16], we aim to compute val graph(.) Wing property prov I I

the cliques in the interval graph. Since an mc-edge belongeoperty Ill.1. In Algorithm 2, the first edgeg;, to exit its
to a single zone, the cliqgues must be mutually exclusiveone,Z;, is a simplicial edge of the intervals corresponding
Fig. 4(b) shows one set of mutually exclusive cliques whidle X, —{Z1UZ,U...UZ;_1}.

forms the zones. We begin with edgeand greedily compute Proof: Step 7 computes the first edgg, to exit its zone,

From the above description, at a particular levelof the
timing graph, the different mc-edges that cross it can beect
in different zones. At level, the contribution,Z,, 4, Of
mc-edges belonging to zorg, is given respectively by the



Algorithm 2 Z = ComputeZones{.) Algorithm 3 ZSC G(V, E)) /I G = circuit timing graph
Il 'Y = mc-edges in the timing graph organized as per levels: perform a forward and reverse SSTA @n
Il Z = list of mutually exclusive zonegZ1, ..., Zx} 2: Topologically orderG and find its cutsets
1: K =1, Z={} Il initialize the list of zones 3: Compute}., the set of mc-edges
2. Zg = {ZKF = { } ZKR = { }} 2k = 2kr =0 4. 7 = ComputeZoneﬂe)
Il Zxr (Zxr) records the history of edges entering 5: for all levelsi € G do
6
7
8
9

Il (leaving) zoneZ, indexed by pointetx r (zxr) for all e; € 3. with end-levell do
++z;r Il e; exits zoneZ;, update reverse pointer
Zjmax = Tjr(zr)

end for

3: for all levelsi € G do

4: for all e; € ¥, with end levell do
5: Z; = zone ofe;
6.
7
8

Inserte; into Z;r, ++z;r I e; exits zoneZz; 10: for all e; € ¥, with start-levell do
if Z; == Zk then |/l ei = e is the first to exitz;  11: ++2;r Il e; enters zoneZ;, update forward pointer
: ++K /I create new zone 12: Ziviax = Lir(zir)
9: ZK:{ZKF:{},ZKR:{}},ZKF:ZKR:O 13: end for
10: InsertZg into Z 14:  Z$,4x = —oo [l maximum over all active zones
11: end if 15: forall Z, € Z do
12:  end for 16: Zax =MAX(Zax, Ziax)
13: for all e; € X, with start levell do 17:  end for
14: Set zone ot; to Zx 18: Create fictional edg€ )y, 4ax with path delayZ§, ,
15: Inserte; into Zx p, ++zxr Il e; enters zoneZ; 19: = {Fanout edges of the nodesii, ()} U Zyrax
16: end for // see Section IlI-A
17: end for 20: CreateY'r and Y for X // see Section IlI-C
/I Compute book-keeping lists for all zones 21:  Computel; V e; € 3 I/ see Def. 11.8
18: for all Z; € Z do 22: end for
19:  ComputeY,r (Y;r) for Z;r (Z;g) Il Eq. 11 (12)
20: end for
21: return Z is O(|3¢]), i.e., linear in the number of mc-edges.

It should be noted that as shown in [6], this approach is
optimal, i.e., the lower bound on the computational comipyex

Z;. Edgees has minimum end-level,, in £, — {Z; U Z, U of computing a minimum clique cover (|Eellog|2e|). if

U Z7 1} and therefore is a simplicial edge ¥, — {Z; U the mc-edges are not sorted by their end points.
Zz .U Z;_1}. If this was not the case, consider another
edge en, With end-level],, < 1;, e, ¢ {Z1UZ2U...UZ; 1}. . ZSC: Zone Based SC Algorithm
Clearly,e,, ¢ Zx, k > j, because edges are assigned to zonesOur zone-based criticality computation technique, ZSC, is
in sequence implying its start-level (and thereby its emdl, shown in Algorithm 3. Step 4 computes zones in timing graph
1,) must be greater thalp. Thereforee,, € Z;, which is again G, in time linear in the size ok, the set of mc-edges. We
a contradiction since it implieg, > [;. m then forward travers&s from v, to v,. Steps 6-13 update

. ) _ . the forward and reverse history pointers of each zone, to
Using Property IIl.1, Algorithm 2 like [6] repeatedly f|ndsCompute the contributior5, , , of the mc-edges belonging
simplicial edges inX. to compute a minimum size chquetO zone.Z; v

i, In constant time. Steps 14-17 compufgr 4 x, @
cover of its corresponding interval graph representation,  ional edge representing the statistical maximufi, ,
Lists Z;r and Z,r record the history of mc-edges enterin

-~ . : bf mc-edges crossmg a particular level, depending on the
and exiting zoneZ;, indexed by pointers;; andzir r€SPeC- contripution, Z7,, , «, to each zoneZ;. Since we have on the

tively (Steps 15 and 6). For the example in Fig. 4(a), the lish ey of0 (1) number of zones, over all levels 6, this step
for zonesZ, and Z, are computed as, takesO(L?) time. Finally, using the book-keeping ordered lists
Zir = {ei,eses,eq} Zop = {es eq} from Section 11I-C, we compute global criticalities of edge
(14) in cutsetY, in time linear in the number of edges 1 The
overall runtime of the ZSC algorithm is therefa& £ + L?),
For each zon€¢;, Step 19 computes the forwardf () and re- which for a reasonably sized practical circuit(g £).
verse ([',r) book-keeping lists, foZ;» and Z;r respectively.  In summary, like [15], the zone-based approach computes
In terms of computational complexity, Steps 3-17 of Algothe criticality of edges in timing grapi(V, E), with a
rithm 2 process each edge ki twice, first at its start-level linear runtime complexityO(E). Although both algorithms
and then at its end-level. Step 19 computes the forward aasymptotically takeO(L) time to compute theM AX, of
reverse book-keeping lists for the mutually exclusive zoime mc-edges crossing a level, Algorithm 2 computes a minimum
O(|Z1])+0(1Z2]) +. ..+ O(|Zk| = O(]Z¢]) time, where|Z;|  clique cover and helps to reduce the total numbehol X ,
is the number of edges in each zone dids the minimum operations computed in Steps 14-17 over all the cutsetse Mor
number of zones to cover the mc-edge interval representatiomportantly, our algorithm can compute the criticality ofges
Y., of the timing graph. Overall, the runtime of Algorithm 2in a cutset, independently of other cutsets.

Zir = {es,es,er,ea} Zop = {es,es}



TABLE |

COMPARISON OFMONTE CARLO AND M AX y FOR THE@bC PROBLEM b= MAXp(a,c) Wt Jlc 2 MAX _(a, b)
region region -
Method T, T, T, ¢/ bz
MC 0923 | 0.000 | 0.077 LA MAX, (b, ©) >

Clark 0356 | 0.297 | 0.079 " region
% Eroro | 56.7% | 29.7% | 0.2%

IV. ERRORS INZSC /

We ran Algorithm 3 on a subset of the ISCAS89 bench-
marks to compute the global criticalities of all edges in the i
timing graph,G. We compared our implementation with a MAXo(a,c)
Monte Carlo (MC) simulation oftl0000 samples and noted Fig. 5. A pictorial depiction (not to scale) of ttabcexample
the absolute maximum difference in the criticalities of eslg with random variables, b and ¢ with one PCp.
(denoteds hereon). The difference was larger thad% (for
example, an edge reported by MC&¥% critical was reported
by Algorithm 3 as30% critical). In the following sections, we M AX , (a,c)). With Clark’s formulationM AXy, for the sta-
illustrate the sources of these errors withandom variables tistical M AX ,, we getT, = Pr(b > M AXy(a,c)) = 0.297.
in a simple example we call thebc problem. Intuitively, for this scenario, Clark’s formulation is ac@ate
with respect to local criticalityt;, of b, but it overestimates
its global criticality 73, and is inconsistent with Eq. 7.

b 2 a region
=

Y>> 30, p

A. The abc Problem

As an illustration of these errors, consider a cutSeith ~ Definition V.1 (Local Errors). With respect to Clark's
random variables, b andc, each with independent principalformulation, edger; in cutsetX: is said to havdocal errors
components (PCsp; and p, (where p; is a unit normal iff there exists some edge; € X with respect to which its

Gaussian (0, 1)), shown below, local criticality is less than its global criticality, i.e.
a = 4000 + 05000-p; + 0.5000-ps {3e; € X e#e} @ m < T (16)
b = 3999 + 0.4999-p1 + 0.5001-p2  (15) In other words, Eq. 7 does not hold. By definition, local esror
¢ = 3800 4+ 0.6001-p; -+ 0.3999:p, always overestimate the criticality of an edge3h In our

toy examplep exhibits local errors of magnitude297, with
espect taz. Local errors were found to propagate in the ZSC
I%orithm, where variables (edges) likehat should not have

been critical, were found to have a significant criticality.

It must be pointed out that as was shown in [12], the order
of variables plays an important role due to ClarR$AX,
approximation. For thebc problem however, ordering vari-
ables ¢ andc¢) in the M AX, operation will not eliminate
local errors inb. Local errors are an artifact of the manner in
which we compute global criticalities.

Local errors only present a part of the picture with respect
to the overall errors seen in criticality computation. This
B. Local and Global Errors is because of the inherent inconsistencies in using Clark’s

For a better illustration of thabc problem, Fig. 5 depicts formulation, M/ AX, to approximate the maximum of a set
the scenario of Eq. 15, using just one PC,We make the Of Gaussian random variables as another Gaussian. The works
following observations. in [12] and [17] for instance, give a detailed analysis of the
errors involved in such an approximation.

It can be observed that and b are nearly identical highly
correlated random variables, and for any sample value of ]
pi's, a > b (high correlation coupled with the difference in
means ensures th&(b > a) ~ 0.0).

We ran a MC simulation witi 00000 samples to determine
the global criticalities ofi, b andc. Table | shows a comparison
with Clark’s formulation, M AX 4 (see Def 11.9). The columns
T;, i € {a,b,c}, depict the global criticality of variable As
seen in the last row of Table I, errors 87% in the global
criticality of « and30% in that of b were observed.

1) The local criticality ofb with respect taa, i.e., 7, ~ 0.
This is indicated by a large value 9> 30, (the region Definition 1V.2 (Global Errors). With respect to Clark’s
whereb > a). Moreover, Clark’s tightness probability formulation, edge; in a cutset is said to haveylobal errors,
formulation from Eq. 4 also gives,, ~ 0. iff its computed criticality 7; differs from its true criticality

2) Global criticality ofb, T;, ~ 0. This is evident in Fig. 5 and the edge does not exhibit local errors, i.e.,
where regionst > M AXy(b,c) andc > M AXg(a,b)
cover the entire probability space.

Observations 1 and 2 are consistent with Eq. 7. Now Global errors cause erroneous values of the global ciitjcal
consider computing the global criticality 6f using the cutset of an edgeg;, in a cutset, due to the inaccuracies in the com-
approach. We first compute its complementary path delpytation of its complementary path delay,, using Clark’s
b = MAX,(a,c). It follows from Def. I1.8 thatT, = Pr(b > approximation. For theabc example T, is underestimated by

T; < 7 {VejeX,e;#e; }andT;in error. (17)



0.567. Note that the value df, is consistent with Eq. 7, since Algorithm 4 K = KCenterPruneX, ¢, S)
both 7., = 1.0 and7,. = 0.921 are greater thaff, = 0.356. // ¥ = cutset of edges; = pruning threshold;
Two observations motivate the need for the pruning basédS = maximum cluster sizek” = # clusters

criticality algorithm, described in Section V. First, wittspect 1: © = { } // set of clusters

to local errors in variablé, if we choose to “ignore” variable 2:
c and compute the criticality o directly with respect to 3:

o ={ } Il initialize the 1% cluster
K =0 // total number of clusters present §n

a, we get, T, = 7, = 0.0, a better result, since almost 4:
completely dominates. Second, with respect to global errors 5:
in variablea, if we choose to “ignore” variablé due to its 6:
high dominance with respect toand compute the criticality 7:
of a directly with respect ta:, we get, T, = 7, = 0.921,a 8:
better result, since the computation/afA X y(b, c) (and hence 9:
the inaccuracy involved in it) is avoided. 10:

In summary, although local and global errors result frorhl:
Clark’s M AX 4 linear approximation, local errors are an arti12:
fact of the manner in which we compute global criticalitids ol3:
edges in a cutset whereas global errors are more fundameritdl

seedy € ¥ = object (or edge) with maximum mean
Inserty as the center of cluster
for all ¢ € ¥ do
if 7, > ¢ then // see Def. 11.7
Inserti in o // objecti not dominated byy
end if
if 7,; <e then
Mark x = pruned // objecty dominated byi
end if
end for
Compute radius;, and distal element?, of o

arising due to the inherent approximation fAX . 15: Insert cluster into ; ++K
16: while (maximum size of a cluster if2 > S) do
V. CLUSTERING BASED STATISTICAL CRITICALITY 17: o = CreateNewCluster(Y)
COMPUTATION 18: Insert new clustes into Q; ++K
Definition V.1 (Dominant and Non-dominant Edge$. An 19: end while

edge,e;, in set, ¥, is dominant iff its local criticality with  20: Insert all un-pruned objects 6f in ¥ and returnk

respect to all other edges h is above a threshold, i.e.,

Tij > € { A e; < E, €; 75 €; } (18) . . .
) . ) ) . ) B. Clustering Based Cutset Pruning and Ordering
Otherwise, edge; is said to benon-dominantin 33, i.e., . . .
To overcome the quadratic runtime complexity overhead of
{Je; € X5, ej#ei} ;g < € (19) the aforementionedC, approach, we present a new clustering

Definition V.2 (Mutually-dominant Edges). A set, X, of
edges are said to bmutually dominant iff each edge inx:
is dominant, i.e.,

Tij > € {Vei,ej € X, €; 7561} (20)

based pruning technique which uses thiecenter clustering
algorithm of [5].

The basic idea is to prune the non-dominating edges from
the cutset to return a set of mutually dominant edges. Throug
out the execution of the algorithm, a dominant edge, selecte

As seen in the previous section, non-dominant edges Klikdrom the current set of edge;, is used to prune out non-
in Fig. 5) in a cutset exhibit local errors. Moreover, thegcal dominant edges frorix. Clustering facilitates the selection of

contribute to global errors of other edges in the cutsee (lilominant edges. The variables used in the algorithm are:

a in Fig. 5). To avoid the bulk of these errors, we proposes:
to prune the cutset, eliminating its non-dominant edgemfro «:
injecting errors in global criticality computations. dig:
Pruning is justified by Eq. 7, wherein eliminating edge
with local criticality lower than a sufficiently small thresld r,:
value ¢ does not hurt global criticality computations because
T; < . The benefits are accentuated in cutsets with domind:
edges that have large global criticalities, since the sum of
global criticalities across a cutset must equdl (implying

A cluster containing at least one object.

Each clustew contains a centek.

Distance of an object, from its cluster center, is its
local criticality, ;,,, with respect tox.

Radius of cluster, is the distance of the object farthest
from centerx, i.e.,r, = max(d;s) Vi € o.

A distal object of clusters is an object with maximal
distance fromk, i.e., R, = j d;, = r,. In case of
multiple distal elements we choose one arbitrarily.

that many edges have very small local criticalities).

Algorithm 4 describes the procedure. We first choose the

However, not every edge with global criticality belewcan geeq y, as the object with maximum mean in cutsat,

be eliminated by pruning, particularly if its local critids is

(Steps 4-5). Next, Steps 7-9 pruie with respect to seed,

greater thare. Such edges cause global errors in the cutsety also markingy as pruned if its local criticality with
) respect to any other object I is less thare (Steps 10-12).

A. "Cy Cutset Pruning Steps 16-19 iteratively compute new clusters from existing

A straightforward approach to prune a cutset would be tes (Algorithm 5) until no cluster has size exceeditg
perform a pairwise comparison of edges, eliminating thbae t Step 20 returns the remaining un-pruned objects.in
have a local criticality less than a predefined threshol@ihe In Algorithm 5, the distal element;, of the clustern, with
main drawback of this approach is its prohibitive quadratimaximum radius is chosen as the center of a newly created
runtime complexity ofO(n?), due to"C, local criticality cluster,o (Steps 1-4). Intuitivelyy is the object upon which
computations, where is the number of edges in the cutset.its center has the lowest degree of domination (Def I1.7) and



Algorithm 5 o = CreateNewCluster(}) 0.03. Initially, a is chosen as the center of tHé' cluster,

Il © = set of clustersy = new cluster pruning out objectd ande. Next, b, a distal element of cluster
1: 0 ={ } /l initialize new clustelr 1 becomes the center of clustarpruning out objectg andg.
2: m = cluster with maximum radius if2 Also, sincer;;, < 74, Objecti is absorbed into clustex. Next
3: x = R,, Il distal element of clustem ¢, the distal element of cluster, the cluster with maximum
4: Inserty as center of newly created cluster radius, is chosen as the center of clustempruning object

/I Prune2 with respect toy h. Finally, objecti becomes the center of clustérand the
5: for all j € Q,j # k, k = center of a cluster iff) do algorithm returns mutually dominant objects b, ¢ and i.
6: if 75, <e then// x dominatesj (see Def. I1.7) The algorithm has the following properties.
7: Deletej from €2 // prunej
8  else iijx]< di» thenp// X dyominatesj more thanx Property V.1. At any iteration, all objects i (e_xcluding
o Remove;j from its current cluster, insegtin o clustgr genters marked pruned) are dominant with respect to
10:  end if all existing cIuster_ cent_ers. _ _
11: end for Proof: To avoid being pruned, objects must be dominant

12:if 3j€Q : (1—7j,) <e then// j dominatesy with respect to seeq, which is also the center of the*

13:  Marky = pruned - cluster (Step 8 of Algorithm 4). Moreover, every objgcts

14 end if compared with all newly added cluster centers in Line 7 of
Algorithm 5. Clearly, any objectji must be dominant with
respect to these centers to avoid being pruned. Moreover,
Lines 11 of Algorithm 4 and 13 of Algorithm 5 compare every
cluster center with every object for dominance. Although no
immediately removed fronf2, centers are marked pruned if
they are non-dominant with respect to other cluster objemts

15: Computer, and R, for ¢ and all existing clusters if2
16: return o

Property V.2. With S = 1, KCenterPruney, ¢, 1) returns a
set of mutually dominant edges (see Def.V.2pIn

Proof: When S = 1, each cluster i) contains only
one object, its cluster center. From Property V.1 above we
know that these are either marked pruned or are dominant
with respect to other cluster centers. It follows from sté&p 2
of Algorithm 4 (which returns all un-pruned objects @j, >
contains mutually dominant objects. [ |

Property V.3. For any clusters € , its center,x, has a
higher degree of dominationover its members than any other
Fig. 6. lllustration of the clustering based pruning praged cluster center, i.e.,
of Algorithm 4. Crosses indicate dominant objects and dots .
indicgte non-dominant objects. The clustering ]distancmés o> e AV € ok € KEX (21)
local criticality (,;) of an edge ) from its cluster centera). Proof: This is evident from Steps 8-10 of Algorithm 5.
Each object in) is compared with the new cluster center
The conditionr;, < d;, is equivalent tor,; > 7,5, i.e., the
hence a good candidate to facilitate the pruning of otheesdgiew cluster centery, has a higher degree of domination over
in the cutset. Therefore it is chosen as the center of the nelject; than its cluster center. u
cluster. Step 7 useg to prune objectg (with local criticality
with respect toy less thane) from their respective clusters.

If x has a higher degree of domination ovecompared to Proof: A single run of Algorithm 5 compares every object

!ts cutrrgr_lt tcenters, jl 'St remSotved féof(; 'tsl (iu_rtr_en;c cluster inqn Y with centery of the new clustew, taking O(n) time.
|dnser € '?g new %us eg t( epsw\; )'d ntuitive yl'ta grea erl ince each iteration in Algorithm 4 returns a new clustethwi
egree of domination between two edges resutis In SMavgr ) sters returned, the overall runtime@gn k). [ |

global errors inM AXy. If the newly added cluster center
X, Is dominated, it is marked pruned (Step 13).We return the
newly created cluster after adjusting the radius and the distaf®. CPSC: Clustering Based SC Algorithm
element of all currently existing clusters §i (Steps 15-16).  Algorithm 6 derives mainly from Algorithm 3 combined
Fig. 6 illustrates the execution of Algorithm 4 on a cutset afith Algorithm 4 to compute the statistical criticality ($C
9 objects labeledi-i with pruning thresholdt = 0.05, taken The main difference is Steps 3-15 (differ from Steps 6-13 of
from one of the ISCAS89 benchmarks (s9234). The relevahlgorithm 3), which update the zone information, accougtin
local criticalities of the objects arey, = 0.19, 7., = 0.18, for pruned edges in cutsets from previous levels. UnlikecAlg
Tda = 0.01, Teq = 0.0, 7po = 0.17, 74, = 0.17, 7, = 0.17, rithm 3, we only compute the contribution of an mc-edge,
o = 0.17, 74, = 0.02, 7, = 0.02, 7 = 0.06 and 7, = to its zone,Z;, if it is un-pruned in previous levels. Therefore

Property V.4. For a cutsek of sizen and K clusters returned,
KCenterPrune take®(nK) time.
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Algorithm 6 CPSC ((V, E),¢) later, uses a sampling technique which obviates the need

/I G = circuit timing graph; = pruning threshold for the ordering step. Property V.4 ensures that in a cutset
1: Algorithm 3, Steps 1-4 to obtain a cutsetof edges with n edges having a small number of dominant edge€s,

2: for all levels! € G do (K < n), Algorithm 4 runs inO(n) or linear time.

3 for all e; € 3. with end-levell do

4 if e; is the first edge to exit zong; then In summary, our clustering based algorithm eliminates non-
5: Remove pruned edges froffyp; RecomputeX ;z  dominant edges from the cutset so as to reduce errors (due to
6: end if Clark’s maximum operation}/ AX,) in the global criticality

7 if e; is un-prunedhen computation of the dominant edges. Ideally, computing the
8 ++z;r Il e; exits zoneZ;, update reverse pointer maximum operation accurately would significantly reduce
9 Zivax = Yjr(zjRr) errors in global criticality. Various techniques have besed

10: end if to try to reduce the errors in the linear approximation of a
11:  end for set of Gaussian random variables. In [12], the authors give
12: for all un-prunede; € ¥, with start-levell — 1 do a detailed treatment of the errors in thi¢ AX, operation

13: Z; = zone ofe; by using error preserving transformations and precomputed
14: Zohiax = MAX o (Z% ax,€7) lookup tables. These tables are used heuristically to @det

15: end for of random variables and compute their statistical maximum.
16:  Algorithm 3, Steps 14-19 to compute cutdet In [17] the authors postpone the computation of the linear
17: K = KCenterPruneX(, e, 1) // pruningX maximum during SSTA, if it results in significant non-linggr

18: KCenterPruned, e, S) // ordering (distribution skewness is used as a measure of non-liggarit
19:  Algorithm 3, Steps 20-22 to compute the global critiThe maximum is propagated as a maximum tuple in such

cality of all edges in the pruned cases. At the primary outputs, a Monte Carlo simulation is

20: end for performed on the tuple to obtain a better estimation of the

circuit delaypdf. The authors in [7] use a moment matching
technigue to compute non-linear distributions more adelya

) Such a technique can be used to get rid of the linearity
we do not need forward book-keeping data strucflife, 10  yestriction of the M AX, operation to reduce the errors in
computez?,, , x, the maximum of mc-edges belonging4o,  cyiticality computation.

crossing the current level. Insteddy, , - is computed online,
in Steps 12-15. Due to pruning, the computed reverse book-
keeping data structuré’;r, of a zoneZ;, may be invalid. On ) ) ] ) ) )
encountering the first edge leaving this zone, we recompute! NS section describes a simple solution to deal with global
Y, r, removing all pruned edges from it (Steps 4-6). This grrors not ell_mlnated t_)y pruning. We therj_explore a popular
allowed because all edges enter a zone (and therefore i@§&Ph reduction technique to speed up criticality comjmornat

known if they have been pruned) before any edge exits it. and finally deal with errors due to independent parameter

. . variations like gate oxide thickness,,.
Step 17 derives a set of mutually dominant edges from g o

cutset, facilitated using Property V.2. Step 18 orders cutset ) _

¥, facilitated by Property V.3. There can be many differerft- LS: Localized Sampling

orderings when performing the statistical maximum of edgesTo tackle edges having global errors (Def. 1V.2), we perform
in the cutset [12]. Property V.3 proves that a cluster centar quick localized Monte Carlo sampling of the edges in
has a higher degree of domination over its members than anycutset>, pruned using Algorithm 4. The procedure is
other cluster center. Therefore, in the order of edgesmetlyr described in Algorithm 7. The inputs ad& N;, samples of
an edge is closer to its most dominating center (as opposedhe & independent and identically distributed (i.i.d.) Gaussia
the case in which a purely random order were chosen). Tpencipal components (PCs) (Eq. 2) storediip; array R of
intuition is that a greater degree of domination between tw¥;, i.i.d. Gaussian samples for each edge.inEvery sample
edges would result in smaller errors in théA X, operation, is used to instantiate the edggsn ¥ (Steps 2-4), from which
as shown in [17]. Algorithm 4 stops execution when theie compute the edge with maximum delay (Step 5). Array
maximum cluster size equalS. If S were set to a large entry M[i| keeps count of the number of samples for which
number, like the size of the cutset, the algorithm would exitn edge:; takes on the maximum delay. This helps us compute
without any clustering iterations and a random orderingldiouthe global criticality, T;, of all edgese; € 3 in Step 7.

result. For our experiments, we heuristically chose a elust Consider a cutset = {ey, ..., e, } with edge path delays,
size S equal to the square root of the number of edges in tHe7,...,e%}, represented in terms of the PCs (for the
cutset, to balance out the number of edges in each cluster aodpose of simplicity we ignore the spatially uncorrelated
help to reduce the runtime of the ordering step by performimgndom component of variation;). In the k-dimensional

a fewer number of iterations. Our framework is also flexiblspace, leR be the region where? takes on the greatest value
enough to accommodate other error metrics like [12] or the the probability space, i.eR is the region of dominance of
skewness. Such an ordering cannot be obtained witff @ edgee; in the cutset. The global criticality; of edgee; is
pruning strategy of Section V-A. Section VI-A, discussediven by the volume integral of the jointdf of the & i.i.d.

VI. REDUCING ERRORS
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Algorithm 7 LS (X, ¥, R) TABLE |I

. .. . THE ISCAS89BENCHMARKS WITH NUMBER OF GATES N¢, AND
II'SS = cutset; ¥, = Ni5 X k array of i.i.d. gaussian samples  |npepenDENT SOURCES OF VARIATIONN, . THE EFFECT OFTGRON
/' R = Ni5 x |X| array of i.i.d. gaussian samples CIRCUIT DEPTH, L, AND MAXIMUM CUTSET SIZE, 7 IS ALSO SHOWN
1: for n =1 to N, do

2. forall ¢; € X do

3 di = pi * Z;:]f aij - Wp [n].[jh] + G- Rl Hame égtfes e TGR LNO ToR | TeR T NoTER
Il 'W,[n][j] = value of thej** PC, p;, and s13207 | 7951 | 22330 | 63 16 1329 | 2599
Il R[n][i] = value of random component;, s15850 | 9772 | 27290 | 86 21 1688 | 2411
/I for edgee; at simulation point: (see Eq. 2) s38417 | 22179 | 64056 51 13 2821 | 6638
4-  end for 35932 | 16065 | 56538 | 33 10 5473 | 10742
5:  Increment counf/[i] of edgee; with maximumd; S38584 | 19253 | 65512 ) €0 | 19 5680 | 10374
6: end for

7: ComputeT; = M[i]/Nis for all e; € &

PCs overR. The LS procedure in Algorithm 7 is a Monte
Carlo simulation to compute the volume integral of the joint
pdf over regionR. The accuracy of LS therefore depends
on the number of samplel;; and the accurate computation
of the path delay for every edge in the timing graph, or in
other words, the forward and reverse SSTA to capture the
sensitivities of edge path delays to théi.d. PCs. Intuitively,
since edges with high global criticality (large volume nta)
have a region of dominanc® near (or including) the origin,

the number of samples needed for convergence is not very

large. This will be seen in the results Section VIl. F‘F%[g 7. A reconvergent structure from one of the ISCAS89
]

It should be noted that we apply the LS procedure to ever . ) e N~ .
cutset of the timing graph. Thepsp}(/aedup ianS stems from t nchma_rks W'th a high _crltlcahty path |_nd|cated using ol
reduction of the cutset size using the clustering basedipgun ines. Arrival t'r.ne. cor_relatlpns Of. fanouts in cutsef denoted

r;, due to variation in oxide thicknes&t,,, of gate Gy,

rocedure of Algorithm 4. . .
P 9 cause structural correlations in reconvergent fanouesdik; .
B. Timing Graph Reduction

Since we perform a localized sampling on all the levels gf 5 transistor, are captured by the single random variaple
the timing graph,G, reducing the number of leveld,, can s s done to avoid tracking the individual contributioh o
speed up the runtime. We exploit the fact that the critigalit, for every transistor in the design as a separate term in the
of a node inG is equivalent to the sum of its fanin edg&anonical form, as done in [8]. However, errors can occur in
or fanout edge criticalities. To do this, we perform a timing,q path delay of reconvergent paths, as shown in Fig. 7 taken
graph reduction (TGR) procedure on nodes with a single faniym, one of the ISCAS89 benchmarks.
or fanout. A straightforward and practical example of this The figure shows gat6,, driving 5 other gates. The arrival
reduction is an inverter chain, wherein a path enters thmchﬁme (Def. 11.3) at the fanouts af;; consists of a structurally

if and only if it passes through all the edges in the ChalQorrelated term to capture the variation in the oxide théeden

Therefore, the criticality of all these edges is the same. ; ; ;
o ) ; . of transistorG, denotedAt,,. Since the canonical form
The idea of TGR is borrowed from [14], wherein the objec: I . ! !

L limi o h nod d h bconsists of a single term to capture spatially uncorrelated
tive 'S to eliminate tlmlng graph nodes t‘? re uc_e? € num %riations,ri, in cutsetX:, these are considered independent,
of variables and constraints in circuit timing optimizatidro

o . and may cause errors in high criticality paths (shown in pold
perform; TGt.R we scan tlr?mg grafp(Ei_ n lth? forvx;arddz:r;d_ particularly when such fanouts have a high degree of correla
reverse directions merging fanins ot singie fanout no Mion. In our experiments, ignoring the structural corrielias

their fanout and fanouts of single fanin nodes into theirirfanIed to errors of upta60%, the main culprits being cutsets
respectively. Table Il shows the effect of TGR on the numb%th reconvergences similar to Fig. 7. Also, to calculate th

of levels, L, and maximum cutset size, on the five Iargegt statistical M/ AX , at the convergence of the paths containing

benchr_nark circu?ts. Columa ShO\‘/‘VS th? size “of the cir’f:wt. gatesGar, Gas, .. ., Gas, i.€., at gatels,, we need to factor
As their names '"_‘p'y' columns TGR and NQ TGR A% the commonAt,, of gate G; to reduce inaccuracies in
results with and without TGR respectively, applieddo MAX,. To keep track of the structural correlations due to
) ~_ spatially uncorrelated independent parameter variatldwes
C. Spatially Uncorrelated Independent Parameter Variatio A¢_ on encountering a multiple fanout gate lik&, we
Revisiting Eq. 2, independent (spatially uncorrelated) paxpand the canonical form of the path delay with/its,, vari-
rameter variations like the variation in oxide thickness, ation to accurately compute the arrival time of the dowrzstre
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TABLE Il
CRITICALITY RUN -TIMES AND ERRORS FOR VARIOUS BENCHMARKSe = 5% AND N;, = 1000 ZSC - ZONE BASED CRITICALITY, "Cy - PAIRWISE
PRUNING SCHEME CPSC -CLUSTERING BASED PRUNING SCHEMETGR -TIMING GRAPH REDUCTION, LS - LOCALIZED SAMPLING

Metric Pruning Benchmark
Scheme s3271 | s3330 | s3384 | s4863 | s5378 | s6669 | s9234 | s13207 | s15850 | s38417 | s35932 | s38584
ZSC 4451 | 36.19 | 43.23 | 31.82 | 59.95 | 40.24 | 38.17 | 41.75 44.56 34.78 21.11 48.21
maximum | "Csy 4.70 3.82 0.03 17.40 | 26.94 | 26.74 | 36.63 | 15.72 32.20 30.29 14.95 20.28
% & CPSC 4.70 1.42 0.03 | 17.40 | 37.41 | 30.25 | 36.57 | 15.64 37.32 30.29 14.95 21.18
CPSC+TGR+LS| 4.70 1.62 0.03 9.08 7.18 2.90 3.28 2.33 4.52 4.70 1.82 15.88
ZSC 0.05 0.04 0.07 0.11 0.12 0.16 0.19 0.24 0.28 1.43 1.32 1.47
runtime nCo 0.11 0.09 0.18 0.52 0.51 0.91 1.15 2.36 2.65 58.15 74.69 59.23
(sec) CPSC 0.01 0.01 0.01 0.03 0.02 0.06 0.05 0.03 0.05 0.16 0.36 0.11
CPSC+TGR+LS| 0.01 0.02 0.01 0.12 0.04 0.25 0.15 0.06 0.14 0.25 0.25 0.22
ZSC 622 451 603 528 593 965 644 1329 1688 2821 7340 5680
n nCy 2 13 1 6 7 11 19 7 8 14 66 15
CPSC 2 13 1 6 7 11 19 7 8 14 66 15
CPSC+TGR+LS 2 13 1 7 6 12 17 7 8 12 66 15

gates in the circuit. A similar expansion is performed fotega 50
with multiple fanins while reverse traversing the timinggh o B Criticality with zones O Criticality without zones
to compute the required times of upstream edges. Although § 40 7
the number of terms in the canonical form increases, usinga 2 5, |
linear sparse array, we only keep track of terms with now-zer ﬁ
sensitivities in the edge path delay. Table Il shows thel tota £ 20 1
number of independent sources of variation for the bencksnar %10 4
under column three, labelel;. As seen in Section VII, this S
does not adversely impact the runtime. 0
SO XA ANy
VII. RESULTS §§§§§§§§§§§§A§%
Benchmark A

Our algorithms were implemented in C++ on top of an

SSTA engine [1] and exercised on the largest ISCAS89 _. . T . .
; . ig. 8. Runtime of criticality computation as a fraction of

benchmarks, with parameter values corresponding to tquAr ntime. The two cases shown are with and without the
100nm technology node [11]. Experiments were Conductezone-b;seld ai orithm to com uteV\'ihe stavt\?stical m\glximlljm of
on a Linux PC with a 3.0-GHz CPU and 2GB RAM. The’ > 2252 2900 T B t0iE e o e o
average ratio of the standard deviation to the mean of ¢ircui 9 9 9 grapn.
delay was about2%. We compared four schemes with Monte

Carlo simulations using 10000 samples, shown in Table III. _ _ _
The first scheme is the zone-based ZSC approach in Algguning and ordering does better than ZSC in accuracy and

rithm 3. Scheme”C, additionally implements the pairwiseruntime. For circuits exhibiting large global errors, th& L
pruning strategy of Section V-A with a pruning thresholdprocedure helps reduce them further. Rows in bold compare
¢ = 5%. CPSC implements Algorithm 6 using our clusteredSC with CPSC+TGR+LS. The combined approach greatly
pruning and ordering technique. CPSC+LS+TGR perfornfigduces the errors and runtime, due to pruning. Moreover,
clustered pruning on the reduced timing graph (TGR) artintime increase is negligible compared to CPSC (an anomaly
computes criticalities using the LS procedure (Algorithin 7s s35932 wherein runtime decreases due to TGR). For the
with N;; = 1000 samples. All approaches excluding ZSC ac3 large benchmarks we obtain about an order of magnitude
count for structural correlations due to independent patam difference in run-times of ZSC and the combined approach.
variations as described in Section VI-C. Row “maxims” Most circuits have errors below0%, except for s38584. On
reports the maximum difference between the edge criticalifnvestigation, it was found that for large fanout structjggath
computed using any of the above mentioned schemes and dgéays themselves (computed in terms of the PCs) contained
Monte Carlo simulations, row “runtime” reports the runnind@rge errors and hence the LS procedure does not completely
time in seconds and;” reports the maximum number of edge<liminate global errors. In terms of the efficacy of our pngi
in any cutset of the timing graph after pruning. We excludgirategy, as expected we vastly outperform‘tig procedure
the times for SSTA and generating thg, samples in LS.  in runtime (about two orders of magnitude for the larger
From Table Ill, ZSC, which computes criticalities usingPenchmarks). Each circuit also contained an identical rarmb
Clark's M AX, formulation results in large errors (the largesef edges remaining in the cutsets using th€, and CPSC
being about0%). As described in Section IV, this is mainlyPruning strategies, seen from the entries in rop.
due to the propagation of local errors. CPSC with cutsetTo evaluate the runtime effectiveness of the zone-based
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Fig. 9.  Tradeoff showing number of LS sample¥;;, Fig.10. Tradeoff showing pruning threshoidyvs the overall
vs the overall criticality computation runtime and maximungriticality computation runtime and maximum percentagerer
percentage error (with respect to a Monte Carlo simulatigwith respect to a Monte Carlo simulation witf)000 sam-
with 10000 samples), for the s38417 ISCAS89 benchmarkles), averaged over thelargest ISCAS89 benchmarks. The
Runtimes are normalized to the case with, = 50 and the runtimes and error are normalized to the case with 1%.

error is normalized to the case wifki;; = 10000. The number of samples used in LS;, = 1000.
approach, Fig. 8 shows the criticality computation runtime 1 O Runtime Ratio M Difference in % Error 60
with (denoted ‘Criticality with zones’) and without (demak 8
"Criticality without zones’) zones as a fraction of the SSTA .glo 50 LE
runtime. In all cases, structural correlations due to irshejent & 81 T 40 i
parameter variations were not taken into account. On aeerag “E’ 6 =303
criticality computation with zones is aboub.X faster than E4 L 20 %
SSTA and we obtain a speedup of abautX in the runtime & 5 L 10 g
compared to the case without zones. The runtime for the zone 0 0 A

computation procedure of Algorithm 2 on average was less

than0.5% of the SSTA runtime. SOOI XLALSN Y @
i PEFFEFTETPIFSE &
In decidingXN;;, we observed that as the number of samples YL 9o 57 S X0
% & @ o

increases, the improvement in accuracy diminishes. Fig. 9 Benchmark ¥
shows the tradeoff between the number of sampigsand the 11 ¢ ) ¢ . . d diff .
maximum percentage errér obtained between our cIusteringF'g' - Comparison of runtime ratio and difference in max-

based approach and a Monte Carlo analysis witho0 runs imum criticality percentage error between our implemeatat
As expected, with a small number of LS samplas, < 500, of the approach in [15] and the clustering based approach,

the error is more than double that witfy, = 10000. However referenced to a Monte Carlo simulation of 10000 samples.

as the number of samples increases, say frod0 to 5000, the The _number of samples used in L&, = 1000, and the

overall runtime almost triples, without much reduction fnoe. pruning thresholds = 5%.

Moreover, asN;, increases, the overall runtime is dominated

by the time for LS. In our algorithm, to maintain a reasonable

tradeoff of accuracy and runtime, we chaSg = 1000. mainly attributed to cutset pruning, which eliminates ayéar
Fig. 10 shows the variation of runtime and accuracy (avetumber of non-dominant edges, thereby reducing the number

aged over all benchmarks) when pruning threshe]ds var- Of criticality computations. The advantage of cutset pngris

ied. With an increase in, the cutset size decreases, reduciniggrticularly pronounced for the larger sized benchmarks.

the overall criticality runtime (mainly due to reduction tihe The difference in maximum percentage errbf §) when

runtime for LS). For pruning thresholds bel®#%, the erroris compared to a Monte Carlo simulation of 10000 runs, is

relatively constant since the non-dominant edges elimthed shown in Fig. 11 on the secondary axis. On average, over

not adversely affect the global criticality of dominant edg all the benchmarks, we see that if our algorithm reported the

Therefore in our algorithm, we chose a pruning threshold afaximum criticality difference with a Monte Carlo simulai

5% to obtain good accuracy with a reasonable runtime.  of 2%, the approach in [15] reported a maximum criticality
Finally, we implemented the approach of Xioreg al. difference ofz + 35%. The errors are of similar magnitude

in [15] and compared its performance with our clusterintp our zone-based scheme, ZSC, implemented without cutset

based approach for the benchmarks shown in Table Ill. Fopeuning (Table Ill), since fundamentally both the apprasch

fair comparison, we ignored independent parameter vangti are similar. Hence, as was seen in #ix problem, local and

when comparing the two approaches. On average, we obtgiabal errors contribute to large overall errors in crilitya

a speedup of abouiX over the approach in [15]. This iscomputation (Table I).



This paper presents a new linear time technique to comp

VIIl. CONCLUSION

statistical criticalities in a timing graph. We use the idefa

interval zones to process edges crossing multiple cutsets
linear time. We have also developed a new clustering bas

heuristic capable of both pruning and ordering edges in
cutset to reduce local and global errors resulting from iCdar
tightness probability formulation. Our clustering basedining
competes very well with a pairwise pruning strategy witlyéar
speedups in runtime. Using our pruning technique with local
ized sampling and timing graph reduction, our computations
produce errors of arounls when compared to Monte Carlo
simulations, even in the face of large gate delay variatiémns

important topic for future work is to use our clustering lmhsé

framework to compute criticality incrementally.
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