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Abstract—This paper presents Reflective Simulation Platform
(ReSP), a transaction-level multiprocessor simulation platform
based on the integration of SystemC and Python. ReSP exploits
the concept of reflection, enabling the integration of SystemC
components without source-code modifications and providing full
observability of their internal state. ReSP offers fine-grained sim-
ulation control and supports the evaluation of different hardware/
software configurations of a given application, enabling complete
design space exploration. ReSP allows the evaluation of real-time
applications on high-level hardware models since it provides the
transparent emulation of POSIX-compliant Real-Time Operating
Systems (RTOS) primitives. A number of experiments have been
performed to validate ReSP and its capabilities, using a set of
single- and multithreaded benchmarks, with both POSIX Threads
(PThreads) and OpenMP programming styles. These experiments
confirm that reflection introduces negligible (<1%) overhead
when comparing ReSP to plain SystemC simulation. The results
also show that ReSP can be successfully used to analyze and
explore concurrent and reconfigurable applications even at very
early development stages. In fact, the average error introduced
by ReSP’s RTOS emulation is below 6.6 ± 5% w.r.t. the same
RTOS running on an instruction set simulator, while simulation
speed increases by a factor of ten. Owing to the integration with
a scripted language, simulation management is simplified, and
experimental setup effort is considerably reduced.

Index Terms—Design exploration, multiprocessor, Python,
SystemC, system-level design, system-on-a-chip.

I. INTRODUCTION

MULTIPROCESSOR systems-on-a-chip (MPSoCs) are
becoming the prevalent design style to achieve tight

time-to-market design goals for high-performance devices, sim-
plifying the verification process and providing flexibility and
programmability for postfabrication reuse.

As larger and larger portions of current applications are
being implemented in software, their development dominates
the cost of the whole system and becomes critical for the
development schedule. These issues were already present in
“classical” embedded systems, but they have been amplified
in MPSoCs which, with explicitly concurrent computation and
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possibly real-time (RT) characteristics, are more difficult to
model and analyze. Taking into account hardware and software
at the same time is an aid for the design of such systems,
allowing software to be developed before the final hardware
is ready. In this context, three main methodologies have been
devised [1]: 1) the use of a field-programmable gate array
(FPGA) emulator; 2) the use of a workstation with appropriate
scaffolding; and 3) running the software on a virtual platform
(full system simulator). As FPGA prototypes are, in general,
not available during the early phases of the design, the use of
virtual platforms is becoming widespread.

In order to develop effective virtual platforms of MPSoCs,
it is necessary to provide mechanisms for the identification of
the complex relationship between application, operating system
(OS), and underlying hardware configuration. RT systems also
require the accurate modeling of scheduling choices, task inter-
actions, and interrupt response times.

In this paper, we present Reflective Simulation Platform
(ReSP), a virtual platform targeted to MPSoC systems. We
focus on a component-based design methodology [2], provid-
ing primitives to compose complex architectures from basic
elements built on top of the SystemC and transaction level
modeling (TLM) libraries [3]. The framework exploits Python’s
reflective and scripting capabilities, augmenting SystemC com-
ponents with full observability of their internal structure. This
enables runtime composition and dynamic management of the
architecture under analysis. The potential offered by the inte-
gration of Python and SystemC is used to query, examine, and
modify the internal state of hardware models. Such concepts
were presented in [4] and, later, extended to include modeling
of parallel applications [5] and Real-Time Operating Systems
(RTOS) [6]. This paper unifies the approaches, demonstrating
how those mechanisms can be used to create a virtual platform
to be employed in most of the tasks of system-level design.
ReSP has also been extended with capabilities and tools for the
modeling of reconfigurable systems and for power analysis and
estimation at a high level of abstraction, based on the concepts
presented in [7].

Overall, ReSP provides a cosimulation environment that is
suitable for RT MPSoCs. This environment is based on a mech-
anism for the transparent emulation of RTOS primitives for
any POSIX-compliant application. The most important contri-
butions of the presented simulation platform are the following:

1) low-overhead reflective support for C++, augmenting
the SystemC library with introspective and reflective
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capabilities and adding flexibility to the virtual platform
technology;

2) integration with Python, providing an intuitive simulation
management owing to its scripting capabilities;

3) innovative function call emulation mechanism, en-
abling RTOS emulation, preliminary hardware/software
codesign, and efficient modeling of reconfigurable
architectures;

4) integration of the two cited mechanisms into a sin-
gle simulation platform, providing a usable and flexible
environment.

The rest of this paper is organized as follows. Section II
presents the most prominent works in the field of system-level
simulation and codesign. ReSP’s structure and its peculiar fea-
tures are detailed in Section III. The proposed RTOS emulation
system and its extension to support dynamically reconfigurable
logic are described, respectively, in Sections IV and V-C, while
experimental results showing ReSP’s capabilities are contained
in Section V. Finally, concluding remarks and directions on
future development are presented in Section VI.

II. RELATED WORK

A. Simulation Platforms

Simulation is the most commonly adopted technique for
the analysis of functional and nonfunctional requirements of
multiprocessor platforms and of embedded systems in general.

CoWare Platform Architect [8] uses SystemC to model and
simulate the platform; it also integrates the Processor Designer
tool for the specification of instruction set simulators (ISSs).
While CoWare Platform Architect contains a wide library of
components, integration of additional ones requires a consider-
able effort.

StepNP [9] is a flexible platform for the simulation and
exploration of MPSoCs. Although powerful, it presents sev-
eral limitations: It features a reduced set of ISSs, and the
Open SystemC Initiative (OSCI) TLM standard library is not
used for communication, hence reducing interoperability with
externally developed components. To augment SystemC with
reflective capabilities, SystemC Interface Definition Language,
a CORBA-like interface definition language, was created, and
each component has to be manually modified to be compliant
with it. Beltrame et al. [7] extended StepNP by introducing
the concept of introspection to support dynamic switching of
simulation accuracy. Even if the approach is innovative, it is
considerably intrusive and does not allow complete control over
the component models and their internal state. In our platform,
the need for ad-hoc wrappers and for IP modifications has been
eliminated, owing to the automatic integration between C++
and Python and, consequently, the introduction of reflective
properties.

A partially unintrusive approach was adopted by
Albertini et al. [10], who used the Reflex-SEAL library
to add reflective capabilities to SystemC. These capabilities
are exploited by a special white box component: At every
simulator’s cycle, the white box inspects the platform’s modules
and their status, easing the debugging activity. This work does

not fully exploit the power of reflection in that it is only used for
debugging activities, and by monitoring the component’s status
at every cycle, simulation speed is consistently decreased.

B. High-Level Modeling of RTOS

Most of the just described platforms can be and are used
for the concurrent design [11] of the hardware and software
portions of a system. The software part is usually executed
on top of an ISS; their low simulation speed pushes for the
addition of RTOS models in system-level Hardware Description
Languages (HDLs) (as SystemC or SpecC).

The works described in [12]–[15] model the application, the
hardware, and the services of the RTOS using the same HDL.
Due to the limitations of the typical HDL processing model,
application threads are executed sequentially between synchro-
nization points. As such, a tradeoff has to be determined be-
tween simulation speed and accuracy of the task interaction
models: the more synchronization points, the more the model
reflects the actual application behavior and the lower the simu-
lation speed. When the design is refined, the RTOS model can
be automatically translated into a standard OS or into custom
software services as performed in [16]. In most cases, the use
of a standard RTOS is preferred over automatically synthesized
services, and in this case, the results obtained using the RTOS
model might not be applicable. These methodologies also suffer
from the code equivalence [1] problem in that the code executed
by the model is different from the code executed by the real
hardware.

A different technique is employed in [1] and [17], where
the authors partially reuse unmodified OS primitives, thus
mitigating the code equivalence problem. These OS primitives
are ported to the simulator host and are executed natively,
guaranteeing high simulation speed, but their timing is not
accurately replicated.

Our approach is based on code execution on ISSs, trading-off
the minimization of the code equivalence problem with lower
simulation speed. In order to enable modeling and analysis of
the OS, we implemented a technique known as system-call
emulation. It is common to find emulation features in ISSs
such as Sim-It ARM [18], SWARM [19], and ArchC [20]. The
main drawback of these systems consists in the tight coupling
between the compiler and the ISS, thus limiting the portability
of the solution: Custom compilers are necessary to enable
system-call emulation with such ISSs. With respect to these and
other similar systems, our implementation shows the following
advantages.

1) Independence from the cross-compiler toolchain: Emu-
lated routines are identified with their names; such names
are the same no matter what compiler is used. There is
no need, for example, to modify the ISS to adhere to the
convention with which the software is built [18], [19] or
to modify the application code to reflect the internal ISS
mechanisms [20].

2) High interoperability with different ISS types: An Inter-
face is the only component that needs customization to
add new ISS models to the simulator.
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3) Extensibility: As shown in the following, the presented
mechanism enables preliminary hardware/software par-
titioning and codesign. Moreover, a multiprocessor
multithreading concurrence manager was implemented,
enabling emulation of PThreads.

4) High code equivalence: Since only the low-level system
calls (SCs) (e.g., sbrk) are emulated and the rest of the
OS code (e.g., malloc) is executed unmodified in the
ISS, our method maintains high code equivalence with
the final software.

C. C++ and Reflection

ReSP’s most innovative feature consists of the integration of
Python, C++, and SystemC, augmenting C++ with reflective,
introspective, and scripting capabilities.

Some programming languages (Java, C#, Python, etc.) im-
plement reflection natively, but C++ supports only a limited
set of features under the name of runtime type information,
and the metadata required to implement it have to be gathered
in a separate step and with separate tools. For example, the
Reflex-SEAL library [21] uses GCCXML to parse the source-
code header files and to generate an object equivalent structure
in XML. This information is then grouped and compiled into
a library, which can be linked with the user code to enable
reflection. Similar to our approach, SEAL is nonintrusive in the
source code, even though it requires user intervention to expose
private class members.

The idea of augmenting HDLs with the concept of reflection
has already been explored in previous works. Doucet et al. [22]
first analyze the possibility of introducing reflection in system-
level language frameworks. They implemented the BALBOA

[23] framework, which uses a custom interface description
language [Balboa Interface Definition Language (BIDL)] to
describe IP structural information (as in [7]) and an interpreted
language based on Object Tcl to interpret BIDL data and to
assemble the components into a design architecture.

Follow-ups to this approach are presented in [10] (discussed
earlier) and [24]. In the latter, introspection and reflection
are used to provide enhanced debugging capabilities through
automatic test generation and extraction of runtime informa-
tion from SystemC models. While the overall idea is simi-
lar to ReSP’s, their approach is complex, requiring the use
of Doxygen, of an XML parser, and of a custom abstract
system-level description language for extracting reflection data
from SystemC code and for representing it. Moreover, their
infrastructure is based on the use of the CORBA communi-
cation infrastructure, causing a simulation slowdown between
45 and 65 times with respect to unmodified SystemC, which is
unacceptable when simulating complex MPSoC designs.

Compared to previous approaches, this work presents the
following advantages:

1) reflection of all C++ data structures without requiring
access to the source code, simplifying the integration of
components and protecting IP rights;

2) fully automated process;

3) scripted language for managing the platform, controlling
simulation, and even enabling the description of SystemC
components using Python.

In particular, over the other presented approaches, the integra-
tion with Python provides scripting capabilities to the frame-
work, which are used to control the computationally intensive
parts of the system as often performed in scientific com-
puting [25].

A similar goal could be obtained by attaching the GNU/GDB
debugger [26] to the running SystemC thread and using GDB
to obtain introspective and some reflective capabilities. With
respect to our work, this solution has the following properties:
1) It has lower execution speed; 2) it requires compilation of the
IP with special (−g) compilation flags; 3) it does not feature as
powerful and complete reflective capabilities; and 4) it does not
allow an as intuitive and flexible simulation management as that
provided by the integration with Python.

The integration of SystemC and Python is one of ReSP’s
peculiar features, and even if other works have explored this
integration, it was done differently or pursuing different goals.
For example, Vennin et al. [27] use Python to embed scripting
into SystemC modules to reduce the number of lines of code
(LOC) used to express a given functionality. This requires the
modification of the OSCI SystemC kernel and differs from our
goal, which is not the embedding of scripts in SystemC but,
vice versa, the use of Python to control SystemC. At the best
of the authors’ knowledge, ReSP is the only tool providing a
complete Python wrapping mechanism for SystemC and TLM
designs.

Overall, the techniques presented in this paper overcome
many of the limitations of previous approaches, providing a
new methodology to create fully observable virtual platforms,
using the standard OSCI SystemC kernel and without requiring
any modification of existing SystemC IPs. We also introduce
the following: 1) an RTOS emulation layer for the evalua-
tion of concurrent applications and of multiprocessor RTOS
primitives and 2) an hardware/software partitioning exploration
methodology that allows to quickly move any functionality
from hardware to software.

III. PROPOSED SIMULATION FRAMEWORK

The goal of ReSP is to give the designer an easy way to
generate a high-level model of a system, simulate it in any given
configuration, and perform automatic analysis, such as design
space exploration (DSE), software optimization, or reliability
assessment. To achieve this goal, ReSP starts from SystemC and
the OSCI transaction-level modeling library [28] and provides
a nonintrusive framework to manipulate SystemC and TLM
objects. In the following, the term framework indicates the
overall ReSP architecture, while component describes any top-
level SystemC module included into the framework’s database
(e.g., a processor, a cache, etc.).

The proposed framework is based on the concept of re-
flection that allows ReSP to view and modify every C++ or
SystemC element (variable, method, signal, etc.) specified in
any component.
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Fig. 1. ReSP system architecture.

In ReSP, SystemC code is directly parsed, and appropriate
interface files providing reflection (here called wrappers) are
automatically generated, integrating standard SystemC TLM
IPs with minimum effort.

Fig. 1 shows ReSP structural elements: ReSP Core, IPs, and
Tools, described in the following.

A. ReSP Core

ReSP relies on the OSCI standard SystemC kernel, as op-
posed to other works [27] that require special or patched ker-
nels. A Python wrapper for the SystemC kernel is automatically
created during ReSP’s compilation process, adding reflection
support and the ability to execute arbitrary function calls to
SystemC code from Python. The simulation controller is a
set of Python classes that translate commands coming from
the user into SystemC function calls: It provides functions for
running, stepping, pausing, and stopping the simulation.

A novelty introduced by ReSP lies in the Python wrapper
generation for SystemC and TLM components. In previous
works [7], [8], [10], [27], [29], the developer had to write
special interface files or use specific classes in order to add
components to the framework’s database. Moreover, only the
components’ characteristics described in those interface files
could be used by the simulator. ReSP performs this step
automatically,1 generating Python wrappers by parsing each
component’s C++ header file. The generation flow is shown
in Fig. 2. Each header file is parsed using GCCXML [30], a
tool that provides an XML description of the code’s abstract
syntax tree, i.e., it extracts the name of the declared classes,
the signature of their methods, the attributes, etc. The resulting
XML description is manipulated by the PyGccxml tool to select
all the parts that need to be visible and usable from Python (re-
ferred to as exported elements), and then the open-source tool
py++ [31] generates Python wrapping code. Note that the wrap-
per creation flow starts from the IP’s header files as distributed
by the IP provider. Such header files usually contain the whole
component’s structure; unfortunately, there might be situations

1A limited user interaction is needed for corner situations, for example, in
case that it is necessary to access from Python a function returning a pointer.

Fig. 2. ReSP wrapper generation flow.

where only the external IP interfaces are distributed: Then, only
the available data can be made available from Python.

The SystemC kernel is run in one execution thread, with the
rest of the Python wrappers. Human-computer interface (HCI)
and tools are executed separately and synchronized with the
SystemC kernel when needed (depending on the tool). This
way, the user has full asynchronous control of the simulation
(the status of the components can be queried and/or modified
even while the simulation is running), without loss of consis-
tency. The simulation controller acts as a bridge between the
two threads.

A virtual platform can be built using the commands exported
by the HCI; components are seen as normal Python classes
which are instantiated and connected together with standard
Python directives.

B. ReSP Tools

The introduction of reflection paves the way for the develop-
ment of tools to perform system-level analysis. Any operation
that requires observability on both the components’ external
interface and internal state can be performed through Python
wrappers. For example, it is possible to include advanced
network traffic analysis (latency, throughput, etc.) by observing
the network traffic or to add power modeling to the system by
extracting switching activities from the system at runtime (with
a technique that is similar to the one described in [32]).

1) Reliability Analysis: The reflective capabilities provided
in ReSP can be used also for other purposes besides architecture
composition and its dynamic management; in particular, we
have exploited these features to implement a fault injection
environment [4]. We have followed the SoftWare-Implemented
Hardware Fault Injection [33] approach, based on the modifi-
cation of the components’ internal state and on the simulation
of the system behavior in the presence of hardware failures.
Works proposed in literature usually pursue fault injection by
means of code instrumentation for accessing the internal state
of the architecture [34]. When reflection is available, instru-
mentation is not necessary, and it is possible to perform fault
analysis transparently, significantly reducing the experiments’
setup time.

We have used ReSP for reproducing the experimental ses-
sion proposed in [35]. The purpose of that case study is to
evaluate the capabilities of software redundant techniques in
detecting faults affecting microprocessors; the initial fault in-
jection environment consisted of an FPGA board emulating the



BELTRAME et al.: RESP: A TRANSACTION-LEVEL REFLECTIVE MPSoC SIMULATION PLATFORM FOR DSE 1861

instrumented model of the processor. During the fault injection
campaign, several processor registers were indicated as possible
fault locations. With respect to related work, the capability of
performing fault injection by means of introspection allows
one to carry out experiments in a faster and transparent way
(i.e., no modifications to the processor code are needed). It
is worth noting that setting up the experimental environment
and executing the whole fault injection campaign took only
1 h, while instrumenting the processor description for the
experiment proposed in [35] took several days. Moreover, our
approach does not require complex devices such as FPGAs.
Finally, we can perform fault injection experiments at several
abstraction levels simply by changing the abstraction level of
the components plugged into ReSP.

2) Power Modeling: The power modeling framework pre-
sented in [32] has been ported to ReSP. This framework allows
the generic mapping of power models to TLM entities (mod-
ules, channels, etc.) at different levels of abstraction. The use
of reflection and of the Python scripting language made the
implementation noticeably simpler than that in [32], with the
integration of the models reduced from the average 192 LOC
reported in [32] to an average 50 LOC.

3) Other Tools: Aside from the fault injector, the power
modeling framework, and the tools described in Sections IV and
V-C, ReSP includes facilities for debugging (in terms both of
the IP models and of the software being simulated on top of the
hardware platform) and for software profiling. The design and
implementation of such tools have been consistently simplified
by the ReSP’s reflective capabilities.

1) IP debugger is implemented through ReSP’s Python con-
sole: At runtime, simulation can be paused, and owing
to reflection, all the members of each C++ class (i.e.,
the registers, signals, and ports of the IP models) can
be listed, examined, and changed if needed. It is also
possible to define callbacks, methods which are called
when user-defined conditions are satisfied (e.g., call-
backs which pause simulation when the program counter
reached a particular address).

2) Software debugger consists of a GDB server, communi-
cating with the GDB debugger through sockets; access
to the underlying ISS status is provided by the processor
interface (IF), described in detail in Section IV-A.

3) Software profiler runs on top of the ISS communicating
with it through the IF; it enables function profiling, call
graph generation, and gathering statistics on the single
assembly instructions. Multiprocessor multithreaded pro-
grams are supported.

IV. SYSTEM-CALL EMULATION

ReSP’s characteristics have been exploited to include a
system-call emulation subsystem. This is used for the prelim-
inary exploration of concurrent and RT applications, to guide
the designer in the choice of the target OS, and as a support
for early hardware/software partitioning. ReSP, being a virtual
platform, is able to simulate the complete binary, including the
RTOS, which will be deployed in the final system, but on top
of this, ReSP allows RTOS emulation by redirecting SCs (or

Fig. 3. Organization of the simulated environment, including the system-call
emulation module.

any other function call) to the simulator and the OS hosting the
simulator.

System-call emulation is a technique enabling the execu-
tion of application programs on an ISS without simulating a
complete OS. The low-level calls made by the application to
the OS routines (SCs) are identified and intercepted by the
ISS and then redirected to the host environment which takes
care of their actual execution. Suppose, for example, that an
application program contains a call to the _exit routine to
terminate the application execution. Such a call is identified by
the ISS using the mechanisms described hereinafter and routed
to the simulator which terminates the simulation, also retrieving
the parameter of the _exit from the simulated environment
in order to determine whether the computation was correctly
executed or not.

Having a simulation framework with system-call emulation
allows software development to start as early as possible, even
before a definite choice about the target OS is performed. An
overview of our system-call emulation mechanism is shown
in Fig. 3: Each ISS communicates with one centralized trap
emulator (TE), the component responsible for forwarding SCs
from the simulated environment to the host one. In order to
ensure independence between the ISS and the TE, interfaces
(IF-1, IF-2, etc.) are created, and communication between the
TE and the ISS exclusively takes place through them. With
respect to other works, we use the name (i.e., the symbol) of
the SC routine to identify it: When an application program
is loaded for execution, the names of the low-level SCs (e.g.,
sbrk, _open, etc.) are associated with their addresses in the
application’s binary file. During simulation, the ISS checks for
those addresses, and when one matches the current program
counter, the corresponding functionality of the TE is called and
the SC is emulated.

To guarantee the timing accuracy of each I/O-related SC
(such as the write operation), which would generate traffic
on the communication medium, we assume that the SC is
executed inside the processor, modeling only the data transfer
from processor to memory and vice versa. While this is only
an approximation of a real system, accuracy is not severely
affected as shown by our experiments.

The remainder of this section is devoted to detail all the
components of the emulation mechanism and how it can be
used both for hardware/software codesign and for the emulation
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Fig. 4. Communication mechanisms between the ISS and the IF; the C++ or
Python parts are alternative solutions.

and management of concurrence in a single- or multiprocessor
RT environment.

A. Processor Interface (IF)

Communication between the Emulator and the ISS is a criti-
cal point in the TE design: On one hand, ISSs have to be easily
plugged into the system; on the other hand, this communication
has to be as fast as possible to guarantee high simulation speed.
These requirements are in contrast with each other, and the right
tradeoff has to be determined. As shown in Fig. 4, two solutions
were identified: One is purely based on the C++ language and
does not exploit the reflective features of ReSP, and the other
uses Python to unintrusively access the ISS internal variables.

Writing pure C++ code sacrifices ease of use and flexibility
in favor of simulation speed, meaning that the ISS code has
to be slightly modified for the integration with ReSP in order
to pass, at every cycle, the program counter to the IF which,
in turn, checks if it corresponds to the address of one of the
emulated routines. The biggest drawback of this technique is
that it requires access to the source code of the ISS, which
might not be always available. As an alternative, reflection and
integration with Python can be exploited to access all the ISS
internal variables, thus unintrusively monitoring the PC, the
other registers, and, in general, the whole processor state.

With respect to the communication from the TE to the ISS,
both solutions use the same mechanism: The IF exports a set of
methods which enable the following: 1) access to the registers
(PC, SP, etc.); 2) access to the memory as shown by the proces-
sor; and 3) management of the application binary interface of
the target architecture. It is worth noting that this interface must
have the knowledge of how the ISS is implemented in order to
work correctly. This means that specific IFs must be created for
the integration of each ISS model.

B. Real-Time Concurrency Manager

The TE was extended for the emulation of concurrence man-
agement routines with an additional unit, called concurrency
manager (CM): In this case, the TE intercepts calls for thread
creation, destruction, synchronization, etc. For this purpose,
we created a placeholder library containing all the symbols

Fig. 5. Detailed structure of the RT concurrence manager.

(i.e., the function identifiers) of the PThreads standard, with
no implementation present. This ensures that programs using
the pthread library can correctly compile. During execution,
all calls to pthread routines are trapped and forwarded to
the CM. If the application software is compiled with a recent
GNU GCC compiler (at least version 4.2), it is also possible
to successfully emulate OpenMP directives. The CM is able to
manage shared memory platforms with an arbitrary number of
symmetric processors.

RT systems are taken into account by extending the CM to
deal with RT requirements and to correctly keep statistics about
missed deadlines, serviced interrupts, etc. (Fig. 5).

1) Context Switch Capabilities: To execute different threads
on the same processor, context switch capabilities are needed;
a processor can switch between two threads either when the
current thread is blocked (e.g., for synchronization) or when
the time quantum associated with the current thread expires.
Switching context consists in saving all the ISS registers and
restoring the registers for the next thread, like what would
happen when using a nonemulated OS, with the only difference
that registers are not saved on the stack in memory but in the
simulator’s space. Access to the ISS’s status is provided by the
interface described in Section IV-A.

2) RT Scheduler: It is implemented in three different ver-
sions: FIFO, Round-Robin, and Earliest Deadline First (EDF).
Each task can be assigned a scheduling policy, and tasks with
different policies can coexist in the system. Tasks’ policies can
be varied at runtime either from the application code or by
directly interacting with ReSP through the Python console. The
latter mechanism has been implemented to enable flexible task
management, allowing an effective exploration of the different
scheduling policies and priorities and of the different RTOS
configurations (Fig. 6). Since scheduling and, in general, task
management operations are performed in the host environment,
features such as deadlock and race-condition detection are
implemented without altering the system’s behavior.

3) Interrupt Management: It is composed of an emulated
interrupt generator and interrupt service routine (ISR) manager.
The interrupt generator emulates external events and stimulates
the execution of the ISRs. This enables the analysis of the
system behavior under different realistic environmental condi-
tions. When an interrupt is triggered, the manager takes control,
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Fig. 6. Exploration of RT policies.

creates a task (each interrupt is mapped to a specified task)
for servicing it, and adds the task to the appropriate queue
(depending on the task’s priority, scheduling policy, etc.); the
processor then resumes execution. Interrupts can be triggered
in two ways: 1) by an external IP communicating with the
processor’s interrupt line and 2) by the emulator using an
internal timer modeled with SystemC (this features is used
to enable the analysis of the system behavior under different
realistic environmental conditions).

4) PThreads as an RT Concurrence Model: PThreads are
a well-known concurrent application programming interface
(API) and are available for most OSs either natively or as a
compatibility layer. The PThreads API provides extensions for
managing RT threads in the form of two scheduling classes,
namely, FIFO and Round-Robin. However, important features
such as task scheduling based on deadlines are not present,
and this prevents an effective modeling and analysis of a wide
range of RT systems. For this reason, our emulation layer
extends the PThreads standard with the introduction of the EDF
[36] scheduling policy and with the possibility of declaring
a task as nonpreemptable. In our implementation of PThread
RT extensions, the emulated RT features are compatible with
the popular Real-Time Executive for Multiprocessor Systems
OSs [37].

5) Python Integration: This feature enables task control
from outside the simulated application. It means that the ReSP’s
interactive shell can manage task priorities, deadlines, etc.; as
such, there is no need to modify the simulated software to
perform an effective exploration and to analyze the effects of
different scheduling policies and/or priorities. Both the system
load and RT behavior can be varied during simulation, allow-
ing an efficient exploration of the system’s configuration and
enabling effective tuning and analysis of RT systems.

C. Extension for Hardware/Software Partitioning Evaluation

While all the features introduced by the TE can be suc-
cessfully employed for software design and verification, their

applicability extends further. The extensions implemented in
ReSP allow the designer to “trap” any routine, not just the
ones belonging to the OS or to the PThreads library. This
enables an effective and fast evaluation of the different possible
implementations of a given functionality f .

1) Execution of the unchanged software routine: No trap is
installed for f , and the functionality of f is simulated on
the ISS.

2) Emulation: A trap is installed for f , and its behavior is
emulated. Since it is possible to associate a custom delay
d to the trap handler, we can explore how the timing of the
system would be if f were implemented with a hardware
module of delay d.

3) Implementation through a hardware module: The trap
handler triggers the execution of a SystemC defined hard-
ware module containing the functionality of f ; this step
is used to refine the emulation of 2).

By associating a custom delay d with a trap handler (i.e., with
an emulated routine), the described techniques can be used
to explore the system behavior, considering different latencies
for threading and synchronization primitives, helping in the
choice of the OS, and, for example, deciding whether hardware
managed threading is needed.

D. Python-Implemented Emulation

As discussed, it is possible to specify a custom behavior
and/or latency for each emulated routine. In particular, when
a trapped routine is encountered, a user-defined functor (the
trap handler) is called. This functor is part of the simulator,
and as such, it has access to both the simulated and the host
environments. For example, in the context of RTOS emulation,
there are functors for thread creation, thread destruction, mem-
ory allocation, etc. A functor can be defined either in C++ or
in Python. The former mechanism requires modifications to the
source code in order to add a new functor or modify an existing
one; therefore, it is not targeted to performing fast exploration
of the different implementation alternatives for a functionality.
Despite being slower, as shown in Section V, the latter solution
enormously increases the productivity, enabling the scripted
implementation of any trap handler.

V. EXPERIMENTAL RESULTS

This section presents the set of experiments that were ex-
ecuted to assess ReSP’s performance and capabilities in the
different scenarios presented throughout this paper.

A. ReSP Overhead

To ensure that the additional control layers on top of Sys-
temC would not excessively affect simulation speed, a set of
plain SystemC modules was connected both via standard C++
code and via ReSP, and the two architectures were simulated,
and the execution time was recorded. This experiment does not
include the emulation layer introduced in Section IV since its
aim is to show that the integration with Python (renown for its
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Fig. 7. Execution speed of both (on the left) a generic hardware architecture
and (on the right) a processor/bus/memory architecture measured first using
plain SystemC and then using ReSP.

slow execution speed) does not add an excessive overhead over
plain SystemC simulations.

The left side of Fig. 7 shows the first experiment that was set
up to measure the transactional speed of the system, using basic
master and slave components exchanging characters. The right
side of Fig. 7 shows the results of the execution of a full ar-
chitecture that was created by connecting a functional LEON2
processor model and the TLM Programmer’s View memory
and bus. The number of instructions per second, obtained both
using native execution and execution inside ReSP, is shown.
Results show a small performance penalty (below 1%) due
to the additional software layer introduced by Python. All the
experiments were hosted on a 2-GHz Intel Core 2 Duo System
with 4 GB of RAM running Gentoo Linux.

By integrating with Python, ReSP provides a considerable in-
crease in productivity: An average main file for a SystemC mul-
tiprocessor platform (including processor instantiation, serial
ports, timers, and all the other necessary peripherals) is around
350 LOC, including the code to parse command line options,
the inclusion of headers files, explicit memory management,
etc. Writing a “clever” main file might reduce the number of
compilations, but the amount of LOC is bound to increase, and
the solution is not general. ReSP provides a general solution
with Python scripting, which is more than three times more
compact in terms of LOC and development time when com-
pared to C++ [38], [39]. This means that new configurations
can be explored and new tools can be developed with a signifi-
cantly reduced coding effort and without significant penalty in
execution time (as shown in the aforementioned experiments).
Such a solution is new in the context of HDLs and simulation
platforms, but it is well known in scientific computing, where
a scripted language is often used to control the computational
part of applications written in C++ [25].

B. System-Call Emulation

The trapping and emulation capabilities of the system can
be used for the following: 1) hardware/software codesign;
2) the estimation of the parallelism embedded in a given soft-
ware application; and 3) the estimation of thread management
overhead.

All tests have been executed using ReSP on a multi-ARM
architecture consisting of a variable number of cores with
caches, a shared memory, and timers, interrupt controllers, and

Fig. 8. Average behavior of eight benchmarks considering varying latencies
for the different SCs; each point is the average of the execution on 2, 4, 8, and
16 cores/threads.

Fig. 9. Speedup obtained by the lu benchmark for hardware-implemented
synchronization primitives.

serial ports as needed by the OS (for relevant experiments),
all interconnected by a shared bus, as shown in Fig. 3. The
processors are clocked at 500 MHz, and the bus at 250 MHz.

1) OS Emulation for Codesign: To prove the usefulness
of the methodology for codesign, we analyzed the impact of
OS latencies on a set of eight parallel benchmarks chosen
from the OpenMP Source Code Repository [40]. OS primitives
were divided into six classes: thread creation (th-create); syn-
chronization initialization, e.g., mutex, semaphore, and condi-
tion variable creation (sync-init); mutex locking and unlocking
(mutex); semaphore waiting and posting (sem); memory man-
agement (memory); and general I/O (io). Since it is possible
to associate custom latencies with emulated routines, we can
observe how different values (corresponding to different system
configurations) affect the system. Fig. 8 shows the average
behavior of the eight benchmarks when the number of cores,
as well as the number of OpenMP threads, ranges from 2 to 16
in powers of 2. On each of these hardware configurations, the
benchmarks were run with exponentially increasing latencies
for each class, yielding a total of 1344 simulations. The trend is
that, for increasing latency, synchronization primitives are the
ones that affect execution time most, while I/O and memory
management have negligible effect.

This kind of analysis can guide the designer’s decision
concerning the OS architecture and configuration, also taking
into account hardware-supported OS mechanisms.

As an example, Fig. 9 shows lu’s performance when a
hardware accelerator for managing synchronization primitives
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Fig. 10. Concurrency profiles (i.e., number if active processors) on a four-core
architecture; the initialization of pbzip2 is shown in detail.

is inserted in the system. Assuming a memory-mapped module
with a four-cycle latency, we observe an increasing speedup
with the number of processors/threads (P-T), saturating around
eight processors (mainly due to the lack of parallelism of the
benchmark).

All these experiments were run semiautomatically, without
any modification to the baseline SystemC and application code.
This is due to the emulator subsystem and to the integration
with Python’s console, since simulation management is consis-
tently simplified with respect to standard simulation platforms
controlled by custom configuration files.

2) Software Overhead Estimation: The proposed methodol-
ogy can also be used to estimate the inherent parallelism of
an application and the overhead introduced by thread manage-
ment. We examined two multithreaded open-source applica-
tions and an OpenMP benchmark: ffmpeg, a powerful audio and
video encoder/decoder, pbzip2, a parallel block compression
algorithm, and CG, a scientific application kernel from the
NASA Parallel Benchmark (NPB) suite [41]. For these tests,
a four-core four-threaded architecture was used.

It is worth noting that such applications run natively on
Linux, and their source code is left completely unmodified
when executing them on the simulator. In addition, they are
linked with the final OS, and only the low-level OS routines
are emulated. With respect to related works (Section II-B), this
is an advantage since the same exact executable file can be used
to simulate the whole software infrastructure (including the OS)
or just the application kernel (when OS emulation is enabled).

According to Amdhal’s law [42], the main idea of these
tests is to run the application setting of all the concurrence-
related latencies to zero, hence exposing the application’s in-
herent parallel behavior. The intuition behind this is that, in the
ideal case, when thread management costs 0, the speedup of
a perfectly parallelized application given by the execution on
n threads is equal to n. In practice, this does not happen, and
the speedup is m ≤ n, with some overhead introduced due to
the parallelization of the application (which introduces different
data structures, algorithms, etc.) and due to the sequential
application portions.

Determining the number of active processors for each clock
cycle leads to generating the concurrence profiles shown in
Fig. 10: They show the number of active processors during

TABLE I
APPLICATION RUNTIME AND OVERHEADS

the application runtime. To measure the overhead introduced
by thread management, we compare the average concurrence
expressed by each application, with the actual speedup ob-
tained against single-threaded execution as overhead = (1 −
speedup/concurrence) × 100.

The concurrence profile of ffmpeg, transcoding (decoding
and encoding) a short clip from MPEG1 to MPEG4, shows that,
due to data dependences and to the structure of the ffmpeg’s
code, the four processors are never fully exploited, with an
average of 2.6 processors working at the same time. When
compared to a single-core architecture, ffmpeg is 2.3 times
faster, yielding an 11% overhead. pbzip2, instead, offers more
exploitable concurrence as its algorithm has less data depen-
dences. After a very small initial setup time, pbzip2 fully
exploits the available resources. However, even if the average
concurrence expressed by pbzip2 is 3.4, its speedup on four
cores is only 2.9, resulting in a 15% overhead. Finally, CG shows
the benefits of OpenMP programming, with a very smooth
concurrence profile, locked to 3.9 after the initialization phase
and averaging at 3.77. CG’s speedup amounts to 3.55, yielding
a small 9% overhead introduced by the compiler’s OpenMP
runtime (GNU libgomp in our case). All results are summarized
in Table I.

3) Accuracy of OS Emulation: To evaluate the performance
and accuracy of OS emulation with respect to a real OS,
12 OmpSCR benchmarks were run with the RTOS eCos [43],
using a four-core platform. A large set of eCos SCs was
measured, running six of these benchmarks as a training or
calibration set, and the average latency of each class of SCs
was determined. The Lilliefors/Van Soest test of normality [44]
applied to the residuals of each class shows evidence of nonnor-
mality (L = 0.30 and Lcritical = 0.28 with α = .01), but given
that the population variability remains limited (with a within-
group mean square MSS(A) = 7602 clock cycles), it can be
assumed that each average latency is representative of its class.

The derived latencies were introduced for each SC in our OS
emulation system, and the remaining six benchmarks (used as
a validation set) were executed. Since profiling did not include
all functions used by the OS, and for which the latency was
considered zero, the overall results were uniformly biased for
underestimation. This bias can be easily corrected consider-
ing the average error, leading to an average error of 6.6 ±
5.5%, as shown in Fig. 11. Even with this simple scheme, the
methodology can very well emulate the behavior of a specific
OS with minimal error, particularly considering that full code
equivalence is present for the application and library functions,
but threading, multiprocessor management, and low-level OS
functions are emulated.

In addition, the use of the OS emulation layer introduces
a noticeable speedup (13.12 ± 6.7 times) when compared to
running the OS on each ISS. This is due to several factors,
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Fig. 11. Simulation speedup and estimation error using the emulation layer
instead of eCos.

Fig. 12. Speedup of C++ with respect to Python routine emulation while
varying the frequency of the calls to the emulated functionality.

including the absence of some hardware components such
as debugging serial ports and timers (the TE implements a
terminal in the host OS, and the configuration manager uses
SystemC and its events to keep track of time), and the fact that,
in our mechanism, idle processors do not execute busy loops,
but they are, instead, suspended. The latter is implemented by
trapping the busy loop wait function in the TE and redirecting
it to a SystemC wait() call.

4) Mixing Python and C++: As described in Section IV,
the behavior of the emulated routines (which are not limited to
the OS routines) can be written either using C++ or Python.
In these experiments, the overhead introduced when writing
the emulated functions in Python was measured. Fig. 12 shows
the overhead of using Python-emulated functions with respect
to C++: Python is ∼5.5 times slower. Note how, when the
frequency of the emulated calls is low, there is not much
difference in using Python or C++, since simulation time is
mainly due to the ISS. As the frequency grows, most of the
time is spent in routine emulating, and the difference in the two
emulation mechanisms is more noticeable.

5) Emulation of RT Systems: As described in Section IV-B,
the emulation subsystem can also be used for the analysis of RT
applications. In these experiments, we assume that the system
is subject to a mixed applications workload: a computation-
ally intensive element with soft RT constraints and a set of
elements with very strict hard RT characteristics, here called
computational and RT parts, respectively. This model well
represents applications such as observation spacecraft payload,
where massive data processing is needed with high availability,
while requiring response to external stimuli within a given

Fig. 13. Fraction of missed deadlines with different schedulers and high RT
workload (1 kHz).

time. The number and parameters of both the computational
and RT parts vary and strictly depend on the system being
considered.

Also in this case, our methodology allows one to run this
set of experiments with reduced effort: No modification of
the source code is necessary, and the same binaries can be
reused for a large set of experiments. Indeed, the SystemC
platform files could be modified to produce the same result,
but the solution would not be general and not applicable to any
platform or application like in the case of our methodology.

Fig. 13 shows how the methodology is used to deter-
mine the best scheduler (among the considered ones) for the
system. We ran the benchmarks previously presented as com-
putationally intensive applications, while the RT tasks were
implemented by synthetic functions, with varying deadlines.
These functions can be categorized as follows: 1) housekeep-
ing: scheduled regularly, such as performing sanity checks,
repetitive tasks, etc., and 2) response to external events: when
an alarm is fired, its response is usually required within a given
deadline. We see that the EDF scheduler performs better for
all the benchmarks; thus, it is the best choice for the tested
system.

C. Case Study: High-Level Modeling of
Dynamic Reconfigurability

Aside from the simulation and analysis of standard multi-
processor architectures, ReSP is able to model dynamically
reconfigurable systems. We assume that reconfiguration (as it
happens in many reconfigurable embedded architectures [45])
is software controlled and that the reconfigurable blocks are
available to the system in the form of embedded FPGA blocks,
connected to an on-chip interconnection (a bus or network-
on-chip). In our system, we speak of partial internal dynamic
reconfigurability in the sense that reconfiguration takes place
internally to the system-on-a-chip; partial and dynamic, respec-
tively, indicate that it is not necessary to reconfigure the whole
FPGA and that reconfiguration can take place at runtime, while
the rest of the system is operating.

The novelty of this approach resides in the reconfiguration
manager (RM) and in the model of the eFPGA modules. On
the one hand, the use of the RM is totally transparent to the
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Fig. 14. Behavior and delays modeled by the CE.

software designer: The RM can be configured to mark functions
or method calls as “reconfigurable functions,” and whenever
the software performs a call to such methods, the call is routed
to the properly configured hardware component. On the other
hand, the eFPGA models implement this functionality using
C++, SystemC, or Python code, using specified area, bitstream
size, and delay. This paves the way for a fast and effective
exploration of the possible mappings between functionalities
(method calls in software) and either their software or hardware
implementation.

More in details, our reconfigurability modeling subsystem is
composed of the following elements.

1) RM: The RM is a C++ component that exists uniquely
in the frame of the simulator, i.e., it has no real hardware
counterpart. Its purpose is to model the adaptive behavior of a
system for DSE purposes, without enforcing any particular im-
plementation of the reconfiguration mechanism, that is instead
modeled by the configuration engine (CE). Note that the RM is
a modified version of the TE previously presented in the context
of RTOS emulation.

Summarizing, the RM is the module which decides whether
a given functionality should be executed using dedicated re-
configurable hardware or software. This element communicates
directly with the processors [also called processing elements
(PEs)] and with the CE in order to trigger the computa-
tion of a functionality in hardware and (if necessary) the re-
configuration process. As the RM is initialized, it carries
no information about which functions should be marked for
hardware implementation. Function registration and deregistra-
tion are totally dynamic, and they can even be performed during
simulation.

2) CE: The CE represents the hardware component that
is responsible for the execution of the actual reconfiguration
requests. Considering a transaction-level model of reconfig-
urability, the CE has to model with reasonable accuracy:
1) the communication delay between the PEs and the CE;
2) the internal processing of the CE that has to keep track of
which components have been configured, the available eFPGA
blocks, etc.; 3) contention, bandwidth usage, and latency of the
transfer of the bitstream from memory to the eFPGA block; and
4) the actual access latency to the block. Fig. 14 shows how this
paper addresses these issues. The RM communicates, using the

Fig. 15. eFPGA model.

TLM2 standard transaction payload, with the CE through the
requesting PE port, covering 1). Once the RM has instructed
the CE to provide a certain functionality, the CE reserves,
in the eFPGA model, a block of sufficient size (whether by
using free space or by erasing other blocks); a user-defined
delay can be specified during this operation 2). Then, the CE
works as a direct memory access (DMA) engine, transferring
a mockup of the bitstream from memory to the selected block,
modeling 3).

The sizes and the availability of reconfigurable blocks in
the eFPGA model are left for the designer to define. In our
experiments, as proof of concept, we consider two medium-
sized (100k equivalent gates) blocks for each eFPGA.

3) eFPGA Model: The eFPGA model consists of two parts:
structure and functionality. The structure models the internal
networking of the FPGA block, its available area, and re-
sources. The functionality consists of a standard TLM2 router
that forwards transactions to the appropriate SystemC module
or Python function, as shown in Fig. 15. The eFPGA has two
TLM ports: a configuration port, used to receive bitstreams, and
a data port, used by the PEs to access hardware modules. The
structure part contains a configuration data structure that stores
information on the currently configured blocks, the references
to their implementation, address spaces, etc.

The extensions for modeling dynamically reconfigurable
systems have been validated using the NPB [41] suite. The
performed tests aim at evaluating the framework for the ex-
ploration of different reconfiguration alternatives. To prove this
concept, the block tri-diagonal (BT) application of the NPB
suite was tested, and a subset of its routines was examined in
order to determine the advantages and disadvantages of their
implementation using reconfigurable hardware. Concerning re-
configurable logic, we assume the following.

1) There are two possible eFPGA configurations: one mod-
ule with one reconfigurable block and one module with
two blocks.

2) The blocks are medium-sized, of roughly 2000 logic
cells, and the configuration bitstream for each block is
about 500 kbit. This number is based on Xilinx FPGA
bitstreams [46].

3) Whenever a block is reconfigured, its bitstream is down-
loaded from RAM via DMA on the shared bus, and the
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Fig. 16. Benchmark execution time as functions are moved to reconfigurable
logic, with one and two blocks available.

block is ready to be used after transfer plus a setup time
of 10 μs.

4) The substitution policy is random.
The application was profiled with ReSP, determining the four

most computationally intensive routines (here called BIN, MUL,
VEC, and EXA, all routines for the manipulation of matrices
of floating point numbers). Those are ideal candidates for
a hardware implementation, as they are self-contained, they
operate on a small set of parameters, and they do not have any
side effect. We assume that the implementation of these func-
tions fits in the available reconfigurable blocks, and that their
latency in clock cycles is equal to the number of floating-point
operations executed by each of them. Fig. 16 shows the perfor-
mance trend as these blocks are turned to hardware; this trend
is due to the reconfiguration and setup time of the eFPGA and
the fact that BIN, MUL, and VEC, called alternatively by the
four processors, compete for the block ownership. By using a
two-block eFPGA, the situation improves as BIN and MUL
(or BIN and VEC) can be called alternatively without delays,
but the combination of BIN, MUL, and VEC still incurs long
delays.

When compared to SystemC-only approaches, our solution
provides a consistent increase in productivity: Without modify-
ing the source code of an application, it is possible to switch
a module from software to hardware by changing a single
parameter from ReSP’s console. As stated before, this could be
implemented directly in SystemC, but the solution would not
be general and applicable to any platform or application.

VI. CONCLUSION

In this paper, we have presented ReSP, a hardware simulation
platform targeted to MPSoCs. This platform is based on the
integration of Python and SystemC, allowing easy integra-
tion of external IPs and custom component models. Python
augments SystemC with reflective capabilities and enables a
fine-grain control over simulation and full observability of the
internal state of the platform components. The main advan-
tage with respect to traditional compiled simulation is that it
eases the tasks of reliability analysis, DSE, and debug and
test of the hardware/software system under analysis. We have

also introduced a powerful RTOS emulation mechanism that
allows the following: 1) the early DSE of the RTOS and its
configuration; 2) the measurement of the inherent parallelism of
concurrent application and their thread management overhead;
and 3) the high-level DSE of reconfigurable platforms. The
effectiveness of the approach was proven through a series of ex-
periments, analyzing several applications using either PThreads
or OpenMP programming models and modeling reconfigurable
embedded FPGA components. ReSP does not introduce any
significant overhead when compared to plain SystemC, and its
OS emulation capabilities guarantee a speedup up to a factor of
13 with respect to executing a real OS on an ISS, with a low 6.6
± 5.5% timing estimation error.
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