IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Thermal Balancing Policy for Multiprocessor
Stream Computing Platforms

Fabrizio Mulas, David Atienza, Member, IEEE, Andrea Acquaviva, Salvatore Carta,
Luca Benini, Fellow, IEEE, and Giovanni De Micheli, Fellow, IEEE

Abstract—Die-temperature control to avoid hotspots is increas-
ingly critical in multiprocessor systems-on-chip (MPSoCs) for
stream computing. In this context, thermal balancing policies
based on task migration are a promising approach to redistrib-
ute power dissipation and even out temperature gradients. Since
stream computing applications require strict quality of service and
timing constraints, the real-time performance impact of thermal
balancing policies must be carefully evaluated. In this paper,
we present the design of a lightweight thermal balancing policy
MiGra, which bounds on-chip temperature gradients via task
migration. The proposed policy exploits run-time temperature as
well as workload information of streaming applications to define
suitable run-time thermal migration patterns, which minimize the
number of deadline misses. Furthermore, we have experimen-
tally assessed the effectiveness of our thermal balancing policy
using a complete field-programmable-gate-array-based emulation
of an actual three-core MPSoC streaming platform coupled with
a thermal simulator. Our results indicate that MiGra achieves sig-
nificantly better thermal balancing than state-of-the-art thermal
management solutions while keeping the number of migrations
bounded.

Index Terms—Multiprocessor architectures, stream computing,
systems-on-chip (MPSoCs), task migration, thermal balancing.

I. INTRODUCTION

ULTIPROCESSOR system-on-chip (MPSoC) perfor-
mance in aggressively scaled technologies will be

Manuscript received January 20, 2009; revised June 4, 2009 and July 29,
2009. This work was supported in part by the Swiss Confederation through
the Nano-Tera.ch NTF Project 123618—CMOSAIC—, the Spanish Govern-
ment Research Grants TIN2005-5619 and TIN2008-00508, and the ARTIST-
DESIGN Network-of-Excellence. This paper was recommended by Associate
Editor N. Chang.

F. Mulas and S. Carta are with the Dipartimento di Matematica e In-
formatica, University of Cagliari, 09124 Cagliari, Italy (e-mail: fabrizio.
mulas @sc.unica.it; salvatore @unica.it).

D. Atienza is with the Embedded Systems Laboratory (ESL), Institute
of Electrical Engineering (IEL), School of Engineering (STI), Ecole Poly-
technique Fédérale de Lausanne, 1015 Lausanne, Switzerland, and also
with the Department of Computer Architecture and Automation (DACYA),
Complutense University of Madrid (UCM), 28040 Madrid, Spain (e-mail:
david.atienza@epfl.ch).

A. Acquaviva is with the Dipartimento di Automatica e Informatica, Politec-
nico di Torino, 10129 Torino, Italy (e-mail: andrea.acquaviva@polito.it).

L. Benini is with the Dipartimento di Elettronica, Informatica e Sis-
temistica (DEIS), University of Bologna, 40136 Bologna, Italy, and also
with Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
(e-mail: luca.benini @unibo.it).

G. De Micheli is with the Laboratoire des Systemes Integres, Institute
of Computing and Multimedia Systems (ISIM), School of Computer and
Communication Sciences (IC), Ecole Polytechnique Fédérale de Lausanne,
1015 Lausanne, Switzerland (e-mail: giovanni.demicheli@epfl.ch).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2032372

strongly affected by thermal effects. Power densities are in-
creasing due to transistor scaling, which reduces chip surface
available for heat dissipation. Moreover, in an MPSoC, the
presence of multiple heat sources increases the likelihood of
temperature variations over time and chip area rather than
just a uniform temperature distribution across the entire die
[1]. Overall, it is becoming of critical importance to control
temperature and bound the on-chip gradients to preserve circuit
performance and reliability in MPSoCs.

Thermal-aware policies have been developed to promptly
react to hotspots by migrating the activity to cooler cores [17].
However, only recently, temperature control and balancing have
gained attention in the context of chip multiprocessors [2], [4],
[13]. A key finding from this line of research is that thermal
balancing does not come as a side effect of energy and load
balancing. Thus, thermal management and balancing policies
are not the same as traditional power management policies
(2], [5].

Task and thread migration have been proposed to prevent
thermal runaway and to achieve thermal balancing in general-
purpose architectures for high-performance servers [5], [13].
In the case of embedded MPSoC architectures for stream
computing (signal processing, multimedia, and networking),
which are tightly timing constrained, the design restrictions
are drastically different. In this context, it is critical to develop
policies that are effective in reducing thermal gradients while, at
the same time, preventing quality-of-service (QoS) degradation
due to task deadline misses caused by task migrations. More-
over, these MPSoCs typically feature nonuniform noncoherent
memory hierarchies, which impose a non-negligible cost for
task migration (explicit copies of working context are required).
Hence, it is very important to bound the number of migrations
for a given allowed temperature oscillation range.

We propose a novel thermal balancing policy, i.e., MiGra,
for typical embedded stream-computing MPSoCs. This policy
exploits task migration and temperature sensors to keep the core
temperatures within a predefined range, defined by an upper and
a lower threshold. Furthermore, the policy dynamically adapts
the absolute values of the temperature thresholds depending
on the average system temperature conditions. This feature,
rather than defining an absolute temperature limit as in hotspot-
detection policies [2], [13], [17], allows the policy to keep the
temperature gradients controlled even at lower temperatures. In
practice, MiGra adapts to system load conditions, which affect
the average system temperature.

To evaluate the impact of MiGra on the QoS of streaming
applications, we developed a complete framework with the

0278-0070/$26.00 © 2009 IEEE

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

necessary hardware and software extensions to allow design-
ers to test different thermal-aware multiprocessor operating
systems (MPOSs) implementation running onto emulated real-
life multicore stream computing platforms. The framework has
been developed on top of a cycle-accurate MPOS emulation
framework for an MPSoC [14]. To the best of our knowledge,
this is the first multiprocessor platform that supports operating
system (OS) and middleware emulation at the same time as it
enables a complete run-time validation of closed-loop thermal
balancing policies.

Using our emulation framework, we have compared MiGra
with other state-of-the-art thermal control approaches, as well
as with energy and load balancing policies, using a real-life
streaming multimedia benchmark, i.e., a software-defined FM
radio application. Our experiments show that MiGra achieves
thermal balancing in stream computing platforms with sig-
nificantly less QoS degradation and task migration overhead
than other thermal control techniques. Indeed, these results
highlight the main distinguishing features of the proposed
policy, which can be summarized as follows: 1) Being explicitly
designed to limit temperature oscillations within a given range
using sensors, MiGra performs task migrations only when
needed, avoiding unnecessary impact on QoS; 2) for a given
temperature-control capability, MiGra provides a much better
QoS preservation than state-of-the-art policies by bounding the
number of migrations; and 3) MiGra is capable of very fast
adaptation to changing workload conditions due to dynamic
temperature-threshold adaptation.

The rest of this paper is organized as follows. In Section II,
we overview a related work on thermal modeling and manage-
ment techniques for MPSoC architectures. In Section III, we
summarize the software/hardware characteristics of the MPSoC
stream computing platforms. In Section IV, we describe the
implemented task migration support for these platforms, and
the developed thermal emulation flow is presented in Section V.
Then, in Section VI, we present the proposed thermal balancing
policy, and, in Section VII, we detail our experimental results
and compare with those of state-of-the-art thermal management
strategies. Finally, in Section VIII, we summarize the main
conclusions of this paper.

II. RELATED WORK

In this section, we first review the latest thermal modeling
approaches in the literature. Then, we overview state-of-the-art
thermal management policies and highlight the main research
contributions of this work.

Background on Thermal Modeling and Emulation. Regard-
ing thermal modeling, as analytical formulas are not sufficient
to prevent temperature-induced problems, accurate thermal-
aware simulation and emulation frameworks have been re-
cently developed at different levels of abstraction. Reference [1]
presents a thermal/power model for superscalar architectures.
Furthermore, [20] outlines a simulation model to analyze ther-
mal gradients across embedded cores. Then, [21] explores high-
level methods to model performance and power efficiency for
multicore processors under thermal constraints. Nevertheless,
none of the previous works can assess the effectiveness of

thermal balancing policies in real-life applications at multi-
megahertz speeds, which is required to observe the thermal
transients of the final MPSoC platforms. To the best of our
knowledge, this work is the first one that can effectively sim-
ulate closed-loop thermal management policies by integrating a
software framework for thermal balancing and task migration at
the MPOS level with a field-programmable-gate-array (FPGA)-
based thermal emulation platform.

Background on Thermal Management Policies. Several re-
cent approaches focus on the design of thermal management
policies. First, static methods for thermal and reliability man-
agement exist, which are based on thermal characterization at
design time for task scheduling and predefined fetch toggling
[1], [10]. Furthermore, [9] combines load balancing with low-
power scheduling at the compiler level to reduce the peak tem-
perature in very long instruction word processors. In addition,
[11] introduces the inclusion of temperature as a constraint in
the cosynthesis and task allocation process for a platform-based
system design. However, all these techniques are based on a
static or design-time analysis for thermal optimization, which
are not able to correctly adjust to the run-time behavior of
embedded streaming platforms. Hence, these static techniques
can incur many deadline misses and do not respect the real-time
constraints of these platforms.

Regarding run-time mechanisms, [5] and [17] propose
adaptive mechanisms for thermal management, but they use
techniques of a primarily power-aware nature, focusing on
microarchitectural hotspots rather than mitigating thermal gra-
dients. In this regard, [19] investigates both power- and thermal-
aware techniques for task allocation and scheduling. This work
shows that thermal-aware approaches outperform power-aware
schemes in terms of maximal and average temperature re-
ductions. Furthermore, [18] studies the thermal behavior of
low-power MPSoCs and concludes that, for such low-power
architectures, no thermal issues presently exist and that power
should be the main optimization focus. However, this analysis
is only applicable to very low power embedded architectures,
which have a very limited processing power, which is not
sufficient to fulfill the requirements of the MPSoC stream
processing architectures that we cover in this work. Then, [12]
proposes a hybrid (design/run-time) method that coordinates
clock gating and software thermal management techniques, but
it does not consider task migration, as we effectively exploit in
this work to achieve thermal balancing for stream computing.

Task and thread migration techniques have been recently
suggested in multicore platforms. References [13] and [16]
describe techniques for thread assignment and migration us-
ing performance counter-based information or compile-time
precharacterization. Furthermore, thermal prediction methods
using history tables [3] and recursive least squares [4] have been
proposed for MPSoCs with moderate workload dynamism.
However, all these run-time techniques target multithreaded
architectures with a cache coherent memory hierarchy, which
implies that the assumed performance cost of thread migration
and misprediction effects is not adapted to MPSoC stream plat-
forms. Conversely, in this work, we target specifically embed-
ded stream platforms with a nonuniform memory hierarchy, and
we propose accordingly a policy that minimizes the number of

MULAS et al.: THERMAL BALANCING POLICY FOR MULTIPROCESSOR STREAM COMPUTING PLATFORMS 3

deadline misses and expensive task migrations, outperforming
existing state-of-the-art thermal management policies.

Main Contribution of This Work. The main contribution of
this work is the development of a thermal balancing policy with
minimum QoS impact. Thermal balancing aims at reducing
temperature gradients and average on-chip temperature even
before the panic temperature is reached, thus improving reli-
ability. Traditional run-time thermal management techniques,
such as Stop&go, act only when a panic temperature is
reached; thus, they are not able to reduce the temperature
gradients because, in the presence of hotspots, there could be
only one core that is very hot while others are cold. Moreover,
Stop&go imposes large temporal gradients as the main coun-
termeasure is to shut off the processor when its temperature
overcomes a panic threshold. Conversely, our policy (MiGra)
acts proactively, as it is triggered also in normal conditions
when the temperature is lower than the panic. Upon activation,
it migrates tasks to processors to flatten the temperature. While
this improves reliability, a potential performance problem can
arise since balancing is achieved through task migrations. Thus,
we have quantified the overhead imposed by migrations in a
realistic emulation environment and a QoS-sensitive applica-
tion, thus proving the effectiveness of the proposed policy to
achieve better thermal balancing and less migration overhead
than the previously mentioned state-of-the-art run-time thermal
control and thermal balancing strategies. This result is obtained
by MiGra’s capability to exploit temperature sensors to detect
both large positive and negative deviations from the current
average chip temperature. Moreover, the lightweight migration
support implementation allows bounding the migration costs.

III. STREAM COMPUTING PLATFORMS

Stream computing platforms are distributed memory archi-
tectures, where each core has its own local memory for storing
code and data. A shared memory is also present, typically off-
chip, for allocating large buffers. In fact, stream applications
are very representative of the type of execution requirements
of many multimedia MPSoCs nowadays, which possess quite
demanding computation needs at the same time as soft real-
time requirements [19], [25], [27]. In typical stream computing
platforms, the considered target MPSoC exploits the shared
memory to implement communication between tasks. In homo-
geneous platforms, as the three-core streaming MPSoC that we
are targeting in this work (see Section VII-A), all cores are iden-
tical and run user-level tasks. However, from the software sup-
port viewpoint, we implemented a master—slave configuration,
where one core runs the centralized thermal balancing policy.

In stream computing architectures, each core runs from the
private memory its own instance of a customized version of a
light OS, which is optimized for fast interprocessor communi-
cation. Then, to support MPOSs in stream computing, a dedi-
cated hardware must be designed to support OS execution and
communication among processes running on different process-
ing cores. This includes the following: 1) an interprocessor
interrupt controller; 2) a semaphore memory through hardware
mutexes; 3) an address translator as the memories of each
core have nonoverlapping address ranges; and 4) a frequency

appL. []

| TASK MIGRATION |

| COMMUNICATION & SYNCHRONIZATION |

0s/ —-
MWARE
OP.SYST.1 |[erroeegreseees OP.SYST. N
PROCESSOR 1 |-zz== Weooooe- PROCESSOR N
SHARED
HW MEM

PRIVATE MEM]| [-------=-=====~ PRIVATE MEMN

Fig. 1. Scheme of the software abstraction layer.

and voltage scaling support, which is included to effectively
reduce power consumption as the workload of the MPSoC
changes over time. Therefore, the MPOS can dynamically set
the frequency of the cores at run time.

From the software viewpoint, streaming applications are
composed of multiple tasks communicating data and synchro-
nizing with each other using a message-passing paradigm.
Then, tasks are spread on the various cores, depending on
resource availability, to exploit the architecture parallelism.
As such, communication takes place using the interprocessor
buffers located in private memories or in a shared memory.
In our case, we exploit the shared memory for storing mes-
sage queues. Indeed, streaming applications follow a data-flow
oriented paradigm, where tasks continuously process frames
arriving in the input queue and make available frames on the
output queue for the next processing stage (cf., Section VII-B).

The programming model adopted in stream computing as-
sumes that each task is represented using the process abstrac-
tion. This means that each task has its own private address
space. Hence, task communication is carried on using a dedi-
cated shared memory area controlled by a distributed MPOS.
The overall software abstraction layer is shown in Fig. 1. It
is based on three main components: 1) a stand-alone OS for
each processor running in a private memory; 2) a lightweight
middleware layer providing data sharing/synchronization and
communication services; and 3) a task migration support layer
for distributed MPOS control.

Finally, a frequent communication scheme in stream com-
puting is message passing through mailboxes. Thus, this is the
paradigm that we have adopted in our baseline MPSoC stream
computing architecture. We developed a lightweight message-
passing scheme that is able to exploit scratch-pad memories or
physical shared memories to implement ingoing mailboxes for
each processor core. For our experiments, we defined a library
of system calls that each process can use to perform blocking
write and read of messages on data buffers.

IV. TASK MIGRATION SUPPORT

To enable task migration, we implemented two different
migration strategies, which differ in the way the memory is
managed by the middleware. Our MPOS framework is based on
a customized version of uClinux [22], which is a light OS that
we have extended for very fast interprocessor communication
and run-time task migration. uClinux includes a Linux 2.x

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

kernel release intended for cores without memory management
unit (MMU), as well as a collection of user applications and
libraries, which makes it very suitable for fast multiprocessor
synchronization with limited overhead. Furthermore, we have
integrated into uClinux additional support for communication,
synchronization, and task migration using a shared memory on
a distributed MPOS middleware layer running on top of each
MPSoC processor. Moreover, to emulate the combined effect of
frequency scaling policies with task migration, hardware pro-
grammable dividers have been placed in the output of the clock
generators to obtain a configurable speed setting support in
our FPGA-based MPSoC emulation platform (cf., Section V).
Therefore, the MPOS can set the frequency of all the cores at
run time by accessing the memory locations where the dividers
are mapped.

Then, migration is allowed only at predefined checkpoints
provided to the user through a library of functions, together
with message-passing primitives, and a master daemon runs in
one of the cores and takes care of dispatching the tasks on the
processors. A first version, based on a fask-recreation strategy,
kills the process on the processor of origin and recreates it
from scratch on the target processor. This strategy only works
in OSs supporting dynamic loading, such as uClinux. Task
recreation is based on the execution of fork-exec system calls
that takes care of allocating the memory space required for the
incoming task, which is an option in stream computing, as the
input dynamically changes with each input stream. Thus, we
implemented an alternative migration strategy where a replica
of each task is present in each local OS, called task replication.
Only one processor at a time can run one replica of the task.
While, in one processor, the task is executed normally, in the
other processors, it is in a queue of suspended tasks, but a
memory area is reserved for each replica in the local memory
of each core. Hence, even if this latter strategy leads to a partial
waste of the local memory for migratable tasks, it is much faster
since it cuts down on memory allocation time with respect to a
task-recreation strategy.

During execution, when a task reaches a user-defined check-
point, it checks for migration requests performed by the master
daemon. If the migration is taken, the task is either suspended
or killed (depending on the strategy); thus, it is left waiting to be
deallocated and restored on another processor by the migration
middleware. When the processor of origin decides to migrate a
task, a dedicated shared memory space is used as a buffer for
the task context transfer.

A quantification of the memory overhead due to task repli-
cation and recreation is shown in Fig. 2. In this figure, the
cost is shown in terms of processor cycles needed to perform
a migration as a function of the task size. In both cases, part of
the migration overhead is due to the amount of data transferred
through the shared memory. For the task-recreation technique,
there is another source of overhead due to the additional time
required to reload the program code from the file system; thus,
the offset appears between the two curves. Moreover, the task-
recreation curve has a larger slope due to a larger amount of
memory transfers, which leads to an increasing contention on
the bus. Finally, we have experimentally measured the varia-
tion of the energy consumption cost due to migration, which

10000000 —
9000000 _muu.j-m..uum —— o
8000000 TAsK RERLCATION —B——0—
8 7000000

0 128 256 384 512 640 768 896 1024
Task size (KB)

Fig. 2. Migration cost as a function of task size for task replication and task
recreation.

indicates a maximum value of 10.344 mJ for a 1024-kB task
size and a minimum one of 9.495 m]J for a value of 64-kB task
size (both values are for a single migration cost). Thus, our
migration approach produces a very limited energy migration
overhead for different task sizes for both types of migration
techniques. The analyzed overheads due to task migration for
both execution time and energy consumption are included in
the MPOS level to take the migration decisions, as explained in
Section VI-A.

V. THERMAL EMULATION FLOW OF STREAM
COMPUTING PLATFORMS

To explore the effects of thermal management strategies on
MPSoC thermal balancing, we need to evaluate the different
strategies for realistic MPSoC-MPOS architectures. For this,
we need to extract the detailed statistics of hardware com-
ponents, OS, and middleware operations for simulated time
intervals long enough to be meaningful for thermal analysis.
This cannot be easily achieved by software simulators. In this
work, we leverage a complete FPGA-based thermal emulation
infrastructure [23], extended in the directions detailed in the
following. An overview of the extended framework is shown
in Fig. 3.

FPGA emulation is exploited to model the hardware com-
ponents of the MPSoC platform at multimegahertz speeds.
The hardware architecture consists of a variable number of
soft cores (currently three cores, as required by the modeled
MPSoC, shown in Fig. 5) that are emulated on a Virtex-1I Pro
v2vp30 FPGA [24]. Then, the first extension of our framework
with respect to [23] is that each core runs a customized ver-
sion of the uClinux OS [22], including the additional support
described in Section III for global communication, synchro-
nization, and task migration. Thus, the MPOS assigns tasks
to processing cores with a global system view, applies locally
an OS-based dynamic voltage and frequency scaling (DVFS)
scheme per core [5], and implements different thermal-aware
task migration policies.

The second extension with respect to the thermal emulation
framework presented in [23] is the addition of a specialized
thermal monitoring subsystem such that the run-time tem-
perature of the emulated stream computing platform can be
observed at the MPOS level. This new monitoring subsystem is
based on hardware sniffers, a virtual clock management periph-
eral and a dedicated nonintrusive subsystem, which implements

MULAS et al.: THERMAL BALANCING POLICY FOR MULTIPROCESSOR STREAM COMPUTING PLATFORMS 5

BF?;M_thgram! - ;-:% | p
- p—— |@ | it
[Timer ot e _' Processor]
Tharmal To/From Host PC 1Q (PPC}
UART |.. Als]
Libwary _i—‘
Software =,
's N
' ™
(ot | | -
MPOS Ml .
Task .
|aoes! T T Srm.mi MEMGTY SECASSES A Interrupts controliar
S lea | [WNom | = @
L . Ig L4y cacheablo b1 ~| HW Semaphores | a
MB ez [] Private E |
| MEM. Memory g (]
ig CONTLER | —— g [2
i~ a B G
-+ D - Cchia Jo-»{ Cacheable | g e
| 5 m— Privale wf—e= e .‘5
[-» |- Cache M 7] xternal %
— i et amary g n| Memary el MSIE-I:.‘;ERe
<. § Bridge
_ " Sub-system 1 J 2
f VCIk_1 e
=
= |
[Sub-system 2 g
X
Hle—s{ FREQUENCY
=P Vcic | SCALING MODULE
Sub-system 3
\ J 3
Fig. 3. Overview of the MPSoC thermal emulation framework for stream

computing platforms.

the extraction of statistics through a serial port. These statistics
are provided to a software thermal simulation library for bulk
silicon chip systems [23], which resides in a host workstation
and calculates the temperature of each cell according to the
floorplan of the emulated MPSoC and the frequency/voltage of
each MicroBlaze soft-core processor. Then, the temperatures
coming out from the simulator provide a real-time temperature
information that is visible by the running uClinux in each
processor through the emulated memory-mapped temperature
sensors, which are updated by the thermal monitoring subsys-
tem as configurable regular updates. In our experiments, we
have fixed this updating interval to 10 ms to guarantee very
accurate thermal monitoring (see Section VII). Finally, due
to a handshake mechanism between the thermal model and
the MPOS middleware to synchronize the upload/download of
temperatures, our extended framework implements a closed-
loop thermal monitoring system, which enables exploring the
impact of task migration and scheduling on system temperature
balancing at multimegahertz speed and the observation of the
real thermal transients of MPSoC stream platforms.

VI. THERMAL BALANCING FOR STREAM COMPUTING

In general, thermal balancing does not come as a side effect
of energy balancing. In Fig. 4(a), a typical situation where a
two-core system running three tasks (A, B, and C) is energy-
balanced (but thermally unbalanced) is shown. Both processors
can independently set their frequency and voltage to reduce
energy/power dissipation to the minimum required by the cur-
rent load. Tasks are characterized by their full-speed-equivalent
(FSE) load, which is the load imposed by a task when the
core runs at maximum frequency. Core 1 runs tasks A and B,
having an FSE of 50% and 40%, respectively; core 2 runs task
C that has an FSE of 40%. In this case, core 1 can ideally scale
its frequency to 90% of its maximum value, whereas core 2
can scale it to 40%. No better task mapping exists that further

LOAD

1-'111-:Q‘le:xc1' FREQUENCY N
100 % 3 y 100 %% ’
L L —
TASK B E | TASKB
FSE LOAD | ' | FSE LOAD
50 % 4 0% . 50 % + v os0%
" L]
TASKA | !| TasK € TASKA | *| TAsK C
FSE LOAD | + | FSE LOAD FSE LOAD | * | FSE LOAD
40% o a0% 40% | oa0%
0% + . 0% '
sesssssssse esssessse - eSS sSsess e
PROC 1 + PROC 2 PROC 1 + PROC 2
.

(a) (b)

Fig. 4. Simple thermal balancing example between two cores.

reduces the energy/power dissipation. In this situation, due to
the different power consumed, the temperature of core 1 will be
higher than the temperature of core 2. Therefore, a thermally
balanced condition can be achieved by periodically migrating
task B from the first core to the second core [19] [as represented
in Fig. 4(b)], obtaining, on average, an equalized workload on
the two cores (i.e., 40% + 50%/2 = 65%). If the temperature
variations caused by migrations are slower than the migration
period, a temperature that is close to the average workload
(i.e., 65%) will be achieved on both cores. Although this is a
simplified case, it outlines that the main challenge of a thermal
balancing algorithm is the selection of the task sets to migrate
between cores, such that the overall temperature is balanced,
while keeping the migration costs bounded.

A. MiGra: Thermal Balancing Algorithm

The thermal balancing strategy that we propose in this paper,
MiGra, is inspired by [14]. To prevent impact on QoS caused
by migration, MiGra is based on the run-time estimation of mi-
gration costs to filter migration requests driven by temperature
differences between cores. Thus, MiGra considers performance
and energy migration costs caused by the underlying migration
infrastructure (cf., Section IV). Moreover, in our implementa-
tion, MiGra lies on top of a DVFS policy [5]. Thus, the power
consumption of a task can roughly be estimated at run time by
assuming that it is proportional to its load (cf., Fig. 2).

MiGra implements a strategy that tries to bound the tempera-
ture of each processor around the current average temperature,
as well as to minimize the overhead in terms of a number of mi-
grated tasks and amount of data transferred between the cores
due to migrations. Therefore, a maximum distance of the tem-
perature of each processor from the current average temperature
is defined by MiGra, identifying a range of permissible temper-
atures for each single processor between an upper and a lower
threshold. These thresholds are dynamically adapted at run time
according to the current workload. MiGra also controls ther-
mal runaway by stopping the core that reaches a temperature
that is above a predefined panic threshold. Nonetheless, this
extreme situation should never occur in realistic streaming
applications, and MiGra’s regular operation always keeps its
upper threshold below this panic one by trying to minimize the
temperature gradients. Each time the temperature of a processor

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

reaches the upper threshold around the average temperature of
the MPSoC platform, MiGra triggers a migration to move away
a set of tasks from the hot processor to another processor having
a temperature that is below the current average temperature. On
the other side, each time the temperature of a processor reaches
the lower threshold, a migration is triggered so that a set of tasks
is moved to that processor from a hotter processor to reduce the
overall MPSoC average temperature.

To reduce the amount of computations needed to select the
tasks to move, MiGra implements an algorithm that moves tasks
only between two processors at a time. Hence, the processor
that triggers the migration (a hot one) will only select one
target processor (a cold one) to balance the workload between
them. Moreover, MiGra must minimize the thermal gradients
without increasing the overall energy dissipation when tasks
are migrated, as well as minimize the performance overhead in
the final MPSoC. As a result, the thermal balancing algorithm
implemented in MiGra consists of two phases.

In the first phase, the candidate processors (source and target)
are selected, whereas, in the second phase, the task sets to be ex-
changed are defined. During the first phase, if all the following
three conditions are verified, the dst processing core becomes a
candidate to exchange workload with the src processing core.

1) If the temperature of the source core is beyond the av-
erage temperature (tmean), the destination core has to be
below: (tsrc - tmean) * (tdst - tmean) < 0.

2) The frequency of the source core must be higher than
the average if the one of the destination core is below:
(fsrc - fmcan) * (fdst - fmcan) < 0.

3) The total overall power dissipated by the two cores
(source and destination) after the migration has to
be lower than the total power dissipated by the
two core before the migration: (fsqc * V25 c + fast *

Uzdst)bcforc_migr 2 (fST‘CUQST‘C + fdst * U2dst)aftcr_migr~

The first condition is about temperature and assures that the
migration achieves reduction in the average system tempera-
ture. However, the temperature condition cannot ensure that
the candidate destination processor is currently highly loaded
but just that its temperature transient is still to be stabilized
(and most likely, still growing). In fact, the temperature is
not a good workload monitor if it is evaluated independently.
Thus, in order to avoid an additional allocation of workload
to a potentially overloaded core, we also need to evaluate
its current frequency, which is proportional to the allocated
workload. Hence, the migration is allowed only if the frequency
of the candidate destination core, which represents its current
workload, is lower than the mean frequency of all the cores in
the system. As a result, we avoid that an additional workload
is allocated to a core that is currently highly loaded, but its
temperature is still low. Finally, the third condition of MiGra
compares the total power of the source and destination cores
before and after migration, making sure that the new overall
power consumption on the MPSoC does not increase. In fact,
while the previous conditions ensure that the temperatures are
stabilized (constraint 1) and that no oscillations are caused by
the workload reallocations (condition 2), this third condition in-

dicates that thermal balancing is performed only if the new task
allocation is not worse, from a power consumption perspective.

The result of this phase can be either one or multiple desti-
nation candidates for a certain source processor. Furthermore,
no pairs of candidates may exist, which occurs in the case
of perfect thermal balancing (i.e., all cores are at the same
temperature). Thus, MiGra does not perform any migration, and
the rest of the algorithm is skipped.

Next, in the second phase of the thermal balancing algorithm
of MiGra, the selection of the number of tasks and the final
selection of the target processor are performed (in case several
potential destination cores have been found for a specific source
core in the first phase). This final selection of the destination
processor and tasks depends on the evaluation of the migration
costs (performance, energy, and temperature increase estima-
tion). As a result, our cost function is the product of the amount
of data moved due to the migration by the frequency of migra-
tions. Then, to estimate the appropriate migration frequency,
given a certain temperature difference between two processors,
the benefit of triggering a new migration is proportional to
the difference between the current temperature of the target
processor in the migration and the average on-chip temperature.
Thus, the selected target processor of a migration (tgtse) is the
processor with the minimum cost, according to the following
cost function:

i (0 + 307 (C")

(ttgt - tmean)2

(D

tgtsel = arg min
tgt

where C'°"¢; is the amount of data to be moved for the ith of 1
tasks running on the source processor and C'*9*; is the amount
of data to be moved for the jth of J tasks running on the tgt
processor.

In the current implementation of MiGra, in order to reduce
the run-time overhead of the aforementioned selection, we have
included an additional optimization phase. It selects the set
of tasks to be migrated according to the observation that the
temperature balancing benefit of migrating a task decreases
together with its workload. Therefore, the larger the workload
required by a task is, the more advantageous it is to migrate
that task to balance the temperature in a processor. This ap-
proximation shows very good results and allows us to limit
drastically the number of tasks to be considered for migration
at run time (only the five—ten tasks requiring the highest loads
in each processor are used in our experiments). Moreover, an
exhaustive search comparing the migration cost of all possible
combinations of tasks and candidate processors found in the
first phase is not practical in real systems.

Finally, although, in this work, we specifically target the use
of MiGra for MPSoC stream computing platforms, our thermal
balancing algorithm does not make any specific assumption
about the application domain itself. Therefore, it can be applied
to any general-purpose application after a suitable precharac-
terization phase of the task migration costs (as described in
Section 1V). Nonetheless, MiGra is not suited for hard real-
time platforms at present (e.g., [6]) since it does not provide
any guarantees about avoidance of deadline misses.

MULAS et al.: THERMAL BALANCING POLICY FOR MULTIPROCESSOR STREAM COMPUTING PLATFORMS 7

VII. THERMAL BALANCING POLICY VALIDATION

We have assessed the benefits of MiGra for thermal bal-
ancing on the emulation framework using as case study an
industrial three-core MPSoC running a multitask streaming
application. Therefore, in the next sections, we first describe
the concrete instance of a used MPSoC architecture, as well
as the power figures and the two different packaging models
considered (Section VII-A). Then, we present the other state-of-
the-art thermal management strategies evaluated in comparison
with MiGra (Section VII-C). Lastly, we present the analysis
of the thermal balancing capabilities of the different thermal
management approaches with respect to temperature standard
deviation, deadline misses, and performance overhead. To this
end, we have performed two sets of experiments. First, we have
analyzed the behavior of MiGra and other basic temperature-
limit control (Stop&go, see Section VII-C) and thermal bal-
ancing approaches when applied to stream MPSoC platforms
with different thermal packages. This first set of experiments
illustrates that thermal balancing cannot be achieved as a side
effect of energy balancing policies or a standard thermal control
policy, which is meant to react only when the chip reaches a
panic temperature (i.e., a temperature where the system cannot
operate without seriously compromising system reliability).
Second, we have conducted exhaustive experiments to define
the limits of MiGra and state-of-the-art thermal control ap-
proaches to minimize spatial thermal variations at run time in
highly variant (i.e., high performance) stream MPSoCs, from
the thermal gradient viewpoint.

Finally, in all the experiments, DVES is always active and
works separately in each processor (i.e., local DVFS [5]) and
independently from the applied thermal balancing policy. In
particular, in our three-core MPSoC case study, the imple-
mented DVFS scheme chooses the final frequency and voltage
of each processor between ten different values in the range
100- 532 MHz such that it tries to reduce the power consump-
tion of the core by minimizing its idle time.

A. Stream MPSoC Case Study and Packaging Options

We focus on a homogeneous architecture, as shown in
Fig. 5. In particular, we consider a system based on three 32-b
reduced instruction set computer processors without MMU
support to access cacheable private memories and a single non-
cacheable shared memory. It follows the structure envisioned
for noncache-coherent MPSoCs [25], [26]. In Table I, we
summarize the values used for the components of our emulated
MPSoC. The power values have been derived from industrial
power models for a 90-nm CMOS technology. On the software
side, each core runs its own instance of the uClinux OS [22] in
the private memory (see Section III for more details about the
MPOS software infrastructure).

We considered two different packaging solutions. The first
package shows temperature variations of around 10° in a few
seconds [27], whereas the second packaging option shows
similar thermal variations in less than a second. In Table II, we
enumerate the main thermal properties of these two different
packaging options. Regarding package-to-air resistance, since

D-cache | I-cache D-cache | I-cache
8KB 8KB AMBA 8KB 8KB
p2 p2 i p2 p2
logic
Proc1 Proc2
I-cache D-cache | | Shared
8KB 8KB memory
p3 At p3 32KB

Fig. 5. Emulated three-core MPSoC streaming architecture.

TABLE 1
POWER OF THE COMPONENTS IN A 0.09-pm CMOS

| | Max. Power@500 MHz |

RISC32-streaming (Conf1) 0.5W (Max)
RISC32-ARM11 (Cont2) 0.27W (Max)
DCache 8kB/2way 43mW
ICache 8kB/DM 11mW
Memory 32kB 15mW

TABLE 1I
THERMAL PROPERTIES OF THE DIFFERENT PACKAGES

silicon thermal conductivity 150 - (39) "’ W/mK
silicon specific heat 1.945¢ — 12J /um® K
silicon thickness 300um

copper thermal conductivity 400W/mK
copper specific heat 3.55e — 12J/um’K
copper thickness 1000um
package-to-air conduct. (low-cost) 12K/W
package-to-air conduct. (high-cost) 1K/W

the amount of heat that can be removed by natural convection
in MPSoCs strongly depends on the environment (e.g., place-
ment of the chip on a printed circuit board), we have tuned
these figures according to the experimental figures measured
in our industrial three-core case study [27], according to the
final MPSoC working conditions indicated by our industrial
partners.

B. Benchmark Application Description

We ported to our emulation framework different multitask
variations of the software FM defined radio (SDR) benchmark
(Table III), which is representative of a large class of streaming
multimedia applications. The application model follows the
Streamlt application benchmarks [8], used as baseline for the
implementation of our parallel SDR versions. This class of
applications is characterized by tasks communicating by means
of first-in—first-out queues, as shown in Fig. 6, where the tasks
are graphically represented as blocks. As this figure shows, the
output data of the tasks of the SDR application are stored in
different buffers or queues (@ ,,) and consumed at the required
frame rate. Thus, a deadline miss occurs when the consumer
(periodically) attempts to read a frame from the final buffer and
it is empty.

We performed two sets of experiments. In the first set,
we used a very dynamic workload that is made of multiple
instances of the SDR application, using versions divided in
three or six tasks (as in Fig. 6). The input data to the SDR

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE 111
SDR APPLICATION MAPPING
| Core / freq. | Task | Load [%] |
Core 1 (533 MHz) BPF1 36,7
DEMOD 28,3
Core 2 (266 MHz) BPF2 60,9
b)) 6,2
Core 3 (266 MHz) BPF3 60,9
LPF 18,8

g.?f! QJ‘I

- [l|—{erF
:m_. BPF
- [l|—{epF

Fig. 6. SDR case study (six-task version).

LPF—_[[}+{pEMOD

application represent the samples of the digitalized pulse-code-
modulation radio signal to be processed in order to produce
an equalized baseband audio signal. In the first step, the radio
signal passes through a low-pass filter to cut frequencies over
the radio bandwidth. Then, it is demodulated by the demodula-
tor (DEMOD) to shift the signal at the baseband and produce
the audio signal. The audio signal is then equalized with a
number of bandpass filters (BPFs) implemented with a parallel
structure. Finally, the consumer (X) collects the data provided
by each BPF and makes the sum with different weights (gains)
in order to produce the final output. Communication among
tasks is done using message queues.

C. Evaluated State-of-the-Art Thermal Control Policies

MiGra has been compared with the following state-of-the-art
thermal management policies.

Energy Balancing. This policy maps the SDR tasks to
balance the energy consumption [17] among cores. Energy
is computed from the frequency and voltage imposed by the
running tasks, which are dynamically adjusted using DVFES [5].

Stop&Go. This policy prevents thermal runaway by shutting
down a core when it reaches a panic temperature threshold. In
its original version [13], the core execution is resumed after
a predefined timeout. However, we modified this policy to
fairly compare it with our thermal balancing algorithm, MiGra,
by using the upper threshold of our algorithm as the panic
threshold, and our lower threshold defines when to switch the
core on instead of a fixed timing-out value, which would be
unable to adapt to very dynamic working conditions.

Rotation. This policy tries to achieve thermal balancing by
performing migrations between cores in a rotatory fashion, at
regular intervals. Thus, at the beginning of a task migration in-
terval (i), a set of tasks in core; is migrated to core(;41ymod -

Temperature-Based (TB). This policy considers the mi-
gration of tasks between cores according to the temperature
differences between each pair of processing cores in regular
intervals, namely, the set of tasks running on the hottest core
is swapped with the set on the coldest core, the set of tasks on

the second hottest core is swapped with the one on the second
coldest core, etc. Thus, at the beginning of each task migration
process, the cores are ordered by temperature. Then, the set of
tasks executed on core; is swapped with the set running on
COTEN—j—1-

TB Threshold-limited (TB-Th). This policy is an enhance-
ment of the previous TB policy, which was originally aimed to
reduce peak temperature rather than thermal gradients. There-
fore, we have introduced an additional minimum temperature
threshold, which tries to minimize the number of unnecessary
migrations of the original TB approach between cores when
the worst temperature of the MPSoC has not reached a critical
point. The minimum threshold has been carefully selected
offline to find the best option for each working condition of our
sets of experiments.

In the following sections, we assess the performance of
MiGra with respect to the previously described policies in dif-
ferent workload conditions and for different types of packaging
solutions in stream computing platforms.

D. Experimental Results: Exploration With Different
Packaging Solutions

We compare MiGra, Stop&Go, and the energy balancing task
migration policy implemented in many MPOSs, using a low-
and a high-cost thermal package. DVFS was also always active
in the MPOS to adjust the power dissipated by each core to the
required workload.

1) Thermal Balancing in Low-Cost-Packaging MPSoCs: In
the case of low-cost packaging, we observed that, after a first
execution phase (12.5 s), the temperatures of the three cores
stabilize. However, it is not balanced, and an approximately
10-°C difference exists between the hottest (core 1) and the
coolest core (core 3). This thermal state is due to the application
of DVFS to each core. Moreover, although cores 2 and 3 have
the same frequency, their temperatures differ because of the
different heat spreading capabilities due to their position in the
floorplan (see Fig. 5). Thus, in our experiments, we trigger
our task-migration-based policy (MiGra) to achieve thermal
balancing after this initial phase.

When MiGra is applied, each time a core reaches the upper
threshold (set to 3° more than the average temperature), a
migration is triggered, one task is moved to a colder core,
and the temperature becomes balanced for all cores within
1 s of execution of the SDR application. This demonstrates
the effectiveness of our policy to balance temperature. Our
results indicate that the hottest core temperature passes the
upper threshold while balancing the temperature only for a very
limited time (less than 400 ms).

A quantitative evaluation and comparison between our ther-
mal balancing policy (MiGra), Stop&Go, and energy balancing
algorithms is provided in the following experiments for the
same packaging configuration. Fig. 7 shows the temperature
standard deviation for the three policies as a function of the
threshold values. The X -axis indicates the distance of the upper
and lower threshold from the mean temperature. As this figure
shows, the temperature deviation increases with the threshold.
Thus, our policy is more effective in reducing temperature

MULAS et al.: THERMAL BALANCING POLICY FOR MULTIPROCESSOR STREAM COMPUTING PLATFORMS

o
(=20,
(=]
\ o
? S
s 4
=
N
P 4

M Stop and Go

W Thermal balancing
policy

4 Energy balancing po-
licy

standard deviation [°K]

2.00 o

1,75 T T

2 3 4 5
threshold [°K]

Fig. 7. Temperature standard deviation in low-cost embedded SoCs from the
mean on-chip temperature (337 K).

25

23- \l\

T 20 ~3
‘n 18
@
w 15 M Stop and Go
E 13 - | # Thermal balancing
b policy
35 10
o
% 8

5

3

0 ¢ \ g ¢

2 3 4 5
threshold [°K]
Fig. 8. Deadline misses for the embedded mobile system.

deviation than other techniques because it acts on both hot and
cold cores. In particular, the manually tuned Stop&Go does
not improve the temperature of the cold cores. Furthermore, if
the original Stop&Go is used [5], [13], considering the highest
supported temperature for the low-cost package as the panic
threshold, higher temperature swings are observed, which leads
to a worst standard deviation value (3.70 K more) with respect
to those shown in Fig. 7.

Then, Fig. 8 shows the number of deadline misses as a
function of the threshold values. As shown, our policy leads
to few deadline misses, while Stop&Go suffers a higher value
of missed frames. Deadline misses may be caused by frozen
tasks during migration; hence, interprocessor queues are de-
pleted during migration, and, if the queue of the last stage
gets empty, a deadline miss occurs. However, as Fig. 8 shows,
migration is lightweight and fast enough to limit this drawback.
In fact, missed frames appear only for the minimum threshold
considered in our experiments. Furthermore, we observed that
the average queue level does not change because of migration;
thus, a queue size handling thermal balancing can always be
found, and the SDR application can sustain thermal balancing
without QoS impact, i.e., the minimum queue size to sustain
migration in our experiments was 11 frames.

5,75
5,50
525
? 5,00
‘E’ 4 m Stop and Go
£ 4,75 A Thermal balancing
i policy
3 4,50 - » Energy balancing po-
° 4,25 licy
2 4,00
c 4,
% /
3,75 N _.-'/r
3,50
3,25 T—"_——’__.[/ | |
2 3 4 5
threshold [°K]
Fig. 9. Standard deviation in high-performance SoCs from the mean on-chip

temperature (314 K).

18
16
_ 14
g |\
12
a \ 1l Stop and Go
ﬁ 10 & Thermal balancing
S \ policy
v 8
£
26
Q
L !
2
0 > *
2 4 5
threshold [°K]
Fig. 10. Deadline misses for high-performance systems.

2) Thermal Balancing in High-Cost-Packaging MPSoCs:
To stress our policy when temperature variations are faster,
we repeated the previous set of experiments using the al-
ternative packaging value for high-performance systems (see
Section VII-A), where temperature variations are six times
faster than the previous model. Hence, the three-core case
study experiences gradients of more than 10°, i.e., the coolest
core typically operates at 56 °C and the hottest one can reach
67 °C.

Fig. 9 shows the standard deviation of the temperature for the
three tested policies. The energy balancing policy achieves very
poor results, and the modified Stop&Go policy behaves better in
terms of temperature deviation, but it causes a large amount of
deadline misses (Fig. 10). Moreover, using the original version
of Stop&Go [5] with the highest supported temperature of
the high-performance package as the panic threshold, a worst
standard deviation value of 4.48 K more is observed with
respect to Fig. 9.

On the contrary, although our algorithm makes the temper-
ature oscillate more than the modified Stop&Go (but signifi-
cantly less than the original Stop&Go), it always causes very
few deadline misses (less than 4%). Moreover, our algorithm
starts behaving significantly better than Stop&Go when the

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

6,50 y
6,00
5,51 \\
5’11 !\X \
4,51 \.\ 'X
w
2 4,11 -
5 3.51
® 311
o \
£ 2,51 \
2,11 I Mobile embedded
151 # High performance \
1,11
1,51
0,11 T I 1
2 3 4 5
threshold [°K]
Fig. 11. Migrations per second of MiGra for both types of packages.

threshold increases, as less migrations are triggered. Further-
more, we observed that Stop&Go causes less deadline misses
with the fast thermal model than with the slow one; due to
the faster speed, the lower threshold is reached after shutdown.
From these experiments, we can conclude that pure software
techniques cannot handle fast temperature variations, and a
hardware—software codesign approach is needed.

Finally, Fig. 11 shows the average number of migrations per
second performed by our thermal balancing policy (MiGra)
for both mobile embedded and high-performance systems.
As expected, the number of migrations is higher for high-
performance systems. However, as each migration implies a
transfer of 64 kB of data (the minimum memory space allo-
cated by the OS), the required three migrations per second are
equivalent to 64 * 3 = 192 kB/s, which means that our task
migration policy implies only a negligible overhead in system
performance (1% overall).

E. Experimental Results: Limits of Thermal Balancing
Techniques for High-Performance MPSoCs

In this set of experiments, we perform evaluation of the
limits of MiGra and state-of-the-art task migration policies,
i.e., Rotation, TB, and TB-Th (see Section VII-B for more
details). In all the cases, local DVFS is also active and applied,
when possible, in addition to each particular task migration
scheme. To stress the reacting capabilities of all these schemes,
in this set of experiments, we have used the high-performance
packaging option, which exhibits faster vertical on-chip heat
flow dissipation to the environment than spreading horizontally
to other parts of the chip. Thus, even more dynamic and faster
thermal imbalance situations occur because the different parts
of the system heat and cool down faster, as shown in our
previous set of experiments.

Then, we have evaluated and compared the behavior of
the task migration algorithms under three different workloads,
made of multiple instances of the SDR case study, which was
divided in three internal subtasks for more accurate control of
the final workload conditions. In the first workload setup, we
analyze the behavior of the different task migration policies in

TABLE 1V
EXPERIMENTAL RESULTS FOR SETUP I: TEMPERATURES BALANCED
(STEADY-STATE THERMAL CONDITION)

MiGra Rotation B TB-Th
Timeout (ms) 10 | 10 10 20 10 20 10 10
Threshold (°C) 2 1 316°K | 318°K
Standard deviation 0 0 0.18 0 0.16 0 0 0
Deadlinc misses (%) [§] 0 27.64 0 13.12 0 0 [§]
Migrations. / sec 0 0 | 30.47 | 15 | 2048 | 10.00 0 0

the context of a steady-state thermal situation, where there is
essentially no thermal imbalance. Thus, the workload of each
task was adjusted to make deterministic the replication of load
ratio among cores for the tested thermal balancing policies,
using a 65% workload approximately for each processor. To this
end, we partitioned the SDR case study in three tasks having
very similar processor workload requirements. Therefore, in
this situation, the processors tend to run at the same frequency.
Next, in the second workload setup, we performed an uneven
partition of the workload between the three internal tasks that
compose each SDR application. Thus, the processors need
to run at different frequencies and with variable number of
memory and I/O operations, which results in a clear overall sys-
tem thermal imbalance. In particular, we used 55%—-85%-30%
workload at 35 frames/s for cores 1, 2, and 3, respectively.
Finally, in the third workload setup, we assess the capabilities of
MiGra to adapt to very dynamic workloads by varying the frame
rate of the SDR case study and compare this behavior against
an offline-tuned version of the TB-Th migration policy. Thus,
in this final setup, we obtained a workload of 46%—74%—-26%,
55%—-85%—-30%, and 58%—-95%—-33% for the frame rate inter-
val using 30, 35, and 40 frames/s, respectively.

For each setup, we performed various experiments while
exploring different values of internal configuration parameters
of each policy, namely, for MiGra, we changed the threshold
ranges, for Rotation and TB, we modified the task migration
timeout values, and, for TB-Th, we varied its minimum tem-
perature unbalance threshold to force the migrations.

1) Setup I—Steady-State Thermal Context: Table IV sum-
marizes the experimental results obtained for the first workload
setup, where the temperatures of the three cores are already in
a steady-state situation. As this table shows, the Rotation and
TB policies are not effective because they try to swap tasks
between the different cores without knowledge of the overall
temperature gradient across the chip. As a consequence, in
highly demanding working conditions (with small timeouts to
apply task migration), both policies show a significant decrease
in QoS of the target three-core platform (i.e., 27% of deadline
misses for Rotation and 13% for TB) as they generate a large
number of migrations. Conversely, MiGra and TB-Th avoid
migrations completely since MiGra is able to observe that the
standard deviation of the temperature of the cores is within the
allowed temperature oscillation range, and also TB-Th does not
react because we have manually set up the minimum migration
detonation threshold to values that are never reached by any
processor.

2) Setup II—Unbalanced Thermal Gradients at Regular In-
tervals: Table V depicts the experimental results obtained in
the context of the second workload setup, where the three-core
MPSoC platform under study experiences thermal gradients,

MULAS et al.: THERMAL BALANCING POLICY FOR MULTIPROCESSOR STREAM COMPUTING PLATFORMS 11

TABLE V
EXPERIMENTAL RESULTS FOR SETUP II: TEMPERATURES UNBALANCED
WITH REGULAR WORKLOAD CYCLES

MiCGra Rotation TB TB-Th
Timeout (ms}) 10 10 10 20 10 20 10 10
Threshold ("C) 2 1 316°K [318°K
Standard deviation 0.17 | 0.22 1.57 0.99 0.10 | 0.37 1.76 0.49
Deadline misses (%) 0 0 26.23 0 7.62 0 1.62 0.00
Migrations/ sec 5.89 | 8.07 [30.25 | 14.98 | 19.94 | 998 12.02 8.51

but in regular intervals, due to the unbalanced partitioning of the
tasks (but regular overall streaming computation workload). As
this figure shows, MiGra requires only a linear increase in the
number of migrations when we sweep the required threshold
of the average temperature between the cores from 4° and 1°
around the average temperature of the platform. Moreover, it
can be observed that the standard deviation gradually increases
as the policy starts getting closer to the critical threshold
or reachable thermal balance limit for the studied three-core
MPSoC (i.e., less than 1° oscillation beyond/below the average
temperature), which is due to the unavoidable cost of migrating
a certain task between two cores. Nonetheless, even in the
smallest range of requested thermal balancing, MiGra never
experiences deadline misses, as it computes the global benefits
of each migration in the overall thermal balance of the MPSoC.

Then, if we compare the results of MiGra with those of
the other task migration policies, Table V shows that Rotation
has always worst standard deviation and requires many more
migrations to compensate the thermal unbalance of the MPSoC.
Furthermore, if a very fine-grained timeout is requested to
Rotation, it degenerates and shows a very significant decrease
in QoS, namely, 26% of deadline misses on average. With
respect to the TB policy, the experimental results show that
it performs better than Rotation by having a lower standard
deviation in the critical thermal balancing constraints, but the
values are only marginally better than those of MiGra (0.10
versus 0.17). Nonetheless, these values are achieved by TB at
the cost of a large percentage of deadline misses (i.e., 7.62%)
and QoS degradation, due to its large amount of required task
migrations to balance the overall temperature, while MiGra
does not generate any deadline miss. Finally, although TB-Th
shows a lower number of deadline misses (1.62%) than TB
or Rotation in the most fine-grained threshold temperature to
detonate a task migration (316 K), it still has deadline misses
and experiences a larger standard deviation than MiGra.

3) Setup III—Highly Variant Thermal Gradients at Irregular
Intervals: In this last setup, we have evaluated the ultimate
reaction capabilities of MiGra to highly dynamic workloads
(i.e., variable frame rates in stream computing), which generate
thermal gradients at very variable intervals. Furthermore, we
have compared its behavior with respect to the best TB-Th
configuration decided offline as the best intermediate value for
the SDR benchmark with different frame rates, after analyz-
ing the thermal gradients derived from the execution of the
application on the target three-core MPSoC. As a result, we
manually defined the minimum migration threshold value in
TB-Th as 318 K (see Table V) and compared it with a fine-
grained configuration threshold for MiGra (i.e., a threshold of
2° around the average temperature). Then, we evaluated both
policies using three frame rates: 30, 35, and 40 frames/s.

TABLE VI
EXPERIMENTAL RESULTS FOR SETUP III: MiGra VERSUS TB-Th IN A
HIGHLY VARIANT THERMAL GRADIENT CONTEXT

| MiGra | TB-Th ‘
Frame Rate (per sec) 30 35 40 30 35 40
Standard Deviation 0.27 0.12 004 | 0.15 049 0.10
Deadline Misses (%) 0 0 0 0 0 0
Migrations/ sec 249 462 442 | 317 851 274

Table VI summarizes the results. On the one hand, this table
shows that the number of migrations required by MiGra to
guarantee the requested thermal balancing of less than 3° at
30 frames/s is very limited, although it is a valid frame rate
for many stream computing applications. This limited number
of migrations is due to the fact that, at this frame rate, the
workload of each task is below 50% for the three-core platform
under study. Thus, MiGra can effectively work and adapt the
global thermal behavior of the system very fast by mapping
two tasks in the same processing core at each moment in
time if this value can reduce the global energy of the system
and balance the temperature, as indicated in the constraints of
MiGra (cf., Section VI-A). Conversely, for 35 or 40 frames/s,
the processors are always loaded more than 50%. Thus, several
migrations are required to dynamically balance and swap one
of the tasks between processors. Hence, MiGra performs about
double number of migrations with input rates higher than
30 frames/s, as it is shown in Table VI. Then, the differences
in the number of migrations between 35 and 40 frames/s are
not very significant for MiGra, no deadline misses exist, and
the standard deviation can be well-adjusted to each case.

On the other hand, TB-Th always swaps the tasks between
the hottest and the coldest processors, without a complete
knowledge of the influence of workload in the overall number
of migrations, since it is not possible to define a minimum
task migration threshold that works correctly for all possible
variable working conditions. Therefore, this policy can create
very anomalous conditions for some variable workloads, as it
is the case of 35 frames/s (see Table VI), where a large number
of migrations are suddenly necessary to compensate for peaks
of workloads accumulated in some processors. Indeed, in some
cases, TB-Th reacts inappropriately to the gradient trends of
the parts of the MPSoC, as the minimum migration threshold
defined in this policy cannot dynamically be changed. As a re-
sult, if a task migration timeout occurs for TB-Th before the last
migration of a task from a hot core to a cold one has finished,
as the system is beyond the minimum threshold to detonate
new migrations, TB-Th can trigger a new migration phase that
brings back more workload to the hot processing core, raising
its temperature again. As a consequence, TB-Th performs an
unnecessary number of migrations in certain situations with
highly dynamic workloads, and the perfect adjustment of its
internal parameters is critical for a good behavior of this policy.
Nonetheless, these highly dynamic workloads are very difficult
to predict at design time in order to suitably tune the thresholds
and timeouts of the TB-Th algorithm for each target MPSoC.

Conversely, MiGra is only slightly affected by variable work-
loads, due to its fast run-time self-adaptation of the upper and
lower thermal-based task migration thresholds. Thus, it can
adapt to the thermal dynamics of each target MPSoC, and the

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

standard deviation and number of deadline misses are largely
insensitive to initial internal parameter tuning. Hence, it is
easier to tune to any final MPSoC architecture.

VIII. CONCLUSION

As feature sizes decrease, power dissipation and heat gener-
ation density exponentially increase. Thus, temperature gradi-
ents in MPSoCs can seriously impact system performance and
reliability. Thermal balancing policies based on task migration
have been proposed to modulate power distribution between
processors to achieve temperature flattening. However, in the
context of MPSoC stream computing, the impact of migration
on QoS must be carefully studied. In this paper, we have pre-
sented a new thermal balancing policy, i.e., MiGra, specifically
designed to exploit dynamically workload information and
run-time thermal behavior of stream computing architectures.
MiGra keeps migration costs and deadline misses bounded
to reduce on-chip temperature gradients via task migration,
supporting further the application to local DVFS schemes on
top of it. We have thoroughly evaluated the potential benefits
of MiGra to balance the temperature in stream processing
architectures with respect to state-of-the-art thermal manage-
ment techniques using different versions of a software-defined
radio multitask benchmark. We have run dynamic workloads
of this benchmark on a complete cycle-accurate FPGA-based
emulation infrastructure of a real-life three-core stream plat-
form, and the experimental results show that MiGra is able
to reach a global thermal balance where the temperatures
of the MPSoC components are within a range of 3° around
the average temperature. Furthermore, MiGra achieves this
thermal balancing with a negligible performance overhead of
less than 2% in MPSoC stream computing platforms, signif-
icantly less than that of state-of-the-art thermal management
techniques.

REFERENCES

[1] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and im-
plementation,” ACM TACO, vol. 1, no. 1, pp. 94-125, Mar. 2004.

[2] T. Sato, J. Ichimiya, N. Ono, K. Hachiya, and M. Hashimato, “On-chip
thermal gradient analysis and temperature flattening for SoC design,” in
Proc. ASP-DAC, 2005, pp. 1074-1077.

[3] C.Isci, G. Contreras, and M. Martonosi, “Live, run-time phase monitoring
and prediction on real systems with application to dynamic power man-
agement,” in Proc. MICRO, 2006, pp. 359-370.

[4] 1. Yeo, C. C. Liu, and E. J. Kim, “Predictive dynamic thermal management
for multicore systems,” in Proc. DAC, 2008, pp. 734-739.

[5]1 J. Donald and M. Martonosi, “Techniques for multicore thermal
management: Classification and new exploration,” in Proc. ISCA, 2006,
pp- 78-88.

[6] J. Hu and R. Marculescu, “Energy-aware communication and schedul-
ing for NoC SoCs under real-time constraints,” in Proc. DATE, 2004,
p- 10234.

[7] P. Rong and M. Pedram, “Power-aware scheduling and DVS for
tasks running on a hard real-time system,” in Proc. ASPDAC, 2006,
pp. 473-478.

[8] StreamlIt-MIT Research, Streamlt Benchmarks,2009. [Online]. Available:
http://www.cag.lcs.mit.edu/streamit/shtml/benchmarks.shtml

[9] M. Mutyam, F. Li, N. Vijaykrishnan, M. T. Kandemir, and M. J. Irwin,
“Compiler-directed thermal management for VLIW functional units,” in
Proc. LCTES, 2006, pp. 163-172.

[10] A. K. Coskun, T. S. Rosing, and K. Whisnant, “Temperature aware task
scheduling in MPSoCs,” in Proc. DATE, 2007, pp. 1659-1664.

[11] W.-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J. Trwin,
“Thermal-aware task allocation and scheduling for embedded systems,”
in Proc. DATE, 2005, pp. 898-899.

[12] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha, “HybDTM: A coordinated
HW-SW approach for dynamic thermal management,” in Proc. DAC,
2006, pp. 548-553.

[13] P. Chaparro, J. Gonzilez, G. Magklis, Q. Cai, and A. Gonzilez,
“Understanding the thermal implications of multi-core architectures,”
IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 8, pp. 1055-1065,
Aug. 2007.

[14] S. Carta, A. Acquaviva, P. G. Del Valle, D. Atienza, G. De Micheli,
F. Rincén, L. Benini, and J. M. Mendias, “Multi-processor OS emulation
framework with thermal feedback for SoCs,” in Proc. GLSVLSI, 2007,
pp- 311-316.

[15] R. Mukherjee and S. O. Memik, “Physical aware frequency selection for
dynamic thermal management in multi-core systems,” in Proc. ICCAD,
2006, pp. 547-552.

[16] J. Donald and M. Martonosi, “Power efficiency for variation-tolerant
multicore processors,” in Proc. ISLPED, 2006, pp. 304-309.

[17] E. Bellosa, S. Kellner, M. Waitz, and A. Weissel, “Event-driven energy
accounting for dynamic thermal management,” in Proc. COLP, 2003,
pp. 41-50.

[18] G. Paci, P. Marchal, F. Poletti, and L. Benini, “Exploring
temperature-aware design in low-power MPSoC,” in Proc. DATE,
2006, pp. 838-843.

[19] Y. Xie and W.-L. Hung, “Temperature-aware task allocation and
scheduling for embedded MPSoC design,” J. VLSI-SPS, vol. 45, no. 3,
pp. 177-189, Dec. 2006.

[20] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full chip leakage
estimation considering power supply and temperature variations,” in Proc.
ISLPED, 2003, pp. 78-83.

[21] J. Li and J. F. Martinez, “Power-performance implications of
thread-level parallelism in chip multiprocessors,” in Proc. ISPASS, 2005,
pp. 124-134.

[22] uClinux: Embedded Linux/Microcontroller Project, 2006. [Online].
Available: http://www.uclinux.org/

[23] D. Atienza, P. G. Del Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli,
J. M. Mendias, and R. Hermida, “HW-SW emulation framework
for temperature-aware design in MPSoCs,” ACM Trans. Des. Autom.
Electron. Syst., vol. 12, no. 3, pp. 1-26, Aug. 2007.

[24] XUP Virtex-1I Pro Development System, Xilinx, San Jose, CA, 2006.
[Online]. Available: http://www.xilinx.com/univ/xupv2p.html

[25] H.-J. Stolberg, M. Berekovi®, S. Moch, L. Friebe, M. B. Kulaczewski,
S. Fliigel, H. KluBmann, A. Dehnhardt, and P. Pirsch, “HiBRID-SoC:
A multi-core SoC architecture for multimedia signal processing,”
J. VLSI-SPS, vol. 41, no. 1, pp. 9-20, Aug. 2005.

[26] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer,
and G. Essink, “Design and programming of embedded multipro-
cessors: An interface-centric approach,” in Proc. CODES +ISSS, 2004,
pp- 206-217.

[27] Freescale, IMX31—Multimedia Applications Processors, 2006. [Online].
Available: www.freescale.com/imx31

Fabrizio Mulas received the B.S. degree in elec-
tronic engineering from the University of Cagliari,
Cagliari, Italy, where he is currently working toward
the Ph.D. degree in computer science.

In 2007-2008, he spent six months at the Inte-
grated Systems Laboratory, Ecole Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland, as a
Guest Researcher about conception and development
of software algorithms and policies for dynamic re-
source management in multiprocessor systems. His
scientific activities mostly concern soft real-time
scheduling, power management in wireless sensor networks, Linux kernel ac-
tivity monitoring, management techniques for addressing variability/reliability,
and aging problems in next-generation hardware components.

MULAS et al.: THERMAL BALANCING POLICY FOR MULTIPROCESSOR STREAM COMPUTING PLATFORMS 13

David Atienza (M’05) received the M.Sc. degree in
computer science and engineering from the Com-
plutense University of Madrid (UCM), Madrid,
Spain, in 2001 and the Ph.D. degree in computer
science and engineering from the Inter-University
Microelectronics Center (IMEC), Leuven, Belgium,
in 2005.

He is currently a Professor and the Director of the
Embedded Systems Laboratory, Ecole Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland, and
an Adjunct Professor with the Computer Architec-
ture Department, UCM. He is also a Scientific Counselor of long-time research
with IMEC Netherlands. His research interests focus on design methodologies
for high-performance multiprocessor systems-on-chip and embedded systems,
including new 2-D/3-D thermal-aware design, wireless sensor networks, dy-
namic memory optimizations, and network-on-chip design. In these fields,
he is the coauthor of more than 100 publications in prestigious journals and
conferences.

Dr. Atienza is also an Associate Editor of the IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,
the IEEE, and Elsevier Integration. He has been an elected member of the
Executive Committee of the IEEE Council of Electronic Design Automation
since 2008.

Andrea Acquaviva received the B.S. degree (summa
cum laude) in electrical engineering from the Univer-
sity of Ferrara, Ferrara, Italy, in 1999 and the Ph.D.
degree in electrical engineering from the University
of Bologna, Bologna, Italy, in 2003.

He was an Assistant Professor in computer science
with the University of Urbino, Urbino, Italy, and with
the Department of Computer Science, University of
Verona, Verona, Italy. In 2001 and 2002, he was a
Research Intern with Hewlett Packard Laboratories,
Palo Alto, CA. He is currently an Assistant Professor
with the Computer Science and Automation Department, Politecnico di Torino,
Torino, Italy. He is also a Visiting Professor with the Laboratoire des Systemes
Integres, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Since 2004, he has been collaborating with Freescale Semiconductor, Inc.,
Glasgow, U.K. His research interests mainly concern software for multiproces-
sor and distributed systems, with particular emphasis on operating systems
and middleware for multiprocessor systems-on-chip, and wireless body sensor
networks for human—computer interfaces, with particular emphasis on energy
conservation aspects.

Salvatore Carta received the B.S. degree (summa
cum laude) in electronic engineering and the Ph.D.
degree in electronics and computer science from the
University of Cagliari, Cagliari, Italy, in 1997 and
2003, respectively.

Since 2005, he has been an Assistant Professor
in computer science with the Dipartimento di
Matematica e Informatica, University of Cagliari.
His research interests focus mainly on architectures,
software and tools for embedded and portable com-
puting, with particular emphasis on operating sys-
tems, middleware, and software for multiprocessor systems on chips; networks
on chip; and reconfigurable computing. He is the author of more than 20 papers
in these fields in the last three years. In the last two years, he has also been
working in the fields of recommendation systems and social networks. He is
the author of several papers in these fields.

Luca Benini (S’94-M’97-SM’04-F’06) received
the Ph.D. degree in electrical engineering from
Stanford University, Stanford, CA, in 1997.

He is currently a Professor with the University
of Bologna, Bologna, Italy. He also holds a Visit-
ing Faculty Position with the Ecole Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland. His
research interests include the design of systems for
ambient intelligence, from multiprocessor systems-
on-chip/networks-on-chip to energy-efficient smart
sensors and sensor networks. From there, his re-
search interests have spread into the field of biochips for the recognition of
biological molecules, into bioinformatics for the elaboration of the resulting
information, and further into more advanced algorithms for in silico biology.
He has published more than 300 papers in peer-reviewed international journals
and conferences, three books, several book chapters, and two U.S. patents.

Dr. Benini has been the Program Chair and the Vice Chair of the Design
Automation and Test in Europe Conference. He was a member of the 2003
MEDEA and EDA Roadmap Committee. He is a member of the IST Embedded
System Technology Platform Initiative (ARTEMIS), a working group on design
methodologies, a member of the Strategic Management Board of the ARTIST2
Network of Excellence on Embedded System, and a member of the Advisory
Group on Computing Systems of the IST Embedded Systems Unit. He has been
a member of the Technical Program Committee and Organizing Committee of
several technical conferences, including the Design Automation Conference,
the International Symposium on Low Power Design, and the Symposium
on Hardware—Software Codesign. He is an Associate Editor of the IEEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED
CIRCUITS AND SYSTEMS and of the ACM Journal on Emerging Technologies
in Computing Systems.

Giovanni De Micheli (S°79-M’83-SM’89-F’94)
received the Nuclear Engineer degree from the
Politecnico di Milano, Milan, Italy, in 1979 and the
M.S. degree and the Ph.D. degree in electrical engi-
neering and computer science from the University of
California, Berkeley, in 1980 and 1983, respectively.

He was a Professor of electrical engineering with

Stanford University, Stanford, CA. He is currently
“ ' { with Ecole Polytechnique Fédérale de Lausanne,
;_9 ! Lausanne, Switzerland, where he is the Director of
o the Institute of Electrical Engineering and the In-
tegrated Systems Centre and a Professor with the Laboratoire des Systemes
Integres, Institute of Computing and Multimedia Systems (ISIM), School of
Computer and Communication Sciences (IC). His research interests include
design technologies for integrated circuits and systems, such as synthesis,
HW/SW codesign, and low-power design, as well as systems on heterogeneous
platforms.

Prof. De Micheli is a Fellow of the Association for Computing Machinery.
He was the recipient of the 2003 IEEE Emanuel Piore Award. He was also
the recipient of the Golden Jubilee Medal for outstanding contributions to the
IEEE Circuits and Systems (CAS) Society in 2000 and the 1987 D. Pederson
Award for the best paper on the IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD/ICAS).
He was the Division-1 Director (2008-2009), the Cofounder, and the President
Elect of the IEEE Council on Electronic Design Automation (2005-2007),
the President of the IEEE CAS Society (2003), and the Editor-in-Chief of the
IEEE TCAD/ICAS (1987-2001). He also chairs the Scientific Committee of the
Centre Suisse d’Electronique et de Microtechnique, Neuchatel, Switzerland.

