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Double Patterning Layout Decomposition for
Simultaneous Conflict and Stitch Minimization
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Abstract—Double patterning lithography (DPL) is considered
as a most likely solution for 32nm/22nm technology. In DPL,
the layout patterns are decomposed into two masks (colors),
and manufactured through two exposures and etch steps. If
the spacing between two features (polygons) is less than certain
minimum coloring distance, they have to be assigned opposite
colors. However, a proper coloring is not always feasible because
two neighboring patterns within the minimum distance may be
in the same mask due to complex pattern configurations. In that
case, a feature may need to be split into two parts to resolve the
conflict, resulting in stitch insertion which causes yield loss due to
overlay and line-end effect. While previous layout decomposition
approaches perform coloring and splitting separately, in this
paper, we propose a simultaneous conflict and stitch minimization
algorithm with an integer linear programming (ILP) formulation.
Since ILP is in class NP-hard, the algorithm includes three
speed-up techniques: 1) grid merging; 2) independent component
computation; and 3) layout partition. In addition, our algorithm
can be extended to handle design rules such as overlap margin
and minimum width for practical use as well as off-grid layout.
Our approach can reduce 33% of stitches and remove conflicts
by 87.6% compared with two phase greedy decomposition.

Index Terms—Double patterning lithography, integer linear
programming, layout decomposition.

I. INTRODUCTION

S the minimum feature size decreases, semiconductor
industry is facing the limitation of patterning sub-32nm
due to the delay of the next generation lithography equipment
such as extreme ultraviolet [1]. Double patterning lithogra-
phy (DPL) [2]-[5] emerges almost the only alternative for
32nm/22nm nodes and it is already used for NAND-flash
production. In DPL, a single layout is decomposed into two
masks and manufactured through two exposure/etching steps.
As a benefit, the pitch size is doubled, which enhances the
resolution as illustrated in Fig. 1. Although DPL requires two
masks and increases the design cost, it is widely considered
as a most likely solution for 32 nm, 22 nm, and even 16 nm.
Double patterning layout decomposition [6]—[8] is a process
that assigns two features within the given minimum space
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Fig. 1. One single design is decomposed into two masks and the pitch size
is increased effectively in DPL.

to different masks. A layout may contain a pattern which
is unable to assign a color. In this case, a feature may be
split into two parts and colored differently to resolve the
conflict, which generates stitches. Stitches will cause yield
loss and increase manufacturing cost due to overlay errors,
which is 5nm or 6 nm under current 32 nm double patterning
lithography. Some mask misalignment direction [4] could be
actually beneficial for printability. However, on the presence of
various process uncertainties, such as dose, focus, and mask
errors, the printed stitch width could be easily smaller than
25nm and result in design failure. Pushing overlay below
3nm [9] is very challenging. Moreover, the additional line-
ends may cause more pattern degradation and reduce yield
in case of defocus and dose variation. After splitting, a few
unresolved or even unresolvable conflicts may remain and will
be corrected by time consuming layout redesign. Therefore, it
is important to produce high quality decomposition solution
with less conflicts and stitches.

There are a few works focusing on stand-alone layout
decomposition. A heuristic approach is proposed in [7] to
cut troublesome patterns after finding the coloring conflicts.
The patterns are prefragmented into smaller pieces in [§8] to
perform coloring. All these works do not have a systematical
way to minimize the number of conflicts and stitches. Coloring
and splitting are considered in separate steps while they are
highly correlated tasks. Pattern matching technique is proposed
in [10] to decompose the layout. However, it might not be
able to work on large scale problem, hence limits the solution
quality. Recently, a practical layout decomposition flow is
proposed in [11] to address design needs for double patterning.
They first detect the features associated with unresolvable
conflict cycles for layout modification. The remaining design
is then decomposed to minimize the number of stitches based
on an ILP formulation. However, in their work, the number
of unresolvable conflict cycles and splitting stitches are not
optimized together, and conflict elimination technique is quite
greedy.

0278-0070/$26.00 (© 2010 IEEE
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Fig. 2. Concept of conflict and stitch.

In this paper, we propose an algorithm to decompose layout
for minimizing conflicts and stitches simultaneously. The
proposed approach reduces the conflicts by 87.6% with 33%
less stitches compared to a greedy two phase decomposition
flow. When compared to a methodology based on [11], we are
also able to achieve averagely 87.2% and 10% reduction on
conflicts and stitches, respectively. Although our approach is
comparatively slower, we can obtain coloring solutions for all
the test cases within a few minutes. The runtime shows linear
complexity with respect to problem size.

Our main contributions are as follows.

1) We propose a new grid model to enable bigger solution
space than previous works [7], [8] and perform simul-
taneous conflict and stitch optimization.

2) We develop an ILP algorithm to minimize the number
of conflicts and stitches for a high quality solution.

3) We propose three speed-up techniques (grid merging,
independent component computing and layout partition)
to improve the runtime and scalability of our algorithm.
For layout partition, we identify and solve a coloring
flip optimization problem to minimize the conflicts and
stitches across the boundary of different partitions.

4) We discuss how to extend our proposed grid model
to handle various splitting rules and design patterns in
practice.

The rest of the paper is organized as follows. Section II
provides the preliminaries and motivates. In Section III, we
discuss the problem formulation with related model and defi-
nitions. The basic ILP formulation is described in Section IV
with three speed-up techniques. The extensive discussion
on grid model for practical design issues is presented in
Section V. Section VI presents the experiment results and
Section VII concludes this paper.

II. PRELIMINARIES AND MOTIVATION

A. Double Patterning Layout Decomposition Considerations

As explained in Section I, in DPL, the original design will
be assigned into two masks. There are two critical issues with
this layout decomposition: coloring conflict and splitting stitch.

1) Coloring Conflict: If the distance between two separate
features is less than minimum coloring spacing min,, they
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Fig. 3. Shortcoming of two phase layout decomposition flow in previous
works [7], [8]. An unplanned coloring will need much extra effort during
splitting.

should be assigned to different masks (colors). Otherwise,
there will be a coloring conflict.

Fig. 2(a) shows a layout with three features, and any two
of them are required to have different colors because of the
insufficient spacing. A coloring conflict will be unavoidable
as in Fig. 2(b). Sometimes, such a violation can be eliminated
by appropriately splitting the features like Fig. 2(c). There
are also unresolvable conflicts, as Fig. 2(d) indicates, which
requires modifying the design.

2) Splitting Stitch: The stitch exists when two touched
features are assigned to different masks. The stitch can be
inserted to split some features to resolve the conflict as shown
in Fig. 2(c). However, stitch insertion can have negative effects
on yield due to overlay error between the two masks as
Fig. 2(e) illustrates. In addition, the line-end will cause pattern
degradation.

There are several practical guidelines for splitting. As
Fig. 2(f) shows, in order to control the overlay, there is a
minimum overlap length, min,;, requirement for stitch inser-
tion. The segments #; and h, on different masks should be
overlapped to certain amount ensuring better manufacturabil-
ity. Moreover, we do not want to have any minimum width,
min,,;, rule violation during splitting, as marked by the circle
in Fig. 2(f).

Without altering layout in the scope, the general objective
of layout decomposition can be stated as minimizing the
unresolved conflicts by introducing as few as possible stitches.

B. Simultaneous Optimization

The previous works insert stitches after coloring to resolve
conflicts. Without planning possible splitting during coloring,
it is hard to eliminate the conflict. Considering a layout in
Fig. 3(a), we have a coloring solution in Fig. 3(b). During
the splitting, the U feature should be cut into two parts to
remove the conflict but we have to further check whether
the splitting will result in another conflict like Fig. 3(c). In
such case, the coloring of the neighborhood features needs to
be reconsidered to avoid unnecessary stitches like Fig. 3(d)
and enable optimal solution in Fig. 3(e) or (f). This is a
simple example, but as we can see, given the complexity
of modern design, the two-phase approach will have extreme
difficulty handling the exploding consideration and producing
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Fig. 4. Different stitch candidates can lead to different solution qualities.
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Fig. 5. Difficulty of predicting where the splitting is needed.
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high quality solution. This motivates us simultaneous conflict
and stitch minimization during layout decomposition.

III. PROBLEM FORMULATION

In this section, we will first motivate and introduce our grid
model in Section III-A. The basic terms will be defined in the
following Section III-B. The formal problem definition will be
described in the end.

A. Grid Layout Model

Considering splitting during coloring is a challenging prob-
lem. First of all, the stitch configurations are highly correlated
and all the potential locations need to be considered for global
optimality. Fig. 4(a) is a case with two conflicts. As we can see,
two possible splitting choices on feature A lead to two different
solutions, Fig. 4(b) and (c). The first one has two stitches,
where the latter one associates with only one. Moreover, we
can even hardly predict where we could have a splitting due
to some chain effect. For example, the right most feature D is
not expected to be cut in Fig. 5(a) because it is only adjacent
to one single feature A. However, given a coloring assignment
as shown in Fig. 5(b), feature A will be split to resolve the
conflict between A and B like Fig. 5(c). As a result, feature
D also needs to be broken into two segments as shown in
Fig. 5(d).

In order to overcome these issues, we will map the whole
layout into grids with its size to be half the pitch of the
original design. Each grid is either empty or fully occupied
by the pattern, and each occupied grid will be assigned one
color. Therefore, any boundary between grids is a potential
splitting location. This is shown in the Fig. 6. Essentially, we
provide fine resolution for splitting options. This model is able
to offer sufficient stitch candidates for all the features across
the design in practice and the solution space is much bigger
than previous works [7], [8]. The discretization is reasonable
because a design usually follows underlying regular pitches
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Fig. 6. Proposed grid layout model.
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in modern layout. Minimum coloring spacing min,, is taken
as two-grid size to double the spacing for each mask in this
paper and also subject to change according to given min,.

B. Terms and Problem Formulation

Before formulating our problem, we will first define the
terms in the grid layout model.
Definition 1 (Occupied Grid, OG):
layout.
The OG must be assigned one of the two colors: gray and
black.
Definition 2 (Blocking Path, BP): Given two occupied grids
0G| and OG,, a blocking path is a path when:
1) it is fully composed of OGs and connects OG; and
0Gy;
2) OG, and OG; are touching its two ending grids, re-
spectively, but not belonging to this path;
3) this path is within the bounding box of OG| and OG;.

The main usage of blocking path is to identify neighboring
but locally isolated layout grids. These grids, even belonging
to the same connection, need to be considered as different
features, and could form a coloring conflict.

As shown in Fig. 7(a), C-D is a blocking path for grid A
and B. In another example Fig. 7(b), C-F is not a BP for A-B,
because not all of them are in the bounding box of A-B as the
third rule defines. Some part of it (C-E) is beyond the box,
and hence locally A-B can be considered as isolated.

Definition 3 (Potential Conflict Grid Pai, PCGP, and
Potential Stitch Grid Pair, PSGP): Given two occupied grids
0G1 and OGz.

1) If the distance between OG; and OG;, is less than min.
and the two grids are not touching, they form a potential
conflict grid pair.

2) If OG, and OG;, are touching, they form a potential
stitch grid pair.

The grid filled by the

The distance between a pair of OGs is the minimum
distance between any two points from the OGs. For example
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Fig. 8. Stitch grid pair and conflict grid pair. Dashed box in (c) and (d) is
the bounding box of A and B.

in Fig. 7(b), the distance for untouched B and C is V2 grid
size due to two closest corners, which is smaller than min,,.
Therefore, they form a PCGP.

Definition 4 (Stitch Grid Pair, SGP): 1If the grids of a PSGP
are assigned different colors, it is a stitch grid pair.

Definition 5 (Conflict Grid Pair, CGP): 1If a PCGP is in
the identical color, and there is no blocking path connecting
them in the same mask, it is a conflict grid pair.

The definition of SGP is straightforward as grids A and B
shown in Fig. 8(a). Fig. 8(b) shows the normal CGP cases,
where a PCGP is colored identically and unconnected. B-F
and A are within the minimum coloring spacing. There are
even no paths connecting them, not to mention blocking path.
The rule one of Definition 2 is violated. As a result, any of
B-F and A are a CGP.

There are also some special CGP cases that we need
to further consider blocking path in order to avoid false
recognition of lithography friendly pattern. If two nontouching
grids are electrically connected through a blocking path, we
should not consider them belonging to different features. The
printability will not be an issue. As shown in Fig. 8(c), grid
A and B have a BP C-D in the same mask between them,
so they do not form a CGP. It is indeed a normal jog, and
can be printed well. In contrast, although there is a path C-F
connecting A and B in Fig. 8(d), C-E is out of their bounding
box. In consequence, the path is not a blocking path. This
violates the third rule of Definition 2, so grid A and B form
a CGP. In this case, A and B are in fact locally isolated
but neighboring within the bounding box. This configuration
is a typical U shape pattern, and would have weak printa-
bility.

C. Problem Description

In our work, we use the number of SGPs and CGPs
as the cost, which assigns higher weight to the grids that
are associated with more conflicts/stitches. Formally, we for-
mulate the layout decomposition optimization problem as
follows:

Problem Formulation: Given a grid layout, color it into two
parts (gray and black). The primary objective is to minimize
the number of CGPs and the second objective is to minimize
the number of SGPs.

We prefer a solution with less CGPs than one with smaller
number of SGPs but more CGPs, because a layout with
nonzero CGPs is essentially not manufacturable and a solution
with less CGPs reduces expensive redesign effort.

Layout Mapping
(Grid Model)

ILP Formulation

(Grid Merging)
(Independent Component Computation)

(Layout Partition)

ILP Solving

l

Solution Merging
(Coloring Flip Optimization)

Fig. 9. Overall layout decomposition flow.

TABLE I
NOTATION FOR BASIC ILP FORMULATION

0gi.j Occupied grid of which i and j are coordinates.
Xij Binary variable that denotes the color of og; ;.
x;,j = 1 if the color is gray, otherwise, it is black.
Sij,mn Binary variable s;;m, = 1 if 0g; ; and
08m.n 15 a SGP.
Cpg.uv Binary variable cpg v = 1 if 0gp 4 and ogy,y
is a CGP.
SP Set of PSGPs.
CP Set of PCGPs.
Ppguv Set of BPs connecting ogp ; and 0gy,y.
p’;q.w ki, BP connecting 0gp, 4 and 0gy .
n’;)q,uv Number of grids in p'[‘,q’m,.
&g Binary variable gpq.u = 1 if pk, ,,
is a gray BP.
By Binary variable by = 1 if pt, ,,
is a black BP.

IV. ALGORITHM

In this section, we will present our ILP-based layout de-
composition algorithm. The entire flow is shown in Fig. 9.
After mapping the design to grid model, we will process
the grids and formulate the basic ILP formulation. Since the
timing complexity for ILP is very high, we will then propose
three speed-up techniques by either eliminating unnecessary
variables or dividing the whole problem into several smaller
ones. Finally, the layout decomposition for the entire design
can be obtained by merging the subproblem solutions. For
better solution reunion, we formulate a problem of coloring
flipping optimization through ILP.

A. Basic ILP Formulation

To better present our method, we first describe the notation
in Table I. The simultaneous coloring and splitting optimiza-
tion can be formulated as follows:

min E Sijmn +Q E Cpguv (D
Sijmn €SP Cpquv€CP
subject to
-xi,j + (1 - xm,n) S 1 +Sij.mn Vsij,mn S SP (2)
(1 - Xi,j) + Xm,n =< 1 +sij,mn Vsi_/',mn €SP (3)
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Z Xe, f = (nlz;q,uv - 1) +g];q,uv Vpl;qyuu € qu,uv (4)

k
Xe, f€Ppg.uv

Z (1 - xe,f) = nl;iq,uv(l - gl;q,uv) Vpl;)q,uv € PP‘I-L”) (5)

Xe. €Phguv
k k k
§ (1 - xf,f) = (npq,uu - ]) + bpq,uv Vppq,uv € PPLLM" (6)
Xe.f €PN g
Xerp<nt (1=0b Yy vpb ep @)
e.f = "pguv pq,uv ppq,uv pq.uv
Xe, f€Pbguv
k
Xpg+Xuy < 1+Cpguv+ E 8pguv  YCpguw € CP ®)

k

(1 - -xp,q) + (1 - xu,v) = 1+ Cpg.uv + Z b];)q,uv
k

Yepgun € CP. (9)

The objective function (1) is to minimize the weighted
summation of SGPs and CGPs. Parameter « is used to tune
the relative importance between SGP and CGP, and can be set
to ensure the priority of CGP elimination. All the PCGPs and
PSGPs are predetermined by examining the neighboring grids
for each OG.

Constraints (2) and (3) are used to identify SGP from
PSGP. According to the definition of SGP, we need to know
whether the PSGP grids have opposite colors. Whenever x; ;
and x,, , have opposite values, the left hand side of one of the
constraints will be two. As a result, s;;,,, must be assigned
one to satisfy the constraints, which detects a SGP.

The usage of Constraints (4)—(9) is to determine whether
a PCGP forms a CGP. Identifying CGP takes more effort.
Besides checking the colors of PCGP, we need to know
whether there is a blocking path in the same mask. All the
possible BPs P, ,, can be easily enumerated by depth first
search on the occupied grids within the bounding box. We
can investigate their coloring using Constraints (4)—(7). The
corresponding binary variable g’;q,uvlb’;,q,uv will be true only
if the grids of some blocking path are in the same mask.
Constraints (8) and (9) evaluate the conditions for CGP. A
conflict will be reported only if PCGP grids are assigned same
color and the possible BPs g’;q,uv/b’;q,uv do not exist.

Let n,, be the number of occupied grids, the basic formu-
lation contains at most O(n,g) variables. The constraints are
specified for detecting either PSGPs or PCGPs. Suppose there
are ng, PSGPs and n., PCGPs, the complexity of 7, is O(n,g).
nep is linearly related to n,,, but quadratically proportional to
min.. The complexity of constraints due to PSGPs is O(n),).
The constraint number for PCGPs is linear proportional to n,.
It is also exponentially related to min., which results from
the enumeration of blocking paths. Although this formulation
shows exponential complexity in terms of min.;, when we fix
the value of min,, as the presetting for layout decomposition,
the number of variables and constraints is quadratic with
respect o n,g.

The proposed integer linear formulation can minimize the
number of conflicts and stitches simultaneously. However,
because ILP is nondeterministic polynomial time-complete, it
is not affordable to directly apply a basic ILP formulation for
large modern designs.

Fig. 10. Main idea of grid merging.

(a) (b)

Fig. 11. Example of breaking big layout into two independent components,
having no interacted PSGPs/PCGPs and marked by the dashed circle.

B. Speed-Up Techniques

In this section, we will discuss three speed-up techniques.
The clustering methodology is applied in grid merging to
reduce the number of variables and constraints. In contrast,
the key idea of the other two techniques is to use a divide
and conquer algorithm to convert the problem into smaller
subproblems.

1) Grid Merging: In the proposed grid model, we aim to
provide very fine resolution for stitch candidates. This may be
over skilled under certain situations.

Consider the layout segment L in Fig. 10(a) with unit grids
A-B-C-D. Only the two ending grids A and D may have
coloring interaction with other layout objects besides L. B and
C can be considered as isolated to some extent, because there
are no occupied grids outside A—-B—C-D which are touching
them or within min. of their boundary. Therefore, it is not
possible for B or C to form a stitch or conflict with other
layout apart from the grids of segment L.

We can make advantage of above property to reduce prob-
lem size by combining this type of connected grids into a big
super grid. As graphically shown in Fig. 10(b), B and C can
be treated as a united grid T. This is equivalent to enforce B
and C the same color. It will not deteriorate the conflict and
stitch optimization. For this super grid, it does not have any
chance to form a conflict or stitch with surrounding grids other
than its two adjacent grids A and D.

Generally speaking, the elimination of internal splitting
candidates is not a problem for solution quality. For any
optimized solution obtained under original grid model with
internal stitches, it can be mapped to one solution in the
merged model with the stitch propagated to its ending grids,
such as from (c¢) to (d) in Fig. 10.

2) Independent Component Computation: We propose
independent component computation for reducing the ILP
problem size without losing optimality. In real layout, we
observe many isolated occupied grid clusters, i.e., there are
no PSGPs or PCGPs formed between them. Therefore, we can
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Algorithm 1 Independent Components Finding

Require: The grid layout
Ensure: The independent components, having no PSGPs/PCGPs
between any pair of components
Build a graph G(V, E), V € ¢, E € ¢.
for each OG og; ; do
Create one graph node v, ;.
end for
for each PSGP/PCGP (og; j, 0gm.») do
Create one edge between v; ; and vy, .
end for
Perform the depth first search on the graph G to find the
independent components.
Map the graph nodes in each component back to OGs og; ; and
return.
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Fig. 12. Example of layout partition. The dotted line cuts the layout into
two parts while the dashed circle marks PCGP and PSGP locations across the
boundary of the two partitions.

break down the whole design into several independent compo-
nents as shown in Fig. 11, and apply a basic ILP formulation
for each one. The overall solution can be taken as the union
of all the components without affecting the global optimality.
The runtime of ILP formulation scales down dramatically with
the reduction of the variables and constraints.

Our independent component finding algorithm is given in
Algorithm 1. The timing complexity of this algorithm is O(V+
E), which V is the total number of the OGs and E is the total
number of PSGPs and PCGPs.

3) Layout Partition: Some component may still have
prohibitive problem size even after independent component
computation. Our heuristic is to divide a big component
into several small connected partitions and perform an ILP
approach for each one, indicated in Fig. 12. Different from
the independent component computation, there will be some
PSGPs/PCGPs between different partitions. Although we solve
each partition by ILP, the united solution does not guarantee
to be optimal for the whole component in terms of ILP
objective since the partition boundaries are not considered in
the optimization.

In order to minimize the loss of global optimality, we
need to partition the circuit with as few as possible cuts
while ensuring that each partition can be efficiently solved
by ILP. Balanced min-cut partition method is applied in our
work. We first construct a graph G which is the same as in
independent component computing. For each vertex (OG), we
assign a weight as its edge degree plus one, taking into account
the number of both variables and constraints it associates
with. A threshold W, is predefined for the maximum node
weight summation we allow for each partition. The number
of partitions can be calculated as (%1, where W is the total
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Fig. 13. “Internal” and “external” concepts. The wide solid line is the
boundary of different partitions.

vertex weight of G. Suppose W is 10000 and W, is 3000, the
component will be partitioned into four parts.

C. Solution Merging

After solving the solution for each component/partition, we
need to merge the coloring assignment as a whole. While
it is trivial to combine the solutions for smaller independent
components, there comes a coloring flip optimization problem
when we try to merge the solutions of all the partitions for
the bigger components with partitioning applied.

In layout partition, the PSGPs and PCGPs for each par-
tition can be divided into two disjoint subsets: the internal
stitch/conflict grid pairs PSG P's/PCG P's, and external ones
PSG P°s/ PCG P°¢s. If the associated grids, which are needed
for identifying whether a PSGP/PCGP is a SGP/CGP,
are all within the same partition, this PSGP/PCGP be-
longs to PSGP's/PCGP's, otherwise, it is considered as
a PSGP¢/PCGP°. Similarly, during the unitization, the
SGPs and CGPs for each partition can be categorized as
SGPis/CGP's and SG P°s/CG P?s. SGPs/CGP's are from
PSG Pis/PCG P's, and SG P¢s/CG P¢s are from PSG P¢s/
PCG P¢s.

As illustrated in Fig. 13(a), there are two partitions A
and B. Suppose we are considering two PCGPs, (G, G,)
and (Gq, G3), (A1, Ay) and (As, By) are their additional as-
sociated grids, respectively, for correctly identifying a CG P,
indicated by Fig. 13(b). (G, G») is a PCGP' because the
grids which are related to (G, G», Ay, Ay) are all in partition
A. In contrast, (G, G3) is a PCG P¢ while (G, A3) belongs
to partition A and (Gs, By) is in partition B. Similarly, in one
possible coloring configuration in Fig. 13(c), (G, Gy) is a
CGP' and (Gy, G3) is a CGP°.

During the solution union, it is possible to reduce the
number of SG P¢s/CG P¢s by flipping the coloring of some
partition. More importantly, such flipping will not change
the status of SG P's/CG P's. In detail, it will not introduce
new SGP's/CGP's, and any existing SGP'/CGP' will not
go away as well. Based on the above definition, the related
grids for identifying a SG P'//CG P' are in a single partition.
Their coloring will be either flipped or not simultaneously.
The conclusion of whether the respective PSG P//PCG P' is a
SG P!/CG P! will not be changed.

The effect of coloring optimization is illustrated in Fig. 14,
which has three partitions. The coloring merging in Fig. 14(a)
produces one SGP and one CGP across the boundaries. If we
flip the coloring of partition C from the black to gray, it be-
comes a SGP/CGP free assignment in Fig. 14(b). To optimize
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(a) (b)

Fig. 14. Different coloring flips have distinct numbers of SGPs/CGPs across
the boundaries, marked by the dotted lines.

TABLE I
NOTATION FOR COLORING FLIPPING PROBLEM

fi Binary variable f; = 1 if partition i flips its coloring.

f,ol Binary variable flo, = 1 if both partitions flip
' or do not flip the coloring.

f,l] Binary variable f;.lj =1 if only one partition
between i and j flips its coloring.

K Number of stitches between partition i and j
if both flip or do not flip the coloring.

c‘io. Number of conflicts between partition i and j
if both flip or do not flip the coloring.

Number of stitches between partition i and j
if only one partition flips its coloring.

. Number of conflicts between partition i and j
if only one partition flips its coloring.

the flipping scheme, we define coloring flip optimization as
follows.

Coloring Flip Optimization: Given a number of partitions
and their coloring solutions for one independent component,
choose the best flipping scheme to minimize total cost of
SG P¢ and CG P°, which cross the boundaries among all the
partitions.

Because the number of partitions is usually not large, we
also use an ILP formulation to solve this problem. The relevant

notation can be found in Table II.
The formulation is as follows:

min Z( I +act) + fiL(sth +acsh)) Vi, j (10)

subject to
fit i1+ £ (11)
A= fo+A—=f)<1+f (12)
fiv (= fy<1+f (13)
fi+(=fy<1+fl (14)
i+ fh=1 (15)

Our objective function (10) is to minimize the number of
SG P® and CG P°. The same « as basic ILP formulation in
Section IV-A is used for balancing the cost. For each pair
of partitions, there are two cases: 1) only one of them is
flipped; and 2) flipping both or none of them. We can easily
precompute the cost for each case, stored as (sff} + acff}) or
(s;flj + (xcf}j )

Constraints (11) and (12) specify the case if both or neither
of the partitions flip their coloring. Constraints (13) and

(14) specify the case if only one of two partitions flips the
coloring. Only one case can happen and this is formulated as
Constraint (15).

It should be noted that, in our implementation, we do not
explicitly impose Constraint (15). Instead, we substitute i} by
(1— l.(;) in (10)—(14) based on (15). This helps further reduce
the number of variables and constraints.

V. GRID MODEL FOR PRACTICAL DESIGN ISSUES

In this section, we will present how our proposed grid
model can handle various splitting rules and design patterns
in Section V-A and Section V-B, respectively.

A. Practical Splitting Rules

Various manufacturability issues could impose many practi-
cal constraints on the locations of the stitches. Our grid model
can be extended to satisfy these requirements. In the following,
we will mainly focus on two major DPL-related guidelines,
minimum width and minimum overlapping requirements.

1) Minimum Width: The min,,; violation can result from
careless splittings as Fig. 15 shows. It could be located in the
ending parts of polygons like Fig. 15(a) and (d), or created by
two close stitches as Fig. 15(b) and (e) show.

In most process technology, min,,; is smaller than or equal
to the half pitch, 0.5 min.,, which is illustrated in Fig. 15(a)
and (b). Our grid model can successfully avoid these extra con-
straints implicitly. By only allowing splitting on the boundary
of the grids as shown in Fig. 15(c), the resulting small layout
segments from splitting will be bounded from lower side by
one grid size, i.e., 0.5 min.;. The minimum width rule will be
automatically satisfied, and there will be no pitfalls when we
work on grids.

For the technology which has a min,; larger than one
grid width additional constraints can be augmented into our
ILP formulation to ensure minimum width rule. We assume
min,,; is still less than two-grid width here just for illustration
purpose, and similar ideas can be applied for even larger min,,;
requirement. For the example in Fig. 15(d), we can enforce the
coloring of grid A and B identical to avoid minimum width
violation. We are also able to specify constraints to eliminate
the situation resulting from adjacent stitches as Fig. 15(e)
indicates. A pair of stitches, S; and S;, within one grid distance
will not allowed to be selected simultaneously.

2) Minimum Overlapping Margin: The possible min,,
violation comes from the extra extension over the splitting
locations, which may result in additional coloring conflict,
such as the case from (a) to (b) in Fig. 16. A and B initially
do not form a PCGP based on the definition in Section III-B,
although they are in the same color. On the existence of some
possible splitting, the extended metal could bring them into a
distance smaller than min,, which causes a coloring conflict.

This issue does exist in the process with 5-6 nm overlay er-
ror. To encounter this problem, when we are extracting PCGPs,
the extra extension needs to be included for calculating dis-
tance between two grids. As the example in Fig. 16, when A
and C or B and D have different colors, the overlapping error
should be considered.
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Fig. 15. Grid model can handle minimum width requirement.

Fig. 16. Grid model can handle minimum overlap requirement.

On the other side, benefiting from possible further improve-
ment on optical engineering, the overlap margin may not be
a problem for our grid model in most cases. Remind that we
are performing optimization based on the grids. For any pair
of grids which do not form a PCGP, at least one of x and
y dimensional distance will be two grid size, min.. As the
research works show [9], min, will be possibly controlled
below 3nm. With such a small overlap margin, the diagonal
distance between A and B will still be larger than min,,, when
taken as 64 nm.

B. Non-grid-mappable Layout

The grid model not only works on regular designs, it can
also be extended to handle non-grid-mappable layout.

1) Off-Grid Layout: In deep submicro technology, al-
though on-grid patterns are commonly favorable, there still
exist off-track wires on lower layer metals, as illustrated by
Fig. 17(a). Pattern A is not aligned with the grid lines. Under
such case, we are not able to apply our grid-based formulation
directly.

To resolve this issue, if a grid has any layout object, we will
assign a binary grid variable for it. This is denoted as “relaxed
grid mapping”. As the example Fig. 17(b) shows, grids Al and
A2 will both be considered occupied. Moreover, to exclude
false detection, additional consideration will be required when
we formulate our mathematical programming.

First of all, we need to pay extra effort to check whether
a pair of grids are within min. or connected, which is the
crucial factor for determining PCGP or PSGP. Instead of using
the grid number-based measurement as in Section III-B, we
have to work on the distance or connection information of the
underlying physical layouts.

TABLE III
TEST CASES
ckt | Area | Grid Array Size #0G #PCGP #PSGP
C1 89 294 x 294 6670 21215 5926
C2 160 395 x 395 15710 48 007 14143
C3 207 450 x 450 20496 63403 18461
C4 292 534 x 534 33497 | 105641 30314
C5 422 642 x 642 53998 | 172826 49167
C6 540 726 x 726 68820 | 214527 62387
C7 747 854 x 854 | 101431 | 323890 92493
C8 | 1028 1002 x 1002 | 142535 | 447441 129172

Fig. 17. Grid model can handle off-grid layout.

Fig. 17(b) and (c) show the need for checking ming
condition for PCGP by distance, not the number of grids. In
Fig. 17(b), the distance between grids A2 and B1 is one grid
unit, smaller than two-grid unit threshold. This is consistent
with the fact that the distance between related patterns is
smaller than min.. They indeed form a PCGP. On the other
side, in Fig. 17(c), although grids A2 and B1 are away from
each other by one grid, the distance of underlying design
objects is no less than min.. They are not a PCGP. If
determining the distance only by grid-based unit, we will draw
false conclusion. Similarly, it is the correct way to determine
whether two grids are linked by checking the layouts instead
of grid occupancy status. Fig. 17(d) shows an example where
Al and BI1 are actually not connected. Grid-based judgment
will falsely consider they are linked together because A2, B1,
C1, and C2 are all occupied grids.

Moreover, we also need to exclude the unfeasible stitch
locations resulting from “relaxed grid mapping”. For the stitch
candidate between Al and A2 in Fig. 17(b), since the splitting
will cause minimum width violation, it should be forbidden.

2) Fat Wire: When dealing with fat wires, we can map
them into multiple grids. Although this will increase the
complexity of the ILP formulation because of the dense
clustering of occupied grids, we can apply previously proposed
grid merging technique to reduce the problem size. Practically,
a great portion of grids inside the wide wire can be merged.

VI. EXPERIMENTAL RESULTS

In our benchmarks, eight industrial designs are scaled down
to 32nm. The metall for each test case is used for the exper-
iments, which is one of the most troublesome layers in terms
of double patterning lithography. The detailed information is
shown in Table III. The first column “ckt” denotes the circuit
name, “area” is the chip area in terms of um?, “grid array
size” shows the number of rows by the number of columns
in our layout grid array. “#0G,” “#PCGP,” and “#PSGP” give
the number of OGs, PCGPs and PSGPs, respectively.
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Fig. 18. Performance of our algorithm with different o values.

We implement our algorithm in C++ and test on Intel Core
3.0 GHz Linux machine with 32G RAM. Moreover, we use
glpk [12] as our ILP solver and hMetis [13] for min-cut
partition. The threshold W, for each partition is 1500. We
study different o settings in the ILP objective function. As
shown in Fig. 18, when we start to increase o with higher
penalty on conflict, the number of CGPs/SGPs drops/climbs
obviously. After certain value, it has little effect, because the
ILP formulation has reached its best point to reduce conflicts.
In our work, we set « as 10 for all the benchmarks.

A. Result Comparison

We implement two different layout decomposition algo-
rithms for comparison. To be fair, the same conflict inter-
pretation defined in Section III-B will be applied in our
experiments. Specially, although two features belong to the
same net, as long as they are locally isolated, they could still
result in a conflict.

We first prepare a greedy two-phase layout decomposition
flow for comparative study, which adopts construct-and-fix
methodology as in the previous works [7], [8]. We first
color all the layout features sequentially. Each feature will be
assigned to a color which can minimize the current number of
conflicts. In the second phase, the violations are detected and
corrected by inserting stitches. This is done by flipping the
coloring of conflict segments, which basically splits certain
features. Finally, the decomposition solution is mapped back
to grids for comparison.

As the second comparative method, we also implement a de-
sign methodology based on the previous ILP-based work [11].
The conflict cycle will be removed iteratively first, followed
by an ILP formulation to minimize the number of stitches. We
are not able to compare with [11] directly because some of
our main objectives are different. In their work, the unresolved
conflict cycle is used for judging the indecomposable patterns,
while we apply much finer metric, conflict pair grid. To resolve
the issue, as the last step, we perform an additional grid-based
greedy coloring run for the detected unresolved conflict cycles.
The decomposition results will be mapped into grids in the
end.

The detailed comparison is shown in Table IV. Under “two-
phase approach”, “1CGP” is the number of CGPs after the
first step coloring and “uCGP” is the number of unresolved
CGPs after inserting stitches. “CGP” under “previous ILP-
based work” and “our algorithm” shows the final unresolved

CGPs. We also list the results of “previous ILP-based work”
when the conflict cycle removal iteration is set as 1 and 5,
which are reported in columns with postfix name “Ite. 1” and
“Ite. 5,” respectively. For all the three approaches, “SGP” is
the final number of stitch grid pairs and “central processing
unit (CPU)” is the runtime by second. “Total” is the total
number of all the test cases, and “ratio” is the average of their
individual ratios.

Although “two-phase approach” is much faster, our algo-
rithm significantly outperforms its results in terms of quality.
“two-phase approach” can indeed eliminate the number of
CGPs by averagely 52% after inserting stitches. However, lack
of the careful planning, their coloring in the first step produces
very poor starting solution, and there are a big amount of
unresolved conflicts left after possible splitting. In contrast,
our simultaneous method can averagely reduce the number of
unresolved conflict grid pairs by about 87.6% with 33% less
stitch grid pairs.

When compared to the previous ILP-based work [11], we
can also achieve averagely 87.2% conflict and 10% stitch
reduction. “previous ILP-based work™ only greedily eliminates
the troublesome conflict cycle without global picture in mind.
Although a little better than “two-phase approach,” their
approach generates much degraded results than our algorithm
in terms of conflict. On the other side, because it applies
ILP to optimize the stitch number, their splitting decision
is close to our simultaneous optimization result. However,
because “previous ILP-based work™ also considers coloring
and splitting separately, its stitch number is still 10% more
than ours. Also, from the breakdown of the solutions by
different number iterations, we can see that iterative conflict
removal can help improve results but still not enough due to
the lack of global view.

In DPL, zero CGPs is desired in final tape out but the
high complexity of modern designs makes it almost a must to
go though tedious design—decomposition—redesign iterations.
Our simultaneous flow with much higher quality solution can
reduce expensive redesign effort as well as the number of
iterations, which may eventually converge to a clean design
much more quickly. Runtime for layout decomposition is not
an issue as long as it is affordable.

B. Efficiency

The naive implementation of basic ILP formulation has
prohibitive problem size, and it is not able to finish any bench-
mark in one day. Comparatively, our algorithm effectively
reduces the runtime. In Table IV, the column “CPU” under
“our algorithm” shows that we can obtain the solution in a
few seconds. For the biggest benchmark, it takes a little more
than one minute. Fig. 19 also shows the scalability of our
algorithm, and the runtime grows linearly with the number
of occupied grids in the design. Moreover, our acceleration
techniques sacrifice little optimality.

Next, we will show the effectiveness of our grid merging
technique. We achieve the same number of conflict and stitch
number for all the test cases with and without this option while
independent component computing and layout partition are
still applied. Fig. 20 also illustrates the runtime comparison.
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TABLE IV
RESULT COMPARISON

Two-Phase Approach Previous ILP-Based Work [11] Our Algorithm
ckt ICGP | uCGP | SGP | CPU(s) | CGP(te. 1) | SGP(Ite. 1) | CGP(Ite. 5) | SGP(te.5) | CGP | SGP | CPU | CGP | SGP | CPU(s)
Cl 401 272 70 0.2 413 98 412 93 412 | 98 0.8 110 | 88 56
c2 1765 | 939 389 0.4 1089 287 1029 283 1015 | 282 | 1.7 160 | 220 | 64
C3 1799 | 779 416 0.5 774 206 735 199 720 | 198 | 1.8 129 | 175 | 83
c4 4232 | 2084 | 620 | 06 2143 469 1998 463 1972 | 459 | 29 171 | 452 | 130
c5 8125 | 4408 | 1325 | 1.0 3886 1078 3503 1056 3478 | 1059 | 4.9 367 | 1001 | 30.9
c6 9052 | 4625 | 1621 | 12 5082 1297 4761 1282 4731 | 1291 | 52 607 | 1112 | 373
c7 13607 | 5551 | 2753 | 18 6415 1831 5653 1811 5530 | 1817 | 7.6 606 | 1651 | 46.6
C8 18975 | 9223 | 3038 | 2.4 9805 2599 9050 2503 8941 | 2510 | 11.8 | 949 | 2271 | 576
Total || 57956 | 27881 | 10232] 8.1 29607 7865 27141 7695 26799 7714 | 36.7 | 3099 | 6970 | 205.7
Ratio || 16.6 8.1 15 0.043 9.55 113 8.76 1.10 7.9 112 | 018 | 1 1 1
80 4 TABLE V
;2 | + Our algarithm /,/ STATISTICS ON THE INDEPENDENT COMPONENTS
T 504 Linear fitting //’/ * ckt | #InComp | #w/o Partition | %w/o Partition
g //"0 Cl 181 178 98.3%
E 407 o c2 362 357 98.6%
2 301 e C3 688 681 99.0%
20 4 i C4 838 824 98.3%
104 . C5 1088 1070 98.3%
. st C6 1442 1420 98.5%
. i L C7 1977 1951 98.7%
0 50000 100000 150000
C8 3179 3147 99.0%
#occupied grids
Fig. 19. Runtime of our algorithm versus number of occupied grids. TABLE VI
ILP FORMULATION STATISTICS
H w/o mergence 0w/ mergence Reduced Problem Size | Coloring Flipping
ckt || #max, #max, #max | #max"
i CT 804 1333 2 Z
60 C2 867 1445 2 4
C3 873 1435 2 4
C4 904 1469 3 12
C5 911 1499 2 4
Co 902 1478 3 8
C7 921 1511 3 12
C8 923 1522 4 20
TABLE VII
RESULTS ON COLORING FLIP OPTIMIZATION
Fig. 20. CPU times of our algorithm with and without grid merging tech- - - - - - -
niques. Without Coloring Flip With Coloring Flip
ckt || CGP,] SGP,| CGP] SGP| CGP,] SGP,| CGP] SGP;,
C1 28 21 1 5 27 20 0 4
The number on the bar is the exact CPU time in terms of c2 18 22 9 4 12 20 3 2
PR T . . C3 16 22 2 5 14 19 0 2
second. As 1t.1s 1n§1cated, we can achieve apprommately. 19% ca 37 70 10 1 31 66 4 7
speed-up. This mainly comes from the reduction of variables c5 121 172 105 2 36 171 20 21
and constraints in the mathematical formulation. C6 65 98 13 20 55 90 3 12
. f ot . C7 79 105 33 23 55 92 17 10
“#;l"a(tj)le V”h'stsﬂtlhetsttatllstlcs l())n th;t }n(cllepen((ilentt componen:s. cs |l 108 s 7 2% 3 | 127 59 13
rntomp 15 the tofal iumber ot independent Componen's.  For e 17075652 [ 252 | 118 | 318 | 605 | 106 | 71
#w/o partition” and “%w/o partition,” respectively, show the Ratiol| 1 1 1 11 0751 092 ] 030 | 060

number and ratio of independent components, which are under
partition threshold value W;. As we can see, most components
can be directly handled by ILP without performing layout
partition and losing any optimality.

Table VI further shows the statistics on our ILP problem
size. “#max,” and “#max.,” respectively, give the maximum
number of variables and constraints of the basic formulation
with three proposed reduction techniques applied. Moreover,
“#maxff ” and “#maxg”’ list the maximum number of variables
and constraints, respectively, of ILP formulation, which is
applied in the coloring flip optimization.

As we can see from Table VI, the maximum ILP size is
well controlled by the layout partition through the tuning
threshold parameter W,. W, explicitly sets the upper bound
for total number of grids, SGPs and CGPs within each sub
problem. Therefore, the number of variables and constraints
can be implicitly ensured in a reasonable range. Moreover,
Table VI indicates the coloring flip optimization has relatively
very small problem size, and hence can be handled with little
effort.
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C. Coloring Flip Optimization

Table VII shows the improvement when coloring flip is
applied to merge solutions. This optimization will only be
applied to relatively bigger independent components, which
require proposed layout partition technique to further reduce
problem size. Therefore, in Table VII, we only list the statistics
for these bigger components in the respective benchmarks. The
conflict and stitch number from smaller components without
layout partitioning applied are not included.

In Table VII, “CG P;,” and “SG P;,” denote the total number
of CGPs and SGPs for the independent components which
adopt layout partition. The percentage of this type of com-
ponents is very small, as shown in Table V. However, their
conflict and stitch number have relatively much bigger portion
when compared to the respective data under column “our
algorithm” in Table IV.

“CGP,” and “SGP),” are the number of corresponding
external conflict and stitch grid pairs. The results show that
there are outstanding “CG P},” and “SG F},” for further opti-
mization. “with coloring flip” can reduce CG Pj, and SG Fj, by
70% and 40%, about 25% and 8% for total CGPs and SGPs.
This experiment demonstrates the necessity of coloring flip
optimization and the effectiveness of our ILP-based approach.
The CPU time difference between “without coloring flip” and
“with coloring flip” is very tiny and not listed.

VII. CONCLUSION

In this paper, we have developed a double patterning aware
layout decomposition flow for simultaneous conflict and stitch
minimization. Experimental results are very promising. In
future, we would like to study earlier stage placement/routing,
and standard cell designs to produce DPL-friendly layout.
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