
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOLUME XX, NO. XX, JANUARY 2010 1

Ant Colony Heuristic for Mapping and Scheduling
Tasks and Communications on Heterogeneous

Embedded Systems
Fabrizio Ferrandi,Member, IEEE,Pier Luca Lanzi,Member, IEEE,Christian Pilato,Student, IEEE,

Donatella Sciuto,Senior Member, IEEE,Antonino Tumeo,Student, IEEE

Abstract—To exploit the power of modern heterogeneous
multiprocessor embedded platforms on partitioned applications,
the designer usually needs to efficiently map and schedule all the
tasks and the communications of the application, respecting the
constraints imposed by the target architecture. Since the problem
is heavily constrained, common methods used to explore such
design space usually fail, obtaining low-quality solutions.

In this paper, we propose anAnt Colony Optimization (ACO)
heuristic that, given a model of the target architecture andthe
application, efficiently executes both scheduling and mapping to
optimize the application performance. We compare our approach
with several other heuristics, including simulated annealing, tabu
search and genetic algorithms, on the performance to reach the
optimum value and on the potential to explore the design space.
We show that our approach obtains better results than other
heuristics by at least 16% in average, despite an overhead in
execution time. Finally, we validate the approach by scheduling
and mapping a JPEG encoder on a realistic target architecture.

Index Terms—Ant Colony Optimization, Mapping, Scheduling,
Communications, Multiprocessors, FPGA.

I. I NTRODUCTION

H ETEROGENEOUS multiprocessor architectures are the
de-facto standard for embedded system design [1].

Today, to accelerate the different parts of the applications,
they are usually composed of several general purpose, digi-
tal signal, application specific processors and reconfigurable
devices (e.g., Field Programmable Gate Arrays - FPGAs),
interconnected through various communication mechanisms.

When developing such embedded systems, the designer has
to determine when (scheduling) and where (mapping) the
groups of operations (i.e., thetasks) and the data transfers
(i.e., thecommunications) should be executed, depending on
a set of constraints and dependences, in order to optimize some
design metrics, e.g., the program execution time.

Manuscript received July 22, 2009; received in revised formNovember 10,
2009; accepted January 15, 2010. Research partially fundedby the European
Community’s Sixth Framework Programme, hArtes project. This paper was
recommended by Associate Editor Petru Eles.

Fabrizio Ferrandi, Pier Luca Lanzi, Christian Pilato and Donatella Sciuto
are with the Dipartimento di Elettronica e Informazione, Politecnico di
Milano, Italy. Antonino Tumeo is with Pacific Northwest National Laboratory,
902 Battelle Blvd, 99352 Richland WA USA. The work was done while
the last author was with the Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Italy. Send any comments to:pilato@elet.polimi.it.

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Scheduling and mapping are strongly interdependent and
NP-completeproblems [2]. So, they cannot be efficiently
solved with exact algorithms and heuristic methods, able to
find good solutions in reasonable time, are usually preferred.
Several works [3], [4], [5], [6], [7] have appeared in litera-
ture to approach the scheduling and mapping of tasks and
communications. Among them, stochastic search methods [3],
[4], [5], often bio-inspired, which explore the design space
and exploit the feedback from previous executions, have
been recently demonstrated successful. Nevertheless, these
approaches usually focus separately on one of the aspects
and fail in obtaining good overall solutions due to the very
constrained design space. Moreover, the few formulations that
try to solve simultaneously multiple problems, work well for
small instances but loose effectiveness when the size of the
design space grows. General approaches, able to efficiently
generate high-quality solutions for complex applicationson
the new generation of heterogeneous embedded architectures
are definitely required.

In this paper, we present an algorithm, based onAnt Colony
Optimization(ACO) [8], that efficiently solves the scheduling
and mapping of tasks and communications, to reduce the total
execution time of the entire application given a model of
the target architecture. Our approach, based on stochasticand
heuristic principles, differs from previous works (e.g., [3], [4],
[5]) since it is able to gradually construct multiple combina-
tions of scheduling and mapping of tasks and communications,
correct by construction, and searching around them, cutting out
only the non-promising zones of the design space.

The main contributions of this work can be summarized as
follows:

• it presents an ACO algorithm that reduces the execution
time of the application by exploring different solutions for
mapping and scheduling of tasks and communications;

• it proposes an approximation of this algorithm, intro-
ducing a multi-stage decision process which reduces the
execution time of the exploration, maintaining a good
correlation between the two problems.

• it compares the proposed variants also with common
heuristics and a mathematical formulation, demonstrating
its effectiveness to approach such complex exploration on
both synthetic and real-life benchmarks.

Finally, we also validate the applicability of our approachby
scheduling and mapping a JPEG encoder on a heterogeneous
MPSoC developed on a FPGA prototyping platform [9].

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATEDCIRCUITS AND SYSTEMS, VOLUME XX, NO. XX, JANUARY 2010

P3

P2P0

L
o
ca
l

M
em
o
ry

P1

L
o
ca
l

M
em
o
ry

L
o
cal

M
em
o
ry

L
o
cal

M
em
o
ry

S
y
stem

 B
u
s

Fig. 1. The abstract model of a target architecture. Each component has 4
units of resource associated.

The rest of the paper is organized as follows. In Section II,
we define and formalize the problem that we address in this
work. Section III discusses some background work, presenting
and motivating the Ant Colony Optimization heuristic. Section
IV details our formulation, that is then evaluated in Section V.
Finally, Section VI concludes the paper.

II. PRELIMINARIES

In this section, we present the basics of the problem that
we address in this paper. In particular, we present the abstract
model of the target architecture and the partitioned application.
Then, we formalize the mapping and scheduling problem on
these models.

A. Target Architecture

This work targets a general architectural modelA for
a heterogeneous Multi-Processor System-on-Chip (MPSoC),
composed as follows:

A = P ∪C (1)

whereP is the set of processing elements (executing the dif-
ferent parts of the application) andC the set of communication
components (performing the data transfers). A simple example
is shown in Fig. 1 and it is composed of four processing
elements, that communicate through a single system bus.

As in the formulation of the Multi-mode Resource Con-
strained Scheduling Problem (MRCSP) [10], each component
of the architecture has a setQ of resources associated.
These resources are then classified into two different classes:
renewable resourcesR, which return fully available after
having been used, andnon-renewableresourcesN , for which
the quantity consumed by the execution of a job cannot
be replaced. For example, the area of hardware components
(e.g., FPGAs) is considerednon-renewableif the functionality
cannot be reconfigured. The local memory of a processor is
usuallyrenewable, since it can be reused after a task has been
completed. However, when specific allocation policies are
adopted (e.g., static allocation), it can becomenon-renewable.
In the example in Fig. 1, we assume that the processors
P0, P1 and P2 have the renewableresources (e.g., data
memories)q0, q1 andq2, respectively. The resourceq3 of the
processorP3 behaves asnon-renewable(e.g., a memory with
a static allocation policy). Therefore, each componentak ∈ A
has associated, for each resourceq ∈ Q, a total amount of
available resourcesAq

k, that represents itscapacitywith respect
to that resource. Tasks can be allocated on the components
whose requirements of resources can be satisfied. In the given

A

C D

B

1 1 1

F

1 1

E
1

A B C D E F

Tasks

A,C A,D B,D C,F D,F E,F

Communications

Fig. 2. Sample task graph. Edges are annotated with the amount of data to
be transferred between source and target tasks.

example, we can assume that 4 units are available for each
resource on each component of the architecture.

Scheduling and mapping of an application should take into
account additional details of the target architecture. First,
we considerresource sharing, where a single implementation
could be able to execute different instances inside the applica-
tion. This happens, for example, when a hardware implemen-
tation is exploited by different tasks or when different software
tasks exploit the same object code. In both cases, the resources
(hardware area and instruction memory) are consumed only
once. This requires to identify the tasks (or communications)
that can share the implementations and correctly manage the
constraints on the resources. Then, in this work we target
architectures as the one shown in Fig. 1, where each processing
element features local memories. In particular, when a task
starts its execution on a processing element, the incoming data
are read from the corresponding local memory. When the task
ends, the produced data are transferred to the local memory of
the processing elements of the successor tasks through a Direct
Memory Access (DMA). As a consequence, data dependent
tasks mapped on the same processor do not generate any com-
munication overhead since a data transfer is not required, as in
[11]. Otherwise, the communication is performed through one
of the system busses and, through DMA, the communication
may be overlapped with processing. In this way, only one
actual data transfer is associated with each communication.
However, the extension to other communication models [12]
is straightforward. For example, with shared memories, two
actual data transfers will be considered: from the source local
memory to the shared memory and from the shared memory
to the target local memory. In this work we assume that the
communication model is the same for all the data transfers.
We also assume that the execution time of the communication
only depends on the quantity of data and on the performance
of the component used for the communication and not on the
processing elements that are involved.

B. Application Model

The mapping and scheduling problem requires to model the
multi-task application to be executed on the target architecture
as a Directed Acyclic Graph (DAG). A DAG is a graphG =
(T, E), without feedback edges, where verticesT represent
groups of instructions (tasks) and the edgesE ⊆ T × T the
dependences among them. An edgee(t′, t) ∈ E implies that
the taskt can be executed only after the taskt′ and the data
transfer associated with this edge have been completed. Each
edge is also annotated with the amount of data exchanged from
the source task to the target one. A simple example of such
a task graph is shown in Figure 2. Similar graphs represent

PILATO et al.: ANT COLONY HEURISTIC FOR MAPPING AND SCHEDULING TASKS AND COMMUNICATIONS 3

data-flow dominant specifications that mainly refer to scientific
and multimedia applications with high parallel computation
on large blocks. In this case, their behavior can be statically
predicted and, thus, the optimization can be performed off-
line to efficiently reduce the application execution time. On
the other hand, simple control constructs, such as function
calls or countable loops, can be managed inlining the function
or completely unrolling the loop body, respectively. This can
greatly enlarge the application representation but allowsto
efficiently optimize, for example, the different iterations of
one or more parallel loops [13]. Moreover, since large blocks
have usually to be transferred from one stage to the other,
efficient mapping and scheduling of communications have to
be necessarily addressed.

Let G = (T, E) be a DAG associated with an application
andA the target architecture for its execution, which resources
Q are classified in the setR of renewableand the setN of
non-renewableones.

A job j is defined as an activity to be performed on a com-
ponent of the architecture. Thus, each taskt is represented by a
single job and, based on the adopted model of communication,
one or more jobs are associated with each data transferet′,t.
Thus, the entire application can be represented by a setJ of
jobs to be executed on the componentsA of the architecture.

An implementation pointi is defined as a particular com-
bination of resources and time required for the execution ofa
job j on a componentak of the architecture. In fact, each
job can have different implementations, not necessarily on
all the components. For example, tasks cannot be assigned to
communication components and vice-versa. Moreover, some
processing elements could not be able to execute some tasks.
For example, a task cannot be implemented in hardware if
it contains constructs that cannot be synthesized. Different
combinations of area and execution time are usually generated
for hardware solutions. Software compilers can also produce
different versions of the code, enabling different optimizations
and resulting in different trade-offs between code size and
performance. The setI contains all the implementation points
available for the set of jobsJ on the architectureA. Table I
shows some examples of implementations. They represent the
requirements in terms of time (i.e., clock cycles) and resources
for all the tasks on the processing elements of the architecture.
For each task, we have two different implementations on the
componentP3 (i.e., two different trade-offs for the require-
ment of the resourceq3).

The function γ : I → A returns thecomponentcor-
responding to each implementation point. Note that, with
this formulation, the constraint on the maximum number of
components that can be used is satisfied by construction. In
fact, it is not possible to assign a job to components that arenot
into the architecture, since the corresponding implementation
points will not be generated. Different jobs can also share the
same implementation point, modeling theresource sharing.

The functionδ : I → N associates with each implementa-
tion point i ∈ I the execution timefor the related job on the
associated componentak = γ(i).

The function σ : I × Q → N associates with each
implementation pointi ∈ I and resourceq ∈ Q the quantity

TABLE I
DISTRIBUTION OF THE EXECUTION TIMES AND RESOURCE

REQUIREMENTS FOR EACH IMPLEMENTATION POINT OF THE EXAMPLE
TASK GRAPH. TWO DIFFERENT TRADE-OFFS ARE AVAILABLE FORP3.

Task
P0 P1 P2 P3
it,0 it,1 it,2 it,3 it,4

time q0 time q1 time q2 time q3 time q3

A 8 2 2 3 6 4 1 2 3 1
B 5 3 10 4 6 3 2 2 4 1
C 4 4 6 2 4 1 1 2 3 1
D 8 1 2 2 7 3 3 1 1 3
E 10 3 3 1 8 3 1 3 2 1
F 3 4 7 3 2 2 1 2 2 1

of resourcerequired to implement the job on the admissible
componentak = γ(i). Note that the implementation pointi
is generated only if the requirement can be satisfied by the
component, i.e.,σ(i, q) ≤ Aq

k whereak = γ(i).
These values, associated with each implementation point,

can be obtained by estimation methods, by simulation, or
by static or dynamic profiling the code of each task or
communication on the target architecture.

C. Problem Definition

Let J , A andI be the set of jobs of the partitioned applica-
tion, the abstract description of the target architecture and the
set of all the available implementation points, respectively.

The mappingis defined by the functionM : J → I that
associates each jobj ∈ J with the proper implementation
pointi ∈ I for the execution. On the other hand, thescheduling
is defined by the function:S : J → N that associates each job
j ∈ J with its start time.

In this paper, we focus on the optimization of the overall
execution time of the application, that is themake-span. In
particular, each jobj, assigned to the implementation point
M(j) = i, completes its execution at time:

Hj = S(j) + δ(i) (2)

The make-spanZ is thus the overall execution time of all the
jobs J on the architectureA, and it is defined as:

Z = max(Hj) ∀j ∈ J (3)

Considering these equations, it is clear that the make-span
depends on the start time of each job and the time spent for
its execution on the component where it has been assigned. It
is worth noting that other metrics (e.g., power consumption)
can be optimized designing similar objective functions.

To reduce the make-span, the tasks should have been ideally
assigned to the implementations where they complete with the
minimum execution time. However, the solution has to satisfy
additional constraints. First, the mapping is consideredfeasible
iff :

∑

j∈J:ak=γ(M(j))

σ(M(j), q) <= Aq
k ∀ak ∈ A, q ∈ N (4)

i.e., the requirements ofnon-renewableresourcesN ⊆ Q
should not exceed the available capacity on each component.
Note that this equation also takes into account the resource
sharing. In fact, if different tasks are assigned to the same

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATEDCIRCUITS AND SYSTEMS, VOLUME XX, NO. XX, JANUARY 2010

implementation point, the requirements of resources for the
single implementation are considered only once.

On the other hand, the schedule is consideredvalid (i.e.,
the execution is correct)iff each job starts its execution only
when its direct predecessors have been completed and when its
component is free. Then, the following constraint has always
to be satisfied:

max[Hj′ , avail(ak)] <= S(j) (5)

∀j′ ∈ prec(j) : ak = γ(M(j))

whereS(j) represents the start time of the jobj (assigned,
through the mappingi = M(j), to the componentak = γ(i)),
Hj′ the end time of the jobj′, prec(j) contains all the directed
predecessors of jobj, and the functionavail(ak) returns the
time when the componentak is available. This equation can
also be rewritten as:

max[S(j′) + δ(M(j′)), avail(ak)] <= S(j) (6)

∀j′ ∈ prec(j) : ak = γ(M(j))

where we underline that the end time of a predecessor job is
strictly related to its mapping and its start time.

Equation 6 shows that the mapping and scheduling problems
are strongly interdependent. In particular, the possibility of a
job to start is strictly related not only to its own mapping,
but also to the mapping of the jobs that have been executed
before. For example, consider two jobsj′ and j without any
dependence, wherej′ has been already mapped and scheduled
on componenta′

k. If the job j is assigned to the same
component (a′

k = ak), it will be sequentially executed after the
job j′. Instead, if the jobs are assigned to different components
(a′

k 6= ak), they can run in parallel. In this case, the order of
execution of the (mapped) jobs can affect the availability of
the resources and the quality of the results. Thus, mapping and
scheduling have to be necessarily considered at the same time.
In particular, the mapping should try to expose the maximum
parallelism among the different jobs, limiting the contention
on the resources, and different orderings for scheduling the
jobs should be explored.

III. R ELATED WORK

Many different approaches on mapping, scheduling and
communication synthesis have appeared in literature for the
development of applications onto multi-processor embedded
systems, with different models for the applications and for-
mulations for the problems.

Besides DAGs, alternative models have been proposed. In
particular, conditional task graphs have been introduced to
optimize control-intensive applications and to exploit resource
sharing [14] and voltage scaling [15] between mutually exclu-
sive implementations. Since the behavior cannot be statically
predicted, they usually attempt to optimize the average or
worst-case execution time of the application, instead of the
make-span. The proposed formulation can be easily adapted to
this model, just by modifying the definition of the make-span
and considering the mutual exclusion into the constraints for
valid schedulings and feasible mappings. Cyclic or hierarchical
task graphs [16] have been proposed to represent partitioned

applications with feedback dependences. However, to deter-
mine an off-line schedule, the number of iterations has to be
known in advance and, thus, DAGs can be obtained through
loop-unrolling [13]. On the other hand, unrolling iterations
introduces a large number of tasks into the representation and,
for this reason, efficient and scalable methods for mapping and
scheduling DAGs become crucial.

Scheduling and mapping approaches can be classified as on-
line and off-line algorithms. In this work, we focus only on the
latter since, with these approaches can obtain superior results,
exploring a larger portion of the design space. Niemann and
Marwedel [11] presented an Integer Linear Programming (ILP)
formulation to derive the optimal solution for the mapping
and scheduling problem on DAGs, considering heterogeneous
architectures and communication costs. However, multiple
implementations are considered only for hardware solutions
and different communication models are not supported. Our
formulation is thus more general and, consideringrenewable
andnon-renewableresources, we are able to approach a larger
class of target platforms with different constraints. Further-
more, we consider multiple implementations also for software
solutions, that is crucial when, for example, there are limits
on the memory size. Unfortunately, mapping and scheduling
an arbitrary DAG onto a system with limited resources is NP-
complete and, thus, common approaches rely on heuristics to
find near-optimal solutions in a reasonable time. Moreover,
they often decompose the problem into sub-problems, i.e.,
separating the mapping from the scheduling. In particular,
different algorithms aim to find the best start times for each
one of tasks, which mapping is given. This problem has been
widely studied [17] and, besides exact formulations [18] that
are impracticable for large designs, list-based algorithms are
usually adopted to determine a heuristic solution. These algo-
rithms exploit a priority list to determine the order in which the
operations are scheduled. Several methods are thus appliedto
explore only the scheduling by finding the best priority list, in-
cluding optimization heuristics like Simulated Annealing(SA),
Tabu Search (TS) [19] and Genetic Algorithms (GAs) [20].
We exploit the same concept to determine the priority values
for the different jobs. It is proven [21] that these exploration
algorithms, exploring different alternatives, outperform one-
shot heuristics, despite a longer elaboration time. Thus, they
are usually preferred when the scheduling can be performed
off-line. Other algorithms, instead, explore only the mapping
by determining the best processing elements for the tasks
and evaluating each solution with a deterministic scheduling
algorithm. Heuristic search methods, like GAs [3], TS and
SA [4], [5], have been demonstrated to obtain better results
also for this problem. The Kernighan-Lin-Fiduccia-Mattheyses
(KLFM) heuristic has also been successfully adopted [22],
but with higher complexity and execution times than the
other methods. All these approaches, without considering the
correlations, potentially lead to sub-optimal solutions and,
when applied to hardly constrained design spaces, they can
easily lead to constraint violations and unfeasible solutions.
In general, returning in the space of the feasible solutions
requires recovery mechanisms [23] that usually introduce a
bias and limit the exploration.

PILATO et al.: ANT COLONY HEURISTIC FOR MAPPING AND SCHEDULING TASKS AND COMMUNICATIONS 5

Different methods have been exploited for the communi-
cations during the system-level synthesis [23], [24], [25]and
design space exploration [26], [27]. Some works only attempt
to minimize the transfers [4], [28] between the different groups
of tasks, without considering bus contention. Other works
exploit the communication synthesis during the definition of
the architecture, usually attempting to meet the performance
requirements by generating also complex communication in-
frastructures, if needed (e.g., [26], [27]) or by analyzing
the communications independently from the synthesis of the
components [29]. In our formulation, the bus contention
has to be approached only with an efficient scheduling and
mapping of the communications, since we cannot modify
the architecture. Yen and Wolf [12] presented a classification
of the different communication models and integrated their
synthesis while defining the architecture, with relocationof
tasks and communications on the different components. Differ-
ently from many existing works that focus on a single model
(e.g., [4], [5], [23], [28]), we are able to support platforms
with all the communication models presented in [12] and,
through thecommunication jobs, effectively determine the
communication configuration for the application. Moreover,
few works (e.g., [24]) consider the resource requirements for
the communication links and different implementations are
usually not explored for the communications.

In conclusion, we definitely require constructive methods
that are able to efficiently explore all the dimensions of the
problems to obtain efficient implementations for the applica-
tions on a large class of target platforms.

A. Ant Colony Optimization

Ant Colony Optimization (ACO) is a modern technique,
based on a stochastic decision process, originally intro-
duced [8] for the Traveling Salesman Problem. It has been
inspired by the cooperative behavior of ants when searching
for food. In particular, all the ants start from their nest going
in random directions, depositing a trail ofpheromone. As time
goes by, the shortest path to the food will contain more and
more pheromones, motivating the other ants to follow this
path instead of longer routes. The ACO heuristic is suitable
for problems in which the solution can be found through
subsequent decisions. The quantity of pheromone, stored into
a matrix, represents the probability, for each decision, tolead
to a good solution. All the decisions are initialized with a
uniform probability. Then, iteratively, a certain number of
routines (ants) are started to construct different solutions. At
each decision point, a probability is generated for each of the
admissible choices as follows:

px,y =
[τx,y]

α ∗ [ηx,y]β∑
l∈Ωx

[τx,l]α ∗ [ηx,l]β
(7)

where x is the present point in the decision process, and
y is the candidate destination,η is a problem-related local
heuristic (i.e., calculated every time a probability is generated),
while τ is the global heuristic, determined by the pheromone.
Both contributions, weighted throughα and β, influence the
decision of the ant.Ωx contains all the choices at the present

point. At the end of each iteration, the results are ranked and
the pheromones updated through different policies [30]. In
general, the pheromones are updated as follows:

τx,y = (1− ρ) ∗ τx,y + ǫ (8)

whereρ is theevaporation rate(i.e., a parameter that controls
how fast the pheromones are reduced) andǫ 6= 0 iff the
decision is contained into the best solution.ǫ is a term usually
proportional to the quality of the solution to maintain con-
sistency among different iterations. In this way, only the best
choices are reinforced and the others are penalized through
evaporation. The best overall solution can be thus identified
when the global heuristic will become dominant with respect
to the local one. Moreover, since the probability in Eq. 7 is
generated only for admissible choices, the algorithm is able to
avoid the decisions that would violate a constraint, reducing
the number of unfeasible solutions.

Recently, the ACO has been demonstrated superior to TS,
GA and SA for both the standard [31] and the multi-mode [32]
resource-constrained scheduling problem. Different works ex-
tended this formulation to the embedded systems design,
considering mapping and scheduling separately [33], [34] or
simultaneously [35]. However, these formulations are able
to approach only specific sub-problems of our formulation.
In fact, in [33], the authors propose algorithms for time-
and resource-constrained scheduling for High Level Synthesis,
that, exploiting the Max-Min update heuristic, determine the
priorities for the scheduling or the resource allocation. They
also discuss an extension for supporting multiple modes and
constraints due to non-renewable resources, but communica-
tions are not considered. On the other hand, the same authors
in [34] apply the methodology to assign application tasks tothe
processing elements of a heterogeneous multiprocessor with
reconfigurable logic. However, their approach uses the ACO
only for task mapping, and then schedules the resulting task
graph with priority values obtained with a standard heuristic
(i.e., mobility and total tardiness). This means that they
explore different mapping solutions, but only one scheduling is
obtained for each of them. In [35], the ACO aims at reducing
the power consumption of the system, with a proper allocation
of the tasks. However, all the components are considered as
renewableand the constraints that may be imposed by the
target architecture (i.e., area of the hardware devices) are
not considered. Moreover, multiple implementations are not
considered, as long as the communications. In conclusion,
there is no formulation of ACO for the concurrent mapping and
scheduling of heterogeneous embedded systems that is able to
consider also communications and multiple implementations
for each job to be performed.

IV. PROPOSEDMETHODOLOGY

In this section, we detail our ACO-based algorithm to
perform the mapping and the scheduling of both tasks and
communications on a heterogeneous MPSoC. First, we outline
the overall methodology and we discuss how the concept of
pheromone trails is applied to the specific problem. Then, we
apply it to the illustrative example introduced in Section II
and, finally, we discuss some problem-specific optimizations.

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATEDCIRCUITS AND SYSTEMS, VOLUME XX, NO. XX, JANUARY 2010

Algorithm 1 Pseudo-code of the proposed methodology.
1: generate initial solution
2: Z∗ ← Z0

3: initialize pheromone values with 1/Z0

4: for each ant l into the colonyL do
5: initialize candidate
6: while candidate is not emptydo
7: select and assign jobj to i
8: updatecandidate
9: end while

10: estimate solution
11: if Zl < Z∗ then
12: Z∗ ← Zl

13: end if
14: end for
15: if exploration is not terminatedthen
16: update pheromone values
17: perform random move with probabilitypr

18: return to 4
19: end if
20: returnZ∗

A. Methodology Overview

Our proposal separates the construction of the solution from
its evaluation. In fact, to determine the effective start time of
each task, we need to know when the incoming communica-
tions have been completed, if needed. However, due to the
assumptions of the communication model, a communication
between two data-dependent tasks is needed and thus it has
to be analyzed only if the related source and target tasks have
been assigned to different components. For this reason, in the
first step, each ant gradually constructs the solution, choosing
one job after the other, assigning it to a proper implementation
point and analyzing the communications only after the related
source and target tasks. Then, the evaluation of the obtained
solution is based on the Serial Generation Scheme (SGS)
schedule [31], that constructs a complete solution respecting
the precedences and following a priority rule. In particular,
the priority values correspond to the order in which the jobs
have been selected by the ant, allowing to explore different
scheduling solutions along with the job assignments to the
implementation points. The pseudo-code of our formulationis
described by Algorithm 1.

In detail, given the input task graph, the algorithm generates
an initial solution (line1), for example, by assigning all the
task jobs to the same component, provided that it is able
to execute all of them, and all the communications to the
associated local memory. It represents a fully-software feasible
solution; its make-spanZ0 is used to initialize the current
best solution (line2) and the pheromone values (line3),
with an appropriate value (1/Z0) to better scale the problem.
After initializing the pheromones, the first colony ofL ants
is launched (line4). Each antl is initialized (line 5) with
the jobs without predecessors as the set of initial candidates.
From them, at each iteration, a job is selected and assigned
to a proper implementation point (line7). Then, the candidate

set can be updated with the jobs that have become eligible
(line 8), based on the job selected at line7. In particular,
for communication jobs, the remaining jobs associated with
the same data transfer are added, if any. On the other hand,
for task jobs, the successor tasks become available, provided
that all predecessors have been analyzed. Furthermore, as
discussed above, the incoming communications can be also
processed, if the related predecessor is assigned to a different
component. The loop6-9 is repeated until all the tasks
and the communications have been assigned. The solution
is evaluated (line10) and it replaces the current best one
if it is improved (line 12). Note that the methodology can
be applied to other metrics just by designing a solution
estimation consistent with the optimization criterion. Itis only
required to design local heuristics that efficiently lead the
decision process. If the exploration is not terminated (e.g., the
maximum number of generations or evaluations has not been
reached), the pheromones are updated (line16) and a local
search heuristic is applied (line17) to the best solution, to
improve its optimization. In particular, changing the position
of the jobs inside thetrace results in different priority values
for the scheduling. On the other hand, an unfeasible solution
can be obtained by changing the mapping of the jobs. In any
case, the current best solution is substituted only when the
local search finds a better solution. Finally, a new ant colony
is launched and, at the end of the exploration, the best overall
solution is returned (line20).

B. Pheromones and Heuristics

In our work, the pheromones are stored into a matrix (i.e.,
the pheromone structure) which represents, for each possible
step and for each combination of candidate jobs and corre-
sponding admissible implementation points, the probability
that this decision would lead to a good final solution. Let
|J | and |I| be the number of jobs and the number of all
the admissible implementation points for the job, respectively.
Supposing that in the worst case all the jobs have to be
analyzed, this matrix has a size of|J | × |J | × |I| elements.
We then adapted the Equation 7, considering, at each decision
point d (line 7), the probability to assign a candidatej to one
of its implementation pointsi as follows:

pd,j,i =
[τd,j,i]

α ∗ [ηd,j,i]
β

∑
k,n[τd,jk,in]α ∗ [ηd,jk,in]β

(9)

whereη is a local heuristic, which suggests how good is to
assignj to i, and τ is the global heuristic, which maintain
information of the decisions taken by the previous ants.
This value is normalized with the sum of the values for all
admissible choices to give a probability. Then, a roulette wheel
extraction is performed and, at each step, the result of the
decision process is a job assigned to one of its admissible
implementation points.

A good local heuristic suggests decisions when the global
reinforcements are similar and, thus, drives the search to good
solutions from the beginning, allowing faster convergence
time. To compute the local heuristicηd,j,i we exploit infor-
mation about the utilization of the resources. In particular, let

PILATO et al.: ANT COLONY HEURISTIC FOR MAPPING AND SCHEDULING TASKS AND COMMUNICATIONS 7

TABLE II
EVALUATION OF THE SOLUTION BASED ON THE PRIORITY VALUES GIVEN

BY THE ANT EXPLORATION AND REPORTED INSIDE ROUND BRACKETS.

Step Candidate set Scheduled Task
i A(1) - B(3) - E(4) A
ii C(2) - B(3) - E(4) - A, D(6) C
iii B(3) - E(4) - A, D(6) - C, F (10) B
iv E(4) - A, D(6) - B, D(9) - C, F (10) E
v A, D(6) - E, F (8) - B, D(9) - C, F (10) A, D
vi E, F (8) - B, D(9) - C, F (10) E, F
vii B, D(9) - C, F (10) B, D
viii D(5) - C, F (10) D
ix C, F (10) - D, F (11) C, F
x D, F (11) D, F
xi F (7) F

avail∗(ak) be the sum of execution times of the jobs assigned
to a componentak, andH∗

j the finishing time ofj in this data-
structure, we compute the local heuristicηd,j,i as follows:

ηd,j,i =
1

max[H∗
j′ , avail∗(γ(i))] + δ(i)

(10)

where j′ represents the predecessors ofj and δ(i) the ex-
ecution time of the jobj if executed on the component
ak = γ(i). This metric generates larger probabilities for the
combinations of jobs and implementation points that should
be able to complete their execution as soon as possible, given
the estimated availabilityavail∗(ak) of the target resourceak.
Obviously, the information is not complete. In fact, since the
communications betweenj′ andj will be analyzed in the fol-
lowing, the related mapping and scheduling can lead to a very
different solution. In that case, the final solution evaluation
will penalize this decision, reducing the corresponding global
heuristic and avoiding to take again this decision in the future.

Note that, if the jobj cannot be assigned, at stepd, to the
implementation pointi (i.e., the corresponding requirements
of resources cannot be satisfied), that combination will notbe
considered in the roulette wheel (i.e.,pd,j,i = 0), avoiding to
take decisions that would lead to an unfeasible solution.

After the ants of a colony have constructed their solutions,
these are ranked. Then, the mapping and scheduling choices of
the best solution of the colony, along with the current overall
best solution of the optimization process, are reinforced.In
particular, the pheromones are updated asτd,j,i = (1 − ρ) ∗
τd,j,i + ǫ, where ρ is the evaporation rate associated with
the pheromone structure andǫ = ρ ∗ 1

Z∗
if the decision is

contained into the best solution, having make-spanZ∗, and
ǫ = 0 otherwise.

C. Illustrative Example

In this section, we apply our methodology to generate and
evaluate an ant solution for the task graph in Figure 2 on the
target architecture in Figure 1, based on the annotations in
Table I. In this example, we assume, for simplicity, that (i)
the communication delays equal to a single time unit (i.e., the
bus takes one cycle to transfer a unit of data) and (ii) tasks
do not share implementation points.

In our algorithm, the ant initializes the candidate set (line 5
of Algorithm 1) with the jobs that have no dependences (e.g,
A, B and E as shown in Fig. 3). Then we have to select
and assign a job to an implementation point for the execution.

Fig. 3. Trace of the selection performed by the ant and the related schedule.
Note thatij,5 represents the implementation points on the system bus.

At the beginning the requirements for all the implementations
can be satisfied by the components. Thus, at step 1, the ant
can choose among 15 different combinations of jobs and
implementation points, which probabilities are generatedbased
on Equation 9. Since a roulette wheel selection is performed
(line 7), the selected combination is not necessarily the one
with the highest probability. In our example, we assume
that the ant selectsA to be implemented oniA,3 (i.e., the
first implementation onP3) and thus the related resource is
reduced to two units since it isnon-renewable. No incoming
communications are required byA and the candidate list is
updated only withC that becomes available (line8). Now, only
two units of the resourceq3 are available onP3. When, in step
2, the new probabilities are generated, the probability related
to iE,3, which requires 3 units, is not generated, avoiding the
ant to select that combination. Let us assume that the ant
selectsC, assigning it to the implementationiC,4. There is
a communication amongA andC, but these are both assigned
to the same component. Therefore, this communication will
be directly assigned to the associated local memory and not
considered as a candidate job. At step 3, onlyB and E are
available. There is only one unit of resourceq3 on P3, so
only the implementationsiB,4 andiE,4 are admissible onP3.
The ant selectsB on iB,0 and, sinceA and B have been
both analyzed,D becomes available. So, at step 4 the ant
may choose amongD and E with all the implementations
for renewable resources (i.e.,iD,0, iD,1, iD,2, iE,0, iE,1 and
iE,2) and only with the implementationsiD,3 andiE,4 for the
resourceq3, i.e., the ones which requirements can be satisfied.
The ant selectsE and assigns it toiE,1, and, at step 5,D is
the only job in the candidate set. The ant assigns this job to
the implementationiD,3. D requires two data transfers, and
consequently the two jobs(A, D) and (B, D) are added to
the candidate list. Now the candidate set is composed of the
jobsF, (A, D) and(B, D). The communication(A, D) is then
selected at step 6 and taskF is assigned toiF,2 at step 7. At
this point, (B, D), (C, F), (D, F) and (E, F) are available
and, in the remaining steps, the ant selects(E, F), (B, D),
(C, F) and (D, F), respectively.

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATEDCIRCUITS AND SYSTEMS, VOLUME XX, NO. XX, JANUARY 2010

The resulting trace is shown in Figure 3. Note that the step
in which each job has been selected will correspond to the
priority value for its scheduling. The associated make-span can
be thus obtained by considering these priority values, as shown
in Table II. In particular, at each step, the job with higher
priority will be selected and scheduled. For example, starting
from the first set of candidates, the task with higher priority is
A, that starts at time 0 onP3. After executingA, the candidate
set should be updated with the outcoming communications
(A, C) and(A, D). However,A andC have been assigned to
the same resource and the communicationA, C is not needed.
Instead,C is directly added to the candidate set, along with
(A, D). This procedure is iteratively applied for all the jobs
inside the application specification, until the candidate set is
empty. The overall make-span is, thus, 12 time units long.

It is worth noting that different ant traces correspond to
different ordering and thus different scheduling solutions. In
fact, for example, if the ant had been selected(B, D) before
(A, D) at step 6,D could have started only at time 7. In fact,
(B, D) can start at time 5 and(A, D), that would have a lower
priority, only at time 6, i.e., when the bus returns free. This
shows how the scheduling of the communications can affect
the final performance of the application and how the proposed
approach can explore different combinations.

D. Problem Specific Optimizations

To reduce the memory requirements of thepheromone
structureand, thus, the elaboration time, we also introduced
a two-stage decision processfor the ant. In particular, two
matrices are created to store the pheromones and, at each
scheduling step, two probabilities are calculated. Instead of
performing the probability extraction on all the combinations
of candidate jobs and the related implementation points, we
initially allow the ant to select the job to schedule among the
candidate ones, using the formula:

ps
d,j =

[τs
d,j]

αs

∗ [ηs
d,j]

βs

∑
k[τs

d,jk]αs ∗ [ηs
d,jk]βs

which represents the probability thatj is selected at the
decision pointd, whereηs and τs are the local and global
heuristics specific for the scheduling problem, respectively. In
our implementation,ηs is a linear combination of the mobility
and the average execution time of the job on all the admissible
target units. This provides a way to choose the jobs with lower
mobility (i.e., higher impact on the critical path) or with a
larger use of resources. The key idea is that, later, it is easier
to find place for small or short jobs. In the same step, the ant
decides the implementation point assigned to the selected job
j with the formula:

pm
j,i =

[τm
j,i]

αm

∗ [ηm
j,i]

βm

∑
n[τm

j,in]αm ∗ [ηm
j,in]βm

which expresses the probability to mapj on the implemen-
tation pointi. ηm and τm are the local and global heuristics
specific for the mapping problem, respectively.ηm is a linear
combination of the execution time of the jobj on the imple-
mentation pointi and a metric representing the global use of
this component with respect to the number of candidate jobs.

The main advantage of this two-stage decision process
is the reduction of the number of probabilities generated
and the dimension of the pheromone structure. In fact, with
this approach, two smaller pheromone structures are used. In
particular, instead of the matrix of|J | × |J | × |I| elements,
two matrices are defined: one pheromone structure for the
scheduling, of size|J |× |J |, and one pheromone structure for
the mapping, of size|J |×|I|. The reduction of the complexity
of the algorithm can also be verified in the previous example,
where, for example, at stepi) the number of probabilities is
reduced from 15 to 8. In fact, 3 probabilities are generated to
select the job inside the candidate set and, then, 5 mapping
probabilities are generated for the selected job, one for each
implementation point.

Furthermore, these two matrices are updated at the end of
each generation with a different formula for each pheromone
structure. In particular, the pheromones are updated for the
scheduling asτs

d,j = (1−ρs)∗τs
d,j +ǫs and for the mapping as

τm
j,i = (1−ρm)∗τm

j,i+ǫm whereǫs = ρs∗ 1
Z∗

andǫm = ρm∗ 1
Z∗

if the decisions are contained into the best solution, which
make-span isZ∗, and ρs, ρm are the evaporation rates for
the two structures. Nevertheless, with this formulation, the
information is spread into two different matrices and the
correlation among the two decisions could be affected. This
issue will be experimentally evaluated in the following section.

Finally, we added an enhancement, that is theforgetting
factor [31], to reduce the possibility of converging to local
minima. In particular, at the end of each colony, with a low
probability, the heuristic substitutes the current best solution
with the best trace of the current colony, even if it is worse.
Obviously, the overall best is preserved, in case no other better
solutions are found. The idea is that, if there are no other
interesting points in the neighborhood of the current overall
best, the algorithm reached a minimum and the evaporation
rate slowly forces all the ants to converge to it. If it is onlya
local minimum, this may early cut out the possibility to find
better solutions in other regions of the search space.

V. EXPERIMENTAL EVALUATION

We implemented the methodology in C++ inside the PandA
framework [36] and then evaluated our algorithm by applying
it to several synthetic test cases and a real-life example (smart-
phone) on realistic models of target architectures. We compare
our approaches (i.e., with one or two stages in the decision
process) with three other common heuristics for the same
problems in terms of time and number of evaluations requested
to reach the optimum value, quality of the exploration results
and overall execution time of the approaches. Finally, to
validate the effectiveness of the methodology on real-world
applications, we applied our algorithm to develop the JPEG
encoder on a real platform.

A. Experimental Setup

We evaluated our approach on synthetic task graphs and
on real-life benchmarks. In particular, we randomly gen-
erated several realistic task graphs using Task Graph For
Free (TGFF) [37], which also allows the specification of a

PILATO et al.: ANT COLONY HEURISTIC FOR MAPPING AND SCHEDULING TASKS AND COMMUNICATIONS 9

PPC

Slices

ARM

L
o
ca
l

M
em
o
ry

DSP

L
o
ca
l

M
em
o
ry

FPGA Memory

Local
Memory

S
y
stem

 B
u
s

MPSoC Virtex-II PRO

Fig. 4. The model of the target architectureA1.

model of the target architecture. In the first experiments, the
architecture, namelyA1 and shown in Fig. 4, is composed of
four processing elements: a Digital Signal Processor (DSP), an
ARM processor and a Virtex-II PRO XC2VP30 FPGA, that
integrates a PowerPC (PPC) processor. We did not exploit
partial dynamic reconfiguration and, thus, a task mapped
on the FPGA cannot be removed. The area of the FPGA
thus represents anon-renewableresource. The processing
elements communicate through a DMA engine and, for the
reconfigurable logic, we adopted a model similar to [6]. In
particular, the tasks access a common memory (e.g., FPGAs
internal memories - BRAMs) through an internal shared bus,
which makes the access times independent of the placement
of the tasks and negligible with respect to external transfers.
Examples of similar platforms are the NXP Nexperia [38],
the TI’s OMAP [39] and the latest ATMEL DIOPSIS [40],
adopted by several European Projects [41], [42] as target
platforms with the same assumptions. For each task, perfor-
mance annotations are generated on each component of the
target architecture. In particular, each task takes 1,600±150
clock cycles on the ARM, 1,000±400 cycles on the DSP,
2,100±700 cycles on the PPC and 360±100 cycles on the
FPGA. For the FPGA, which total available area has been
configured to 15,360 slices (i.e., basic configurable elements of
Xilinx FPGAs), each task occupies a different amount of logic
elements based on the problem size (e.g., from 7,000±1,300
slices for smaller benchmarks to 500±50 slices for larger
ones). Finally, each edge is annotated with a quantity of data
(300±75) to be transferred.

We also applied our approach to a real-life example, that
is the smartphone[43]. This benchmark is based on four
publicly available applications: a GSM encoder/decoder, an
MP3 decoder and a JPEG encoder. For the GSM and the MP3
applications, we target an architecture, namelyA2, composed
of 3 processors and 2 dedicated components, with realistic
annotations for both tasks execution and data transfers [43].
Finally, for the JPEG encoder, we target a FPGA prototyping
platformA3 [9] composed of one PPC, 3 MicroBlaze proces-
sors and an area dedicated to hardware accelerators. For this
benchmark, an example of task graph is shown in Figure 5
and the related annotations, provided through profiling of the
source code on the target platform, are reported in Table III.
Each communication transfers the same quantity of data, so
the related costs are fixed at 3,600,000 cycles per edge.

To compare the approaches proposed in this paper, we
adapted some well-known heuristic methods to deal with
multiple implementation points and with communication jobs.

Integer Linear Programming (ILP): we implemented a
mathematical formulation that combines [10] and [11]. In par-

Read

RGB RGB RGB

DS DS DS

DCT DCT DCT

QTZ QTZ QTZ

EC EC EC

end

1-st 2-nd
n-th

...

...

...

...

...

Fig. 5. Task graph of our JPEG parallel implementation.

TABLE III
PERFORMANCE OF THEJPEGTASKS ON THE RESOURCES AVAILABLE ON

OUR TARGET PLATFORMA3.

Phase PPC MB
FPGA

Time #Slices
Read 93,880,530 42,203,215 - -
RGB 897,522 457,674 486,384 200

Downsampling (DS) 365,548 166,893 - -
DCT 38,415,925 10,465,720 231,377 2,760

Quantization (QTZ) 47,603,256 4,388,594 - -
EC 109,677,075 38,008,544 - -

ticular, it deals withrenewableand non-renewableresources
instead of software and hardware ones and with the mapping
on implementations rather than components. We usedCoin-
Or [44] to solve the instances associated with the benchmarks.

Ant Colony Optimization (ACO): this is the approach
proposed in this paper and described in Section IV, both 1-
stage and 2-stage. In the 1-stage process,α = β = 1 (i.e.,
the weights for local and global heuristics) were used and the
evaporation rate has been set toρ = 0.015. In the 2-stage
process,αs = αm = βs = βm = 1 were used along with
different evaporation rates for the scheduling (ρs = 0.025)
and the mapping (ρm = 0.015). The colony is composed of
10 ants for both the approaches.

Simulated Annealing (SA): the SA [4] is an adaptation
from the Neighborhood Search(NS), a hill-climbing algo-
rithm. Unlike NS, the SA can accept inferior solutions during
its search according to a probability function. This probability
starts high, and gradually drops as the temperature is reduced.
When the temperature drops below a certain threshold, the
algorithm ends. Among several cooling schedules, we adopted
the geometric schedule (Tnew = αTold). The initial tempera-
ture Tstart is set to 250 andTfinish to 0.001 (α = 0.99).

Tabu Search (TS):the TS [4] is another adaptation from the
Neighborhood Search, that, instead, exploits a search history
as a condition for the next moves. When generating new
solutions, the TS checks its short term memory to avoid
searching the same neighborhood (tabu list). The tabu list acts
as a First In First Out (FIFO) queue: a set of freshly generated
neighbours, not present in previous sets, is inserted in each
iteration. However, to avoid stopping the search in promising
area, after some time, the tabu list is released and the solutions
become eligible again. We generate10 neighbours with a tabu
list composed of5 sets of solutions each.

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOLUME XX, NO. XX, JANUARY 2010

TABLE IV
COMPARISON ON THE EXECUTION TIMES(time) AND THE NUMBER OF EVALUATIONS (#eval) OF THE SEARCH METHODS TO REACH THE OPTIMUM VALUE

(ILP Opt.). ILP HAS A TIME LIMIT OF 12 HOURS. WHEN THE ILP RESULT HAS NOT BEEN OBTAINED, THE AVERAGE OF THE BEST VALUES ARE
REPORTED, ALONG WITH THEIR PERCENTAGERELATIVE STANDARD DEVIATION . NUMBER OF TASKS(#Tasks) AND EDGES(#Edges) HAS REPORTED FOR

EACH BENCHMARK. DegreeREPRESENTS THE MAXIMUM NUMBER OF INCIDENT EDGES TO EACH TASK.

Bench
#Tasks/

#Degree
ILP ACO SA TS GA

#Edges 2-stage 1-stage
Opt. time (s) time (s) #eval. time (s) #eval. time (s) #eval. time (s) #eval. time (s) #eval.

S1 5/4 2 3,027 0.22 0.20 365 0.15 318 0.23 4,721 0.36 2,555 0.19 1,020
S2 5/4 3 2,622 0.61 0,72 1269 0.19 383 0.61 12,911 1.04 7,077 1.05 5,235
S3 5/5 4 3,167 0.32 0.10 188 0.12 239 0.18 4,048 0.36 2,592 0.35 1,820
S4 10/9 2 4,525 17.41 2.10 2,787 2.90 2,931 (5,747± 6.25%) 20.12 80,887 6.47 23,172
S5 10/13 3 5,695 32.59 3.36 3,018 4.70 4,631 (6,814± 2.34%) 10.25 41,497 (6,041± 2.30%)
S6 10/12 4 5,644 8.32 2.82 2,700 4.12 4,100 (6,458± 2.48%) 6.87 25,093 3.33 10,798
S7 15/16 2 7,318 7,152.89 (7,830± 0.97%) (7,491± 1.91%) (11,338± 8.12%) (8,366± 3.23%) (7,957± 1.71%)
S8 15/22 3 8,358 711.78 (8,814± 0.22%) (8,905± 2.51%) (12,776± 2.50%) (9,220± 3.75%) (8,884± 1.81%)
S9 15/26 4 9,618* 29,766.76 (10,120± 1.31%) 33.51 12,505 (14,237± 5.75%) 9.17 17,277 (10,293± 2.27%)
S10 20/22 2 9,289* 24,275.33 (9,497± 0.13%) (9,490± 1.91%) (13,962± 0.29%) (9,587± 0.98%) (9,800± 4.27%)
S11 20/32 3 9,530* 24,398.21 (9,795± 2.01%) (10,019± 1.42%) (15,089± 4.63%) (10,326± 2.97%) (10,666± 2.60%))
S12 20/30 4 11,446* 24,297.01 30.82 12,002 (11,983± 2.02%) (17,387± 4.93%) (11,756± 1.28%) (11,956± 2.60%)

(* heuristic values, not demonstrated to be the optimum)

Genetic Algorithm (GA): a genetic algorithm [45] sim-
ilar to [23] has been implemented using theOpen Beagle
framework [46]. In our formulation, thecrossover operator
combines twoparentssolutions into an offspring one, with a
certain probabilityPc (set to 0.70). Basically, crossover aims
at exploiting the best features of two existing solutions to
generate a new good solution. For the mapping, crossover
is implemented as a standard single point crossover, that
mixes the bindings of the jobs, and as a one-point topological
crossover for what concerns the list of priorities. Themuta-
tion operator explores the design space around an existing
solution. When applied to a parent solution, it generates an
offspring solution introducing small random changes in the
solution encoding, with a uniform probability. In particular, the
priorities are modified with a variant of theshift mutationfor
the permutation representation, while the mapping assignsthe
jobs to a different implementation point among the available
ones. The population is composed by100 design solutions.

All these approaches feature local searches of the current
solution. The SA and the TS are based on this concept to
perform the exploration, but also the ACO (during the local
optimization of the best solution) and the GA (in the mutation
operator) can perform them. Several heuristics can be applied,
in particular, to identify which jobs to change [47]. Since
we are interested in the comparison of the search methods,
we decided to apply the same basic random swap to all the
approaches. This avoids a bias in the solutions and, anyhow,
the improvements that can be obtained with other heuristics
would affect in the same way all the approaches.

For all the explorations, we averaged the results over 30
runs of each task graph on a Intel Xeon X5355 (2.66 GHz
and 8 MB of L2 cache) with 8 GB RAM.

B. Results

In the first experiment, we compared the search methods
on the execution time and the number of evaluations required
to reach the optimum value. We generated 12 relatively small
benchmarks, namely S1-S12 in Table IV, varying the number
of tasks and the maximum number of incident edges (Degree).
Then, we computed the optimum value (ILP Opt.) with the

TABLE V
DIMENSION OF THE PROBLEMS AND THEILP FORMULATIONS.

Bench #Jobs #Tasks/#Edges #Variables #Constraints
L1 22 10/12 332 833
L2 50 20/30 1,364 3,585
L3 130 50/80 10,409 28,363
L4 212 75/137 25,830 68,319
L5 268 100/168 41,856 113,221
L6 519 200/319 166,750 465,162
L7 768 300/468 370,873 1,047,848
L8 1,258 500/758 1,042,958 2,961,318
L9 1,868 750/1118 2,364,976 6,746,779

mp3 32 16/16 436 1,073
gsm-dec 90 34/56 3,703 10,039
gsm-enc 134 53/81 2,295 5,129

jpeg 101 51/50 6,281 26,239

ILP formulation with a time constraint of 12 hours. When the
problem size grows over the 30 jobs (S9-S12), ILP reaches a
value that is not proven to be optimal and thus we reported the
obtained values. Finally, we applied the different exploration
methods to these benchmarks and, for each of them, we
measured the time (time) and the number of evaluations
(#eval) needed to reach the value computed by ILP. Average
results, along with Relative Standard Deviation (RSD) (i.e.,
the dispersion of the results obtained in the different runsfrom
the average), are reported when the heuristics were not able
to reach these values within 100,000 evaluations.

The results in Table IV show that our approaches (ACO 1-
stageandACO 2-stage) can reach the optimum values much
faster than the other heuristics, both in terms of execution
time and number of evaluations. Moreover, both ACO variants
reach the ILP values in more cases and perform better than the
other search methods also when they are not able, due to the
complexity of the exploration, to reach the ILP values (i.e.,
S7-S12). Moreover, the 2-stage ACO seems to scale better
with respect to the 1-stage formulation when raising the size
of the problem, both in terms of quality of the solutions and
dispersion of the results. Comparing the other methods, the
hill-climbing methods are usually very fast in small instances
(as shown in particular by the SA results) but the number of
iterations required to reach the ILP values are usually huge.
In particular, the SA does not exploit any feedback and one
provided by the TS (i.e., the tabu list) is not able to devise

PILATO et al.: ANT COLONY HEURISTIC FOR MAPPING AND SCHEDULING TASKS AND COMMUNICATIONS 11

TABLE VI
COMPARISON ON THE SEARCH METHODS ABOUT THE QUALITY OF THE RESULTS.

Bench
ACO SA TS GA2-stage 1-stage

Av. Best± %RSD Av. Best± %RSD (%diff) Av. Best± %RSD (%diff) Av. Best± %RSD (%diff) Av. Best± %RSD (%diff)
L1 5,831± 4.48% 5,705± 2.87% -2.16 7,702± 7.48% +32.09 5,854± 3.25% +0.39 5,832± 2.07% +0.02
L2 12,312± 3.79% 12,103± 3.08% -1.69 20,790± 6.28% +68.86 12,634± 5.30% +2.61 12,779± 3.93% +3.80
L3 29.598± 4.79% 29,872± 3.15% +0.97 66,053± 5.52% +123.27 30,715± 7.85% +3.82 35,445± 2.69% +19.81
L4 47,903± 5.40% 49,395± 5.24% +3.11 106,280± 5.11% +121.86 54,746± 5.15% +14.29 59,495± 3.27% +24.20
L5 60,163± 3.28% 62,425± 4.12% +3.76 127,248± 7.53% +111.51 73,223± 2.54% +21.71 77,333± 2.45% +28.54
L6 127,151± 3.87% 136,991± 6.76% +7.74 279,822± 4.76% +120.07 168,690± 13.9% +32.67 166,557± 2.02% +30.99
L7 195,897± 3.32% 214,641± 6.58% +9.54 438,762± 2.56% +123.98 261,480± 5.37% +33.48 249,584± 5.98% +27.41
L8 363,093± 4.03% 408,765± 15.3% +12.58 751,281± 1.96% +106.91 465,115± 14.0% +28.10 418,938± 4.26% +15.38
L9 521,399± 2.51% 536,791± 1.94% +2.95 1,124,864± 1.16% +115.74 680,810± 0.96% +30.57 620,041± 5.20% +18.92

mp3 62,164± 0.04% 64,976± 0.01% +4.52 113,243± 15.1% +82.17 71,591± 10.4% +15.17 65,292± 8.34% +5.03
gsm-dec 36,439± 1.92% 38,523± 1.25% +5.72 50,932± 8.41% +39.77 46,424± 14.1% +27.40 37,935± 2.68% +4.11
gsm-enc 92,384± 3.02% 94,386± 3.24% +2.17 170,133± 9.82% +84.16 165,467± 18.5% +79.11 106,888± 5.21% +15.70

jpeg 220,627K± 4.37% 251,610K± 4.81% +14.04 562,223K± 9.50% +154.83 238,721K± 4.09% +8.20 245,854K± 4.93% +11.43

Avg. +4.87 +98.97 +22.89 +15.80

TABLE VII
PERCENTAGE OF UNFEASIBLE SOLUTIONS GENERATED BY EACH SEARCH

METHOD WHEN EVALUATING 25,000SOLUTIONS.

Bench
ACO SA TS GA2-stage 1-stage

(%) (%) (%) (%) (%)
L1 0.27 0.29 93.38 4.27 9.36
L2 0.30 0.33 97.92 6.57 15.44
L3 0.33 0.33 99.84 21.06 25.37
L4 0.32 0.32 99.84 20.78 27.97
L5 0.30 0.30 99.63 5.02 18.98
L6 0.32 0.34 99.58 30.82 12.86
L7 0.34 0.35 99.56 20.51 19.35
L8 0.35 0.35 99.52 52.30 32.22
L9 0.33 0.34 99.32 6.32 33.72

mp3 0.45 0.40 91.63 3.30 12.86
gsm-dec 0.34 0.27 95.77 4.74 17.50
gsm-enc 0.56 0.55 98.38 10.76 24.47

jpeg 0.10 0.08 98.92 1.95 7.33

which are the sub-structures that can provide good solutions.
On the opposite, the GA reaches the optimum values in the
same time than the TS, but with a lower number of evaluations.
In fact, the GA is able to identify and recombine good sub-
structures, but the crossover and mutation operators require an
additional execution time.

In the second experiment, we compared the same search
heuristics with respect to the quality of the results on larger
benchmarks (namely L1-L9 along with the four real-life
applications) described in Table V. This table reports the
size of the problems (i.e., number of jobs) and the related
ILP formulations. In particular, due to the high number of
variables and constraints, solving these problems optimally
was not possible even increasing the time limit to 24 hours.
The explorations have been thus executed until they reach
the number of 25,000 evaluations since we observed that no
improvements are usually obtained over that limit.

Table VI shows, for each one of the search algorithms, the
average of the best solutions (Av. Best) obtained during the
different runs, along with the RSD (%RSD). The 2-stage ACO
has been considered as reference point and, thus, percentage
differences from its average best solutions have been also
reported for the other heuristics. The results in Table VI
show that the ACO methodologies outperform the other search
methods in all the situations by at least 16% in average. In

TABLE VIII
COMPARISON AMONG THE OVERALL EXECUTION TIME OF THE SEARCH

HEURISTICS, PERFORMING25,000EVALUATIONS .

Bench
ACO SA TS GA2-stage 1-stage

time (s) time (s) time (s) time (s) time (s)
L1 8.40 12.38 0.88 4.41 9.95
L2 27.39 45.87 1.04 9.47 18.96
L3 117.02 251.43 1.52 28.23 48.22
L4 338.27 523.48 2.15 51.10 78.53
L5 479.37 764.89 3.06 86.26 119.37
L6 1,428.66 2,459.86 6.45 237.21 326.23
L7 2,883.99 5,178.30 10.58 606.39 541.28
L8 7,384.71 13,499.47 24.68 999.67 998.47
L9 14,021.67 26,385.01 65.93 4,044.71 1,918.59

mp3 22.39 23.18 0.91 5.21 8.24
gsm-dec 79.38 111.46 1.64 15.66 22.17
gsm-enc 86.33 108.46 1.49 19.90 27.70

jpeg 144.17 176.72 1.11 19.58 25.77

fact, the feedback obtained by the previous evaluations is more
relevant than what reported by the other methods. In particular,
the ACO suggests the better solutions as the GA, but also the
better sequence of decisions to obtain that solution. Therefore,
it is much easier to identify partial sub-structures that can
contribute to the identification of a good solution. In addition,
the 1-stage ACO better takes into account the correlation
between mapping and scheduling problems, but only on small
examples (e.g.,L1 and L2). On the other hand, the 2-stage
ACO scales better with problem size since the reduced number
of probabilities that are generated allow the heuristics to
be more significant during the exploration. The concept of
population and ranking in GA (i.e., additional feedback to
drive the exploration) mitigates the effect of random search,
as shown by %RSD values in Table VI. Moreover, it seems
to scale better with the size of the problems, with better
results in larger examples.L3 has still a reasonable size to be
approached with TS, but a structure difficult to be approached
by the GA, that obtains poor results. In fact, when the GA
has difficulties to identify the sub-structures, it usuallyobtains
poor results. It is worth noting that the results obtained with
real-life examples are consistent with the ones obtained with
synthetic test cases of similar size. In particular, it results that
our methodology behaves better than the other methods also
approaching different architectural models.

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOLUME XX, NO. XX, JANUARY 2010

Table VII reports the average number of unfeasible solutions
that have been generated during the explorations. These results
show that the constructive method of the ACO limits the
number of unfeasible solutions, cutting out the unfeasible
regions of the design space. The small percentage of unfeasible
solutions are generated only by the local search heuristic
implemented at the end of each colony. The SA obtains
the worst performance in all the situations. In fact, random
changes can easily produce unfeasible situations if specific
conditions for the next moves (e.g., the tabu list into the TS)
are not adopted. Since TS usually generates a limited set of
unfeasible solutions, it is able to explore more solutions in
the design space, obtaining better results. However, when it
fails and gets stuck in sub-optima, the number of unfeasible
solutions and the deviation of the results grow (e.g.,L6 and
L8). Even if the GA generates more unfeasible solutions
than the TS, it is more robust than hill-climbing methods, as
previous describe.

Finally, in Table VIII, we compare the average execution
time (in seconds) of the different methodologies. It is worth
noting that the overall execution time of the algorithms is com-
posed of two main contributions: the time spent to generate the
solutions and the time spent for their evaluation. In addition,
the scheduler terminates the evaluation of a solution when it
identifies a constraint violation. Thus, the SA has the shortest
execution time with respect to the other algorithms since the
time spent to evaluate the solutions is reduced (more than
96% of evaluations are terminated early). As discussed above,
the ACO requires an additional time to build the solutions and
almost all the solutions refer to feasible evaluations. Moreover,
the 2-stage ACO generates a reduced number of probabilities
at each decision point with respect to 1-stage ACO and thus
it is able to contain also the execution time of the exploration.

C. Case study: JPEG

We applied our approach to the mapping of a real-life
application, the JPEG compression algorithm. We target a
heterogeneous multiprocessor prototype [9], developed ona
Xilinx Virtex-II PRO XC2VP30 FPGA, that uses one of
the two PPCs as a master processor and the other one as
slave, along with the MicroBlaze (MB) soft cores. The master
processor only manages tasks synchronization and sequencing
on the slaves through interrupt signals. The slave processors
have local memories, connected to a shared memory and to
the master processor through a shared bus. Communications
are performed through a DMA unit, which is controlled by
the master processor and allows overlapping of data transfers
and computations by the processing elements. The area on the
FPGA not occupied by the soft cores and the other system
components (i.e., buses, local and shared memory controllers,
I/O controllers) can be used to implement hardware tasks. We
configured different architectures, similar to the solution in
Figure 1, where the slave PPC was supported by a varying
number of slave MBs (from 1 to 3) integrating a Floating Point
Unit (FPU), not available for the hard core. The presence of
the FPU explains the better performance for the soft cores on
arithmetic intensive tasks. The PPCs have a clock frequency
of 200 MHz, while the rest of the system runs at 50 MHz.

Our JPEG implementation is divided into five phases: (1)
RGB to YCbCr space color conversion, (2) Expansion and
Down Sampling, (3) Bi-dimensional Discrete Cosine Trans-
form (2D-DCT), (4) Quantization and (5) Entropic coding and
file saving. These phases can be performed in separated chains
for a minimum of 4 blocks of 8x8 pixels: the color space
conversion operates per pixel, the 2D-DCT, the Quantization
and the entropic coding works on single 8x8 blocks, while
Down Sampling reaches optimal performance on 4 blocks,
since a single value is averaged for each 4 chrominance
values. It is thus possible to parallelize the application on data,
extracting as many chains as desired depending on the size of
the uncompressed image, as shown in Figure 5. The root task
performs the image reading, while the end task is simply a
stub. For our evaluation, we used images of different sizes and
extracted task graphs with sizes varying from 20 to 50 tasks,
thus presenting from 4 to 10 parallel chains, respectively.We
had hardware implementations for the DCT and the RGB, and
software implementations for the PPC and the MB for all the
tasks. Table III reports the different execution times, in clock
cycles, as seen from the master PPC, and the area, in slices,
for the hardware cores. To simplify the scheduling of the data
transfers, in these experiments, we do not exploit the support
to the resource sharing for the hardware accelerators.

The first experiment compares the accuracy of the design
solutions generated by the ACO approach for different task
graphs on a platform with only one MB besides the slave PPC
and thus the available area for the FPGA was of 8,400 slices.
In Table IX, we compare the average results of the 2-stage
ACO algorithm (ACO) with the performance of the resulting
mapping on the platform (Platform) over 10 runs. The results
show that the main differences (around 10%) are with 30 and
40 tasks. In fact, in these cases, we have a different distribution
of the predicted and the real dynamic communication patterns,
that are partially under-estimated by the ACO methodology.
In particular, during the effective execution on the platform,
the distribution of the communications often generates bus
contention to be resolved by the interrupt controller. Therefore,
the time spent by the interrupt to resolve these contentions
generates that execution overhead that was not predicted by
our communication model. On the other hand, with 20 and
50 tasks the predicted and the real patterns are more regular.
In the former, the lower number of tasks and edges reduces
the number of conflicts. In the latter, the execution of a higher
number of parallel tasks masks the contentions on the bus and,
thus, it results in a lower impact on the overall execution time.
In conclusion, the ACO follows quite accurately the behavior
of the platform and, in all the experiments, it correctly decided
to implement three 2D-DCT in hardware. This shows that
the methodology is able to identify efficient solutions for the
mapping and scheduling problem.

In the second experiment, we executed the JPEG application
composed of 50 tasks on different platforms, representing dif-
ferent combinations in the number of MicroBlaze processors
(i.e., 3 downto 1) and the area for hardware implementations
on the FPGA (i.e., 2,800 to 8,400). The results in Table X
shows, as in the previous case, the prediction still remains
quite accurate. In all cases, the heuristic is able to perceive,

PILATO et al.: ANT COLONY HEURISTIC FOR MAPPING AND SCHEDULING TASKS AND COMMUNICATIONS 13

TABLE IX
AVERAGE OF THE BEST SOLUTIONS OBTAINED BYACO ALGORITHM AND

ACTUAL PERFORMANCE ON THE TARGET PLATFORM WITH A VARYING
NUMBER OF TASKS. THE ARCHITECTURE CONTAINS1 POWER PC, 1

M ICROBLAZES AND 8,400FREE SLICES.

#Tasks/ ACO Platform Diff.#Edges Avg. %RSD Avg. %RSD
20/20 170,416,083 2% 174,236,480 8% 2.19%
30/24 236,037,486 2% 268,569,432 7% 12.11%
40/32 324,599,846 1% 358,962,446 12% 9.57%
50/40 410,332,336 1% 427,313,801 7% 3.97%

TABLE X
AVERAGE OF THE BEST SOLUTIONS OBTAINED BYACO ALGORITHM AND

ACTUAL PERFORMANCE ON TARGET PLATFORMS WITH VARYING NUMBER

OF SOFT CORES AND FREE AREA FOR HARDWARE ACCELERATORS. THE

APPLICATION IS COMPOSED OF50 TASKS.

MB/Area ACO Platform Diff.
Avg. %RSD Avg. %RSD

3/2,800 259,729,940 2% 248,492,658 15% -4.52%
2/5,600 301,159,209 7% 283,861,438 11% -6.09%
1/8,400 410,332,336 1% 427,313,801 7% 3.97%

mainly due to communication overhead, that it is better to
use the hardware space to implement the 2D-DCT hardware
accelerator instead of many, but slower, hardware RGBs.
On the other hand, we also see that raising the number of
processors and reducing the available area for hardware cores
reduces the overall execution time of the program. In fact,
the hardware core can execute only one task and, thus, more
parallelism can be exploited with different general purpose
processors that are able to execute all the tasks.

VI. CONCLUSION

In this paper, we described an ACO-based heuristic for
mapping and scheduling both tasks and communications on
heterogeneous multiprocessor architectures and we introduced
a problem specific optimization, decoupling the choices for
the scheduling and the mapping in a 2-stage decision process,
that performs better when the size of the problems grows. We
compared our ACO to previous heuristics and, considering the
same number of evaluations, we obtained solutions 16% better
in average, despite an overhead in execution time. Moreover,
the proposed approach is able to reach the optimal solutions
much faster than the other approaches. Finally, we applied our
methodology to a real-world application on a realistic MPSoC.
We showed that the ACO is able to produce efficient designs
with a limited error in approximating the effective performance
of the platform when implementing the related solutions.

REFERENCES

[1] W. Wolf, “The Future of Multiprocessor Systems-on-Chips,” in Proc.
of 41st ACM/IEEE onf. on Design Automation (DAC ’04), 2004, pp.
681–685.

[2] D. Bernstein, M. Rodeh, and I. Gertner, “On the Complexity of Schedul-
ing Problems for Parallel/Pipelined Machines,”IEEE Transactions on
Computers, vol. 38, no. 9, pp. 1308–1313, 1989.

[3] J. I. Hidalgo and J. Lanchares, “Functional Partitioning for Hardware-
Software Codesign Using Genetic Algorithms,”Proc. of the 23rd EU-
ROMICRO Conference (EUROMICRO ’97), pp. 631–638, 1997.

[4] T. Wiangtong, P. Cheung, and W. Luk, “Comparing Three Heuris-
tic Search Methods for Functional Partitioning in Hardware–Software
Codesign,”Design Automation for Embedded Systems, vol. 6, no. 4, pp.
425–449, July 2002.

[5] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System Level Hard-
ware/Software Partitioning Based on Simulated Annealing and Tabu
Search,”Design Automation for Embedded Systems, vol. 2, no. 1, pp.
5–32, January 1997.

[6] S. Banerjee, E. Bozorgzadeh, and N. D. Dutt, “Integrating Physical Con-
straints in HW-SW Partitioning for Architectures With Partial Dynamic
Reconfiguration,”IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 14, no. 11, pp. 1189–1202, Nov. 2006.

[7] I. Issenin, E. Brockmeyer, B. Durinck, and N. D. Dutt, “Data-reuse-
driven energy-aware cosynthesis of scratch pad memory and hierarchical
bus-based communication architecture for multiprocessorstreaming ap-
plications,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 8, pp. 1439–1452, Aug. 2008.

[8] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: Optimiza-
tion by a colony of cooperating agents,”IEEE Transactions on Systems,
Man, and Cybernetics, vol. 26, no. 1, pp. 29–41, 1996.

[9] A. Tumeo, M. Branca, L. Camerini, M. Ceriani, M. Monchiero,
G. Palermo, F. Ferrandi, and D. Sciuto, “Prototyping Pipelined Appli-
cations on a Heterogeneous FPGA Multiprocessor Virtual Platform,”
in Proc. of IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC ’09), Yokohama, Japan, Jan. 2009, pp. 317–322.

[10] P. Brucker, A. Drexl, R. Mohring, K. Neumann, and E. Pesch,
“Resource-constrained project scheduling: Notation, classification, mod-
els, and methods,”European Journal of Operational Research, vol. 112,
no. 1, pp. 3–41, January 1999.

[11] R. Niemann and P. Marwedel, “An Algorithm for Hardware/Software
Partitioning Using Mixed Integer Linear Programming,”Design Automa-
tion for Embedded Systems, vol. 2, no. 2, pp. 125–163, March 1997.

[12] T.-Y. Yen and W. Wolf, “Communication synthesis for distributed
embedded systems,” inProc. of the 1995 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD ’95). Washington,
DC, USA: IEEE Computer Society, 1995, pp. 288–294.

[13] Y. Lam, J. Coutinho, W. Luk, and P. Leong, “Optimising multi-loop
programs for heterogeneous computing systems,” inProc. of the 5th
Southern Conf. on Programmable Logic (SPL ’09), 2009, pp. 129–134.

[14] Y. Xie and W. Wolf, “Allocation and scheduling of conditional task graph
in hardware/software co-synthesis,” inProc. of the conf. on Design,
Automation and Test in Europe (DATE ’01), 2001, pp. 620–625.

[15] D. Wu, B. Al-Hashimi, and P. Eles, “Scheduling and mapping of
conditional task graphs for the synthesis of low power embedded
systems,” inProc. of Design, Automation and Test conf. in Europe
(DATE ’03), 2003, pp. 90–95.

[16] M. Girkar and C. D. Polychronopoulos, “The hierarchical task graph as a
universal intermediate representation,”International Journal of Parallel
Program, vol. 22, no. 5, pp. 519–551, 1994.

[17] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and
P. Wong, “Theory and Practice in Parallel Job Scheduling,” in Proc. of
the Job Scheduling Strategies for Parallel Processing (IPPS ’97), 1997,
pp. 1–34.

[18] K. Wilken, J. Liu, and M. Heffernan, “Optimal instruction scheduling
using integer programming,” inProc. of the ACM conf. on Programming
Language Design and Implementation (PLDI ’00), 2000, pp. 121–133.

[19] S. J. Beaty, “Genetic Algorithms Versus Tabu Search forInstruction
Scheduling,” inProc. of International Conference on Neural Network
and Genetic Algorithms, February 1993, pp. 496–501.

[20] M. Grajcar, “Genetic list scheduling algorithm for scheduling and
allocation on a loosely coupled heterogeneous multiprocessor system,”
in Proc. of the 36th ACM/IEEE conference on Design Automation (DAC
’99), 1999, pp. 280–285.

[21] S. Jin, G. Schiavone, and D. Turgut, “A performance study of multi-
processor task scheduling algorithms,”The Journal of Supercomputing,
vol. 43, pp. 77–97, 2008.

[22] “Extending the Kernighan/Lin Heuristic for Hardware and Software
Functional Partitioning,”Design Automation for Embedded Systems,
vol. 2, no. 2, pp. 237–261, March 1997.

[23] J. Teich, T. Blickle, and L. Thiele, “An evolutionary approach to
system-level synthesis,” inProc. of the 5th International Workshop on
Hardware/Software Co-Design (CODES ’97), 1997, pp. 167–171.

[24] R. P. Dick and N. K. Jha, “Mogac: A multiobjective genetic algorithm
for the co-synthesis of hardware-software embedded systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 17, pp. 920–935, 1997.

[25] G. Gogniat, M. Auguin, L. Bianco, and A. Pegatoquet, “Communication
synthesis and hw/sw integration for embedded system design,” in
Hardware/Software Codesign, 1998. (CODES/CASHE ’98) Proc. of the
Sixth International Workshop on, Mar 1998, pp. 49–53.

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOLUME XX, NO. XX, JANUARY 2010

[26] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose,
C. Zissulescu, and E. Deprettere, “Daedalus: Toward Composable Multi-
media MP-SoC Design,” inProc. of the 45th annual Design Automation
Conference (DAC ’08), 2008, pp. 574–579.

[27] C. Haubelt, T. Schlichter, J. Keinert, and M. Meredith,“SystemCoDe-
signer: automatic design space exploration and rapid prototyping from
behavioral models,” inProc. of the 45th annual Design Automation
Conference (DAC ’08), 2008, pp. 580–585.

[28] M. Purnaprajna, M. Reformat, and W. Pedrycz, “Genetic algorithms for
hardware-software partitioning and optimal resource allocation,” Journal
of System Architecture, vol. 53, no. 7, pp. 339–354, 2007.

[29] S. Kim, C. Im, and S. Ha, “Efficient exploration of on-chip bus archi-
tectures and memory allocation,” inProc. of the 2nd IEEE/ACM/IFIP
international conference on Hardware/software codesign and system
synthesis (CODES+ISSS ’04), 2004, pp. 248–253.

[30] M. Dorigo and T. Stützle,Ant Colony Optimization. MIT press, 2004.
[31] D. Merkle, M. Middendorf, and H. Schmeck, “Ant colony optimization

for resource-constrained project scheduling,”IEEE Transactions on
Evolutionary Computation, vol. 6, no. 4, pp. 333–346, Aug. 2002.

[32] C.-W. Chiang, Y.-Q. Huang, and W.-Y. Wang, “Ant colony optimization
with parameter adaptation for multi-mode resource-constrained project
scheduling,”J. Intell. Fuzzy Syst., vol. 19, no. 4,5, pp. 345–358, 2008.

[33] G. Wang, W. Gong, B. DeRenzi, and R. Kastner, “Ant ColonyOpti-
mizations for Resource- and Timing-Constrained OperationScheduling,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 6, pp. 1010–1029, June 2007.

[34] G. Wang, W. Gong, B. DeRenzi, and R. Kastner, “Application parti-
tioning on programmable platforms using the ant colony optimization,”
Journal of Embedded Computing, vol. 1, no. 12, pp. 1–18, 2005.

[35] P.-C. Chang, I.-W. Wu, J.-J. Shann, and C.-P. Chung, “ETAHM: An
energy-aware task allocation algorithm for heterogeneousmultiproces-
sor,” Proc. of the 45th ACM/IEEE conference on Design Automation
(DAC ’08), pp. 776–779, 2008.

[36] “PandA framework, http://trac.ws.dei.polimi.it/panda.”
[37] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,”

in Proc. of the Sixth International Workshop on Hardware/Software
Codesign (CODES/CASHE ’98), Seattle, WA, Mar. 1998, pp. 97–101.

[38] “NXP. highly integrated, programmable system-on-chip (SoC). Avail-
able at http://www.nxp.com/products/nexperia.”

[39] “Texas Instrument. OMAP Applications Processors. Available at
http://dsp.ti.com.” [Online]. Available: http://dsp.ti.com

[40] “ATMEL D940HF chip. Data sheet available at http://www.atmel.com.”
[41] “hArtes project, ,” Available at http://www.hartes.org.
[42] “MORPHEUS project, ,” available at http://www.morpheus-ist.org.
[43] M. Schmitz, B. Al-Hashimi, and P. Eles, “Cosynthesis ofenergy-efficient

multimode embedded systems with consideration of mode-execution
probabilities,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 24, no. 2, pp. 153–169, Feb. 2005.

[44] “COIN-OR (Common Infrastructure for Operations Research),”
Available athttp://www.coin-or.org.

[45] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, Mass.: Addison-Wesley, 1989.

[46] C. Gagné and M. Parizeau, “Open BEAGLE: A New VersatileC++
Framework for Evolutionary Computation.” inGECCO Late Breaking
Papers, 2002, pp. 161–168.

[47] Y. Lam, J. Coutinho, W. Luk, and P. Leong, “Mapping and scheduling
with task clustering for heterogeneous computing systems,” in Proc. of
Int. Conf. on Field Programmable Logic and Applications (FPL ’08),
Sept. 2008, pp. 275–280.

Fabrizio Ferrandi received his Laurea (cum laude)
in Electronic Engineering in 1992 and the Ph.D.
degree in Information and Automation Engineer-
ing (Computer Engineering) from the Politecnico
di Milano, Italy, in 1997. He has been an Assis-
tant Professor at the Politecnico di Milano, until
2002. Currently, he is an Associate Professor at
the Dipartimento di Elettronica e Informazione of
the Politecnico di Milano. His research interests
include synthesis, verification simulation and testing
of digital circuits and systems. Fabrizio Ferrandi is a

Member of IEEE, of the IEEE Computer Society and of the Test Technology
Technical Committee.

Pier Luca Lanzi was born in Turin, Italy, in 1967.
He received the Laurea degree in computer science
in 1994 from the Università degli Studi di Udine and
the Ph.D. degree in Computer and Automation Engi-
neering from the Politecnico di Milano in 1999. He
is associate professor at the Politecnico di Milano,
Dept. of Electronics and Information. His research
areas include evolutionary computation, reinforce-
ment learning, machine learning. He is interested in
applications to data mining and computer games. He
is member of the editorial board of theEvolutionary

Computation Journal, the IEEE Transaction on Computational Intelligence
and AI in Games, andEvolutionary Intelligence. He is also the editor in chief
of the SIGEVOlution, the newsletter of the ACM Special Interest Group on
Genetic and Evolutionary Computation.

Christian Pilato received his Laurea in Computer
Engineering from Politecnico di Milano, Italy, in
2007. He is currently a third-year PhD student
in Information Engineering at the same university.
His research interests include high-level synthesis,
evolutionary algorithms for design space exploration
and multi-objective optimization, and multiprocessor
designs.

Donatella Sciuto received her Laurea in Electronic
Engineering from Politecnico di Milano and her PhD
in Electrical and Computer Engineering from the
University of Colorado, Boulder. She is currently a
Full Professor at the Dipartimento di Elettronica e
Informazione of the Politecnico di Milano, Italy. She
is member IEEE, IFIP 10.5, EDAA. She is or has
been member of different program committees of
ACM and IEEE EDA conferences and workshops.
Her main research interests cover the methodologies
for the design of embedded systems and multicore

systems, from the specification level down to the implementation of both the
hardware and software components, including reconfigurable and adaptive
systems. She has published over 200 papers. She has served asAssociate
Editor of the IEEE Transactions on Computers, and serves nowas Associate
Editor to the IEEE Embedded Systems Letters for the design methodologies
topic area and as Associate Editor for the Journal of Design Automation of
Embedded Systems, Springer. She has offered several technical services to
IEEE: in particular she has been in the executive committee of DATE for the
past ten years and she has been Technical Program Chair in 2006 and General
Chair in 2008. She is General Co-Chair for 2009 and 2010 of ESWEEK. She
has served also as executive committee member of ICCAD for three years
and has served a 2 years term as VP of Finance for the Council ofEDA, for
which she serves as President elect for the next two years. She has received
different IEEE service awards and the Outstanding Contribution Award from
the Computer Society in 2009.

Antonino Tumeo received his Laurea in Informa-
tion Engineering in 2005 and the PhD in Infor-
mation and Automation Engineering in 2009 from
Politecnico di Milano, Italy. His research interests
include system level design and simulation of multi-
threaded/multiprocessor and reconfigurable architec-
tures, hardware-software codesign, FPGA prototyp-
ing and GPGPU computing. He is currently a Post
Doc Research Associate in the High Performance
Computing group at the Department of Energy’s
Pacific Northwest National Laboratory.

