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Abstract—To exploit the power of modern heterogeneous

multiprocessor embedded platforms on partitioned applicdéions,
the designer usually needs to efficiently map and schedulel @ahe
tasks and the communications of the application, respectin the
constraints imposed by the target architecture. Since the blem

Scheduling and mapping are strongly interdependent and
NP-completeproblems [2]. So, they cannot be efficiently
solved with exact algorithms and heuristic methods, able to
find good solutions in reasonable time, are usually preferre

is heavily constrained, common methods used to explore suchSeveral works [3], [4], [5], [6], [7] have appeared in litera

design space usually fail, obtaining low-quality solutios.

In this paper, we propose anAnt Colony Optimization (ACO)
heuristic that, given a model of the target architecture andthe
application, efficiently executes both scheduling and mappg to
optimize the application performance. We compare our apprach
with several other heuristics, including simulated anneahg, tabu
search and genetic algorithms, on the performance to reachhe
optimum value and on the potential to explore the design spac
We show that our approach obtains better results than other

heuristics by at least 16% in average, despite an overhead in

execution time. Finally, we validate the approach by scheding
and mapping a JPEG encoder on a realistic target architectue.

Index Terms—Ant Colony Optimization, Mapping, Scheduling,
Communications, Multiprocessors, FPGA.

|. INTRODUCTION

H

ture to approach the scheduling and mapping of tasks and
communications. Among them, stochastic search methods [3]
[4], [5], often bio-inspired, which explore the design spac
and exploit the feedback from previous executions, have
been recently demonstrated successful. Neverthelesse the
approaches usually focus separately on one of the aspects
and fail in obtaining good overall solutions due to the very
constrained design space. Moreover, the few formulatibat t
try to solve simultaneously multiple problems, work well fo
small instances but loose effectiveness when the size of the
design space grows. General approaches, able to efficiently
generate high-quality solutions for complex applicatiams
the new generation of heterogeneous embedded architecture
are definitely required.

In this paper, we present an algorithm, basedahColony

ETEROGENEOUS multiprocessor architectures are tfptimization(ACO) [8], that efficiently solves the scheduling
de-facto standard for embedded system design [§7d mapping of tasks and communications, to reduce the total

Today, to accelerate the different parts of the applicatiorPXecution time of the entire application given a model of
they are usually composed of several general purpose, digié target architecture. Our approach, based on stocteastic
tal signal, application specific processors and reconfigara heuristic principles, differs from previous works (e.g},[[4],
devices (e.g., Field Programmable Gate Arrays - FPGA$J]) since it is able to gradually construct multiple comdin
interconnected through various communication mechanism#0ns of scheduling and mapping of tasks and communicgtions
When developing such embedded systems, the designer FRIEECt by construction, and searching around them, guetirt

to determine when sgheduling and where fhapping the

groups of operations (i.e., theaskg and the data transfers

only the non-promising zones of the design space.
The main contributions of this work can be summarized as

(i.e., thecommunicationsshould be executed, depending oﬁono"_"S: _ _
a set of constraints and dependences, in order to optimime so « it presents an ACO algorithm that reduces the execution

design metrics, e.g., the program execution time.
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time of the application by exploring different solutions fo
mapping and scheduling of tasks and communications;

o it proposes an approximation of this algorithm, intro-
ducing a multi-stage decision process which reduces the
execution time of the exploration, maintaining a good
correlation between the two problems.

« it compares the proposed variants also with common
heuristics and a mathematical formulation, demonstrating
its effectiveness to approach such complex exploration on
both synthetic and real-life benchmarks.

Finally, we also validate the applicability of our approdosh

obtained from the IEEE by sending an email to pubs-permisg@ieee.org. scheduling and mapping a JPEG encoder on a heterogeneous

MPSoC developed on a FPGA prototyping platform [9].
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Fig. 2. Sample task graph. Edges are annotated with the dmbudata to
Fig. 1. The abstract model of a target architecture. Eachpoment has 4 be transferred between source and target tasks.
units of resource associated.

) ) ~ example, we can assume that 4 units are available for each
The rest of the paper is organized as follows. In Section Yesource on each component of the architecture.

we define and formalize the problem that we address in thisgcheduling and mapping of an application should take into
work. Section Ill discusses some background work, presgntiaccount additional details of the target architecturestFir
and motivating the Ant Colony Optimization heuristic. Set e consideresource sharingwhere a single implementation
IV details our formulation, that is then evaluated in Sattid  -quId be able to execute different instances inside theiappl

Finally, Section VI concludes the paper. tion. This happens, for example, when a hardware implemen-
tation is exploited by different tasks or when differenttaafre
[I. PRELIMINARIES tasks exploit the same object code. In both cases, the @Eur

In this section, we present the basics of the problem ﬂ.@ardwarg area_and in_struc_tion memory) are consur_ned_ only
we address in this paper. In particular, we present the aistP"ce- This requires to identify the tasks (or communicagion
model of the target architecture and the partitioned appitio. that can share the implementations and correctly manage the

Then, we formalize the mapping and scheduling problem 8Hns_tra|nts on the resources. .The.n, in this work we targgt
these models. architectures as the one shown in Fig. 1, where each progessi

element features local memories. In particular, when a task
starts its execution on a processing element, the inconatey d
A. Target Architecture are read from the corresponding local memory. When the task
This work targets a general architectural modélfor ends, the produced data are transferred to the local menfiory o
a heterogeneous Multi-Processor System-on-Chip (MPSott)g processing elements of the successor tasks througleet Dir
composed as follows: Memory Access (DMA). As a consequence, data dependent
tasks mapped on the same processor do not generate any com-
munication overhead since a data transfer is not requiseit, a

where P is the set of processing elements (executing the dlft1l- Otherwise, the communication is performed through on
ferent parts of the application) addthe set of communication ©f the system busses and, through DMA, the communication
components (performing the data transfers). A simple examp'@ be overlapped with processing. In this way, only one
is shown in Fig. 1 and it is composed of four processin%dual data transfer is associated with egch_communlcatmn
elements, that communicate through a single system bus. ' owever, the extension to other cqmmunlcatlon mod_els [12]
As in the formulation of the Multi-mode Resource ConiS Straightforward. For example, with shared memories, two

strained Scheduling Problem (MRCSP) [10], each componé}ﬁtual data transfers will be considered: from the sourcallo
of the architecture has a sad of resources associatedMeMory to the shared memory and from the shared memory

These resources are then classified into two different esass© the ta_rget_ local memory. In this work we assume that the
renewableresourcesR, which return fully available after communication model is the same for all the data trar_lsfe_rs.
having been used, ambn-renewableesourcesV', for which We also assume that the e>_<ecut|on time of the communication
the quantity consumed by the execution of a job Canrﬁrly depends on the quantity of data aqd on the performance
be replaced. For example, the area of hardware compon tghe cqmponent used for the_ communication and not on the
(e.g., FPGAS) is consideretbn-renewabléf the functionality processing elements that are involved.

cannot be reconfigured. The local memory of a processor is o

usuallyrenewable since it can be reused after a task has be&n Application Model

completed. However, when specific allocation policies are The mapping and scheduling problem requires to model the
adopted (e.g., static allocation), it can becamoa-renewable multi-task application to be executed on the target archite

In the example in Fig. 1, we assume that the process@s a Directed Acyclic Graph (DAG). A DAG is a gragh=

PO, P1 and P2 have therenewableresources (e.g., data(7, E), without feedback edges, where verticEsrepresent
memories)y, ¢1 andqs, respectively. The resoureg of the groups of instructions (tasks) and the eddes 7' x T the
processoi”3 behaves ason-renewablde.g., a memory with dependences among them. An edg#,¢) € F implies that

a static allocation policy). Therefore, each compongnt A the taskt can be executed only after the taskand the data
has associated, for each resource Q, a total amount of transfer associated with this edge have been completeth. Eac
available resourced;, that represents itsapacitywith respect edge is also annotated with the amount of data exchanged from
to that resource. Tasks can be allocated on the componehts source task to the target one. A simple example of such
whose requirements of resources can be satisfied. In tha gigetask graph is shown in Figure 2. Similar graphs represent

A=PUC
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. S . L TABLE |
data-flow dominant specifications that mainly refer to stifien DISTRIBUTION OF THE EXECUTION TIMES AND RESOURCE

and multimedia applications with high parallel computatio REQUIREMENTS FOR EACH IMPLEMENTATION POINT OF THE EXAMPLE
on large blocks. In this case, their behavior can be stitical TASK GRAPH. TWO DIFFERENT TRADE OFFS ARE AVAILABLE FOR P3,
predicted and, thus, the optimization can be performed o

f PO P1 P2 P3

line to efficiently reduce the application execution timen Q| Task : it,0 : it : it,0 : ie3 : iea
the other hand, simple control constructs, such as functiphr——g 1>+ 5+ 3+—5 2+ 2 &
calls or countable loops, can be managed inlining the fancti| B 5 | 3| 10| 4] 6 [ 3| 2 |2]| 4|1
; : - c 4 | 4| 6 | 2] 4 | 2| 1 |2] 3|1
or completely unrolling the Iqop body, respe:cnvely. Thanc | M 11 2121 7 13| 3 1 1| 3
greatly enlarge the application representation but alléevs | E 0 | 3 3 1 8 3 1 3 2 1
F 3 4 7 3 2 2 1 2 2 1

efficiently optimize, for example, the different iteratmrmf
one or more parallel loops [13]. Moreover, since large béock
have usually to be transferred from one stage to the othe

efficient mapping and scheduling of communications have ?(g resourcerequired to implement the job on the admissible

be necessarily addressed. componenta;, = ~(i). Note that the implementation point

Let G — (T, E) be a DAG associated with an appIicatioAs generated only if the requirement can be satisfied by the

. ; . . i iq) < Al =~(i
and A the target architecture for its execution, which resourcgg_lrphponent,l|.e.a(z,q) —. f:dehiLeak h7(z)'| tati int
Q are classified in the s&® of renewableand the setV of Ese \Sf[‘ gesa assocuta_e t'WI eat<r:1 Ollmpbeme_n allotr_1 point,
non-renewablenes. can be obtained by estimation methods, by simulation, or

A job j is defined as an activity to be performed on a conp-y statlc_ or dynamic profiling the code of each task or
ponent of the architecture. Thus, each tagkrepresented by a communication on the target architecture.
single job and, based on the adopted model of communication,
one or more jobs are associated with each data trangfer C. Problem Definition

Thus, the entire application can be represented by @SBt | ot 7 4 and T be the set of jobs of the partitioned applica-

jobs to be executed on the componentsf the architecture. jon the abstract description of the target architectun the
~An implementation point is defined as a particular cOm-ge¢ of gl the available implementation points, respebtive
bination of resources and time required for the executioa of T mappingis defined by the functiod/ : J — T that

job j on a component,, of the architecture. In fact, each,gggciates each jop € J with the proper implementation
job can have different implementations, not necessarily §int; ¢ 1 for the execution. On the other hand, teheduling

all the components. For example, tasks cannot be assignetktgefined by the functions : J — N that associates each job
communication components and vice-versa. Moreover, sorp% J with its start time.

processing elements could not be able to execute some task

For example, a task cannot be implemented in hardwaregifoction time of the application, that is theake-spanin

it contains constructs that cannot be synthesized. Diftere, ic jar, each jobyj, assigned to the implementation point
combinations of area and execution time are usually gesera (j) = i, completes its execution at time:

for hardware solutions. Software compilers can also preduc -

different versions of the code, enabling different optiatians H; =S5(j)+4(2) 2

and resulting in different trade-offs between code size aq_(ij1 . L

performance. The sdtcontains all the implementation points, e make-sparg IS thus the over_al_l exec_utlon time of all the

available for the set of jobd on the architecturel. Table | Jobs J on the architectured, and it is defined as:

shows some examples of implementations. They represent the Z =max(H;) VjeJ (3)

requirements in terms of time (i.e., clock cycles) and reses!

for all the tasks on the processing elements of the architect Considering these equations, it is clear that the make-span

For each task, we have two different implementations on tlepends on the start time of each job and the time spent for

componentP3 (i.e., two different trade-offs for the require-its execution on the component where it has been assigned. It

ment of the resources). is worth noting that other metrics (e.g., power consumption
The functiony : I — A returns thecomponentcor- C€an be optimized designing similar objective functions.

responding to each implementation point. Note that, with To reduce the make-span, the tasks should have been ideally

this formulation, the constraint on the maximum number @ssigned to the implementations where they complete with th

components that can be used is satisfied by construction.Minimum execution time. However, the solution has to satisf

fact, it is not possible to assign a job to components thanate additional constraints. First, the mapping is considéeedible

into the architecture, since the corresponding implentiemta iff:

points will not be generated. Different jobs can also shhee t

same implementation point, modeling thesource sharing Z
The functioné : I — N associates with each implementa-

tion point: € I the execution timeor the related job on the i.e., the requirements ofion-renewableresources\' C Q

associated componeat, = (7). should not exceed the available capacity on each component.
The functiono : I x Q@ — N associates with eachNote that this equation also takes into account the resource

implementation point € I and resourcg € Q the quantity sharing. In fact, if different tasks are assigned to the same

f this paper, we focus on the optimization of the overall

o(M(j),q) <= Al Vare A geN (4)
jE€Jrar=(M(j))
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implementation point, the requirements of resources fer thpplications with feedback dependences. However, to -deter
single implementation are considered only once. mine an off-line schedule, the number of iterations has to be
On the other hand, the schedule is considerelid (i.e., known in advance and, thus, DAGs can be obtained through
the execution is correctjf each job starts its execution onlyloop-unrolling [13]. On the other hand, unrolling iterat®
when its direct predecessors have been completed and vghemiroduces a large number of tasks into the representatidn a
component is free. Then, the following constraint has atwvayor this reason, efficient and scalable methods for mappiag a
to be satisfied: scheduling DAGs become crucial.
. _ Scheduling and mapping approaches can be classified as on-
maz[Hj, avail(ag)] <= 5(5) ®) Jine and off-ligr]1e algoritﬂ?ns? Inpt%is work, we focus only dret
Vi’ € prec(j) : ax = v(M(j)) latter since, with these approaches can obtain superioltses
d, exploring a larger portion of the design space. Niemann and
Marwedel [11] presented an Integer Linear Programming)ILP
d formulation to derive the optimal solution for the mapping
and scheduling problem on DAGs, considering heterogeneous
architectures and communication costs. However, multiple

where S(j) represents the start time of the jgb(assigne
through the mapping= M (j), to the component;, = ~(i)),
Hj, the end time of the joly’, prec(j) contains all the directe
predecessors of job, and the functioruvail(a) returns the

time when the component, is available. This equation can

also be rewritten as: implementations are considered only for hardware solstion
and different communication models are not supported. Our
mazx[S(5') + (M (j")), avail(ax)] <= S(j) (6) formulation is thus more general and, consideniegewable
Vj' € prec(j) : ax = y(M(j)) andnon-renewableesources, we are able to approach a larger

) ] . class of target platforms with different constraints. Rart
where we underline that the end time of a predecessor jobyi3,re e consider multiple implementations also for sofeva
strictly related to its mapping and its start time. solutions, that is crucial when, for example, there aretfmi

Equation 6 shows that the mapping and scheduling problegy$ the memory size. Unfortunately, mapping and scheduling
are strongly interdependent. In particular, the pos$jpdf @ 5 4rhitrary DAG onto a system with limited resources is NP-
job to start is strictly related not only to its own mappinggomplete and, thus, common approaches rely on heuristics to

but also to the mapping of the jobs that have been execuifgly near-optimal solutions in a reasonable time. Moreover,
before. For example, consider two jofisand j without any hey often decompose the problem into sub-problems, i.e.,

dependence, wherg has been already mapped and schedulgdyarating the mapping from the scheduling. In particular,

on componenta;. If the job j is assigned to the samegigerent algorithms aim to find the best start times for each
componentd;, = ax), it will be sequentially executed after thejq of tasks, which mapping is given. This problem has been
job 7. Instead, if the jobs are assigned to different componeq,;ﬁdmy studied [17] and, besides exact formulations [18itth
(a}, # ax), they can run in parallel. In this case, the order of;e jmpracticable for large designs, list-based algorittare
execution of the (mapped) jobs can affect the availability ¢,5,a1ly adopted to determine a heuristic solution. Thege-al
the resources and the quality of the results. Thus, mappidg 3ithms exploit a priority list to determine the order in whithe
scheduling have to be necessarily considered at the saree tigherations are scheduled. Several methods are thus applied
In particular, the mapping should try to expose the maximugjore only the scheduling by finding the best priority, ligt
parallelism among the different jobs, limiting the content ,4ing optimization heuristics like Simulated Anneali@®p),
on the resources, and different orderings for scheduli®g th,,, Search (TS) [19] and Genetic Algorithms (GAs) [20].
jobs should be explored. We exploit the same concept to determine the priority values
for the different jobs. It is proven [21] that these explarat
Il. RELATED WORK algorithms, exploring different alternatives, outpenfoone-
Many different approaches on mapping, scheduling amstiot heuristics, despite a longer elaboration time. Thuey t
communication synthesis have appeared in literature fer tare usually preferred when the scheduling can be performed
development of applications onto multi-processor embdddeff-line. Other algorithms, instead, explore only the miagp
systems, with different models for the applications and foby determining the best processing elements for the tasks
mulations for the problems. and evaluating each solution with a deterministic scheduli
Besides DAGs, alternative models have been proposed.algorithm. Heuristic search methods, like GAs [3], TS and
particular, conditional task graphs have been introdue@ed $A [4], [5], have been demonstrated to obtain better results
optimize control-intensive applications and to explogaerce also for this problem. The Kernighan-Lin-Fiduccia-Matibes
sharing [14] and voltage scaling [15] between mutually excl (KLFM) heuristic has also been successfully adopted [22],
sive implementations. Since the behavior cannot be sligticabut with higher complexity and execution times than the
predicted, they usually attempt to optimize the average other methods. All these approaches, without considetirg t
worst-case execution time of the application, instead ef tltorrelations, potentially lead to sub-optimal solutionsda
make-span. The proposed formulation can be easily adaptedvhen applied to hardly constrained design spaces, they can
this model, just by modifying the definition of the make-spaaasily lead to constraint violations and unfeasible sohgi
and considering the mutual exclusion into the constraiots fln general, returning in the space of the feasible solutions
valid schedulings and feasible mappings. Cyclic or hidrigadl requires recovery mechanisms [23] that usually introduce a
task graphs [16] have been proposed to represent partitioméas and limit the exploration.
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Different methods have been exploited for the communpoint. At the end of each iteration, the results are ranket an
cations during the system-level synthesis [23], [24], [aBH the pheromones updated through different policies [30]. In
design space exploration [26], [27]. Some works only attemgeneral, the pheromones are updated as follows:
to minimize the transfers [4], [28] between the differerdgps —(1—p)s n )
of tasks, without considering bus contention. Other works Tey = (1= p) % Tay + €
exploit the communication synthesis during the definitidn ovherep is theevaporation rate(i.e., a parameter that controls
the architecture, usually attempting to meet the perfomaarhow fast the pheromones are reduced) anet 0 iff the
requirements by generating also complex communication idecision is contained into the best solutiers a term usually
frastructures, if needed (e.g., [26], [27]) or by analyzingroportional to the quality of the solution to maintain con-
the communications independently from the synthesis of thistency among different iterations. In this way, only thesto
components [29]. In our formulation, the bus contentiophoices are reinforced and the others are penalized through
has to be approached only with an efficient scheduling aeslaporation. The best overall solution can be thus idedtifie
mapping of the communications, since we cannot modifyhen the global heuristic will become dominant with respect
the architecture. Yen and Wolf [12] presented a classificatito the local one. Moreover, since the probability in Eq. 7 is
of the different communication models and integrated thejienerated only for admissible choices, the algorithm ig &bl
synthesis while defining the architecture, with relocatiafn avoid the decisions that would violate a constraint, reaigici
tasks and communications on the different componentseBiff the number of unfeasible solutions.
ently from many existing works that focus on a single model Recently, the ACO has been demonstrated superior to TS,
(e.g., [4], [5], [23], [28]), we are able to support platfcsm GA and SA for both the standard [31] and the multi-mode [32]
with all the communication models presented in [12] andesource-constrained scheduling problem. Different wank-
through thecommunication johseffectively determine the tended this formulation to the embedded systems design,
communication configuration for the application. Moregvegonsidering mapping and scheduling separately [33], [34] o
few works (e.g., [24]) consider the resource requirements fsimultaneously [35]. However, these formulations are able
the communication links and different implementations ate approach only specific sub-problems of our formulation.
usually not explored for the communications. In fact, in [33], the authors propose algorithms for time-

In conclusion, we definitely require constructive methoddnd resource-constrained scheduling for High Level Syaighe
that are able to efficiently explore all the dimensions of thidat, exploiting the Max-Min update heuristic, determihe t
problems to obtain efficient implementations for the agplic priorities for the scheduling or the resource allocatioheyr
tions on a large class of target platforms. also discuss an extension for supporting multiple modes and
constraints due to non-renewable resources, but communica
tions are not considered. On the other hand, the same authors
in [34] apply the methodology to assign application taskihieo

Ant Colony Optimization (ACO) is a modern techniqueprocessing elements of a heterogeneous multiprocessbr wit
based on a stochastic decision process, originally intneconfigurable logic. However, their approach uses the ACO
duced [8] for the Traveling Salesman Problem. It has beenly for task mapping, and then schedules the resulting task
inspired by the cooperative behavior of ants when searchiggaph with priority values obtained with a standard heigrist
for food. In particular, all the ants start from their nesirgp (i.e., mobility and total tardiness). This means that they
in random directions, depositing a trail pfieromoneAs time  explore different mapping solutions, but only one schetyis
goes by, the shortest path to the food will contain more amdtained for each of them. In [35], the ACO aims at reducing
more pheromones, motivating the other ants to follow ththe power consumption of the system, with a proper allooatio
path instead of longer routes. The ACO heuristic is suitabte# the tasks. However, all the components are considered as
for problems in which the solution can be found througkenewableand the constraints that may be imposed by the
subsequent decisions. The quantity of pheromone, stoted itarget architecture (i.e., area of the hardware devices) ar
a matrix, represents the probability, for each decisiorieéml not considered. Moreover, multiple implementations aré no
to a good solution. All the decisions are initialized with &onsidered, as long as the communications. In conclusion,
uniform probability. Then, iteratively, a certain numbef othere is no formulation of ACO for the concurrent mapping and
routines (ants) are started to construct different sahsticAt scheduling of heterogeneous embedded systems that isoable t
each decision point, a probability is generated for eacthef tconsider also communications and multiple implementation
admissible choices as follows: for each job to be performed.

A. Ant Colony Optimization

@ B
(72,41 * (120 7 IV. PROPOSEDMETHODOLOGY

Pzy =

2aieo, [radl® * [ne)? In this section, we detail our ACO-based algorithm to
where x is the present point in the decision process, ammkrform the mapping and the scheduling of both tasks and
y is the candidate destinatiom, is a problem-related local communications on a heterogeneous MPSoC. First, we outline
heuristic (i.e., calculated every time a probability is gexted), the overall methodology and we discuss how the concept of
while 7 is the global heuristic, determined by the pheromonpheromone trails is applied to the specific problem. Then, we
Both contributions, weighted through and 3, influence the apply it to the illustrative example introduced in Sectidn |
decision of the ant(2,, contains all the choices at the preserand, finally, we discuss some problem-specific optimization
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Algorithm 1 Pseudo-code of the proposed methodology. set can be updated with the jobs that have become eligible

1: generate initial solution (line 8), based on the job selected at life In particular,

2. 7% — Zy for communication jobs, the remaining jobs associated with
3: initialize pheromone values with Zj the same data transfer are added, if any. On the other hand,
4: for each ant! into the colonyL do for task jobs, the successor tasks become available, @dvid

5. initialize candidate that all predecessors have been analyzed. Furthermore, as
6:  while candidate is not emptydo discussed above, the incoming communications can be also
7: select and assign jopto i processed, if the related predecessor is assigned to aediffe

8 updatecandidate component. The loops-9 is repeated until all the tasks

9: end while and the communications have been assigned. The solution
10:  estimate solution is evaluated (linel0) and it replaces the current best one
11 if Z; < Z* then if it is improved (line 12). Note that the methodology can
12: VARSI be applied to other metrics just by designing a solution
13:  end if estimation consistent with the optimization criterionisionly

14: end for required to design local heuristics that efficiently leaé th
15: if exploration is not terminatethen decision process. If the exploration is not terminated. (¢hg

16: update pheromone values maximum number of generations or evaluations has not been
17:  perform random move with probability, reached), the pheromones are updated (lifgand a local

18: returnto 4 search heuristic is applied (ling7) to the best solution, to

19: end if improve its optimization. In particular, changing the piasi

20: return Z* of the jobs inside thérace results in different priority values

for the scheduling. On the other hand, an unfeasible salutio

can be obtained by changing the mapping of the jobs. In any
A. Methodology Overview case, the current best solution is substituted only when the

local search finds a better solution. Finally, a new ant gplon

Our proposal separates the construction of the solutian fras launched and, at the end of the exploration, the best vera
its evaluation. In fact, to determine the effective staretiof solution is returned (lin@0).
each task, we need to know when the incoming communica-
tions have been completed, if needed. However, due to ePheromones and Heuristics
assumptions of the communication model, a communication
between two data-dependent tasks is needed and thus it hd® our work, the pheromones are stored into a matrix (i.e.,
to be analyzed only if the related source and target tasks h&ye pheromone structujewhich represents, for each possible
been assigned to different components. For this reasohgin step and for each combination of candidate jobs and corre-
first step, each ant gradually constructs the solution, singo sponding admissible implementation points, the probigbili
one job after the other, assigning it to a proper impleméntat that this decision would lead to a good final solution. Let
point and analyzing the communications only after the eelat|/| and |/| be the number of jobs and the number of all
source and target tasks. Then, the evaluation of the olotairlee admissible implementation points for the job, respedbti
solution is based on the Serial Generation Scheme (SGR)pposing that in the worst case all the jobs have to be
schedule [31], that constructs a complete solution regmectanalyzed, this matrix has a size pf| x [J| x |I| elements.
the precedences and following a priority rule. In particulaWe then adapted the Equation 7, considering, at each decisio
the priority values correspond to the order in which the jolintd (line 7), the probability to assign a candidgteo one
have been selected by the ant, allowing to explore differe®itits implementation points as follows:
scheduling solutions along with the job assignments to the a 18
. : : . _ [7a,5,:)% * [Md,5,4]
implementation points. The pseudo-code of our formulaison Dd,ji = g —3 ©)]
described by Algorithm 1. 2o nlragein)® * la e o]

In detail, given the input task graph, the algorithm geressratwheren is a local heuristic, which suggests how good is to
an initial solution (linel), for example, by assigning all theassign;j to i, and 7 is the global heuristic, which maintain
task jobs to the same component, provided that it is ablformation of the decisions taken by the previous ants.
to execute all of them, and all the communications to thEhis value is normalized with the sum of the values for all
associated local memory. It represents a fully-softwaasifde admissible choices to give a probability. Then, a roulettee!
solution; its make-spar¥, is used to initialize the current extraction is performed and, at each step, the result of the
best solution (line2) and the pheromone values (li®, decision process is a job assigned to one of its admissible
with an appropriate valuel(Z,) to better scale the problem.implementation points.

After initializing the pheromones, the first colony éf ants A good local heuristic suggests decisions when the global
is launched (lined). Each antl is initialized (line 5) with reinforcements are similar and, thus, drives the searclodaol g
the jobs without predecessors as the set of initial canesdatsolutions from the beginning, allowing faster convergence
From them, at each iteration, a job is selected and assigrigde. To compute the local heuristig; ;; we exploit infor-

to a proper implementation point (lirg. Then, the candidate mation about the utilization of the resources. In particukt
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£ TABLE I Candidates Trace Candidates Trace
VALUATION OF THE SOLUTION BASED ON THE PRIORITY VALUES GIVEN ®EE y iy > B CiF2) >
BY THE ANT EXPLORATION AND REPORTED INSIDE ROUND BRACKETS 2; gg@@ ;;
Step Candidate set Scheduled Task 3) 9
T, T ) 1
ii - - - A,
i | B(3)-E(4)-A,D(@6)-C,F(10) B ©) 5) 11)
v | E(4)-A,D(6)-B,D(9) - C, F(10) E 6)

v | A,D(6)-E,F(8)-B,D(9) - C,F(10)
vi E,F(8) - B, D(9) - C, F(10)
vi | B,D(9) - C, F(10)

S mmx
EICRACEIS

vi | D(5) - €, F(10)

X | C,F(10)- D,F(11) P2 I
X D, F(11) Bus | |aD| |eF| [BDcH DF

xi | F(7) F A

P3 - -

D

avail*(ay) be the sum of execution times of the jobs assigned

to a component, andH ¥ the finishing time ofj in this data- 234567809101112

structure, we compute the local heu”s’m@ﬂ as follows: Fig. 3. Trace of the selection performed by the ant and trete@lschedule.
1 Note thati; 5 represents the implementation points on the system bus.

maz[H,, avail* (y(i))] + (i) (10)

Nd,j,i =

. ) .
Wherej _represfenrt]s theb pr$decessor§joandh6(z) the ex- At the beginning the requirements for all the implementatio
ecution ‘tlme 0 t € Joby 1 executed on the gqmponentcan be satisfied by the components. Thus, at step 1, the ant
ai = (¢). This metric generates larger probabilities for th‘{: n choose among 15 different combinations of jobs and
combinations of jobs ar_1d |mpIe_mentat|on points th"’_‘t Sho‘_"i plementation points, which probabilities are generatesed

be able to complete their execution as soon as possibley giyg, Equation 9. Since a roulette wheel selection is performed

the estimated availabilityvail®(ax) of the target resource:.  (jina 7). the selected combination is not necessarily the one
Obviously, the information is not complete. In fact, sinbe t with the highest probability. In our example, we assume

communications betweejﬁ and; will be apalyzed in the fol- that the ant selecté to be implemented oriy 3 (i.e., the
lowing, the related mapping and scheduling can lead to a Va5t implementation onP3) and thus the related resource is

dl_f;flerent I:_solut;](_)n.dln _that caze, _the Enal solution de_vakmat reduced to two units since it ison-renewableNo incoming
will penalize this decision, reducing the correspondingbal .., nications are required by and the candidate list is

heuristic and avoiding to take again this decision in therit updated only witC that becomes available (lir&. Now, only
. Note that’.'f the J.Obj cannot be a53|gned_, at Stép?" the  ywo units of the resourceg; are available o?3. When, in step
implementation point (|.e.,_the correspondmg rgqum_ementi the new probabilities are generated, the probabilitsteel
of resources cannot be satisfied), that combination willbeot t0 iy 5, which requires 3 units, is not generated, avoiding the

coknsgert_eq n th: rouletltg lwhgel ("%=-7’if: O_)l,glavouljln_g 10 ant to select that combination. Let us assume that the ant
take decisions that would lead to an unteasible Solution.  ggjecisc, assigning it to the implementatioi: 4. There is

After the ants of a colony have.constructed thejr SOluqong’communication among andC, but these are both assigned
these are ranked. Then, the mapping anq scheduling Chdlce?oothe same component. Therefore, this communication will
the best s_quuon of the _col_ony_, along with the cur_rent OWeraDe directly assigned to the associated local memory and not
best_ solution of the optimization process, are reinfordad. considered as a candidate job. At step 3, oBlgnd E are
particular, the pherpmones are upc_iatedr@@ ~ (1._ p)* __available. There is only one unit of resourgg on P3, so
Tdji + € Wherep is the evaporatlonl rate associated wit nly the implementationss 4 andiy 4 are admissible o#3.
the p_heromone structure aQQ: P> 7= if the decision is The ant select8 on ip 7and, siﬁceA and B have been
contained |nt.o the best solution, having make-sgan and both analyzedD becomes available. So, at step 4 the ant
e = 0 otherwise. may choose amon@ and E with all the implementations

for renewable resources (i.€p .0, ip.1, ip,2, iE,0, i1 and
C. lllustrative Example ip.2) and only with the implementations, 3 andig 4 for the

In this section, we apply our methodology to generate ameisourceys, i.e., the ones which requirements can be satisfied.
evaluate an ant solution for the task graph in Figure 2 on tfiie ant select& and assigns it tdg ;, and, at step 5D is
target architecture in Figure 1, based on the annotationstlire only job in the candidate set. The ant assigns this job to
Table I. In this example, we assume, for simplicity, that (the implementatiorip 3. D requires two data transfers, and
the communication delays equal to a single time unit (ite, tconsequently the two job&A, D) and (B, D) are added to
bus takes one cycle to transfer a unit of data) and (ii) task®e candidate list. Now the candidate set is composed of the
do not share implementation points. jobsF, (A, D) and(B, D). The communicatiof4, D) is then

In our algorithm, the ant initializes the candidate setg(ln selected at step 6 and tabBkis assigned tar o at step 7. At
of Algorithm 1) with the jobs that have no dependences (ethis point, (B, D), (C, F), (D, F) and (E, F') are available
A, B and E as shown in Fig. 3). Then we have to seleand, in the remaining steps, the ant selgdis F'), (B, D),
and assign a job to an implementation point for the executiof, F') and (D, F'), respectively.
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The resulting trace is shown in Figure 3. Note that the stepThe main advantage of this two-stage decision process
in which each job has been selected will correspond to tige the reduction of the number of probabilities generated
priority value for its scheduling. The associated makeagan and the dimension of the pheromone structure. In fact, with
be thus obtained by considering these priority values, aswsh this approach, two smaller pheromone structures are used. |
in Table 1. In particular, at each step, the job with higheparticular, instead of the matrix 47| x |J| x |I| elements,
priority will be selected and scheduled. For example, istgrt two matrices are defined: one pheromone structure for the
from the first set of candidates, the task with higher prjost scheduling, of sizéJ| x |J|, and one pheromone structure for
A, that starts at time 0 oft3. After executing4, the candidate the mapping, of siz&J| x |I|. The reduction of the complexity
set should be updated with the outcoming communicationsthe algorithm can also be verified in the previous example,
(A,C) and (4, D). However,A andC' have been assigned towhere, for example, at step the number of probabilities is
the same resource and the communicatio' is not needed. reduced from 15 to 8. In fact, 3 probabilities are generabed t
Instead,C is directly added to the candidate set, along witkelect the job inside the candidate set and, then, 5 mapping
(A, D). This procedure is iteratively applied for all the jobgrobabilities are generated for the selected job, one foh ea
inside the application specification, until the candidateis implementation point.
empty. The overall make-span is, thus, 12 time units long. Furthermore, these two matrices are updated at the end of

It is worth noting that different ant traces correspond teach generation with a different formula for each pheromone
different ordering and thus different scheduling solusiom structure. In particular, the pheromones are updated fer th
fact, for example, if the ant had been select& D) before scheduling as; ; = (1—p*)*7; ;+¢* and for the mapping as
(4, D) at step 6D could have started only at time 7. In fact7” = (1—p™)«7/"+€™ wheree® = p*x = ande™ = p™x =
(B, D) can start at time 5 an@i4, D), that would have a lower if the decisions are contained into the best solution, which
priority, only at time 6, i.e., when the bus returns free.sThimake-span isZ*, and p°, p™ are the evaporation rates for
shows how the scheduling of the communications can affebe two structures. Nevertheless, with this formulatidme t
the final performance of the application and how the proposgdormation is spread into two different matrices and the

approach can explore different combinations. correlation among the two decisions could be affected. This
- o issue will be experimentally evaluated in the following tiaa.
D. Problem Specific Optimizations Finally, we added an enhancement, that is fbigetting

To reduce the memory requirements of tpheromone factor [31], to reduce the possibility of converging to local
structureand, thus, the elaboration time, we also introducedinima. In particular, at the end of each colony, with a low
a two-stage decision procedsr the ant. In particular, two probability, the heuristic substitutes the current bestitgm
matrices are created to store the pheromones and, at eaith the best trace of the current colony, even if it is worse.
scheduling step, two probabilities are calculated. Irstel Obviously, the overall best is preserved, in case no othiteibe
performing the probability extraction on all the combioats solutions are found. The idea is that, if there are no other
of candidate jobs and the related implementation points, Wweeresting points in the neighborhood of the current oVera
initially allow the ant to select the job to schedule among ttbest, the algorithm reached a minimum and the evaporation
candidate ones, using the formula: rate slowly forces all the ants to converge to it. If it is omly

[ 1%« 5 .]% local minimum, this may early cut out the possibility to find
P, = d;J d’JS 5 better solutions in other regions of the search space.
' Zk[Td,jk]a * [nd,jk]
which represents the probability that is selected at the V. EXPERIMENTAL EVALUATION

decision pointd, wheren® and r* are the local and global
heuristics specific for the scheduling problem, respelstive
our implementationy? is a linear combination of the mobility

We implemented the methodology in C++ inside the PandA
framework [36] and then evaluated our algorithm by applying
) h h | it to several synthetic test cases and a real-life exanspheait-
and the average execution time of the job on all the admssibi, 58 on realistic models of target architectures. We compare
target units. This provides a way to choose the jobs with foWg, annroaches (i.e., with one or two stages in the decision
mobility (i.e., higher impact on the critical path) or with a,qcess) with three other common heuristics for the same
larger use of resources. The key idea is that, later, it iEas, ohlems in terms of time and number of evaluations reqdeste

to fi_nd place_for small or_short j_obs. Ir_1 the same step, the %treach the optimum value, quality of the exploration ressul
decides the implementation point assigned to the seleoted |4 overall execution time of the approaches. Finally, to

J with the formula: validate the effectiveness of the methodology on real-vorl
I O U applications, we applied our algorithm to develop the JPEG

Py = ™ ™
S e )P encoder on a real platform.

Y RAC

which expresses the probability to mapon the implemen- .

tation pointi. n” and ™ are the local and global heuristics® Experimental Setup

specific for the mapping problem, respectively: is a linear ~ We evaluated our approach on synthetic task graphs and
combination of the execution time of the jgbon the imple- on real-life benchmarks. In particular, we randomly gen-
mentation point and a metric representing the global use adrated several realistic task graphs using Task Graph For
this component with respect to the number of candidate jobsee (TGFF) [37], which also allows the specification of a
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FPGA Memory

MPSoC Virtex-II PRO
Fig. 4. The model of the target architectusd.

model of the target architecture. In the first experimerits, t
architecture, namelyll and shown in Fig. 4, is composed of
four processing elements: a Digital Signal Processor (D&iP)
ARM processor and a Virtex-1l PRO XC2VP30 FPGA, that
integrates a PowerPC (PPC) processor. We did not exploft 5 Task graph of our JPEG parallel implementation.

partial dynamic reconfiguration and, thus, a task mapped TABLE Il

on the FPGA cannot be removed. The area of the FPGPrrrorMANCE OF THEJPEGTASKS ON THE RESOURCES AVAILABLE ON

thus represents @on-renewableresource. The processing OUR TARGET PLATFORMA3.
elements communicate through a DMA engine and, for the —
reconfigurable logic, we adopted a model similar to [6]. In Phase PPC MB Time | #Slices
i - Read 93,880,530 | 42,203,215 - -
part|cular, the tgsks access a common memory (e.g., FPGAs Ros P 157674 | 486,354 200
internal memories - BRAMs) through an internal shared bus,| pownsampling (DS) 365,548 166,893 - -
i i i DCT 38,415,925 | 10,465,720 231,377 2,760
which makes the access times independent of the pIacemertQuamizé1ti0n ©12)| 47603.208| 4388504 £ ¢
of the tasks and negligible with respect to external trassfe EC 109,677,075 38,008,544

Examples of similar platforms are the NXP Nexperia [38],
the TI's OMAP [39] and the latest ATMEL DIOPSIS [40],
adopted by several European Projects [41], [42] as targriular, it deals withrenewableand non-renewablaesources
platforms with the same assumptions. For each task, perf@gistead of software and hardware ones and with the mapping
mance annotations are generated on each component of gheémplementations rather than components. We Geih-
target architecture. In particular, each task takes HABD Or [44] to solve the instances associated with the benchmarks.
clock cycles on the ARM, 1,088400 cycles on the DSP, Ant Colony Optimization (ACO): this is the approach
2,100£700 cycles on the PPC and 36000 cycles on the proposed in this paper and described in Section IV, both 1-
FPGA. For the FPGA, which total available area has beemge and 2-stage. In the 1-stage process; 3 = 1 (i.e.,
configured to 15,360 slices (i.e., basic configurable elésn@n the weights for local and global heuristics) were used aed th
Xilinx FPGAs), each task occupies a different amount ofdogievaporation rate has been set/ o= 0.015. In the 2-stage
elements based on the problem size (e.g., from A00BO0 process,a® = o™ = 3° = 3™ = 1 were used along with
slices for smaller benchmarks to 5660 slices for larger different evaporation rates for the scheduling & 0.025)
ones). Finally, each edge is annotated with a quantity cd daind the mappings™ = 0.015). The colony is composed of
(300+75) to be transferred. 10 ants for both the approaches.

We also applied our approach to a real-life example, thatSimulated Annealing (SA): the SA [4] is an adaptation
is the smartphone[43]. This benchmark is based on foutfrom the Neighborhood SearciNS), a hill-climbing algo-
publicly available applications: a GSM encoder/decodar, aithm. Unlike NS, the SA can accept inferior solutions dgrin
MP3 decoder and a JPEG encoder. For the GSM and the MB3search according to a probability function. This prabigb
applications, we target an architecture, naméfy composed starts high, and gradually drops as the temperature is egduc
of 3 processors and 2 dedicated components, with realisfithen the temperature drops below a certain threshold, the
annotations for both tasks execution and data transfeds [4@gorithm ends. Among several cooling schedules, we adopte
Finally, for the JPEG encoder, we target a FPGA prototypinge geometric scheduld{.., = oT,4). The initial tempera-
platform A3 [9] composed of one PPC, 3 MicroBlaze procesure T, is set to 250 and s, to 0.001 ¢ = 0.99).
sors and an area dedicated to hardware accelerators. Bor thiTabu Search (TS):the TS [4] is another adaptation from the
benchmark, an example of task graph is shown in FigureNeighborhood Searctthat, instead, exploits a search history
and the related annotations, provided through profilinghef tas a condition for the next moves. When generating new
source code on the target platform, are reported in Table l§olutions, the TS checks its short term memory to avoid
Each communication transfers the same quantity of data, ssarching the same neighborhotab( lis). The tabu list acts
the related costs are fixed at 3,600,000 cycles per edge. as a First In First Out (FIFO) queue: a set of freshly gendrate

To compare the approaches proposed in this paper, weighbours, not present in previous sets, is inserted ih eac
adapted some well-known heuristic methods to deal witteration. However, to avoid stopping the search in promgjsi
multiple implementation points and with communicationgob area, after some time, the tabu list is released and thamugut

Integer Linear Programming (ILP): we implemented a become eligible again. We generateneighbours with a tabu
mathematical formulation that combines [10] and [11]. Im-palist composed of sets of solutions each.
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TABLE IV
COMPARISON ON THE EXECUTION TIMES(time) AND THE NUMBER OF EVALUATIONS (#eva) OF THE SEARCH METHODS TO REACH THE OPTIMUM VALUE
(ILP Opt). ILP HAS A TIME LIMIT OF 12HOURS. WHEN THE ILP RESULT HAS NOT BEEN OBTAINED THE AVERAGE OF THE BEST VALUES ARE
REPORTEQ ALONG WITH THEIR PERCENTAGERELATIVE STANDARD DEVIATION. NUMBER OF TASKS(#Task$ AND EDGES (#Edge$ HAS REPORTED FOR
EACH BENCHMARK. DegreeREPRESENTS THE MAXIMUM NUMBER OF INCIDENT EDGES TO EACH TASK

ACO

Bench i;%sf’sl #Degree ILP 2-stage 1-stage SA TS GA
9 Opt. time (s) time (s) [ #eval. time (s) #eval. time (s) #eval. time (s) #eval. time (s) #eval.
S1 5/4 2 3,027 0.22 0.20 365 0.15 318 0.23 4,721 0.36 2,555 0.19 1,020
S2 5/4 3 2,622 0.61 0,72 1269 0.19 383 0.61 | 12,911 1.04 7,077 1.05 5,235
S3 5/5 4 3,167 0.32 0.10 188 0.12 239 0.18 4,048 0.36 2,592 0.35 1,820
S4 10/9 2 4,525 17.41 2.10 2,787 2.90 2,931 (5,747 £ 6.25%) 20.12 | 80,887 6.47 | 23,172
S5 10/13 3 5,695 32.59 3.36 3,018 4.70 4,631 (6,814 + 2.34%) 10.25 | 41,497 (6,041 + 2.30%)
S6 10/12 4 5,644 8.32 2.82 2,700 4.12 4,100 (6,458 + 2.48%) 6.87 | 25,093 3.33 | 10,798
S7 15/16 2 7,318 7,152.89 (7,830+ 0.97%) (7,491 + 1.91%) (11,338+ 8.12%) (8,366 + 3.23%) (7,957 + 1.71%)
S8 15/22 3 8,358 711.78 (8,814 + 0.22%) (8,905 + 2.51%) (12,776+ 2.50%) (9,220 £ 3.75%) (8,884 + 1.81%)
S9 15/26 4 9,618* | 29,766.76 (10,120+ 1.31%) 3351 | 12,505 (14,237+ 5.75%) 9.17 | 17,277 (10,293+ 2.27%)
S10 20/22 2 9,289* | 24,275.33 (9,497 £+ 0.13%) (9,490 + 1.91%) (13,962+ 0.29%) (9,587 £+ 0.98%) (9,800+ 4.27%)
S11 20/32 3 9,5630* | 24,398.21 (9,795 + 2.01%) (10,019+ 1.42%) (15,089+ 4.63%) (10,326 + 2.97%) || (10,666+ 2.60%))
S12 20/30 4 11,446* | 24,297.01 30.82 | 12,002 (11,983+ 2.02%) (17,387+ 4.93%) (11,756 + 1.28%) (11,956+ 2.60%)

(* heuristic values, not demonstrated to be the optimum)

TABLE V

Genetic Algorithm (GA): a genetic algorithm [45] sim- DIMENSION OF THE PROBLEMS AND THEILP FORMULATIONS.

ilar to [23] has been implemented using tkpen Beagle

framework [46]. In our formulation, therossover operator Bench || #ops | #Tasksi#bdges || #Varabes | #Constrants
combines twoparentssolutions into an offspring one, with a L2 50 20/30 1,364 3,585
i ili i i L3 130 50/80 10,409 28,363
certain p_rpbabllltyPc (set to 0.70). Basmally, crossover aims » Pyt gy 25830 58315
at exploiting the best features of two existing solutions to L5 268 100/168 41,856 113,221
1 i L6 519 200/319 166,750 465,162

_ger_1erate a new good solution. F_or the mapping, crossover| ° 258 300/468 370873 1047 848
is implemented as a standard single point crossover, that| s 1,258 500/758 1,042,958 2,961,318
mixes the bindings of the jobs, and as a one-point topolbgica L9 1,868 | 75011118 2,364,976 6,746,779
; P i} mp3 32 16716 436 1,073

crossover for what concerns the list of priorities. Tmelta_ _ gsmodec % 3450 3703 10,039
tion operator explores the design space around an existing | gsm-enc 134 53/81 2,295 5,129
solution. When applied to a parent solution, it generates an [ _ipeg [[ 101 | 51/50 ] 6,281 | 26,239 |

offspring solution introducing small random changes in the
solution encoding, with a uniform probability. In partiew] the
priorities are modified with a variant of trehift mutationfor ILP formulation with a time constraint of 12 hours. When the
the permutation representation, while the mapping asstgms problem size grows over the 30 jobs (S9-S12), ILP reaches a
jobs to a different implementation point among the avadabWalue that is not proven to be optimal and thus we reported the
ones. The population is composed b0 design solutions.  obtained values. Finally, we applied the different expiiora
All these approaches feature local searches of the curremthods to these benchmarks and, for each of them, we
solution. The SA and the TS are based on this conceptrteasured the timeti(ne and the number of evaluations
perform the exploration, but also the ACO (during the locd#eva) needed to reach the value computed by ILP. Average
optimization of the best solution) and the GA (in the mutatioresults, along with Relative Standard Deviation (RSD).(i.e
operator) can perform them. Several heuristics can beeagplithe dispersion of the results obtained in the different fuos
in particular, to identify which jobs to change [47]. Sincéhe average), are reported when the heuristics were not able
we are interested in the comparison of the search methotsreach these values within 100,000 evaluations.
we decided to apply the same basic random swap to all theThe results in Table IV show that our approach&€Q 1-
approaches. This avoids a bias in the solutions and, anyhetgeand ACO 2-stagp can reach the optimum values much
the improvements that can be obtained with other heuristifsster than the other heuristics, both in terms of execution
would affect in the same way all the approaches. time and number of evaluations. Moreover, both ACO variants
For all the explorations, we averaged the results over 88ach the ILP values in more cases and perform better than the
runs of each task graph on a Intel Xeon X5355 (2.66 GHxther search methods also when they are not able, due to the
and 8 MB of L2 cache) with 8 GB RAM. complexity of the exploration, to reach the ILP values {i.e.
S7-S12). Moreover, the 2-stage ACO seems to scale better
with respect to the 1-stage formulation when raising the siz
of the problem, both in terms of quality of the solutions and
In the first experiment, we compared the search methodispersion of the results. Comparing the other methods, the
on the execution time and the number of evaluations requirkil-climbing methods are usually very fast in small instas
to reach the optimum value. We generated 12 relatively smédis shown in particular by the SA results) but the number of
benchmarks, namely S1-S12 in Table IV, varying the numbierations required to reach the ILP values are usually huge
of tasks and the maximum number of incident edd@=gfeg. In particular, the SA does not exploit any feedback and one
Then, we computed the optimum valukR Opt) with the provided by the TS (i.e., the tabu list) is not able to devise

B. Results
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TABLE VI
COMPARISON ON THE SEARCH METHODS ABOUT THE QUALITY OF THE RESITS.

ACO
Bench 2-stage 1-stage SA TS GA
Av. Best£ %RSD Av. Best£ %RSD | (%diff) Av. Best£ %RSD | (%diff) Av. BestE %RSD | (%diff) Av. Best£ %RSD | (%diff)
L1 5,831+ 4.48% 5,705+ 2.87% -2.16 7,702+ 7.48% +32.09 5,854+ 3.25% +0.39 5,832+ 2.07% +0.02
L2 12,312+ 3.79% 12,103+ 3.08% -1.69 20,790+ 6.28% | +68.86 12,634+ 5.30% +2.61 12,779+ 3.93% +3.80
L3 29.5984 4.79% 29,8724+ 3.15% +0.97 66,053+ 5.52% | +123.27 30,715+ 7.85% +3.82 35,4454 2.69% | +19.81
L4 47,9034 5.40% 49,395+ 5.24% +3.11 106,280+ 5.11% | +121.86 54,746+ 5.15% | +14.29 59,495+ 3.27% | +24.20
L5 60,163+ 3.28% 62,425+ 4.12% +3.76 127,248+ 7.53% | +111.51 73,223+ 2.54% | +21.71 77,333+ 2.45% | +28.54
L6 127,151+ 3.87% 136,991+ 6.76% +7.74 279,822+ 4.76% | +120.07 168,690+ 13.9% | +32.67 166,557+ 2.02% | +30.99
L7 195,897+ 3.32% 214,641+ 6.58% +9.54 438,762+ 2.56% | +123.98 261,480+ 5.37% | +33.48 249,584+ 5.98% | +27.41
L8 363,093+ 4.03% 408,765+ 15.3% | +12.58 751,281+ 1.96% | +106.91 465,115+ 14.0% | +28.10 418,938+ 4.26% | +15.38
L9 521,399+ 2.51% 536,791+ 1.94% +2.95 1,124,864+ 1.16% | +115.74 680,810+ 0.96% | +30.57 620,041+ 5.20% | +18.92
mp3 62,164+ 0.04% 64,976+ 0.01% +4.52 113,243+ 15.1% | +82.17 71,591+ 10.4% | +15.17 65,292+ 8.34% +5.03
gsm-dec 36,439+ 1.92% 38,523+ 1.25% +5.72 50,932+ 8.41% +39.77 46,424+ 14.1% | +27.40 37,935+ 2.68% +4.11
gsm-enc 92,384+ 3.02% 94,386+ 3.24% +2.17 170,133+ 9.82% +84.16 165,467+ 18.5% | +79.11 106,888+ 5.21% | +15.70
[ jpeg || 220,627KE 4.37% || 251,610KE 4.81% | +14.04 [[ 562,223KE 9.50% | +154.83 || 238,721KE 4.09% | +8.20 || 245,854KE 4.93% | +11.43 |
[ Avg. | +4.87 ] [ +98.97 [] [ +22.89 ] [ +15.80 |
TABLE VII TABLE VIl
PERCENTAGE OF UNFEASIBLE SOLUTIONS GENERATED BY EACH SEARCH  COMPARISON AMONG THE OVERALL EXECUTION TIME OF THE SEARCH
METHOD WHEN EVALUATING 25,000SOLUTIONS. HEURISTICS PERFORMING25,000EVALUATIONS.
ACO ACO
Bench 2-stage | I-stage SA TS GA Bench 2-stage 1-stage SA TS GA
(%) (%) (%) (%) (%) time (s) time (s) time (s) time (s) time (s)
L1 0.27 0.29 || 93.38 4.27 9.36 L1 8.40 12.38 0.88 4.41 9.95
L2 0.30 0.33 97.92 6.57 15.44 L2 27.39 45.87 1.04 9.47 18.96
L3 0.33 0.33 99.84 21.06 25.37 L3 117.02 251.43 1.52 28.23 48.22
L4 0.32 0.32 || 99.84 || 20.78 || 27.97 L4 338.27 523.48 2.15 51.10 78.53
L5 0.30 0.30 || 99.63 5.02 || 18.98 L5 479.37 764.89 3.06 86.26 119.37
L6 0.32 0.34 || 99.58 || 30.82 || 12.86 L6 1,428.66 2,459.86 6.45 237.21 326.23
L7 0.34 0.35 99.56 20.51 19.35 L7 2,883.99 5,178.30 10.58 606.39 541.28
L8 0.35 0.35 99.52 52.30 32.22 L8 7,384.71 13,499.47 24.68 999.67 998.47
L9 0.33 0.34 || 99.32 6.32 || 33.72 L9 14,021.67 || 26,385.01 65.93 || 4,044.71|| 1,918.59
mp3 0.45 0.40 91.63 3.30 12.86 mp3 22.39 23.18 0.91 5.21 8.24
gsm-dec 0.34 0.27 || 95.77 4.74 || 17.50 gsm-dec 79.38 111.46 1.64 15.66 22.17
gsm-enc 0.56 0.55 || 98.38 || 10.76 || 24.47 gsm-enc 86.33 108.46 1.49 19.90 27.70
[ dreg ] 0.10 | 0.08 ][ 9892 [ 1.95]] 7.33] [ dpeg ] 14417 ] 176.72 ] 111 ] 19.58 ] 25.77 |

which are the .sub-structures that can pr0\_/|de good solss_mo ct, the feedback obtained by the previous evaluation®igm
On the opposite, the GA reaches the optimum values in t

evant than what reported by the other methods. In paaticu
Re ACO suggests the better solutions as the GA, but also the
tb'etter sequence of decisions to obtain that solution. Toere
it is much easier to identify partial sub-structures thamh ca
contribute to the identification of a good solution. In aduit

In the second experiment, we compared the same seajig 1-stage ACO better takes into account the correlation
heuristics with respect to the quality of the results onéargpetween mapping and scheduling problems, but only on small
benchmarks (namely L1-L9 along with the four real-lifeexamples (e.g.L1 and L2). On the other hand, the 2-stage
applications) described in Table V. This table reports th€co scales better with problem size since the reduced number
size of the problems (i.e., number of jobs) and the relatefl probabilities that are generated allow the heuristics to
ILP formulations. In particular, due to the high number ohe more significant during the exploration. The concept of
variables and constraints, solving these problems opymapopulation and ranking in GA (i.e., additional feedback to
was not possible even increasing the time limit to 24 hourgive the exploration) mitigates the effect of random skearc
The explorations have been thus executed until they reagf shown by %RSD values in Table VI. Moreover, it seems
the number of 25,000 evaluations since we observed that fa0scale better with the size of the problems, with better
improvements are usually obtained over that limit. results in larger example3 has still a reasonable size to be

Table VI shows, for each one of the search algorithms, tlproached with TS, but a structure difficult to be approdche
average of the best solutiondy Best obtained during the by the GA, that obtains poor results. In fact, when the GA
different runs, along with the RSD{R.S D). The 2-stage ACO has difficulties to identify the sub-structures, it usuahtains
has been considered as reference point and, thus, pereenpapr results. It is worth noting that the results obtainethwi
differences from its average best solutions have been atsal-life examples are consistent with the ones obtained wi
reported for the other heuristics. The results in Table \dynthetic test cases of similar size. In particular, it hsstinat
show that the ACO methodologies outperform the other searatir methodology behaves better than the other methods also
methods in all the situations by at least 16% in average. approaching different architectural models.

In fact, the GA is able to identify and recombine good su
structures, but the crossover and mutation operatorsnegui
additional execution time.
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Table VII reports the average number of unfeasible solgtion Our JPEG implementation is divided into five phases: (1)
that have been generated during the explorations. ThesksresSRGB to YCbCr space color conversion, (2) Expansion and
show that the constructive method of the ACO limits th®own Sampling, (3) Bi-dimensional Discrete Cosine Trans-
number of unfeasible solutions, cutting out the unfeasibferm (2D-DCT), (4) Quantization and (5) Entropic coding and
regions of the design space. The small percentage of ubfeasfile saving. These phases can be performed in separatedschain
solutions are generated only by the local search heuristic a minimum of 4 blocks of 8x8 pixels: the color space
implemented at the end of each colony. The SA obtaitenversion operates per pixel, the 2D-DCT, the Quantinatio
the worst performance in all the situations. In fact, randoand the entropic coding works on single 8x8 blocks, while
changes can easily produce unfeasible situations if speclfiown Sampling reaches optimal performance on 4 blocks,
conditions for the next moves (e.g., the tabu list into thg TSince a single value is averaged for each 4 chrominance
are not adopted. Since TS usually generates a limited setvafues. It is thus possible to parallelize the applicatiordata,
unfeasible solutions, it is able to explore more solutioms extracting as many chains as desired depending on the size of
the design space, obtaining better results. However, wherthie uncompressed image, as shown in Figure 5. The root task
fails and gets stuck in sub-optima, the number of unfeasilpgerforms the image reading, while the end task is simply a
solutions and the deviation of the results grow (elgi,and stub. For our evaluation, we used images of different sinés a
L8). Even if the GA generates more unfeasible solutiorextracted task graphs with sizes varying from 20 to 50 tasks,
than the TS, it is more robust than hill-climbing methods, abkus presenting from 4 to 10 parallel chains, respectivfy.
previous describe. had hardware implementations for the DCT and the RGB, and

Finally, in Table VIII, we compare the average executiosoftware implementations for the PPC and the MB for all the
time (in seconds) of the different methodologies. It is \worttasks. Table Il reports the different execution times, lock
noting that the overall execution time of the algorithmsase cycles, as seen from the master PPC, and the area, in slices,
posed of two main contributions: the time spent to genelege tfor the hardware cores. To simplify the scheduling of theadat
solutions and the time spent for their evaluation. In additi transfers, in these experiments, we do not exploit the stippo
the scheduler terminates the evaluation of a solution whentd the resource sharing for the hardware accelerators.
identifies a constraint violation. Thus, the SA has the &lsdrt The first experiment compares the accuracy of the design
execution time with respect to the other algorithms sinee tisolutions generated by the ACO approach for different task
time spent to evaluate the solutions is reduced (more thgraphs on a platform with only one MB besides the slave PPC
96% of evaluations are terminated early). As discussedegboand thus the available area for the FPGA was of 8,400 slices.
the ACO requires an additional time to build the solutiond arin Table IX, we compare the average results of the 2-stage
almost all the solutions refer to feasible evaluations. &wer, ACO algorithm ACO) with the performance of the resulting
the 2-stage ACO generates a reduced number of probabilitieapping on the platformRlatform) over 10 runs. The results
at each decision point with respect to 1-stage ACO and thsisow that the main differences (around 10%) are with 30 and
it is able to contain also the execution time of the explorati 40 tasks. In fact, in these cases, we have a different digimif

of the predicted and the real dynamic communication pagtern
C. Case study: JPEG that are partially under-estimated by the ACO methodology.

We applied our approach to the mapping of a real-lifan particular, during the effective execution on the platip
application, the JPEG compression algorithm. We targettlee distribution of the communications often generates bus
heterogeneous multiprocessor prototype [9], develope@ orcontention to be resolved by the interrupt controller. Effiere,
Xilinx Virtex-1l PRO XC2VP30 FPGA, that uses one ofthe time spent by the interrupt to resolve these contentions
the two PPCs as a master processor and the other oneg@serates that execution overhead that was not predicted by
slave, along with the MicroBlaze (MB) soft cores. The masteur communication model. On the other hand, with 20 and
processor only manages tasks synchronization and seqgen&0 tasks the predicted and the real patterns are more regular
on the slaves through interrupt signals. The slave procgssm the former, the lower number of tasks and edges reduces
have local memories, connected to a shared memory andhe number of conflicts. In the latter, the execution of a Bigh
the master processor through a shared bus. Communicationmber of parallel tasks masks the contentions on the bus and
are performed through a DMA unit, which is controlled byhus, it results in a lower impact on the overall executiometi
the master processor and allows overlapping of data tremsfn conclusion, the ACO follows quite accurately the behavio
and computations by the processing elements. The area ondhthe platform and, in all the experiments, it correctly ided
FPGA not occupied by the soft cores and the other systém implement three 2D-DCT in hardware. This shows that
components (i.e., buses, local and shared memory comsgollehe methodology is able to identify efficient solutions fhet
I/O controllers) can be used to implement hardware tasks. Wepping and scheduling problem.
configured different architectures, similar to the solutio In the second experiment, we executed the JPEG application
Figure 1, where the slave PPC was supported by a varyiogmposed of 50 tasks on different platforms, representifig d
number of slave MBs (from 1 to 3) integrating a Floating Poirferent combinations in the number of MicroBlaze processors
Unit (FPU), not available for the hard core. The presence (fe., 3 downto 1) and the area for hardware implementations
the FPU explains the better performance for the soft cores on the FPGA (i.e., 2,800 to 8,400). The results in Table X
arithmetic intensive tasks. The PPCs have a clock frequerstyows, as in the previous case, the prediction still remains
of 200 MHz, while the rest of the system runs at 50 MHz. quite accurate. In all cases, the heuristic is able to pezcei
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TABLE IX
AVERAGE OF THE BEST SOLUTIONS OBTAINED BYACO ALGORITHM AND (5]
ACTUAL PERFORMANCE ON THE TARGET PLATFORM WITH A VARYING
NUMBER OF TASKS. THE ARCHITECTURE CONTAINSL1 POWERPC, 1
MICROBLAZES AND 8,400FREE SLICES

(6]

#Tasks/ ACO Platform Diff
#Edges Avg. %RSD Avg. %RSD ’
20/20 170,416,083 2% 174,236,480 8% 2.19%
30/24 236,037,486 2% 268,569,432 7% 12.11% [7]
40/32 | 324,599,846 1% 358,962,446 | 12% 9.57%
50/40 | 410,332,336| 1% 427,313,801 7% 3.97%
TABLE X
AVERAGE OF THE BEST SOLUTIONS OBTAINED BYACO ALGORITHM AND [8]

ACTUAL PERFORMANCE ON TARGET PLATFORMS WITH VARYING NUMBER
OF SOFT CORES AND FREE AREA FOR HARDWARE ACCELERATORSHE

APPLICATION IS COMPOSED OB 0 TASKS. [9]
ACO Platform .
MB/Area AVG. %RSD AVG. w%rsp| Dt
372,800 | 259,729,040 2% | 248,492,658| 15% | 4.52%
2/5600 | 301159200 7% | 283,861438| 11% | -6.09% [10]
18400 | 410,332,336| 1% | 427.313801| 7% | 3.97%

mainly due to communication overhead, that it is better {1l
use the hardware space to implement the 2D-DCT hardware
accelerator instead of many, but slower, hardware RGBs2]
On the other hand, we also see that raising the number of
processors and reducing the available area for hardwaes cor

reduces the overall execution time of the program. In fagig)

P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “SystemveeHard-
ware/Software Partitioning Based on Simulated Annealing dabu
Search,”Design Automation for Embedded Systemd. 2, no. 1, pp.
5-32, January 1997.

S. Banerjee, E. Bozorgzadeh, and N. D. Dutt, “Integ@gfthysical Con-
straints in HW-SW Partitioning for Architectures With RattDynamic
Reconfiguration,”IEEE Transactions on Very Large Scale Integration
(VLSI) Systemsvol. 14, no. 11, pp. 1189-1202, Nov. 2006.

I. Issenin, E. Brockmeyer, B. Durinck, and N. D. Dutt, “@areuse-
driven energy-aware cosynthesis of scratch pad memory ienatthical
bus-based communication architecture for multiprocesg@aming ap-
plications,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systemwol. 27, no. 8, pp. 1439-1452, Aug. 2008.

M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System:p@miza-
tion by a colony of cooperating agent$Z2EE Transactions on Systems,
Man, and Cybernetigsvol. 26, no. 1, pp. 29-41, 1996.

A. Tumeo, M. Branca, L. Camerini, M. Ceriani, M. Monchigr
G. Palermo, F. Ferrandi, and D. Sciuto, “Prototyping Pigdi Appli-
cations on a Heterogeneous FPGA Multiprocessor Virtuatfétta,”

in Proc. of IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC '09)okohama, Japan, Jan. 2009, pp. 317-322.
P. Brucker, A. Drexl, R. Mohring, K. Neumann, and E. Hesc
“Resource-constrained project scheduling: Notatiorssifecation, mod-
els, and methodsEuropean Journal of Operational Researaiol. 112,
no. 1, pp. 3—41, January 1999.

R. Niemann and P. Marwedel, “An Algorithm for Hardw&aBeftware
Partitioning Using Mixed Integer Linear ProgramminBgsign Automa-
tion for Embedded Systemwl. 2, no. 2, pp. 125-163, March 1997.
T.-Y. Yen and W. Wolf, “Communication synthesis for wlibuted
embedded systems,” ifProc. of the 1995 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD '95)Washington,
DC, USA: IEEE Computer Society, 1995, pp. 288-294.

Y. Lam, J. Coutinho, W. Luk, and P. Leong, “Optimising itHoop

the hardware core can execute only one task and, thus, more programs for heterogeneous computing systemsPioc. of the Sth

parallelism can be exploited with different general PURPOS, 4
processors that are able to execute all the tasks.

VI. CONCLUSION (15]

In this paper, we described an ACO-based heuristic for
mapping and scheduling both tasks and communications @6
heterogeneous multiprocessor architectures and we unteatl
a problem specific optimization, decoupling the choices for
the scheduling and the mapping in a 2-stage decision proc
that performs better when the size of the problems grows. We
compared our ACO to previous heuristics and, consideriag th
same number of evaluations, we obtained solutions 16%rbeté&!
in average, despite an overhead in execution time. Moreover
the proposed approach is able to reach the optimal solutidb®
much faster than the other approaches. Finally, we applied o
methodology to a real-world application on a realistic MESO0 |2
We showed that the ACO is able to produce efficient designs
with a limited error in approximating the effective perfante
of the platform when implementing the related solutions. 54
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