
 1

Abstract - This paper presents a supervised learning based power
management framework for a multi-processor system, where a
power manager (PM) learns to predict the system performance
state from some readily available input features (such as the
occupancy state of a global service queue) and then uses this
predicted state to look up the optimal power management action
(e.g., voltage-frequency setting) from a precomputed policy table.
The motivation for utilizing supervised learning in the form of a
Bayesian classifier is to reduce the overhead of the PM which has
to repetitively determine and assign voltage-frequency settings for
each processor core in the system. Experimental results
demonstrate that the proposed supervised learning based power
management technique ensures system-wide energy savings under
rapidly and widely varying workloads.

Index Terms — Bayesian classification, dynamic power
management, machine learning, multi-processor system,
supervised learning

I. INTRODUCTION
ngoing demand for high performance – yet thermally
sustainable - processing have resulted in the introduction
of chip multiprocessor architectures to enable continued

performance scaling without having to increase the chip clock
frequencies beyond a few GHz. At the same time, there are
strong motivations (i.e., dollar cost of energy consumption,
thermal power budget constraint, service life of the system in
between batter recharges in case of mobile platforms) to make
multi-core processing platforms power and energy efficient.

Conventional dynamic power management (DPM) methods
have not been able to take full advantage of power-saving
techniques such as dynamic voltage and frequency scaling
(DVFS). This is because i) the system-level power manager has
a limited opportunity to utilize DVFS due to the energy and
delay overheads incurred during power mode transitions [1],
and ii) the power management algorithm (process), which
continuously monitors the workloads of multiple processors,
analyzes the information to make decisions, and issues DVFS
commands to each processor, can give rise to a considerable
computational overhead and/or complicate the task
scheduling [2]. The higher the number of cores in the processor
is, the more severe these issues become. Therefore, the ability
of a DPM framework to scale well on a multicore processor by
eliminating these overheads is becoming a critical
requirement [3] [4].

In the literature, DPM is typically referred to a strategy
whereby a resource manager (hardware, firmware, or the
operating system) turns of or off the processing cores when
they are idle (or new tasks arrive). In contrast, DVFS is defined
as a technique which dynamically varies the supply voltage and
operating frequency values applied to the processing cores in
response to load conditions or workload characteristics. It is

easy to see that DPM can be easily combined with DVFS, i.e., a
power manager may not only issue commands to various
processing cores to turn on or off, but also change their
power-performance state by issuing DVFS commands. In our
paper, however, we do not consider power gating as an option,
i.e., when we speak of DPM, we mean DPM using DVFS as the
power optimization level only.

The problem of determining a power management policy
that applies DVFS to a multicore processor has recently
received a lot of attention – see, for example, [5]- [10].
Although these techniques perform system-level DPM or
DVFS for multicore processors, little attention has been paid to
improve decision-making strategy which minimizes the
overhead of a power manager (PM), i.e., to devise a
learning-based power management policy that can quickly
analyze some easily available input features (i.e., quantifiable
features of the system under consideration) and accurately
predict the overall system performance state, which is
subsequently used to choose and issue the “optimal action”.

Traditional approaches for DPM, which are based on models
of service requestor (SR), service provider (SP), and service
queue (SQ), tend to work very well if the workload of the
system does not change rapidly. In such a case, the energy and
delay overheads of power mode transitions can become quite
significant, rendering the DPM strategy ineffective. Indeed,
adaptive power management techniques are unsuccessful in
reducing the total chip power dissipation when the overhead of
power-mode transitions is not controlled in a multicore
processor, which is subjected to frequent changes in the load
conditions [10]. Our thesis is that knowing (or predicting) in
real time which frequency and voltage levels to use, and when
to apply a new performance setting in a multicore processor,
must be done with the aid of a self-improving (i.e., intelligent
and autonomous) power manager that can detect the load
conditions and react appropriately.

In this paper, we address a dynamic power management
problem where a PM continuously issues power mode
transition commands to maximally exploit the power-saving
opportunities. The overhead associated with the functioning of
the PM to monitor the workload of the system and make
decisions about performance mode (voltage and frequency
level) of different cores in a multicore processing system tends
to be high. This paper thus describes a supervised learning [11]
based DVFS for the multicore processor, which enables the PM
to predict the performance state of the processor for each
incoming task by inspecting some readily available input
features, followed by a Bayesian classification technique.

Supervised learning (SL) refers to the formal theory of
developing computational models for learning behaviors of
agents as part of the machine learning discipline [11] [12]. The
key rational for utilizing SL for power management is to reduce

Supervised Learning Based Power Management for
Multicore Processors

Hwisung Jung, Student member and Massoud Pedram, Fellow, IEEE

O

 2

the overhead of the PM. Experimental results demonstrate the
effectiveness of the proposed power management framework
and show that it achieves sizeable system-wide energy savings
under rapidly varying workloads in a wired communication
application scenario.

In the remainder of this paper we use the terms chip multi
processor (CMP) and multi-processor system (MPS)
interchangeably. Moreover, we assume that the different cores
within a CMP or the different processors within a MPS can be
independently turned on/off or voltage and frequency scaled.
We realize that the current generation of CMP designs (see for
example Intel Nehalem [53]) do not offer per-core dynamic
voltage and frequency scaling, but expect that the future
generations of the CMP designs will support this important
power/performance scaling feature. Regardless, the proposed
approach can be applied to different processors in a MPS (e.g.,
a Blade server used in datacenters).

The remainder of this paper is organized as follows. Section
II provides background of this paper while section III describes
some related work. Section IV provides the details of proposed
supervised learning based power management framework. An
extraction strategy for input features and output measures is
described in section V. In section VI, we present a stochastic
policy optimization technique. Experimental results and
conclusion are given in section VII and section VIII.

II. BACKGROUND
Consider a power-managed MPS, where each processor is
equipped with multiple power-saving modes (i.e., different
DVFS settings). A system-level PM dynamically assigns the
DVFS setting for each processor based on its workload as is
shown in Fig. 1 for a distributed shared-memory MPS.

The figure also shows a dynamic load balancing block which
enables high-throughput and low-latency data flow for each
processor and a control unit which ensures cache coherency.
The flow queue (i.e., receive queue) interacts with the PM by
providing information about a processor’s workload for the
purpose of controlling the performance state of the processor.
The PM, which profiles and analyzes the workload
characteristics i.e., the arrival rate of tasks by examining the
flow queue, determines and executes a power management
policy (i.e., one that maps workloads to power state transition

commands) so as to minimize the system energy dissipation.
Details of the processor functionality are omitted here for
brevity. Interested readers may refer to [13] [14] [15].

When tasks are given to a MPS, the dynamic load balancing
block (i.e., SR) dispatches each task into some flow queue (i.e.,
local SQ). Each processor (i.e., SP) reads the assigned tasks
from its SQ. At regular time instances (or aperiodic times
dictated by interrupts), called decision epochs, the PM
determines the workload of the processor by checking the
occupancy state of its SQ, and subsequently, assigns a DVFS
value to the processor. Note that the decision epochs are
separated by a fixed (or some average) time interval; the shorter
this time interval is, the higher the delay and energy dissipation
overheads of the PM are. This is because the DVFS method
utilizing a DC-DC converter with multiple regulated output
voltage levels and a PLL with multiple output frequencies incur
non-negligible mode transition latency and energy
overheads [16]. At the same time, the shorter this interval is, the
more responsive the PM is to changes in the workload. The
shortcoming of the conventional DVFS procedure is the
following. When the workload (the occupancy number of the
SQ) changes, each processor has to send an interrupt to the PM
to request a DVFS adjustment for the corresponding processor,
which significantly increases the computational overhead of
the PM in a MPS with a large number of processors.
Alternatively, the PM on a regular basis examines the state of
the SQ in front of each processor in order to determine the
DVFS value for that processor, and subsequently, schedules a
sequence of DVFS assignments for every processor. Either
approach creates a significant overhead. A key contribution of
our work is that an incoming task is directly labeled with an
optimal DVFS value through the Bayesian classification
process while it is still in the SQ.

III. RELATED WORK
Dynamic power management techniques based on machine
leaning [18] have been the subject of a number of recent
investigations [21]- [25]. In the following, we provide a quick
review of some works that are directly related to ours.

An adaptive power management technique based on
machine learning was presented in [21], where the authors
described a system that learns when to turn off functional
blocks of the system based on different usage patterns, e.g.,
history of active application or the CPU utilization factor. In
this model-based approach, system dynamics and user patterns
are captured to choose power-saving actions.

The authors in [22] [23] described a power management
technique that employs a machine learning algorithm to
choose an optimal policy from a set of power management

policies available to a system. The proposed algorithm, which
relies on processor runtime statistics, evaluates performance of
the policies during each idle period to decide which policy to
adopt next. Our proposed technique differs from [23] in that we
use a supervised learning algorithm for deriving a
self-improving policy.

An automated approach to identify a task-specific power
management policy was proposed in [24], where an
enforcement-learning based operating system automatically
learns which action to take for a specific workload given to a

Dynamic load balancing

Proc
I/F

Flow
Queue

Processor

L1 Memory

Control Unit Coherence
control bus

I & D
bus

Multicore Processor

Power manager

Performance
monitor

DVFS
assignment

Policy
calculation

Proc
I/F

Flow
Queue

Processor

L1 Memory

Proc
I/F

Flow
Queue

Processor

L1 Memory

Proc
I/F

Flow
Queue

Processor

L1 Memory

Dynamic load balancing

Proc
I/F

Flow
Queue

Processor

L1 Memory

Control Unit Coherence
control bus

I & D
bus

Multicore Processor

Power manager

Performance
monitor

DVFS
assignment

Policy
calculation

Proc
I/F

Flow
Queue

Processor

L1 Memory

Proc
I/F

Flow
Queue

Processor

L1 Memory

Proc
I/F

Flow
Queue

Processor

L1 Memory

Fig. 1. Example of a power-managed multi- processor system.

 3

system. The authors applied the proposed technique to hard
disk power management in a mobile device, enabling the
operating system to record hard disk accesses and monitor I/O
related system parameters. In this approach, a classification
algorithm that dynamically selects an appropriate spin-down
policy is implemented.

The authors of [25] presented a machine learning approach
to perform dynamic voltage scaling (DVS) on an integrated
CPU-core and on-chip L2-cache. The proposed approach
identifies application phases at runtime and issues appropriate
DVS commands. The DVS policy itself is derived through a
learning process performed on a representative workload. More
precisely, first a training data set is generated by representing
the workload as a CPU/cache frequency combination and the
optimal DVS command for each such combination. Next a
machine learning technique is applied to obtain a policy in the
form of propositional (if-then) rules.

All of the above-mentioned power management approaches
are based on machine learning techniques, where an agent (i.e.,
power manager) is trained based on a number of representative
workloads or user patterns in order to learn the performance
state of a target system for the purpose of taking a DVS or
DVFS action. Unfortunately, little attention has been paid to
power management policy optimization under a cost function
and to the accurate classification of the performance state of the
system. Furthermore, as explained previously, the aforesaid
techniques are inefficient for MPS architecture due to
computational overheads for deriving an optimal policy for
each processor, exacerbating with scheduling of a series of
DVFS assignments for every processor.

IV. LEARNING-BASED POWER MANAGEMENT FRAMEWORK
In this section, we present a theoretical framework to construct
a supervised learning-based power management framework.
A. Background on Supervised Learning
Supervised learning [11] is an effective and practical technique
for discovering relations and extracting knowledge in cases
where the mathematical model of the problem may be too
expensive to construct, or not available at all. Alternatively, it
may be used to derive a self-improving decision-making
strategy instead of making decisions based on the current
perceived state of the system.

The goal of the supervised learning is to learn a mapping
from x ∈ X to y ∈ Y, given training sets that consist of input and
output pairs. Here X = {x1, x2, …, xn} denotes a set of input
features, and Y = {y1, y2, …, yn} is a set of outputs measures.
The input feature set contains quantifiable features of the
system under consideration. The output measure set can be a
continuous value (called regression) or a class label of the input

(called classification), which thus results in a numerical or
categorical measure. If the output measure is numerical
(categorical), then the learning will become a regression
(classification) problem.

In this paper, each output measure is labeled with a
pre-defined class (e.g., performance level). The learning is
performed on a collection of training sets. Thus, training an
agent (e.g., a PM) involves finding a mapping from input
features to output measures so as to enable the agent to
accurately predict the class of an output measure when a new
input feature is given. Fig. 2 shows the concept of supervised
learning, where the agent predicts the classes of output
measures yk when input features xk are given after learning with
the training sets, where k = 1, …, n.

The key steps of the supervised learning may be stated as
follows:
i) Determine inputs and outputs of the learner: Relevant input

features and output measures (and the corresponding class
labels) are chosen,

ii) Generate the training set: The training set – which is simply
a collection of input features and corresponding output
features and class labels - is designed so as to capture the
important characteristics of the system,

iii) Training: This step results in the design of the classifier
based on the training set,

iv) Classification: The classifier is used on arbitrary input
features to predict the class labels of the output measures.

Considering algorithms for supervised learning, there are a
number of methods for classification such as rule based learner,
decision tree based learner, instance based learner, probability
based learner, and kernel based learner. Details of each
classification learner are omitted here for brevity. Interested
readers may refer to [26] [27] [28] [29].

In our problem setup, we have found that the probability
based learner (i.e., Bayesian classifier) is more efficient than
other methods since it can efficiently classify the output
features corresponding to a new input feature into a finite
number of class labels. The key to speed of the classification
step is the pre-computation of prior and conditional
probabilities based on a training step (see below).

B. Learning-based Power Management Framework
It is useful to describe how the supervised learning can be
adapted to the power management technique. Fig. 3 presents a
top level structure of the proposed PM which incorporates a
Bayesian learning framework. The learning framework
consists of two phases: extraction and classification phases.

Feature
extraction

Training set
collection Classification

DVFS
sets

output
measure

Extraction phase Classification phase

input
feature

Measure
extraction

Policy
generation

Feature
extraction

Training set
collection Classification

DVFS
sets

output
measure

Extraction phase Classification phase

input
feature

Measure
extraction

Policy
generation

Fig. 3. Structure of the proposed power manager.

Input feature

ix

Output measure

iy
(), iix y

Training set

class
After learning

Input feature
kx

Output measure

ky

Predict class

Input feature
ix

Output measure

iy
(), iix y

Training set

class
After learning

Input feature
kx

Output measure

ky

Predict class

Fig. 2. Concept of supervised learning.

 4

Essentially, we aim to use the supervised learning to enable
the PM to automatically discover the relations between input
features and output measures and to predict the processor’s
performance level (power dissipation and execution time per
task) by using the classification. Key functions implemented
inside the PM are as follows:

- Feature extraction: choose the input feature (i.e.,
characteristics of the tasks and the state of the SQ),

- Measure extraction: choose the output measure (i.e., the
power dissipation and execution time of the tasks),

- Training set generation: assemble the input feather and
output measure into the training sets,

- Supervised learning: map the input feature to the output
measure based on the training sets, and

- Classification: select the most likely class given the input
feature.

The proposed supervised learning-based power management
technique mainly comprise of three parts: extraction,
classification, and policy generation. The procedures for
extraction and classification are explained next. Details of the
extraction strategy for input features and output measures are
further described in section IV, whereas the policy optimization
technique is presented in section V.
1) Input Feature and Output Measure Extraction
The first step is the extraction phase which extracts input
features and output measures, where system knowledge is
required to produce well-prepared training sets. During the
process of feature extraction, in the context of the power
management problem, the PM gathers input features such as the
type of tasks (e.g., high-priority or low-priority), the state of the
SQ, and the arrival rate of tasks, which affect the performance
level of the SP. In addition, the PM observes
performance-related information (e.g., the system power
dissipation and the execution time of tasks) as the output
measures. The class of each output measure, considered as an
attribute, is as a pre-defined level or range, such as a range of
system power dissipations or time durations for task execution.

TABLE I
EXAMPLE TRAINING SET FOR THE DPM PROBLEM

Queue
occupancy

Output measures

Task type

Input features

Arrival
rate of task

Power
dissipation

Execution
time

pow1

low-priority

high-priority

high-priority

low-priority

high-priority

low-priority

low-priority

low-priority

low-priority

pow2

pow3

pow2

pow1

pow1

pow2

pow2

pow1

exe1

exe1

exe3

exe3

exe1

exe2

exe2

exe2

exe1

med

low

med

low

low

med

med

med

med

low

low

med

med

med

med

med

med

high

Queue
occupancy

Output measures

Task type

Input features

Arrival
rate of task

Power
dissipation

Execution
time

pow1

low-priority

high-priority

high-priority

low-priority

high-priority

low-priority

low-priority

low-priority

low-priority

pow2

pow3

pow2

pow1

pow1

pow2

pow2

pow1

exe1

exe1

exe3

exe3

exe1

exe2

exe2

exe2

exe1

med

low

med

low

low

med

med

med

med

low

low

med

med

med

med

med

med

high

TABLE I shows an example of training sets which consist of
selected input feature and output measure pairs. Notice that the
queue occupancy and the arrival rate of task are assigned
attributes (i.e., low, med, or high), where low = [0 33%], med =

(33% 67%], and high = (67% 100%] when applied to the SQ
occupancy, and low = [0 0.33], med = (0.33 0.67], and high =
(0.67 1] when applied to the arrival rate. Each output measure is
labeled with a specific class from the set L. In our problem
setup, the class set L is defined as L1 = {pow1, pow2, pow3}
where pow1 < pow2 < pow3, and L2 = {exe1, exe2, exe3} where
exe1 < exe2 < exe3. Note that each class is defined as a range of
values, e.g., pow1 = [34mW 41mW], pow2 = (41mW 47mW],
pow3 = (47mW 54mW], exe1 = [14.1ns 21.5ns], exe2 = (21.5ns
28.5ns], and exe3 = (28.5ns 35.7ns]. In addition to our input
features, the power dissipation and execution time may be
determined by many other factors, including the cache hit/miss
ratio, cache hierarchy, and so on. The extent to which these
factors impact the performance of the SP is highly dependent
on the architecture and/or the system configuration (e.g.,
whether the SP’s allow single or multiple thread execution). In
this paper, we consider single-threaded core architectures only.

The training set size affects the accuracy of classification, i.e.,
variance of the predicted value increases as the training set size
is reduced, resulting in an increased bias. In this paper, the
training set size is determined by calculating a conditional
probability while varying the set size, as described in the
experimental results section.

2) Classification
The goal of classification is to predict the most likely class label
of the output features given the input features. In the context of
PM for a CMP system, the goal is to devise a power
management policy for issuing DVFS commands that minimize
the total energy dissipation of the CMP system based on the
load conditions and workload characteristics.

Having obtained the training set, the second step is the
classification phase, which uses supervised learning to train an
accurate classifier. The classifier’s goal is to organize a new
input feature {x1, x2, …, xn} into a finite number of classes l
from the set L for each one of the output features in the set {y1,
y2, …, yn}.

Specifically, in the Bayesian classifier, the classification task
is essentially the assignment of the maximum a posteriori
(MAP) class given the data x = (x1, x2, …, xn) and the prior of
class assignments to yi by maximizing the posterior probability
Prob(yi = l | x1, x2,…, xn) of assigning class l to output feature yi
given the new evidence x, such as

1 2

1 2

1 2

arg max (| , , ,)

(, , , |) ()arg max
(, , ,)

MAP i n
l

n i i

l n

y Prob y l x x x

Prob x x x y l Prob y l
Prob x x x

= =

= ⋅ =
=

…

…
…

 (1)

The denominator Prob(x1, x2, …, xn), which is the marginal
probability of witnessing the new evidence x under all possible
hypotheses, is irrelevant for decision making since it is the
same for every class assignment. Prob(yi = l), which is the prior
(pre-evidence) probability of the hypothesis that the class of yi
is l, is easily calculated from the training set. Hence, we only
need Prob(x1, x2,…, xn | yi = l), which is the conditional
probability of seeing the input feature vector x given that the

 5

class of yi is l. The factor 1 2

1 2

(, , , |)
(, , ,)

n i

n

Prob x x x y l
Prob x x x

=…
…

represents

the impact of the new evidence x on the hypothesis that yi=l. If
it is likely that the evidence will be observed when this
hypothesis is true, then this factor will be large. Note that
multiplying the prior probability by this factor results in a large
posterior probability of the hypothesis given the evidence. The
Bayes' theorem thus measures how much new evidence should
alter belief in some hypothesis.

Now Prob(x1, x2,…, xn | yi = l) may be expanded as Prob(x1 |
x2,…, xn , yi = l)×Prob(x2, x3,…, xn | yi = l). The second factor
above can be decomposed in the same way, and so on.
Furthermore, assuming that all input features are conditionally
independent given the class, i.e., Prob(x1 | x2, …, xn , yi = l) =
Prob(x1 | yi = l). Therefore, we obtain: Prob(x1, x2,…, xn | yi = l)
= ∏j Prob(xj | yi = l), and we compute the maximum a posteriori
class as follows:

1

arg max () (|)
n

MAP i j i
l j

y Prob Proby l x y l
=

= = ⋅ =∏ (2)

When used in real applications, the Bayesian classifier first
partitions the training set into several subdatasets by the class
label of the target output measure. Then, in each subdataset
labeled by l for output measure yi, the maximum likelihood
(ML) estimator Prob(xj = ajk | yi=l) can be given by the
frequency njkl / nl, where njkl is the number of the occurrences of
the event {xj = ajk} in subdataset denoted by class label l; nl is
the number of the samples in the same subdataset.

An example of how to classify the input features is given
next. Suppose that we have a set of three input features and a set
of two output features as shown in Table 1, where {x1, x2, x3} =
{task type, queue occupancy, arrival rate}, and {y1, y2} =
{power dissipation, execution time}. We first compute the
per-input-feature conditional probabilities required for the
classification task. For the example training set, we have:
Prob(x1 = low | y1 = pow1) = Prob(x1 = low | y1 = pow2) = 3/4,
Prob(x1 = high | y1 = pow1) = Prob(x1 = high | y1 = pow2) = 1/4,
and Prob(x1 = high | y1 = pow3) = 1. There may be some cases
where particular input features do not occur together with an
output measure due to an insufficient number of data points in
the training set. In this case, a standard way to deal with zero
conditional probabilities is to eliminate them by smoothing [18]
as follows

()
(|)

()

,j

i

i
j i

x

freq x y l
Prob x y l

freq y l n

λ

λ

= +
= =

= +
 (3)

where λ is a smoothing constant (λ > 0), and nx is the number of
different attributes of xi that have been observed. For the
example training set, using equation (3) with λ = 1, we have:
Prob(x1 = low | y1 = pow3) = Prob(x2 = med | y1 = pow3) = 1/4.
We will also need the prior probabilities for the various output
feature classifications, which are calculated from the training
set data. In this example, Prob(y1 = pow1) = Prob(y1 = pow2) =
4/9, and Prob(y1 = pow3) = 1/9. After calculating the
conditional and prior probabilities, the PM can decide the best
power management policy by predicting the MAP class for a
new input feature vector.

Let a new input feature (x1 = low, x2 = med, x3 = med), which
was not in the training set, be presented to the PM, which
classifies the input feature based on equation (2) as follows.
i) Firstly, for the hypothesis y1 = pow1, the posterior

probability is: Prob(y1 = pow1)⋅Prob(x1 = low, x2 = med, x3
= med | y1 = pow1) = (4/9)⋅(3/4)⋅(1/2)⋅(1) = 1/6 because
Prob(x1 = low | y1 = pow1) = 3/4, Prob(x2 = med | y1 = pow1)
= 1/2 and Prob(x3 = med | y1 = pow1) = 1.

ii) Secondly, for the hypothesis y1 = pow2, the posterior
probability is: Prob(y1 = pow2)⋅Prob(x1 = low, x2 = med, x3
= med | y1 = pow2) = (4/9)⋅(3/4)⋅(1)⋅(1/4) = 1/12 because
Prob(x1 = low | y1 = pow2) = 3/4, Prob(x2 = med | y1 = pow2)
= 1 and Prob(x3 = med | y1 = pow2) = 1/4.

iii) Lastly, for the hypothesis y1 = pow3, the posterior
probability is: Prob(y1 = pow3)⋅Prob(x1 = low, x2 = med, x3
= med | y1 = pow3) = (1/9)⋅(1/4)⋅(1/4)⋅(1) = 1/144 because
Prob(x1 = low | y1 = pow3) = 1/4, Prob(x2 = med | y1 = pow3)
= 1/4 and Prob(x3 = med | y1 = pow3) = 1.

Consequently, the MAP class of the power dissipation for the
new input feature vector is pow1. Similarly, computing MAP of
the execution time results in posterior probabilities of
hypotheses y2 = exe1, y2 = exe2, and y2 = exe3 being 1/24, 2/9, and
1/18. Thus, the PM concludes that the MAP class of the
execution time is exe2.

The PM predicts the MAP performance level of the
processor when a new task arrives in the SQ. The classification
based on the Bayesian classifier is robust to noisy and/or
extraneous input features. It is also fast because it only requires
a single pass through the training data to initialize the prior and
conditional probabilities while requiring only a few
multiplications and comparison to determine the MAP
performance level of the processor at runtime.

3) Discriminative Bayesian Classifier
As we have seen above, a Bayesian classifier assumes a
conditional independency among the input features. When used
for classification, the Bayesian classifier predicts a new data
point as the class with the highest posterior probability by
writing the classification rule in a decomposable form using the
conditional independence assumption (see equation (2)).

A key advantage of the Bayesian classifier is the ability to
deal with the missing information during classification (i.e.,
missing input features that are relevant to the identification of
output features). For example, some information such as cache
miss statistics or branch mis-prediction rate, which affect the
processor performance are considered as missing input features
in our problem setup. Assume the input feature set {x1, x2, …,
xn} be X. When the values of a subset of X, for example M, are
unknown or missing, the marginalization inference can be
obtained immediately as follows:

 arg max () (|)MAP i j i
l j X M

y Prob Proby l x y l
∈ −

= = ⋅ =∏ (4)

No further computation is needed in handling this missing
information problem, because each term Prob(xj | yi=l) has been
calculated in training the Bayesian classifier. However, there
are shortcomings in this simple classifier. More precisely, this

 6

approach models the joint probability in each subset separately
and then applies the Bayes rule to obtain the posterior
classification rule. Consequently, this construction procedure -
sometime called a generative classifier - discards some
discriminative information for classification [17]. Without
considering the other classes of data, this method only tries to
approximate the information within each subdataset. On the
other hand, a discriminative classifier, which directly estimates
Prob(yi|xj), preserves inter-subdataset information well by
directly constructing decision rules among all available
data [18]. Therefore, the Bayesian classifier may be extended to
provide a global scheme to preserve the discriminative
information among all the data. See [19] for a detailed
description of a discriminative Bayesian classifier, which
combines both merits of discriminative methods (e.g., support
vector machines [20]) and the simple Bayesian classifiers
described above. A more detailed discussion of discriminative
Bayesian classifiers falls outside the scope of the present paper.

V. EXTRACTION STRATEGY
In this section, we present the extraction strategy for input
features and output measures.
A. Extracting Input Features
Input feature selection plays an important role in the
classification procedure which maps input features onto output
measures. There are some relevant input features that have
important information regarding the output measures, whereas
there may be some irrelevant ones containing little information
regarding the output measures. Finding every input feature that
contains relevant information about the resulting output
measure is difficult and in many cases unnecessary. For
example, capturing the amount of cache interference
experienced among tasks that are co-scheduled on the same
shared cache is difficult. Typically, a task is written to expose
software “threads” of execution; the OS then maps these
threads onto processors in the case of MPSs. The PM gathers
available information on input features (e.g., types of the tasks,
state of the SQ, and arrival rate of tasks) as explained in the
previous section. At the same time, the PM needs to watch for
the missing input features (e.g., the amount of cache
interference) which affect the performance-related output
measures as well.

There are two approaches to compensate for the missing
input features [32]: input feature-compensate method and
classification-compensate method. The first approach estimates
values of hidden input features by using the
expectation-maximization (EM) algorithm [33] and then
performs classification on the complete input features. Note
that the EM algorithm is a general technique that can be used to
determine the maximum likelihood estimate (MLE) of the
parameters of an underlying distribution from some given data
when the measured data is incomplete. The second approach
passes the incomplete input features directly to the classifier
which is then adjusted to operate on the incomplete input
features. A brief description of each method follows.

1) Input Feature-Compensate Method
Let x denote the known (measured) input feature and let m

denote the missing input feature. Together x and m form the
complete input feature. Notice that m can be a hidden source of
variation that affects the output measures. Then, we have
Prob(x, m | θ), the joint probability density function of the
complete input features with parameters given by vector θ (θ
may for example correspond to the mean value and variance of
a Gaussian distribution). This function can also be considered
as the complete data likelihood, that is, it can be thought of as a
function of θ and expressed as

(, |) (| ,) (|)Prob x m Prob m x Prob xθ θ θ= ⋅ (5)

by using the Bayes rule.
The EM algorithm iteratively improves an initial estimate θ0

by constructing new estimate θ1, θ2, etc., where an individual
re-estimation step that derives θn+1 from θn takes the following
form:

1 arg max ()n Q

θ
θ θ+ = (6)

where Q(θ) is the expected value of the log-likelihood of
complete input feature. Since we do not know the complete
data, we cannot determine the exact value of the likelihood, but
given the input feature x, we can calculate a posteriori estimates
of the probabilities for the various values of m. For each set of
m values, there is a likelihood value for θ, and we can hence
calculate an expected value of the likelihood with the given
values of x’s. Q is given by

 ()() log (, |)
m

Q E Prob x m xθ θ= (7)

where it is understood that this denotes the conditional
expectation of log Prob(x, m | θ) being taken with the θ used in
Prob(m | x, θ) fixed at θn. In other words, θn+1 is the value that
maximizes the conditional expectation of log-likelihood of the
complete input feature given the measured variables under the
previous parameter values. The expectation Q(θ) may be
rewritten as:

() (|) log (, |)Q Prob m x Prob x m dmθ θ

∞

−∞
= ∫ (8)

These two steps (Expectation and Maximization) are
repeated until | θn+1 - θn| ≤ ω, where ω is some user specified
tolerance level [34]. It can be shown that the EM iteration does
not decrease the measured input feature likelihood function.
The EM algorithm finds θ that maximizes the complete-input
feature likelihood, which in turn removes the effect of hidden
variables (i.e., the missing input features).

2) Classification-Compensate Method
In this method, the incomplete input features are used directly
for the classification. Every input feature x is assigned a
probability α to show how reliable and critical it is for the
output measure. Likewise, each of the missing input features is
assigned a probability (1 - α). Assuming that all measured input
features and missing input features are independent, the total
likelihood of each input feature simply becomes a weighted
sum of the likelihood of the input features. Mathematically, this
can be expressed as

 7

 ()
1 2

1
1

(, , , |)

(|) () (|)

n i
n

j i j i
j

Prob x x x y l

Prob x y l Prob m y lα α
=

⋅ −

=

= ∏ = + ⋅ =

…
 (9)

where y is the output measure and l is the class, provided that
we have the missing input features m = (m1, m2, …, mn). In
practice, we substitute (9) into (2) to compute the maximum a
posteriori (MAP) during the classification.

B. Extracting Output Measures
 Modern processors include hardware features for monitoring
performance characteristics of the processor [30], which
enables the PM to collect performance-related information.
When an application runs by itself on a single processor system,
the resources in that system are dedicated to its execution. Thus
it is relatively easy to truthfully characterize and model
resultant application performance behavior. However, when
multiple applications run simultaneously on a MPS, it is
comparatively difficult to determine the resources that end up
being given to each individual application, which means that
the performance behavior of each application on the MPS may
not be measured accurately. Thus, the PM is forced to observe
the output measure in a probabilistic way.

Let r denote an input feature state (ri, i=1,…, h) where state r
corresponds to a particular assignment of various attributes to
input features (x1, x2, …, xn). Let o denote an observation which
corresponds to output measures (y1, y2, …, yn) with various
classes. Fig. 4 (a) illustrates observations for each output
measure given an input feature state. Note that oy1(r1)
represents the observation o in y1 (output measure) given the
input feature state r1. For example, the power dissipation (oy1),
one of output measures under consideration, of a processor
given an input feature state r1 (e.g., low priority task, medium
queue occupancy, and high arrival rate of task) is normally
distributed with mean of 38mW and variance of 2 i.e., N(38, 2).

 oy1(r1) = N(μ1 , σ1
2)

Pr
ob

ab
ili

ty

μ1 y1

Pr
ob

ab
ili

ty

μ2 y2

Pr
ob

ab
ili

ty

μn yn

oy2 (r1) = N(μ2 , σ2
2) oyn (r1) = N(μn , σn

2)

μa μb

oy1(r1)

δ1
y1

oy1(r2)

μc

oy1(r3)

δ2

Pr
ob

ab
ili

ty

(a)

(b)

oy1(r1) = N(μ1 , σ1
2)

Pr
ob

ab
ili

ty

μ1 y1

Pr
ob

ab
ili

ty

μ2 y2

Pr
ob

ab
ili

ty

μn yn

oy2 (r1) = N(μ2 , σ2
2) oyn (r1) = N(μn , σn

2)

μa μb

oy1(r1)

δ1
y1

oy1(r2)

μc

oy1(r3)

δ2

Pr
ob

ab
ili

ty

(a)

(b)

Fig. 4. (a) Observations for each output measure, and (b) Decision
boundaries for an output measure among various input feature states

For accurate classification, the decision boundaries of the
output measure in Bayesian classifier have to coincide with or
be close to the performance specification criteria or boundaries.
Fig. 4 (b) shows an example of decision boundaries for an
output measure (e.g., oy1) among various input feature states
(e.g., r1, r2, and r3), where our goal here is to find the distinction
points δ1 and δ2.

By doing so, we can define the class as a range of values, as
explained before. Let fr1, fr2, and fr3 denote the probability
density functions of output measure for the input feature states
r1, r2, and r3, respectively. Based on the illustration (see Fig. 4
(b)), δ1 and δ2 are determined from the following:

1

1

2

1 2

2

2 3

() ()

() ()

fr x dx fr x dx

fr x dx fr x dx

δ

δ

δ

δ

∞

−∞

∞

−∞

=

=

∫ ∫

∫ ∫

(10a)

(10b)

Assuming normal distribution function for the output measure
in our problem setup, we can rewrite (10a) and (10b) as:

2 2

2 21

1

() ()
2 21 1

2 2a b

a b

a b

x x

e dx e dx
μ μ

δ σ σ

δπσ πσ

− −
− −∞

−∞
=∫ ∫

2 2

2 22

2

() ()
2 21 1

2 2b c

b c

b c

x x

e dx e dx
μ μ

δ σ σ

δπσ πσ

− −
− −∞

−∞
=∫ ∫

(11a)

(11b)

where μa, μb, and μc are the mean values of the output measure
for the input feature states, and σa, σb, and σc are their standard
deviations. Solving these integral equations, we obtain:

 1 2,a b b a b c c b

a b b c

μ σ μ σ μ σ μ σδ δ
σ σ σ σ

+ +
= =

+ +
 (12)

TABLE II shows an example of the decision boundaries for
various probability density functions of the output measure (i.e.,
power dissipation), while varying values of standard deviations,
where oy1(r1) = N(μa, σa

2), oy1(r2) = N(μb, σb
2), and oy1(r3) = N(μc,

σc
2), where each case is represented graphically in Fig. 5. To

simplify the comparison among these, we assume that the mean
values for the output measure are fixed (e.g., μa =37.5, μb = 44.0,
μc = 50.5).

TABLE II
EXAMPLES OF DECISION BOUNDARIES

δ1

2.0

δ2

DI1

DI2

σa

3.0

σb σc

1.5 1.4 3.0 3.0 3.03.0 1.5

40.1

48.3

1.30

1.44

41.9

46.0

1.47

1.47

39.6

47.3

1.44

1.08

σa σb σc σa σb σc

case (a) case (b) case (c)

δ1

2.0

δ2

DI1

DI2

σa

3.0

σb σc

1.5 1.4 3.0 3.0 3.03.0 1.5

40.1

48.3

1.30

1.44

41.9

46.0

1.47

1.47

39.6

47.3

1.44

1.08

σa σb σc σa σb σc

case (a) case (b) case (c)

Without loss of generality, we assume, μb > μa. Next we
introduce “distinction index (DI)” [35] as the performance
criterion for boundary selection in output measure by the
following:

b a

b a

DI μ μ
σ σ

−
=

+
 (13)

which indicates that the larger the value of DI is, the better the
distinction between the output measures will be. For example,
in case (c), DI1 that represents the distinction between oy1(r1)
and oy1(r2) is 1.44, which is greater than DI2 (between oy1(r2)
and

 8

(a) (b) (c)
Fig. 4. Examples of decision boundaries for various probability density functions of output measures (cf. TABLE II).

 oy1(r3)). This indicates that we can achieve better accuracy in
classification when we are given input feature states r1 and r2
rather than r2 and r3.

In conclusion, to ensure high accuracy in classification, the
selection of distinction points has to be considered for the
establishment of the discriminant function of the classifier.

VI. POWER MANAGEMENT POLICY
Finding an optimal power management policy in a
learning-based framework requires an autonomous decision
making strategy which maps the output classes to actions. The
actions commanded by the PM change the performance state of
the system and lead to quantifiable penalties (or rewards). We
consider the case where an action incurs a cost (e.g., energy
dissipation), where the PM’s goal is to devise a policy for
issuing a command that minimizes this expected cost.

Assume that the target processor system has k (power-delay
or PD for short) states denoted by s1, …, sk, where s1 <…< sk in
terms of the PD product (PDP) in the respective states. The PM
can choose an action from a finite set of supply voltage-clock
frequency (VF) settings A = {a1, …, an}, where a1 <…< an in
terms of the VF values (notice that a lower V requires a
correspondingly lower F for the processor while a higher V
allows a higher F, hence VF pairs may be considered as a single
optimization variable in this setup).

There is a state transition probability for transitioning from
state s to another state s’ after executing an action a, i.e., T(s’, a,
s) = Prob(s’ | a, s). Furthermore, we make a common
assumption that the cost function is additive (the PDP which is
the same as energy dissipation is clearly additive). Considering
the minimization of the total energy dissipation as an objective,
we define the energy dissipation of a system at a given time t as
follows. First, assume that the predicted classes for the output
measures (i.e., power dissipation and execution time) are p and
d, where p ∈ L1 and d ∈ L2 as defined in our problem setup.
Note that p and d may be considered as ranges of power and
execution time values, i.e., p = [p− p+] and d = [d− d+]. Then, the
expected cost of current state, C(s, a), where a is the action
prescribed by the PM in state s=<p, d>, is defined as a specific
range such that

[](,) (,) (,)C s a p d e s a p d e s a− − + +∈ ⋅ + ⋅ + (14a)

where e(s, a) is the expected energy dissipation to transit from
state s to some next state under action a, which is in turn
calculated from T(s’, a, s) and the state transition energy
dissipation overhead. The above expression means that cost lies
between expected minimum and maximum costs. To obtain a
scalar cost function, we define:

(,) (,)
2

p d p d
C s a e s a− − + +⋅ + ⋅

= + (14b)

We develop a policy generation technique by using
well-known dynamic programming method making use of
principles of overlapping subproblems, optimal substructures,
and memorization. We speak of the minimum cost of a system
state as the expected infinite discounted sum of cost that the
system will accrue if it starts in that state and executes the
optimal policy [36]. Generally, using π as a decision policy, this
minimum cost is written as

*

0

() min ()t

t

s E c t
π

γ
∞

=

⎛ ⎞Ψ = ⋅⎜ ⎟
⎝ ⎠
∑ (15a)

where γ is a discount factor, where 0 ≤ γ < 1, and c(t) is the cost
at time t.

In our problem setup, the minimum cost function is unique
and can be defined

* *

'

() min (,) (', ,) (')
a s S

s C s a T s a s s s Sγ
∈

⎛ ⎞Ψ = + Ψ ∀ ∈⎜ ⎟
⎝ ⎠

∑ (15b)

which asserts that the cost of a state s is the expected
instantaneous cost plus the expected discounted cost of the next
state, using the best available action. From Bellman’s principle
of optimality [37], given the optimal cost function, we specify
the optimal policy as

* *

'

() arg min (,) (', ,) (')
a s S

s C s a T s a s sπ γ
∈

⎛ ⎞= + Ψ⎜ ⎟
⎝ ⎠

∑ (16)

Simply stated, the power manager determines the optimal
action based on equation (16) at each event occurrence (i.e.,
decision epochs). The task of casting the decision epochs to
absolute time units is achieved by the system developer. Unlike
AC line-powered systems, we focus on battery operated
systems that strive to conserve energy to extend the battery life.

 9

 1: initialize Ψ(s) arbitrarily
2: loop until a stopping criterion is met
3: loop for ∀s ∈ S
4: loop for ∀a ∈ A
5:
6:
7: end loop
8: end loop
9: end loop

'

(,) (,) (', ,) (')
s S

Q s a C s a T s a s sγ
∈

= + Ψ∑
() min (,)

a
s Q s aΨ =

1: initialize Ψ(s) arbitrarily
2: loop until a stopping criterion is met
3: loop for ∀s ∈ S
4: loop for ∀a ∈ A
5:
6:
7: end loop
8: end loop
9: end loop

'

(,) (,) (', ,) (')
s S

Q s a C s a T s a s sγ
∈

= + Ψ∑
() min (,)

a
s Q s aΨ =

Fig. 5. The value iteration algorithm.

Given C(s, a) and T(s’, a, s), another way to find an optimal
policy is to find the minimum cost function. It can be
determined by an iterative algorithm (cf. Fig. 5) called value
iteration that can be shown to converge to the correct *Ψ values.
It is not obvious when to stop this algorithm. A key result
bounds the performance of the current greedy policy as a
function of the Bellman residual of the current cost
function [38]. It states that if the maximum difference between
two successive cost functions is less than ε, then the cost of the
greedy policy (i.e., the policy obtained by choosing, in every
state, the action that minimizes the estimated discounted cost,
using the current estimate of the cost function) differs from the
cost function of the optimal policy by no more than
2εγ / (1−γ) at any state. This provides a stopping criterion for
the algorithm.

Results of the policy generation are stored in a state-action
mapping table so that the PM does not need to compute the
optimal action in each system state at runtime. Instead the
optimal action generation is reduced to a simple table lookup.
In practice, the PM examines the input features each time a new
task arrives in the SQ, estimates the most likely state of the
system, and looks up and issues the corresponding “optimal”
action from the mapping table.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup
We apply the proposed DPM technique to a multicore network
processor which includes a dynamic load balancing (DLB,
a.k.a., Application Delivery Controller or ADC) block and four
processing cores (cf. Fig. 1). The DLB block, which guarantees
in-order delivery of tasks, enables tasks from a single network
interface to be processed in parallel on multiple cores. There
are various ways to distribute incoming tasks (a.k.a.
connections or requests) to cores (a.k.a. back-end service hosts
or servers), including the following methods [39]:
- Least workload: assigns the task to the host with the least

workload (connections),
- Fastest host: assigns the task to the core that currently has

the best performance,
- Observed performance: assigns the task to a core that has

the highest performance rating, based on a combination of
least workload and best response time,

- Predictive method: assigns the task to a core that has the
highest predicted performance rating over time, and

- Dynamic ratio: determines the capabilities of the core to
create a dynamic performance ratio accounting for host

affinity to a connection and the resultant cache locality; the
tasks are then distributed to the cores based on this ratio.

Among these, we consider RSS (receiver-side scaling) [40],
which falls in the category of dynamic ratio techniques.1 The
RSS technique is capable of re-balancing the received
processing load across multiple processor cores while
maintaining in-order delivery of the data. RSS enables in-order
packet delivery by ensuring that packets for a single connection
are always processed by one processor. This RSS feature
requires that the network adapter examine each packet header
and then use a hashing function to compute a signature for the
packet. To ensure that the load is balanced across the cores, the
hash result is used as an index into an indirection table. Because
the indirection table contains the specific core that is to run the
associated deferred procedure call and the host protocol stack
can change the contents of the indirection table at any time, the
host protocol stack can dynamically balance the processing
load on each core. As a typical application, we execute
TCP/IP-related tasks (e.g., TCP segmentation and checksum
offloading [41]). We vary the workload by changing the packet
size from 64 bytes (e.g., 338,000 packets/sec) to 1,025 bytes
(e.g., 84,819 packet/sec) [42].

For the simulation setup, we analyzed performance
characteristics of each processor core in terms of the power
dissipation and execution time. We relied on detailed gate-level
realization of a 32bit RISC-type processor compatible with [43]
in TSMC 65nmLP library in order to accurately evaluate the
power dissipation of a core. By varying the voltage and
frequency values during the simulation, we achieved power and
delay numbers with Power Compiler [44] for the core after
running the same tasks. Furthermore, we utilized a
back-annotated SAIF (Switching Activity Interchange File),
which captures switching activity factor with test patterns,
based on the RTL simulation to achieve accurate power
numbers. For simplicity, we defined a set of four actions, i.e., a0
= [0V, 0Hz], a1 = [1.00V, 150MHz], a2 = [1.08V, 200MHz],
and a3 = [1.20V, 250MHz], assuming that the voltage of the
core is determined based on the operating frequency. Note that
a0 is used to indicate a power-off (power gating) state in which
high Vth sleep transistors are used to disconnect the circtuit
power supply from logic gates when the circuit becomes
inactive.
B. Detailed Results
In the first experiment, we generated a training set by running a
set of tasks on the processor core as follows. First, we
considered a scenario whereby the core accepts two types of
tasks: low-priority and high-priority, where a high-priority task
can move ahead of all low-priority tasks waiting in the queue.
Next, we defined a set of input features {type of task,
occupancy state of the SQ, arrival rate of task} and output
measures {power dissipation [mW], execution time [ns]},

1 In the current world of high-speed networking, where multiple processing

cores reside within a single system, the ability of the networking protocol stack
of the operating system to scale well on a multi-core system is inhibited because
the architecture of conventional Network Driver Interface Specification (NDIS
5.1 and earlier versions) limits receive protocol processing to a single core.
Receive-Side Scaling (RSS) resolves this issue by allowing the network load
from a network adapter to be balanced across multiple cores.

 10

similar to TABLE I. During the training phase, voltage and
frequency values are assigned to the processor core based on
simple requirements such as:
- The core runs faster when high-priority tasks with medium

or high arrival rates arrive under low or medium queue
occupancy,

- The core runs slower when low-priority tasks with low or
medium arrival rates arrive under medium or high queue
occupancy.

Fig. 6 shows various input features during the training phase,
whereas Fig. 7 depicts the corresponding output measures for
100 training sets. Note that profiling output measure (e.g.,
power dissipation) at runtime is feasible with support of
specific hardware such as external current sensors or internal
architectural counters for each core. An external current
sensor [46], supplied by a voltage regulator which also
provides power to the corresponding core, enables online
current measurement, which is accumulated in the current
accumulator, digitally multiplied by voltage value, and fed into
a power dissipation accumulator. On the other hand, internal
architectural counters used to compute the power consumed by
cores count a number of relevant events and appropriately
weight the counter values. For example, the total numbers of
load/store instructions, arithmetic/logic instructions,
floating-point operations, and retirement executions for each
core are counted and summed up after being multiplied by
appropriate weights [47].

Fig. 6. Input features during training phase.

Fig. 7. Output measures during training phase.
The decision boundaries for an output measure are obtained

as follows. First, we assign various labels to the input features
based on our simulation results. After running a number of
simulations, we derive probabilistic density functions for the
power consumption of the core (cf. Fig. 8) for three
observations: o1 = N(35.8, 2.2), o2 = N(44.2, 3), and o3 = N(50.5,
1.8). Next, the two separation points between neighboring
observations are calculated as: δ1 = 39.4 and δ2 = 48.1. The
minimum power (30.3mW) and maximum power (56.0mW)
consumption values for active mode of the processor core
operation are used as the lower and upper bounds of the power
dissipation range. The decision boundaries for the execution
delay are also obtained in a similar manner. Consequently, the
classes of output measures are defined according to TABLE III.

Fig. 8. Probability density functions for power dissipation.

TABLE III
CLASSES OF OUTPUT MEASURES

Power dissipation (mW)

pow1 pow2 pow3

Execution time (ns)

exe1

[30.0 39.4]

exe2 exe3

(39.4 48.1] (48.1 56.0] [14.1 21.5] (21.5 28.5] (28.5 35.7]

Power dissipation (mW)

pow1 pow2 pow3

Execution time (ns)

exe1

[30.0 39.4]

exe2 exe3

(39.4 48.1] (48.1 56.0] [14.1 21.5] (21.5 28.5] (28.5 35.7]

To ensure high accuracy in classification, we define
classification error [48] as follows. The error in classification is
calculated as

 ((),) (,)ER L f x y Prob x y dx dy= ∫ (17)

where f(x) denotes the predicted output measure while y is the
actual output measure. L(.,.) is a general loss function. For our
target application, we use a 0-1 loss function, i.e.,

 0 ()
((),)

1
if y f x

L f x y
otherwise

=⎧
= ⎨

⎩
 (18)

where () arg max (|)
Y

f x Prob Y X x= = in this case. The

class-conditional classification accuracy is then given by 1 –
ER. It is a measure of the performance of the classifier.
Considering the input feature that we used as an example in
section III, the accuracy reaches around 88% in classification.
In addition, the training set size can greatly impact the
classification accuracy, so we performed simulations to

 11

determine an appropriate size by varying the set size from 50 to
3000 as shown in Fig. 9. We have thus empirically determined
that a training set size of 1000 is adequate. Note that substantial
reductions in training set size may be possible if interest is
focused on a single class (e.g., only power dissipation) [49].

Fig. 9. Selection of the training set size.

It is worthwhile to consider a scenario whereby the
characteristics of the task may change over time [51] [52]. If the
workload characteristics change over time, the performance of
the classification can degrade. This is because, having relied on
biased input features during the training phase, the classifier
may not be able to correctly predict the output measure class of
a given input feature. For example, consider different sets of
training data as shown in TABLE IV. Suppose we train three
classifiers based on training set A, set B, or set C. Next we
randomly generated 100 tasks and perform classification for
each incoming task, followed by an optimal action for each task
based on the classification result.

Fig. 10. Comparison of energy dissipations, where actions are
commanded by a classifier based on different training sets.

Fig. 10 shows the normalized energy dissipation by the issued
actions commanded by the three aforesaid classifiers. The
results are quite different for the three classifiers; this shows the
importance of using a representative training set.

To validate the above statement, we considered a scenario
whereby a classifier is trained based on some expected input
characteristics but is subsequently used to classify input
features with different characteristics. In particular, we first
trained a classifier with training set B and used it to determine
the output measure class of elements in set C (modeling the
case whereby the input characteristics changed over time from
those of set B to those of set C). Fig. 11 shows the comparison
in energy dissipation for 100 tasks between this case and one in
which a classifier (“with update”) was trained based on set C
and then ran on data with similar characteristics as those of set
C. It is clearly seen that the classifier “with update”
outperforms that “without update”. Finally, notice that we
could have trained a better classifier by using data from all
three training sets A, B, and C. TABLE V shows the
normalized total energy dissipation for 100 tasks by various
classifiers, where each classifier is trained with the specific
training set. It is clearly seen that the classifier trained with all
training sets consumes less energy, compared to other
classifiers.

Fig. 11. Evaluation of energy dissipation for a given scenario.

TABLE V
NORMALIZED TOTAL ENERGY DISSIPATION FOR VARIOUS CLASSIFIERS

 Training sets

Energy

A, B, C A, B A, C B, C A B C

127.5125.0 122.6114.3115.3113.7108.2

Training sets

Energy

A, B, C A, B A, C B, C A B C

127.5125.0 122.6114.3115.3113.7108.2

Next we investigated the energy-efficiency of the proposed
DPM technique by comparing it with i) the Stochastic PM
technique of [54] which uses a stochastic optimization
approach for power control based on the service request rates
and ii) the Global PM technique of [55] which uses a feedback
mechanism to sense per-core power and performance states.
The cost function of [54] is the power-delay product, which
makes the comparison easy. For simplicity, the waiting time at
the queue was considered to be fixed. To do a fair comparison,

TABLE IV
DIFFERENT CHARACTERISTICS OF TRAINING SETS

Training set A

Training set B

Training set C

Input feature

High Low

Priority Arrival rate

High Med Low

50% 50% 20% 60% 20%

20%

80%

80%

20% 20% 20% 60%

60% 20% 20%

Training set A

Training set B

Training set C

Input feature

High Low

Priority Arrival rate

High Med Low

50% 50% 20% 60% 20%

20%

80%

80%

20% 20% 20% 60%

60% 20% 20%

 12

the power and performance states of [55] were represented by
the power and delay levels defined in our experimental setup.
Here we assumed that the latency overhead of DVFS is on the
order of several tens of microseconds. We used four VF values
where a0 < a1 < a2 < a3, with a0 corresponding to a power-off
state, a1 denoting the lowest (operational) power and
performance state, and a3 denoting the highest power and
performance state.
Stochastic PM technique: It employs a DPM assignment
strategy such that a power manager is triggered to issue a DVFS
command based on a precomputed and stored policy table. The
key into this hash table is the current state of the system which
is a pair representing the current power-performance state of
the processor and the request arrival rate. The policy table itself
is computed off-line using the stochastic optimization
framework of [54] where the objective is total expected system
power and the constraint is an upper bound on delay. In our
simulations, the state transition (i.e., power mode transition)
probabilities are calculated from offline simulations. For
example, when the system state changes into the lowest power
mode (e.g., pow1) the power manager assigns a command as
follows:

if the processor is idle (i.e., task arrival rate = 0), a0
else if 0 ≤ arrival rate of tasks ≤ 0.33, a1
else if 0.33 < arrival rate of tasks ≤ 0.67, a2
else if 0.67 < arrival rate of tasks < 1, a3 .

Global PM technique: It employs a feedback-control DPM
strategy based on the Priority policy of [55] where the power
manager assigns different priorities to different tasks so as to
meet a specific global power budget by adjusting power modes
of individual processing cores. Similar to [55], processor core 4
has the highest priority (will run as fast as possible) while
processor core 1 has the lowest priority (will be the first to slow
down in case of a power budget overshoot).
Bayesian PM: Employ the Bayesian learning-based DPM
method described in this paper.

We generated a number of tasks by selecting the arrival rate
of tasks randomly, where 0 ≤ the arrival rate of tasks < 1, and
applied the above-mentioned DPM policies to the processor.

Fig. 12. Energy dissipation comparison for a given experimental
setup.

The simulation results in Fig. 12, which report the

(normalized) energy dissipation of each task (numbered from 1
to 50) for the processor, show that the proposed DPM
technique, i.e., Bayesian PM exhibits sizeable energy savings
up to 24% and 15% (on average) compared to [54] and [55],
respectively. Considering the performance of the processor, the
overhead of performing classification in the Bayesian PM is
negligible since it does not affect the execution time of the
processors (i.e., the classification and table lookup are
performed during the queuing period before any VF change).

Experimental results in TABLE VI, which also reports the
characteristics of the workload distribution for each processor
(e.g., Proc1 receives 50 tasks whereas Proc4 receives 200
tasks), demonstrate that, compared to the Stochastic and Global
PM policies, the proposed Bayesian classification–based power
management policy achieves system-wide energy (normalized)
savings of up to 20.5% and 11.5% (these are the normalized
averages on four processors when α = 1), respectively. It is also
seen that if we consider the missing input feature (e.g., α = 0.95
and α = 0.90), there is little performance degradation.

TABLE VI
ENERGY SAVINGS IN THE MPS

Processor

Proc3

Proc1

Proc2

Proc4

Number
of tasks

Energy
(Stochastic) Prob. (α) Energy

Energy saving over

50 61.0

46.8 23.1%

100

150

200

1.00

0.95

0.90

121.5
97.8 19.5%1.00

0.95

0.90

189.2
150.6 20.4%1.00

0.95

0.90

243.4
197.6 18.8%1.00

0.95

0.90

Bayesian

203.5 16.3%

205.4

156.2

99.8

50.8 16.7%

49.2

98.2

154.3

19.3%

17.83%

19.1%

17.4%

18.4%

15.6%

Global

Energy
(Global)

10.3%

11.7%

10.2%

7.5%

6.3%

9.2%

8.5%

9.9%

8.4%

9.5%

6.6%

13.6%

Stochastic

54.2

109.1

170.6

220.0

Processor

Proc3

Proc1

Proc2

Proc4

Number
of tasks

Energy
(Stochastic) Prob. (α) Energy

Energy saving over

50 61.0

46.8 23.1%

100

150

200

1.00

0.95

0.90

121.5
97.8 19.5%1.00

0.95

0.90

189.2
150.6 20.4%1.00

0.95

0.90

243.4
197.6 18.8%1.00

0.95

0.90

Bayesian

203.5 16.3%

205.4

156.2

99.8

50.8 16.7%

49.2

98.2

154.3

19.3%

17.83%

19.1%

17.4%

18.4%

15.6%

Global

Energy
(Global)

10.3%

11.7%

10.2%

7.5%

6.3%

9.2%

8.5%

9.9%

8.4%

9.5%

6.6%

13.6%

Stochastic

54.2

109.1

170.6

220.0

VIII. CONCLUSION
The paper addressed the problem of dynamic power
management, where a system-level PM continually intervenes
to exploit power-saving opportunities subject to performance
requirements. The overhead associated with regular activity of
the PM to monitor the workload of a system and make
decisions about power management of different functional
blocks in the system tends to undermine the overall power
savings of the DPM approaches. This paper thus described a
supervised learning based DPM framework for a MPS, which
enables the PM to predict the performance state of the system
for each incoming task by a simple and efficient analysis of
some readily available input features. Experimental results
have demonstrated that the proposed DPM framework results
in significant energy savings for various workloads in MPSs.

REFERENCES
[1] D. I, Q. Xie, and P.H. Chou, “Scalable Modeling and Optimization of

Mode Transitions based on Decoupled Power Management Architecture,”
Proc. of Design Automation Conference, Jun. 2003, pp. 119-124.

 13

[2] Y-H. Lu and G. De. Micheli, “Comparing System-Level Power
Management Policies,” IEEE Design & Test of Computers, Vol. 18, Issue
2, pp. 10-19, Mar-Apr. 2001.

[3] A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabukswar, K.
Krishnan, and A. Kumar., “Power and Thermal Management in Intel Core
Duo Processor,” Intel Technology Journal, Vol. 10, Issue 2, pp. 109-122,
May 2006.

[4] H. Jung and M. Pedram, “Continuous Frequency Adjustment Technique
based on Dynamic Workload Prediction,” Proc. of International
Conference on VLSI Design, Jan. 2008, pp.415-420.

[5] A. Iyer and D. Marculescu, “Power Efficiency of Voltage Scaling in
Multiple Clock, Multiple Voltage Cores,” Proc. of International
Conference on Computer Aided Design, Nov. 2002, pp. 379-386.

[6] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen., “Single
ISA Heterogeneous Multicore Architecture: The Potential for Processor
Power Reduction,” Proc. of Symposium on Microarchitecture, Dec. 2003,
pp. 81-93.

[7] Q. Wu, P. Juang, M. Martonosi, and D.W. Clark, “Voltage and Frequency
Control with Adaptive Reaction Time in Multiple-Clock Domain
Processors,” Proc. of Symposium on High-Performance Computer
Architecture, Feb. 2005, pp. 178-189.

[8] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D. Takahashi, “
Profile-based Optimization of Power Performance by using Dynamic
Voltage Scaling of a PC cluster,” Proc. of Parallel and Distributed
Processing Symposium, Apr. 2006, pp. 8-16.

[9] B. Mochocki, D. Rajan, X.S. Hu, C. Poellabacer, K. Otten, and T.
Chantem, “Network-Aware Dynamic Voltage and Frequency Scaling,”
Proc. of Real Time and Embedded Technology and Application
Symposium, Apr. 2007, pp. 215-224.

[10] E. Chung, L. Benini, and G. De. Micheli, “Dynamic Power Management
Using Adaptive Learning Tree,” Proc. of International Conference on
Computer Aided Design, Nov. 1999, pp. 274-279.

[11] O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning, The
MIT Press, 2006.

[12] S. Ma and C. Ji, “Performance and Efficiency: Recent Advances in
Supervised Learning,” Proc. of IEEE, Vol. 87, No. 9, pp.1519 – 1535,
Sep. 1999.

[13] P. Teich, “Multi-Core Processor Technology: Maximizing CPU
Performance in a Power-Constrained World,” presentation slide of
Microsoft Windows Hardware Engineering Conference, Apr. 2005.

[14] H. Zhong, S. A. Lieberman, and S. A. Mahke, “Extending Multicore
Architectures to Exploit Hybrid Parallelism in Single-Thread
Applications,” Proc. of Int’l Symposium on High Performance Computer
Architecture, Mar. 2007, pp.25-36.

[15] V. Paxson, R. Sommer, and N. Weaver, “An Architecture for Exploiting
Multi-Core Processors to Parallelize Network Intrusion Prevention,”
Proc. of .IEEE Sarnoff Symposium, Apr. 2007, pp.1-7.

[16] T.D. Burd and R.W. Brodersen, “Design Issues for Dynamic Voltage
Scaling,” Proc. of International Symposium on Low Power Electronics
and Design, Aug. 2000, pp. 9-14.

[17] A. Mittal and A. Kassim, Bayesian Network Technologies: Applications
and Graphical Models, IGI Publishing, 2007.

[18] T. Mitchell, Machine Learning, McGraw Hill, 1997.
[19] K. Huang, Z. Xu, I. King, M. R. Lyu, Z. Zhou, “A Novel Discriminative

Naive Bayesian Network for classification,” In Bayesian Network
Technologies: Applications and Graphical Models. Ankush Mittal,
Ashraf Kassim, Tele Tan (Eds.), March, 2007, pp 1-12, Idea Group Inc.

[20] Vapnik, V.N, The nature of statistical learning theory (2nd ed.). New
York: Springer-Verlag. 1999.

[21] G. Theocharous, S. Mannor, N. Shah, P. Gandhi, B. Kveton, S. Siddiqi,
and C. Yu, “Machine Learning for Adaptive Power Management,” Intel
Technology Journal, Vol. 10, Issue 4, pp.299 – 310, Jul. 2006.

[22] G. Dhiman, and T. S. Rosing, “Dynamic Power Management Using
Machine Learning,” Proc. of Int’l Conference on Computer Aided
Design, Nov. 2006, pp. 747-754.

[23] G. Dhiman, and T. S. Rosing, “Dynamic voltage frequency scaling for
multi-tasking systems using online learning,” Proc. of International

Symposium on Low Power Electronics and Design, Jul. 2007,
pp.207-212.

[24] A. Weissel, and F. Bellosa, “Self-Learning Hard Disk Power
Management for Mobile Devices,” Proc. of Int’l Workshop on Software
Support for Portable Storage, Oct. 2006, pp. 33 – 40.

[25] C. Rusu, N. AbouGhazaleh, A. Ferreira, R. Xu, B. Childers, R. Melhem,
and D. Mosse, “Integrated CPU and L2 cache Frequency/Voltage Scaling
using Supervised Learning,” Proc. of Workshop on Statistical and
Machine Learning Approaches applied to Architectures and Compilation,
Jul. 2007, pp. 41 – 50.

[26] W. Cohen, “Fast Effective Rule Induction,” Proc. of 12th Int’l Conference
on Machine Learning, Dec. 1995. pp. 115-123.

[27] R. Quinlan, C4.5: Program for Machine Learning, Morgan Kaufmann
Publisher, 1993.

[28] A. Statnikov, C.F. Aliferis, I. Tsamardinos, D.P. Hardin, and S. Levy, A
Comprehensive Evaluation of Multicategory Classification Methods for
Microarray Gene Expression Cancer Diagnosis, Bioinformatics, 2004.

[29] C. Cortes and V. Vapnik, “Support-Vector Networks,” Journal of
Machine Learning, Vol. 20, No. 3, pp. 273-297, 1995.

[30] R. Knauerhase, P. Brett, T. Li, B. Hohlt, and S. Hahn, “Using OS
Observations to Improve Performance in Multi-core Systems, ” Proc. of
IEEE Micro, Vol. 28, Issue 3, pp. 54-66, May-Jun. 2008.

[31] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell,
“CacheScouts: Fine-Grain Monitoring of Shared Caches in CMP
Platforms,” Proc. of Int’l Conference on Parallel Architecture and
Compilation Techniques, Oct. 2007, pp. 339-349.

[32] M.L. Seltzer, B. Raj, and R.M. Stern, “A Bayesian classifier for
spectrographic mask estimation for missing feature speech recognition,”
Journal of Speech Communication, Vol. 43, pp. 379-393, Mar. 2004.

[33] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical
Society, Series B, 39(1), pp. 1-38, 1977.

[34] J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application
to Parameter Estimation for Gaussian Mixture and Hidden Markov
Model,” Technical Report, TR-97-021, U.C. Berkeley, 1998.

[35] R. A. Fisher, Statistical Methods and Scientific Inference, Macmillan Pub
Co. 1973.

[36] A. Gosavi, Simulation-based Optimization: Parameter Optimization
Techniques and Reinforcement Learning, Kluwer Academic, 2003.

[37] R.E. Bellman, Dynamic Programming, Princeton University Press, 1957.
[38] R. J. Williams and L.C. Baird, “Tight performance bounds on greedy

policies based on imperfect value functions,” Technical Report
NU-CCS-93-14, Northeastern University, Nov. 1993.

[39] Ken Salchow, “Load Balancing 101,” white papers from F5 Inc.,
http://www.f5.com/pdf/white-papers/evolution-adc-wp.pdf and
http://www.theacademy.ca/load-balancing101-wp.pdf .

[40] White paper, “Scalable Networking: Eliminating the receive processing
bottleneck – Introduction RSS,” WinHEC 2004 version, Apr. 2004
http://www.microsoft.com/whdc/.

[41] IEEE 802.3 Ethernet document. http://www.ieee802.org.
[42] H. Jung, and M. Pedram, “A Unified Framework for System-level Design:

Modeling and Performance Optimization of Scalable Networking
Systems,” Proc. of Int’l Symposium on Quality of Electronic Designs,
Mar. 2007, pp.198-203.

[43] OpenRISC processor. http://www.opencores.org. Opencore, 2009.
[44] Synopsys compiler. http://www.synopsys.com. Synopsys, 2009.
[45] B. Calhoun, J. Kao, and A. Chandrakasan, Leakage in Nanometer CMOS

Technologies, Springer, 2006.
[46] White paper, “Bi-directional current/power monitor with I2C Interface,”

Sep. 2008, http://focus.ti.com.
[47] V. Srinivasan, D. Brooks, M. Gschwind, and P. Bose, “Optimizing

Pipelines for Power and Performance,” Proc. of International Symposium
on Microarchitecture, Nov. 2002, pp.333-344.

[48] V. Pronk, S.V.R. Gutta, and W.F.J. Verhaegh, “Incorporating Confidence
in a Naïve Bayesian Classifier,” Lecture Notes in Computer Science: User
Modeling 2005, pp.317-326, Aug. 2005.

 14

[49] G.M. Foody, A. Mathur, C. Sanchez-Hernandez, and D. S. Boyd,
“Training set size requirements for the classification of a specific class,”
Journal of remote sensing of environment, Vol. 104, Issue 1, pp. 1 – 14,
Sep. 2006.

[50] C. McNairy and R. Bhaita, “Montecito: A Dual-Core, Dual-Thread
Itanium Processor,” IEEE Micro, Vol. 25, Issue 2, pp. 10-20, Mar-Apr.,
2005.

[51] S. Chaudhuri and V. Narasayya, “An Efficient Cost-driven Index Tuning
Wizard for Microsoft SQL Server,” Proc. of 23rd International
Conference on Very Large Databases, Sep. 1997, pp. 146-155.

[52] I. Ahmand, “Easy and Efficient Disk I/O Workload Characterization in
VMware ESX Server,” Proc. of International Symposium on Workload
Characterization, Sep. 2007, pp. 149-158.

[53] E. Castro-Leon, S. Nayak, and D. Shenkar, “Data Center Power and
Thermal Management using Intel Data Center Manager Software
Development Kit”, http://software.intel.com. Jul. 2009.

[54] Q. Qiu and M. Pedram, “Dynamic Power Management based n
Continuous Time Markov Decision Process,” Proc. of Design Automation
Conference, Jun. 1999, pp.555-561.

[55] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose and M. Martonosi, “An
Analysis of Efficient Multi-Core Power Management Policies:
Maximizing Performance for a Given Power Budget,” Proc. of Int’l
Symposium on Microarchitecture, 2006, pp.347-358

