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Abstract - This paper presents a supervised learning based power 
management framework for a multi-processor system, where a 
power manager (PM) learns to predict the system performance 
state from some readily available input features (such as the 
occupancy state of a global service queue) and then uses this 
predicted state to look up the optimal power management action 
(e.g., voltage-frequency setting) from a precomputed policy table. 
The motivation for utilizing supervised learning in the form of a 
Bayesian classifier is to reduce the overhead of the PM which has 
to repetitively determine and assign voltage-frequency settings for 
each processor core in the system. Experimental results 
demonstrate that the proposed supervised learning based power 
management technique ensures system-wide energy savings under 
rapidly and widely varying workloads. 
 

Index Terms — Bayesian classification, dynamic power 
management, machine learning, multi-processor system, 
supervised learning  

I. INTRODUCTION 
ngoing demand for high performance – yet thermally 
sustainable - processing have resulted in the introduction 
of chip multiprocessor architectures to enable continued 

performance scaling without having to increase the chip clock 
frequencies beyond a few GHz. At the same time, there are 
strong motivations (i.e., dollar cost of energy consumption, 
thermal power budget constraint, service life of the system in 
between batter recharges in case of mobile platforms) to make 
multi-core processing platforms power and energy efficient.  

Conventional dynamic power management (DPM) methods 
have not been able to take full advantage of power-saving 
techniques such as dynamic voltage and frequency scaling 
(DVFS). This is because i) the system-level power manager has 
a limited opportunity to utilize DVFS due to the energy and 
delay overheads incurred during power mode transitions  [1], 
and ii) the power management algorithm (process), which 
continuously monitors the workloads of multiple processors, 
analyzes the information to make decisions, and issues DVFS 
commands to each processor, can give rise to a considerable 
computational overhead and/or complicate the task 
scheduling  [2]. The higher the number of cores in the processor 
is, the more severe these issues become. Therefore, the ability 
of a DPM framework to scale well on a multicore processor by 
eliminating these overheads is becoming a critical 
requirement  [3] [4]. 

In the literature, DPM is typically referred to a strategy 
whereby a resource manager (hardware, firmware, or the 
operating system) turns of or off the processing cores when 
they are idle (or new tasks arrive). In contrast, DVFS is defined 
as a technique which dynamically varies the supply voltage and 
operating frequency values applied to the processing cores in 
response to load conditions or workload characteristics. It is 

easy to see that DPM can be easily combined with DVFS, i.e., a 
power manager may not only issue commands to various 
processing cores to turn on or off, but also change their 
power-performance state by issuing DVFS commands. In our 
paper, however, we do not consider power gating as an option, 
i.e., when we speak of DPM, we mean DPM using DVFS as the 
power optimization level only. 

The problem of determining a power management policy 
that applies DVFS to a multicore processor has recently 
received a lot of attention – see, for example,  [5]- [10]. 
Although these techniques perform system-level DPM or 
DVFS for multicore processors, little attention has been paid to 
improve decision-making strategy which minimizes the 
overhead of a power manager (PM), i.e., to devise a 
learning-based power management policy that can quickly 
analyze some easily available input features (i.e., quantifiable 
features of the system under consideration) and accurately 
predict the overall system performance state, which is 
subsequently used to choose and issue the “optimal action”. 

Traditional approaches for DPM, which are based on models 
of service requestor (SR), service provider (SP), and service 
queue (SQ), tend to work very well if the workload of the 
system does not change rapidly. In such a case, the energy and 
delay overheads of power mode transitions can become quite 
significant, rendering the DPM strategy ineffective. Indeed, 
adaptive power management techniques are unsuccessful in 
reducing the total chip power dissipation when the overhead of 
power-mode transitions is not controlled in a multicore 
processor, which is subjected to frequent changes in the load 
conditions  [10]. Our thesis is that knowing (or predicting) in 
real time which frequency and voltage levels to use, and when 
to apply a new performance setting in a multicore processor, 
must be done with the aid of a self-improving (i.e., intelligent 
and autonomous) power manager that can detect the load 
conditions and react appropriately.  

In this paper, we address a dynamic power management 
problem where a PM continuously issues power mode 
transition commands to maximally exploit the power-saving 
opportunities. The overhead associated with the functioning of 
the PM to monitor the workload of the system and make 
decisions about performance mode (voltage and frequency 
level) of different cores in a multicore processing system tends 
to be high. This paper thus describes a supervised learning  [11] 
based DVFS for the multicore processor, which enables the PM 
to predict the performance state of the processor for each 
incoming task by inspecting some readily available input 
features, followed by a Bayesian classification technique.  

Supervised learning (SL) refers to the formal theory of 
developing computational models for learning behaviors of 
agents as part of the machine learning discipline  [11] [12]. The 
key rational for utilizing SL for power management is to reduce 
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the overhead of the PM. Experimental results demonstrate the 
effectiveness of the proposed power management framework 
and show that it achieves sizeable system-wide energy savings 
under rapidly varying workloads in a wired communication 
application scenario. 

In the remainder of this paper we use the terms chip multi 
processor (CMP) and multi-processor system (MPS) 
interchangeably. Moreover, we assume that the different cores 
within a CMP or the different processors within a MPS can be 
independently turned on/off or voltage and frequency scaled. 
We realize that the current generation of CMP designs (see for 
example Intel Nehalem  [53]) do not offer per-core dynamic 
voltage and frequency scaling, but expect that the future 
generations of the CMP designs will support this important 
power/performance scaling feature. Regardless, the proposed 
approach can be applied to different processors in a MPS (e.g., 
a Blade server used in datacenters).  

The remainder of this paper is organized as follows. Section 
II provides background of this paper while section III describes 
some related work. Section IV provides the details of proposed 
supervised learning based power management framework. An 
extraction strategy for input features and output measures is 
described in section V. In section VI, we present a stochastic 
policy optimization technique. Experimental results and 
conclusion are given in section VII and section VIII. 

II. BACKGROUND  
Consider a power-managed MPS, where each processor is 
equipped with multiple power-saving modes (i.e., different 
DVFS settings). A system-level PM dynamically assigns the 
DVFS setting for each processor based on its workload as is 
shown in Fig. 1 for a distributed shared-memory MPS.  

The figure also shows a dynamic load balancing block which 
enables high-throughput and low-latency data flow for each 
processor and a control unit which ensures cache coherency. 
The flow queue (i.e., receive queue) interacts with the PM by 
providing information about a processor’s workload for the 
purpose of controlling the performance state of the processor. 
The PM, which profiles and analyzes the workload 
characteristics i.e., the arrival rate of tasks by examining the 
flow queue, determines and executes a power management 
policy (i.e., one that maps workloads to power state transition 

commands) so as to minimize the system energy dissipation. 
Details of the processor functionality are omitted here for 
brevity. Interested readers may refer to  [13] [14] [15].  

When tasks are given to a MPS, the dynamic load balancing 
block (i.e., SR) dispatches each task into some flow queue (i.e., 
local SQ). Each processor (i.e., SP) reads the assigned tasks 
from its SQ. At regular time instances (or aperiodic times 
dictated by interrupts), called decision epochs, the PM 
determines the workload of the processor by checking the 
occupancy state of its SQ, and subsequently, assigns a DVFS 
value to the processor. Note that the decision epochs are 
separated by a fixed (or some average) time interval; the shorter 
this time interval is, the higher the delay and energy dissipation 
overheads of the PM are. This is because the DVFS method 
utilizing a DC-DC converter with multiple regulated output 
voltage levels and a PLL with multiple output frequencies incur 
non-negligible mode transition latency and energy 
overheads  [16]. At the same time, the shorter this interval is, the 
more responsive the PM is to changes in the workload. The 
shortcoming of the conventional DVFS procedure is the 
following. When the workload (the occupancy number of the 
SQ) changes, each processor has to send an interrupt to the PM 
to request a DVFS adjustment for the corresponding processor, 
which significantly increases the computational overhead of 
the PM in a MPS with a large number of processors. 
Alternatively, the PM on a regular basis examines the state of 
the SQ in front of each processor in order to determine the 
DVFS value for that processor, and subsequently, schedules a 
sequence of DVFS assignments for every processor. Either 
approach creates a significant overhead. A key contribution of 
our work is that an incoming task is directly labeled with an 
optimal DVFS value through the Bayesian classification 
process while it is still in the SQ. 

III. RELATED WORK  
Dynamic power management techniques based on machine 
leaning  [18] have been the subject of a number of recent 
investigations  [21]- [25]. In the following, we provide a quick 
review of some works that are directly related to ours. 

An adaptive power management technique based on 
machine learning was presented in  [21], where the authors 
described a system that learns when to turn off functional 
blocks of the system based on different usage patterns, e.g., 
history of active application or the CPU utilization factor. In 
this model-based approach, system dynamics and user patterns 
are captured to choose power-saving actions. 

The authors in  [22] [23] described a power management 
technique that employs a machine learning algorithm to 
choose an optimal policy from a set of power management 

policies available to a system. The proposed algorithm, which 
relies on processor runtime statistics, evaluates performance of 
the policies during each idle period to decide which policy to 
adopt next. Our proposed technique differs from  [23] in that we 
use a supervised learning algorithm for deriving a 
self-improving policy.  

An automated approach to identify a task-specific power 
management policy was proposed in  [24], where an 
enforcement-learning based operating system automatically 
learns which action to take for a specific workload given to a 

 
Dynamic load balancing

Proc
I/F

Flow
Queue

Processor

L1 Memory

Control Unit Coherence
control bus

I & D 
bus

Multicore Processor

Power manager

Performance
monitor

DVFS
assignment

Policy
calculation

Proc
I/F

Flow
Queue

Processor

L1 Memory

Proc
I/F

Flow
Queue

Processor

L1 Memory

Proc
I/F

Flow
Queue

Processor

L1 Memory

Dynamic load balancing

Proc
I/F

Flow
Queue

Processor

L1 Memory

Control Unit Coherence
control bus

I & D 
bus

Multicore Processor

Power manager

Performance
monitor

DVFS
assignment

Policy
calculation

Proc
I/F

Flow
Queue

Processor

L1 Memory

Proc
I/F

Flow
Queue

Processor

L1 Memory

Proc
I/F

Flow
Queue

Processor

L1 Memory

 
Fig. 1.  Example of a power-managed multi- processor system. 
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system. The authors applied the proposed technique to hard 
disk power management in a mobile device, enabling the 
operating system to record hard disk accesses and monitor I/O 
related system parameters. In this approach, a classification 
algorithm that dynamically selects an appropriate spin-down 
policy is implemented.  

The authors of  [25] presented a machine learning approach 
to perform dynamic voltage scaling (DVS) on an integrated 
CPU-core and on-chip L2-cache. The proposed approach 
identifies application phases at runtime and issues appropriate 
DVS commands. The DVS policy itself is derived through a 
learning process performed on a representative workload. More 
precisely, first a training data set is generated by representing 
the workload as a CPU/cache frequency combination and the 
optimal DVS command for each such combination. Next a 
machine learning technique is applied to obtain a policy in the 
form of propositional (if-then) rules. 

All of the above-mentioned power management approaches 
are based on machine learning techniques, where an agent (i.e., 
power manager) is trained based on a number of representative 
workloads or user patterns in order to learn the performance 
state of a target system for the purpose of taking a DVS or 
DVFS action. Unfortunately, little attention has been paid to 
power management policy optimization under a cost function 
and to the accurate classification of the performance state of the 
system. Furthermore, as explained previously, the aforesaid 
techniques are inefficient for MPS architecture due to 
computational overheads for deriving an optimal policy for 
each processor, exacerbating with scheduling of a series of 
DVFS assignments for every processor. 

IV. LEARNING-BASED POWER MANAGEMENT FRAMEWORK 
In this section, we present a theoretical framework to construct 
a supervised learning-based power management framework. 
A. Background on Supervised Learning 
Supervised learning  [11] is an effective and practical technique 
for discovering relations and extracting knowledge in cases 
where the mathematical model of the problem may be too 
expensive to construct, or not available at all. Alternatively, it 
may be used to derive a self-improving decision-making 
strategy instead of making decisions based on the current 
perceived state of the system.  

The goal of the supervised learning is to learn a mapping 
from x ∈ X to y ∈ Y, given training sets that consist of input and 
output pairs. Here X = {x1, x2, …, xn} denotes a set of input 
features, and Y = {y1, y2, …, yn} is a set of outputs measures. 
The input feature set contains quantifiable features of the 
system under consideration. The output measure set can be a 
continuous value (called regression) or a class label of the input 

(called classification), which thus results in a numerical or 
categorical measure. If the output measure is numerical 
(categorical), then the learning will become a regression 
(classification) problem. 

In this paper, each output measure is labeled with a 
pre-defined class (e.g., performance level). The learning is 
performed on a collection of training sets. Thus, training an 
agent (e.g., a PM) involves finding a mapping from input 
features to output measures so as to enable the agent to 
accurately predict the class of an output measure when a new 
input feature is given. Fig. 2 shows the concept of supervised 
learning, where the agent predicts the classes of output 
measures yk when input features xk are given after learning with 
the training sets, where k = 1, …, n.  

The key steps of the supervised learning may be stated as 
follows: 
i) Determine inputs and outputs of the learner: Relevant input 

features and output measures (and the corresponding class 
labels) are chosen, 

ii) Generate the training set: The training set – which is simply 
a collection of input features and corresponding output 
features and class labels - is designed so as to capture the 
important characteristics of the system, 

iii) Training: This step results in the design of the classifier 
based on the training set, 

iv) Classification: The classifier is used on arbitrary input 
features to predict the class labels of the output measures. 

Considering algorithms for supervised learning, there are a 
number of methods for classification such as rule based learner, 
decision tree based learner, instance based learner, probability 
based learner, and kernel based learner. Details of each 
classification learner are omitted here for brevity. Interested 
readers may refer to  [26] [27] [28] [29].  

In our problem setup, we have found that the probability 
based learner (i.e., Bayesian classifier) is more efficient than 
other methods since it can efficiently classify the output 
features corresponding to a new input feature into a finite 
number of class labels. The key to speed of the classification 
step is the pre-computation of prior and conditional 
probabilities based on a training step (see below).  

B. Learning-based Power Management Framework 
It is useful to describe how the supervised learning can be 
adapted to the power management technique. Fig. 3 presents a 
top level structure of the proposed PM which incorporates a 
Bayesian learning framework. The learning framework 
consists of two phases: extraction and classification phases.  
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Fig. 3.  Structure of the proposed power manager. 
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Essentially, we aim to use the supervised learning to enable 
the PM to automatically discover the relations between input 
features and output measures and to predict the processor’s 
performance level (power dissipation and execution time per 
task) by using the classification. Key functions implemented 
inside the PM are as follows: 

- Feature extraction: choose the input feature (i.e., 
characteristics of the tasks and the state of the SQ), 

- Measure extraction: choose the output measure (i.e., the 
power dissipation and execution time of the tasks),  

- Training set generation: assemble the input feather and 
output measure into the training sets, 

- Supervised learning: map the input feature to the output 
measure based on the training sets, and 

- Classification: select the most likely class given the input 
feature. 

The proposed supervised learning-based power management 
technique mainly comprise of three parts: extraction, 
classification, and policy generation. The procedures for 
extraction and classification are explained next. Details of the 
extraction strategy for input features and output measures are 
further described in section IV, whereas the policy optimization 
technique is presented in section V. 
1) Input Feature and Output Measure Extraction 
The first step is the extraction phase which extracts input 
features and output measures, where system knowledge is 
required to produce well-prepared training sets. During the 
process of feature extraction, in the context of the power 
management problem, the PM gathers input features such as the 
type of tasks (e.g., high-priority or low-priority), the state of the 
SQ, and the arrival rate of tasks, which affect the performance 
level of the SP. In addition, the PM observes 
performance-related information (e.g., the system power 
dissipation and the execution time of tasks) as the output 
measures. The class of each output measure, considered as an 
attribute, is as a pre-defined level or range, such as a range of 
system power dissipations or time durations for task execution. 

TABLE I                                                  
EXAMPLE TRAINING SET FOR THE DPM PROBLEM 
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TABLE I shows an example of training sets which consist of 
selected input feature and output measure pairs. Notice that the 
queue occupancy and the arrival rate of task are assigned 
attributes (i.e., low, med, or high), where low = [0 33%], med = 

(33% 67%], and high = (67% 100%] when applied to the SQ 
occupancy, and low = [0 0.33], med = (0.33 0.67], and high = 
(0.67 1] when applied to the arrival rate. Each output measure is 
labeled with a specific class from the set L. In our problem 
setup, the class set L is defined as L1 = {pow1, pow2, pow3} 
where pow1 < pow2 < pow3, and L2 = {exe1, exe2, exe3} where 
exe1 < exe2 < exe3. Note that each class is defined as a range of 
values, e.g., pow1 = [34mW 41mW], pow2 = (41mW 47mW], 
pow3 = (47mW 54mW], exe1 = [14.1ns 21.5ns], exe2 = (21.5ns 
28.5ns], and exe3 = (28.5ns 35.7ns]. In addition to our input 
features, the power dissipation and execution time may be 
determined by many other factors, including the cache hit/miss 
ratio, cache hierarchy, and so on. The extent to which these 
factors impact the performance of the SP is highly dependent 
on the architecture and/or the system configuration (e.g., 
whether the SP’s allow single or multiple thread execution). In 
this paper, we consider single-threaded core architectures only. 

The training set size affects the accuracy of classification, i.e., 
variance of the predicted value increases as the training set size 
is reduced, resulting in an increased bias. In this paper, the 
training set size is determined by calculating a conditional 
probability while varying the set size, as described in the 
experimental results section. 

2) Classification 
The goal of classification is to predict the most likely class label 
of the output features given the input features. In the context of 
PM for a CMP system, the goal is to devise a power 
management policy for issuing DVFS commands that minimize 
the total energy dissipation of the CMP system based on the 
load conditions and workload characteristics. 

Having obtained the training set, the second step is the 
classification phase, which uses supervised learning to train an 
accurate classifier. The classifier’s goal is to organize a new 
input feature {x1, x2, …, xn} into a finite number of classes l 
from the set L for each one of the output features in the set {y1, 
y2, …, yn}. 

Specifically, in the Bayesian classifier, the classification task 
is essentially the assignment of the maximum a posteriori 
(MAP) class given the data x = (x1, x2, …, xn) and the prior of 
class assignments to yi by maximizing the posterior probability 
Prob(yi = l | x1, x2,…, xn) of assigning class l to output feature yi 
given the new evidence x, such as 

1 2

1 2

1 2

arg max ( | , , , )

( , , , | ) ( )arg max
( , , , )

MAP i n
l

n i i

l n

y Prob y l x x x

Prob x x x y l Prob y l
Prob x x x

= =

= ⋅ =
=

…

…
…

 (1) 

The denominator Prob(x1, x2, …, xn), which is the marginal 
probability of witnessing the new evidence x under all possible 
hypotheses, is irrelevant for decision making since it is the 
same for every class assignment. Prob(yi = l), which is the prior 
(pre-evidence) probability of the hypothesis that the class of yi 
is l, is easily calculated from the training set. Hence, we only 
need Prob(x1, x2,…, xn | yi = l), which is the conditional 
probability of seeing the input feature vector x given that the 
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class of yi is l.  The factor 1 2

1 2

( , , , | )
( , , , )

n i

n

Prob x x x y l
Prob x x x

=…
…

represents 

the impact of the new evidence x on the hypothesis that yi=l. If 
it is likely that the evidence will be observed when this 
hypothesis is true, then this factor will be large. Note that 
multiplying the prior probability by this factor results in a large 
posterior probability of the hypothesis given the evidence. The 
Bayes' theorem thus measures how much new evidence should 
alter belief in some hypothesis. 

Now Prob(x1, x2,…, xn | yi = l) may be expanded as Prob(x1 | 
x2,…, xn , yi = l)×Prob(x2, x3,…, xn | yi = l). The second factor 
above can be decomposed in the same way, and so on. 
Furthermore, assuming that all input features are conditionally 
independent given the class, i.e., Prob(x1 | x2, …, xn , yi = l) = 
Prob(x1 | yi = l). Therefore, we obtain: Prob(x1, x2,…, xn | yi = l) 
= ∏j Prob(xj | yi = l), and we compute the maximum a posteriori 
class as follows: 

       
1

arg max ( ) ( | )
n

MAP i j i
l j

y Prob Proby l x y l
=

= = ⋅ =∏  (2) 

When used in real applications, the Bayesian classifier first 
partitions the training set into several subdatasets by the class 
label of the target output measure. Then, in each subdataset 
labeled by l for output measure yi, the maximum likelihood 
(ML) estimator Prob(xj = ajk | yi=l) can be given by the 
frequency njkl / nl, where njkl is the number of the occurrences of 
the event {xj = ajk} in subdataset denoted by class label l; nl is 
the number of the samples in the same subdataset. 

An example of how to classify the input features is given 
next. Suppose that we have a set of three input features and a set 
of two output features as shown in Table 1, where {x1, x2, x3} = 
{task type, queue occupancy, arrival rate}, and {y1, y2} = 
{power dissipation, execution time}. We first compute the 
per-input-feature conditional probabilities required for the 
classification task. For the example training set, we have: 
Prob(x1 = low | y1 = pow1) = Prob(x1 = low | y1 = pow2) = 3/4, 
Prob(x1 = high | y1 = pow1) = Prob(x1 = high | y1 = pow2) = 1/4, 
and Prob(x1 = high | y1 = pow3) = 1. There may be some cases 
where particular input features do not occur together with an 
output measure due to an insufficient number of data points in 
the training set. In this case, a standard way to deal with zero 
conditional probabilities is to eliminate them by smoothing  [18] 
as follows 

( )
( | )

( )

,j

i

i
j i

x

freq x y l
Prob x y l

freq y l n

λ

λ

= +
= =

= +
 (3) 

where λ is a smoothing constant (λ > 0), and nx is the number of 
different attributes of xi that have been observed. For the 
example training set, using equation (3) with λ = 1, we have: 
Prob(x1 = low | y1 = pow3) = Prob(x2 = med | y1 = pow3) = 1/4. 
We will also need the prior probabilities for the various output 
feature classifications, which are calculated from the training 
set data. In this example, Prob(y1 = pow1) = Prob(y1 = pow2) = 
4/9, and Prob(y1 = pow3) = 1/9. After calculating the 
conditional and prior probabilities, the PM can decide the best 
power management policy by predicting the MAP class for a 
new input feature vector. 

Let a new input feature (x1 = low, x2 = med, x3 = med), which 
was not in the training set, be presented to the PM, which 
classifies the input feature based on equation (2) as follows.  
i) Firstly, for the hypothesis y1 = pow1, the posterior 

probability is: Prob(y1 = pow1)⋅Prob(x1 = low, x2 = med, x3 
= med | y1 = pow1) = (4/9)⋅(3/4)⋅(1/2)⋅(1) = 1/6 because 
Prob(x1 = low | y1 = pow1) = 3/4, Prob(x2 = med | y1 = pow1) 
= 1/2 and Prob(x3 = med | y1 = pow1) = 1.  

ii) Secondly, for the hypothesis y1 = pow2, the posterior 
probability is: Prob(y1 = pow2)⋅Prob(x1 = low, x2 = med, x3 
= med | y1 = pow2) = (4/9)⋅(3/4)⋅(1)⋅(1/4) = 1/12 because 
Prob(x1 = low | y1 = pow2) = 3/4, Prob(x2 = med | y1 = pow2) 
= 1 and Prob(x3 = med | y1 = pow2) = 1/4.  

iii) Lastly, for the hypothesis y1 = pow3, the posterior 
probability is: Prob(y1 = pow3)⋅Prob(x1 = low, x2 = med, x3 
= med | y1 = pow3) = (1/9)⋅(1/4)⋅(1/4)⋅(1) = 1/144 because 
Prob(x1 = low | y1 = pow3) = 1/4, Prob(x2 = med | y1 = pow3) 
= 1/4 and Prob(x3 = med | y1 = pow3) = 1.  

Consequently, the MAP class of the power dissipation for the 
new input feature vector is pow1. Similarly, computing MAP of 
the execution time results in posterior probabilities of 
hypotheses y2 = exe1, y2 = exe2, and y2 = exe3 being 1/24, 2/9, and 
1/18. Thus, the PM concludes that the MAP class of the 
execution time is exe2. 

The PM predicts the MAP performance level of the 
processor when a new task arrives in the SQ. The classification 
based on the Bayesian classifier is robust to noisy and/or 
extraneous input features. It is also fast because it only requires 
a single pass through the training data to initialize the prior and 
conditional probabilities while requiring only a few 
multiplications and comparison to determine the MAP 
performance level of the processor at runtime. 

3) Discriminative Bayesian Classifier 
As we have seen above, a Bayesian classifier assumes a 
conditional independency among the input features. When used 
for classification, the Bayesian classifier predicts a new data 
point as the class with the highest posterior probability by 
writing the classification rule in a decomposable form using the 
conditional independence assumption (see equation (2)).  

A key advantage of the Bayesian classifier is the ability to 
deal with the missing information during classification (i.e., 
missing input features that are relevant to the identification of 
output features). For example, some information such as cache 
miss statistics or branch mis-prediction rate, which affect the 
processor performance are considered as missing input features 
in our problem setup. Assume the input feature set {x1, x2, …, 
xn}  be X. When the values of a subset of X, for example M, are 
unknown or missing, the marginalization inference can be 
obtained immediately as follows: 

   arg max ( ) ( | )MAP i j i
l j X M

y Prob Proby l x y l
∈ −

= = ⋅ =∏  (4) 

No further computation is needed in handling this missing 
information problem, because each term Prob(xj | yi=l) has been 
calculated in training the Bayesian classifier. However, there 
are shortcomings in this simple classifier. More precisely, this 
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approach models the joint probability in each subset separately 
and then applies the Bayes rule to obtain the posterior 
classification rule. Consequently, this construction procedure - 
sometime called a generative classifier - discards some 
discriminative information for classification  [17]. Without 
considering the other classes of data, this method only tries to 
approximate the information within each subdataset. On the 
other hand, a discriminative classifier, which directly estimates 
Prob(yi|xj), preserves inter-subdataset information well by 
directly constructing decision rules among all available 
data  [18]. Therefore, the Bayesian classifier may be extended to 
provide a global scheme to preserve the discriminative 
information among all the data. See  [19] for a detailed 
description of a discriminative Bayesian classifier, which 
combines both merits of discriminative methods (e.g., support 
vector machines  [20]) and the simple Bayesian classifiers 
described above. A more detailed discussion of discriminative 
Bayesian classifiers falls outside the scope of the present paper. 

V. EXTRACTION STRATEGY 
In this section, we present the extraction strategy for input 
features and output measures. 
A. Extracting Input Features 
Input feature selection plays an important role in the 
classification procedure which maps input features onto output 
measures. There are some relevant input features that have 
important information regarding the output measures, whereas 
there may be some irrelevant ones containing little information 
regarding the output measures. Finding every input feature that 
contains relevant information about the resulting output 
measure is difficult and in many cases unnecessary. For 
example, capturing the amount of cache interference 
experienced among tasks that are co-scheduled on the same 
shared cache is difficult. Typically, a task is written to expose 
software “threads” of execution; the OS then maps these 
threads onto processors in the case of MPSs. The PM gathers 
available information on input features (e.g., types of the tasks, 
state of the SQ, and arrival rate of tasks) as explained in the 
previous section. At the same time, the PM needs to watch for 
the missing input features (e.g., the amount of cache 
interference) which affect the performance-related output 
measures as well. 

There are two approaches to compensate for the missing 
input features  [32]: input feature-compensate method and 
classification-compensate method. The first approach estimates 
values of hidden input features by using the 
expectation-maximization (EM) algorithm  [33] and then 
performs classification on the complete input features. Note 
that the EM algorithm is a general technique that can be used to 
determine the maximum likelihood estimate (MLE) of the 
parameters of an underlying distribution from some given data 
when the measured data is incomplete. The second approach 
passes the incomplete input features directly to the classifier 
which is then adjusted to operate on the incomplete input 
features. A brief description of each method follows. 

1) Input Feature-Compensate Method 
Let x denote the known (measured) input feature and let m 

denote the missing input feature. Together x and m form the 
complete input feature. Notice that m can be a hidden source of 
variation that affects the output measures. Then, we have 
Prob(x, m | θ), the joint probability density function of the 
complete input features with parameters given by vector θ (θ 
may for example correspond to the mean value and variance of 
a Gaussian distribution). This function can also be considered 
as the complete data likelihood, that is, it can be thought of as a 
function of θ and expressed as 

    
( , | ) ( | , ) ( | )Prob x m Prob m x Prob xθ θ θ= ⋅  (5) 

by using the Bayes rule. 
The EM algorithm iteratively improves an initial estimate θ0 

by constructing new estimate θ1, θ2, etc., where an individual 
re-estimation step that derives θn+1 from θn takes the following 
form: 

    
1 arg max ( )n Q

θ
θ θ+ =  (6) 

where Q(θ) is the expected value of the log-likelihood of 
complete input feature. Since we do not know the complete 
data, we cannot determine the exact value of the likelihood, but 
given the input feature x, we can calculate a posteriori estimates 
of the probabilities for the various values of m. For each set of 
m values, there is a likelihood value for θ, and we can hence 
calculate an expected value of the likelihood with the given 
values of x’s. Q is given by 

          ( )( ) log ( , | )
m

Q E Prob x m xθ θ=  (7) 

where it is understood that this denotes the conditional 
expectation of log Prob(x, m | θ) being taken with the θ used in 
Prob(m | x, θ) fixed at θn. In other words, θn+1 is the value that 
maximizes the conditional expectation of log-likelihood of the 
complete input feature given the measured variables under the 
previous parameter values. The expectation Q(θ) may be 
rewritten as: 

       
( ) ( | ) log ( , | )Q Prob m x Prob x m dmθ θ

∞

−∞
= ∫  (8) 

These two steps (Expectation and Maximization) are 
repeated until | θn+1 - θn| ≤ ω, where ω is some user specified 
tolerance level  [34]. It can be shown that the EM iteration does 
not decrease the measured input feature likelihood function. 
The EM algorithm finds θ that maximizes the complete-input 
feature likelihood, which in turn removes the effect of hidden 
variables (i.e., the missing input features). 

2) Classification-Compensate Method 
In this method, the incomplete input features are used directly 
for the classification. Every input feature x is assigned a 
probability α to show how reliable and critical it is for the 
output measure. Likewise, each of the missing input features is 
assigned a probability (1 - α). Assuming that all measured input 
features and missing input features are independent, the total 
likelihood of each input feature simply becomes a weighted 
sum of the likelihood of the input features. Mathematically, this 
can be expressed as  
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       ( )
1 2

1
1

( , , , | )

( | ) ( ) ( | )

n i
n

j i j i
j

Prob x x x y l

Prob x y l Prob m y lα α
=

⋅ −

=

= ∏ = + ⋅ =

…
 (9) 

where y is the output measure and l is the class, provided that 
we have the missing input features m = (m1, m2, …, mn). In 
practice, we substitute (9) into (2) to compute the maximum a 
posteriori (MAP) during the classification. 

B. Extracting Output Measures 
 Modern processors include hardware features for monitoring 
performance characteristics of the processor  [30], which 
enables the PM to collect performance-related information. 
When an application runs by itself on a single processor system, 
the resources in that system are dedicated to its execution. Thus 
it is relatively easy to truthfully characterize and model 
resultant application performance behavior. However, when 
multiple applications run simultaneously on a MPS, it is 
comparatively difficult to determine the resources that end up 
being given to each individual application, which means that 
the performance behavior of each application on the MPS may 
not be measured accurately. Thus, the PM is forced to observe 
the output measure in a probabilistic way. 

Let r denote an input feature state (ri, i=1,…, h) where state r 
corresponds to a particular assignment of  various attributes to 
input features (x1, x2, …, xn). Let o denote an observation which 
corresponds to output measures (y1, y2, …, yn) with various 
classes. Fig. 4 (a) illustrates observations for each output 
measure given an input feature state. Note that oy1(r1) 
represents the observation o in y1 (output measure) given the 
input feature state r1. For example, the power dissipation (oy1), 
one of output measures under consideration, of a processor 
given an input feature state r1 (e.g., low priority task, medium 
queue occupancy, and high arrival rate of task) is normally 
distributed with mean of 38mW and variance of 2 i.e., N(38, 2). 
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Fig. 4. (a) Observations for each output measure, and (b) Decision 
boundaries for an output measure among various input feature states 

For accurate classification, the decision boundaries of the 
output measure in Bayesian classifier have to coincide with or 
be close to the performance specification criteria or boundaries. 
Fig. 4 (b) shows an example of decision boundaries for an 
output measure (e.g., oy1) among various input feature states 
(e.g., r1, r2, and r3), where our goal here is to find the distinction 
points δ1 and δ2.  

By doing so, we can define the class as a range of values, as 
explained before. Let fr1, fr2, and fr3 denote the probability 
density functions of output measure for the input feature states 
r1, r2, and r3, respectively. Based on the illustration (see Fig. 4 
(b)), δ1 and δ2 are determined from the following: 

1

1

2

1 2

2

2 3

( ) ( )

( ) ( )

fr x dx fr x dx

fr x dx fr x dx

δ

δ

δ

δ

∞

−∞

∞

−∞

=

=

∫ ∫

∫ ∫
 

(10a) 
 

(10b) 

Assuming normal distribution function for the output measure 
in our problem setup, we can rewrite (10a) and (10b) as: 

    

2 2

2 21

1

( ) ( )
2 21 1

2 2a b

a b

a b

x x

e dx e dx
μ μ

δ σ σ

δπσ πσ

− −
− −∞

−∞
=∫ ∫  

     

2 2

2 22

2

( ) ( )
2 21 1

2 2b c

b c

b c

x x

e dx e dx
μ μ

δ σ σ

δπσ πσ

− −
− −∞

−∞
=∫ ∫  

(11a) 
 
 

(11b) 

 
 

where μa, μb, and μc are the mean values of the output measure 
for the input feature states, and σa, σb, and σc are their standard 
deviations. Solving these integral equations, we obtain: 

         1 2,a b b a b c c b

a b b c

μ σ μ σ μ σ μ σδ δ
σ σ σ σ

+ +
= =

+ +
 (12) 

TABLE II shows an example of the decision boundaries for 
various probability density functions of the output measure (i.e., 
power dissipation), while varying values of standard deviations, 
where oy1(r1) = N(μa, σa

2), oy1(r2) = N(μb, σb
2), and oy1(r3) = N(μc, 

σc
2), where each case is represented graphically in Fig. 5. To 

simplify the comparison among these, we assume that the mean 
values for the output measure are fixed (e.g., μa =37.5, μb = 44.0,  
μc = 50.5). 

TABLE II                                                  
EXAMPLES OF DECISION BOUNDARIES 

 

δ1

2.0

δ2

DI1

DI2

σa

3.0

σb σc

1.5 1.4 3.0 3.0 3.03.0 1.5

40.1

48.3

1.30

1.44

41.9

46.0

1.47

1.47

39.6

47.3

1.44

1.08

σa σb σc σa σb σc

case (a) case (b) case (c)

δ1

2.0

δ2

DI1

DI2

σa

3.0

σb σc

1.5 1.4 3.0 3.0 3.03.0 1.5

40.1

48.3

1.30

1.44

41.9

46.0

1.47

1.47

39.6

47.3

1.44

1.08

σa σb σc σa σb σc

case (a) case (b) case (c)

 

Without loss of generality, we assume, μb > μa. Next we 
introduce “distinction index (DI)”  [35] as the performance 
criterion for boundary selection in output measure by the 
following: 

b a

b a

DI μ μ
σ σ

−
=

+
 (13) 

which indicates that the larger the value of DI is, the better the 
distinction between the output measures will be. For example, 
in case (c), DI1 that represents the distinction between oy1(r1) 
and oy1(r2) is 1.44, which is greater than DI2 (between oy1(r2) 
and 
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(a)                                                                   (b)                                                                        (c) 
Fig. 4. Examples of decision boundaries for various probability density functions of output measures (cf. TABLE II). 
 
 oy1(r3)). This indicates that we can achieve better accuracy in 
classification when we are given input feature states r1 and r2 
rather than r2 and r3. 

In conclusion, to ensure high accuracy in classification, the 
selection of distinction points has to be considered for the 
establishment of the discriminant function of the classifier. 

VI. POWER MANAGEMENT POLICY  
Finding an optimal power management policy in a 
learning-based framework requires an autonomous decision 
making strategy which maps the output classes to actions. The 
actions commanded by the PM change the performance state of 
the system and lead to quantifiable penalties (or rewards). We 
consider the case where an action incurs a cost (e.g., energy 
dissipation), where the PM’s goal is to devise a policy for 
issuing a command that minimizes this expected cost. 

Assume that the target processor system has k (power-delay 
or PD for short) states denoted by s1, …, sk, where s1 <…< sk in 
terms of the PD product (PDP) in the respective states. The PM 
can choose an action from a finite set of supply voltage-clock 
frequency (VF) settings A = {a1, …, an}, where a1 <…< an in 
terms of the VF values (notice that a lower V requires a 
correspondingly lower F for the processor while a higher V 
allows a higher F, hence VF pairs may be considered as a single 
optimization variable in this setup).  

There is a state transition probability for transitioning from 
state s to another state s’ after executing an action a, i.e., T(s’, a, 
s) = Prob(s’ | a, s). Furthermore, we make a common 
assumption that the cost function is additive (the PDP which is 
the same as energy dissipation is clearly additive). Considering 
the minimization of the total energy dissipation as an objective, 
we define the energy dissipation of a system at a given time t as 
follows. First, assume that the predicted classes for the output 
measures (i.e., power dissipation and execution time) are p and 
d, where p ∈ L1 and d ∈ L2 as defined in our problem setup. 
Note that p and d may be considered as ranges of power and 
execution time values, i.e., p = [p− p+] and d = [d− d+]. Then, the 
expected cost of current state, C(s, a), where a is the action 
prescribed by the PM in state s=<p, d>, is defined as a specific 
range such that 

[ ]( , ) ( , ) ( , )C s a p d e s a p d e s a− − + +∈ ⋅ + ⋅ +  (14a) 
 

 

where e(s, a) is the expected energy dissipation to transit from 
state s to some next state under action a, which is in turn 
calculated from T(s’, a, s) and the state transition energy 
dissipation overhead. The above expression means that cost lies 
between expected minimum and maximum costs. To obtain a 
scalar cost function, we define: 

( , ) ( , )
2

p d p d
C s a e s a− − + +⋅ + ⋅

= +  (14b) 

We develop a policy generation technique by using 
well-known dynamic programming method making use of 
principles of overlapping subproblems, optimal substructures, 
and memorization. We speak of the minimum cost of a system 
state as the expected infinite discounted sum of cost that the 
system will accrue if it starts in that state and executes the 
optimal policy  [36]. Generally, using π as a decision policy, this 
minimum cost is written as 

*

0

( ) min ( )t

t

s E c t
π

γ
∞

=

⎛ ⎞Ψ = ⋅⎜ ⎟
⎝ ⎠
∑  (15a) 

where γ is a discount factor, where 0 ≤ γ < 1, and c(t) is the cost 
at time t.   

In our problem setup, the minimum cost function is unique 
and can be defined 

* *

'

( ) min ( , ) ( ', , ) ( ')
a s S

s C s a T s a s s s Sγ
∈

⎛ ⎞Ψ = + Ψ ∀ ∈⎜ ⎟
⎝ ⎠

∑  (15b) 

which asserts that the cost of a state s is the expected 
instantaneous cost plus the expected discounted cost of the next 
state, using the best available action. From Bellman’s principle 
of optimality  [37], given the optimal cost function, we specify 
the optimal policy as 

* *

'

( ) arg min ( , ) ( ', , ) ( ')
a s S

s C s a T s a s sπ γ
∈

⎛ ⎞= + Ψ⎜ ⎟
⎝ ⎠

∑  (16) 

Simply stated, the power manager determines the optimal 
action based on equation (16) at each event occurrence (i.e., 
decision epochs). The task of casting the decision epochs to 
absolute time units is achieved by the system developer. Unlike 
AC line-powered systems, we focus on battery operated 
systems that strive to conserve energy to extend the battery life. 
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 1:  initialize Ψ(s) arbitrarily
2:      loop until a stopping criterion is met 
3:          loop for ∀s ∈ S
4:               loop for ∀a ∈ A
5:                     
6:                          
7: end loop
8:           end loop
9:       end loop

'

( , ) ( , ) ( ', , ) ( ')
s S

Q s a C s a T s a s sγ
∈

= + Ψ∑
( ) min ( , )

a
s Q s aΨ =

1:  initialize Ψ(s) arbitrarily
2:      loop until a stopping criterion is met 
3:          loop for ∀s ∈ S
4:               loop for ∀a ∈ A
5:                     
6:                          
7: end loop
8:           end loop
9:       end loop

'

( , ) ( , ) ( ', , ) ( ')
s S

Q s a C s a T s a s sγ
∈

= + Ψ∑
( ) min ( , )

a
s Q s aΨ =

 
Fig. 5.  The value iteration algorithm. 

Given C(s, a) and T(s’, a, s), another way to find an optimal 
policy is to find the minimum cost function. It can be 
determined by an iterative algorithm (cf. Fig. 5) called value 
iteration that can be shown to converge to the correct *Ψ  values. 
It is not obvious when to stop this algorithm. A key result 
bounds the performance of the current greedy policy as a 
function of the Bellman residual of the current cost 
function  [38]. It states that if the maximum difference between 
two successive cost functions is less than ε, then the cost of the 
greedy policy (i.e., the policy obtained by choosing, in every 
state, the action that minimizes the estimated discounted cost, 
using the current estimate of the cost function) differs from the 
cost function of the optimal policy by no more than 
2εγ / (1−γ) at any state. This provides a stopping criterion for 
the algorithm. 

Results of the policy generation are stored in a state-action 
mapping table so that the PM does not need to compute the 
optimal action in each system state at runtime. Instead the 
optimal action generation is reduced to a simple table lookup. 
In practice, the PM examines the input features each time a new 
task arrives in the SQ, estimates the most likely state of the 
system, and looks up and issues the corresponding “optimal” 
action from the mapping table. 

VII. EXPERIMENTAL RESULTS 

A. Experimental Setup 
We apply the proposed DPM technique to a multicore network 
processor which includes a dynamic load balancing (DLB, 
a.k.a., Application Delivery Controller or ADC) block and four 
processing cores (cf. Fig. 1). The DLB block, which guarantees 
in-order delivery of tasks, enables tasks from a single network 
interface to be processed in parallel on multiple cores. There 
are various ways to distribute incoming tasks (a.k.a. 
connections or requests) to cores (a.k.a. back-end service hosts 
or servers), including the following methods  [39]:  
- Least workload: assigns the task to the host with the least 

workload (connections), 
- Fastest host: assigns the task to the core that currently has 

the best performance, 
- Observed performance: assigns the task to a core that has 

the highest performance rating, based on a combination of 
least workload and best response time, 

- Predictive method: assigns the task to a core that has the 
highest predicted performance rating over time, and 

- Dynamic ratio: determines the capabilities of the core to 
create a dynamic performance ratio accounting for host 

affinity to a connection and the resultant cache locality; the 
tasks are then distributed to the cores based on this ratio. 

Among these, we consider RSS (receiver-side scaling)  [40], 
which falls in the category of dynamic ratio techniques.1 The 
RSS technique is capable of re-balancing the received 
processing load across multiple processor cores while 
maintaining in-order delivery of the data. RSS enables in-order 
packet delivery by ensuring that packets for a single connection 
are always processed by one processor. This RSS feature 
requires that the network adapter examine each packet header 
and then use a hashing function to compute a signature for the 
packet. To ensure that the load is balanced across the cores, the 
hash result is used as an index into an indirection table. Because 
the indirection table contains the specific core that is to run the 
associated deferred procedure call and the host protocol stack 
can change the contents of the indirection table at any time, the 
host protocol stack can dynamically balance the processing 
load on each core. As a typical application, we execute 
TCP/IP-related tasks (e.g., TCP segmentation and checksum 
offloading  [41]). We vary the workload by changing the packet 
size from 64 bytes (e.g., 338,000 packets/sec) to 1,025 bytes 
(e.g., 84,819 packet/sec)  [42]. 

For the simulation setup, we analyzed performance 
characteristics of each processor core in terms of the power 
dissipation and execution time. We relied on detailed gate-level 
realization of a 32bit RISC-type processor compatible with  [43] 
in TSMC 65nmLP library in order to accurately evaluate the 
power dissipation of a core. By varying the voltage and 
frequency values during the simulation, we achieved power and 
delay numbers with Power Compiler  [44] for the core after 
running the same tasks. Furthermore, we utilized a 
back-annotated SAIF (Switching Activity Interchange File), 
which captures switching activity factor with test patterns, 
based on the RTL simulation to achieve accurate power 
numbers. For simplicity, we defined a set of four actions, i.e., a0 
= [0V, 0Hz], a1 = [1.00V, 150MHz], a2 = [1.08V, 200MHz], 
and a3 = [1.20V, 250MHz], assuming that the voltage of the 
core is determined based on the operating frequency. Note that 
a0 is used to indicate a power-off (power gating) state in which 
high Vth sleep transistors are used to disconnect the circtuit 
power supply from logic gates when the circuit becomes 
inactive. 
B. Detailed Results 
In the first experiment, we generated a training set by running a 
set of tasks on the processor core as follows. First, we 
considered a scenario whereby the core accepts two types of 
tasks: low-priority and high-priority, where a high-priority task 
can move ahead of all low-priority tasks waiting in the queue. 
Next, we defined a set of input features {type of task, 
occupancy state of the SQ, arrival rate of task} and output 
measures {power dissipation [mW], execution time [ns]}, 

 
1 In the current world of high-speed networking, where multiple processing 

cores reside within a single system, the ability of the networking protocol stack 
of the operating system to scale well on a multi-core system is inhibited because 
the architecture of conventional Network Driver Interface Specification (NDIS 
5.1 and earlier versions) limits receive protocol processing to a single core. 
Receive-Side Scaling (RSS) resolves this issue by allowing the network load 
from a network adapter to be balanced across multiple cores. 
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similar to TABLE I. During the training phase, voltage and 
frequency values are assigned to the processor core based on 
simple requirements such as: 
- The core runs faster when high-priority tasks with medium 

or high arrival rates arrive under low or medium queue 
occupancy, 

- The core runs slower when low-priority tasks with low or 
medium arrival rates arrive under medium or high queue 
occupancy. 

Fig. 6 shows various input features during the training phase, 
whereas Fig. 7 depicts the corresponding output measures for 
100 training sets. Note that profiling output measure (e.g., 
power dissipation) at runtime is feasible with support of 
specific hardware such as external current sensors or internal 
architectural counters for each core. An external current 
sensor  [46], supplied by a voltage regulator which also 
provides power to the corresponding core, enables online 
current measurement, which is accumulated in the current 
accumulator, digitally multiplied by voltage value, and fed into 
a power dissipation accumulator. On the other hand, internal 
architectural counters used to compute the power consumed by 
cores count a number of relevant events and appropriately 
weight the counter values. For example, the total numbers of 
load/store instructions, arithmetic/logic instructions, 
floating-point operations, and retirement executions for each 
core are counted and summed up after being multiplied by 
appropriate weights  [47].  

 

Fig. 6.  Input features during training phase. 
 

 

Fig. 7.  Output measures during training phase. 
The decision boundaries for an output measure are obtained 

as follows. First, we assign various labels to the input features 
based on our simulation results. After running a number of 
simulations, we derive probabilistic density functions for the 
power consumption of the core (cf. Fig. 8) for three 
observations: o1 = N(35.8, 2.2), o2 = N(44.2, 3), and o3 = N(50.5, 
1.8). Next, the two separation points between neighboring 
observations are calculated as: δ1 = 39.4 and δ2 = 48.1. The 
minimum power (30.3mW) and maximum power (56.0mW) 
consumption values for active mode of the processor core 
operation are used as the lower and upper bounds of the power 
dissipation range. The decision boundaries for the execution 
delay are also obtained in a similar manner. Consequently, the 
classes of output measures are defined according to TABLE III. 

 

Fig. 8.  Probability density functions for power dissipation. 
 

TABLE III                                                
CLASSES OF OUTPUT MEASURES 

Power dissipation (mW)

pow1 pow2 pow3

Execution time (ns)

exe1

[30.0  39.4]

exe2 exe3

(39.4  48.1] (48.1  56.0] [14.1  21.5] (21.5  28.5] (28.5  35.7]

Power dissipation (mW)

pow1 pow2 pow3

Execution time (ns)

exe1

[30.0  39.4]

exe2 exe3

(39.4  48.1] (48.1  56.0] [14.1  21.5] (21.5  28.5] (28.5  35.7]

To ensure high accuracy in classification, we define 
classification error  [48] as follows. The error in classification is 
calculated as 

                        ( ( ), ) ( , )ER L f x y Prob x y dx dy= ∫  (17) 

where f(x) denotes the predicted output measure while y is the 
actual output measure. L(.,.) is a general loss function. For our 
target application, we use a 0-1 loss function, i.e.,  

                          0 ( )
( ( ), )

1
if y f x

L f x y
otherwise

=⎧
= ⎨

⎩
 (18) 

where ( ) arg max ( | )
Y

f x Prob Y X x= = in this case. The 

class-conditional classification accuracy is then given by 1 – 
ER. It is a measure of the performance of the classifier. 
Considering the input feature that we used as an example in 
section III, the accuracy reaches around 88% in classification. 
In addition, the training set size can greatly impact the 
classification accuracy, so we performed simulations to 
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determine an appropriate size by varying the set size from 50 to 
3000 as shown in Fig. 9. We have thus empirically determined 
that a training set size of 1000 is adequate. Note that substantial 
reductions in training set size may be possible if interest is 
focused on a single class (e.g., only power dissipation)  [49]. 

 

Fig. 9.  Selection of the training set size. 

It is worthwhile to consider a scenario whereby the 
characteristics of the task may change over time  [51] [52]. If the 
workload characteristics change over time, the performance of 
the classification can degrade. This is because, having relied on 
biased input features during the training phase, the classifier 
may not be able to correctly predict the output measure class of 
a given input feature. For example, consider different sets of 
training data as shown in TABLE IV. Suppose we train three 
classifiers based on training set A, set B, or set C. Next we 
randomly generated 100 tasks and perform classification for 
each incoming task, followed by an optimal action for each task 
based on the classification result. 
 

 

Fig. 10.  Comparison of energy dissipations, where actions are 
commanded by a classifier based on different training sets. 

Fig. 10 shows the normalized energy dissipation by the issued 
actions commanded by the three aforesaid classifiers. The 
results are quite different for the three classifiers; this shows the 
importance of using a representative training set. 

To validate the above statement, we considered a scenario 
whereby a classifier is trained based on some expected input 
characteristics but is subsequently used to classify input 
features with different characteristics.  In particular, we first 
trained a classifier with training set B and used it to determine 
the output measure class of elements in set C (modeling the 
case whereby the input characteristics changed over time from 
those of set B to those of set C). Fig. 11 shows the comparison 
in energy dissipation for 100 tasks between this case and one in 
which a classifier (“with update”) was trained based on set C 
and then ran on data with similar characteristics as those of set 
C.  It is clearly seen that the classifier “with update” 
outperforms that “without update”. Finally, notice that we 
could have trained a better classifier by using data from all 
three training sets A, B, and C. TABLE V shows the 
normalized total energy dissipation for 100 tasks by various 
classifiers, where each classifier is trained with the specific 
training set. It is clearly seen that the classifier trained with all 
training sets consumes less energy, compared to other 
classifiers. 
 

Fig. 11.  Evaluation of energy dissipation for a given scenario. 
 

TABLE V                                                  
NORMALIZED  TOTAL ENERGY DISSIPATION FOR VARIOUS CLASSIFIERS 

 Training sets

Energy

A, B, C A, B A, C B, C A B C

127.5125.0 122.6114.3115.3113.7108.2

Training sets

Energy

A, B, C A, B A, C B, C A B C

127.5125.0 122.6114.3115.3113.7108.2

Next we investigated the energy-efficiency of the proposed 
DPM technique by comparing it with i) the Stochastic PM 
technique of  [54] which uses a stochastic optimization 
approach for power control based on the service request rates 
and ii) the Global PM technique of  [55] which uses a feedback 
mechanism to sense per-core power and performance states. 
The cost function of  [54] is the power-delay product, which 
makes the comparison easy. For simplicity, the waiting time at 
the queue was considered to be fixed. To do a fair comparison, 

TABLE IV                                                 
DIFFERENT CHARACTERISTICS OF TRAINING SETS 

 

Training set A

Training set B

Training set C

Input feature

High Low

Priority Arrival rate

High Med Low

50% 50% 20% 60% 20%

20%

80%

80%

20% 20% 20% 60%

60% 20% 20%

Training set A

Training set B

Training set C

Input feature

High Low

Priority Arrival rate

High Med Low

50% 50% 20% 60% 20%

20%

80%

80%

20% 20% 20% 60%

60% 20% 20%
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the power and performance states of  [55] were represented by 
the power and delay levels defined in our experimental setup. 
Here we assumed that the latency overhead of DVFS is on the 
order of several tens of microseconds. We used four VF values 
where a0 < a1 < a2 < a3, with a0 corresponding to a power-off 
state, a1 denoting the lowest (operational) power and 
performance state, and a3 denoting the highest power and 
performance state. 
Stochastic PM technique: It employs a DPM assignment 
strategy such that a power manager is triggered to issue a DVFS 
command based on a precomputed and stored policy table. The 
key into this hash table is the current state of the system which 
is a pair representing the current power-performance state of 
the processor and the request arrival rate.  The policy table itself 
is computed off-line using the stochastic optimization 
framework of  [54] where the objective is total expected system 
power and the constraint is an upper bound on delay. In our 
simulations, the state transition (i.e., power mode transition) 
probabilities are calculated from offline simulations. For 
example, when the system state changes into the lowest power 
mode (e.g., pow1) the power manager assigns a command as 
follows: 

if the processor is idle (i.e., task arrival rate = 0), a0 
else if  0 ≤ arrival rate of tasks ≤ 0.33, a1 
else if 0.33 < arrival rate of tasks ≤ 0.67, a2  
else if 0.67 < arrival rate of tasks < 1, a3 . 

Global PM technique: It employs a feedback-control DPM 
strategy based on the Priority policy of  [55] where the power 
manager assigns different priorities to different tasks so as to 
meet a specific global power budget by adjusting power modes 
of individual processing cores. Similar to  [55], processor core 4 
has the highest priority (will run as fast as possible) while 
processor core 1 has the lowest priority (will be the first to slow 
down in case of a power budget overshoot). 
Bayesian PM: Employ the Bayesian learning-based DPM 
method described in this paper. 

We generated a number of tasks by selecting the arrival rate 
of tasks randomly, where 0 ≤ the arrival rate of tasks < 1, and 
applied the above-mentioned DPM policies to the processor.  

Fig. 12.  Energy dissipation comparison for a given experimental 
setup. 

The simulation results in Fig. 12, which report the 

(normalized) energy dissipation of each task (numbered from 1 
to 50) for the processor, show that the proposed DPM 
technique, i.e., Bayesian PM exhibits sizeable energy savings 
up to 24% and 15% (on average) compared to  [54] and  [55], 
respectively. Considering the performance of the processor, the 
overhead of performing classification in the Bayesian PM is 
negligible since it does not affect the execution time of the 
processors (i.e., the classification and table lookup are 
performed during the queuing period before any VF change).  

Experimental results in TABLE VI, which also reports the 
characteristics of the workload distribution for each processor 
(e.g., Proc1 receives 50 tasks whereas Proc4 receives 200 
tasks), demonstrate that, compared to the Stochastic and Global 
PM policies, the proposed Bayesian classification–based power 
management policy achieves system-wide energy (normalized) 
savings of up to 20.5% and 11.5% (these are the normalized 
averages on four processors when α = 1), respectively. It is also 
seen that if we consider the missing input feature (e.g., α = 0.95 
and α = 0.90), there is little performance degradation. 

TABLE VI                                                 
ENERGY SAVINGS IN THE MPS 

Processor

Proc3

Proc1

Proc2

Proc4

Number 
of tasks

Energy
(Stochastic) Prob. (α) Energy

Energy saving over

50 61.0

46.8 23.1%

100

150

200

1.00

0.95

0.90

121.5
97.8 19.5%1.00

0.95

0.90

189.2
150.6 20.4%1.00

0.95

0.90

243.4
197.6 18.8%1.00

0.95

0.90

Bayesian

203.5 16.3%

205.4

156.2

99.8

50.8 16.7%

49.2

98.2

154.3

19.3%

17.83%

19.1%

17.4%

18.4%

15.6%

Global

Energy
(Global)

10.3%

11.7%

10.2%

7.5%

6.3%

9.2%

8.5%

9.9%

8.4%

9.5%

6.6%

13.6%

Stochastic

54.2

109.1

170.6

220.0

Processor

Proc3

Proc1

Proc2

Proc4

Number 
of tasks

Energy
(Stochastic) Prob. (α) Energy

Energy saving over

50 61.0

46.8 23.1%

100

150

200

1.00

0.95

0.90

121.5
97.8 19.5%1.00

0.95

0.90

189.2
150.6 20.4%1.00

0.95

0.90

243.4
197.6 18.8%1.00

0.95

0.90

Bayesian

203.5 16.3%

205.4

156.2

99.8

50.8 16.7%

49.2

98.2

154.3

19.3%

17.83%

19.1%

17.4%

18.4%

15.6%

Global

Energy
(Global)

10.3%

11.7%

10.2%

7.5%

6.3%

9.2%

8.5%

9.9%

8.4%

9.5%

6.6%

13.6%

Stochastic

54.2

109.1

170.6

220.0

VIII. CONCLUSION 
The paper addressed the problem of dynamic power 
management, where a system-level PM continually intervenes 
to exploit power-saving opportunities subject to performance 
requirements. The overhead associated with regular activity of 
the PM to monitor the workload of a system and make 
decisions about power management of different functional 
blocks in the system tends to undermine the overall power 
savings of the DPM approaches. This paper thus described a 
supervised learning based DPM framework for a MPS, which 
enables the PM to predict the performance state of the system 
for each incoming task by a simple and efficient analysis of 
some readily available input features. Experimental results 
have demonstrated that the proposed DPM framework results 
in significant energy savings for various workloads in MPSs. 
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