416 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 3, MARCH 2011

Simultaneous Technology Mapping and Placement
for Delay Minimization

Yifang Liu, Student Member, IEEE, Rupesh S. Shelar, Member, IEEE, and Jiang Hu, Senior Member, IEEE

Abstract—Technology mapping and placement have a sig-
nificant impact on delays in standard cell-based very large
scale integrated circuits. Traditionally, these steps are applied
separately to optimize the delays, possibly since efficient algo-
rithms that allow the simultaneous exploration of the mapping
and placement solution spaces are unknown. In this paper, we
present an exact polynomial time algorithm for delay-optimal
placement of a tree and extend the same to simultaneous
technology mapping and placement for the optimal delay in
the tree. We extend the algorithm by employing Lagrangian
relaxation technique, which assesses the timing criticality of paths
beyond a tree, to optimize the delays in directed acyclic graphs.
Experimental results on benchmark circuits in a 70 nm technol-
ogy show that our algorithms improve timing significantly with
remarkably less runtimes compared to a competitive approach
of iterative conventional timing-driven mapping and multilevel
placement.

Index Terms—Algorithms, directed acyclic graph, physical
synthesis, placement, technology mapping, tree.

I. INTRODUCTION
A. Motivation

N TODAY'’S technologies, interconnects contribute to sig-

nificant portion of the overall delay in very large scale
integrated circuits. The trend is likely to continue, or worsen,
as the technology scaling continues, since the wire-delays
as well as cell-delays do not scale. The interconnect delay
depends on the topology and layer assignment, which is
determined by the routing step. This freedom available in the
routing phase is often insufficient to optimize the circuit for the
required performance. The placement and technology mapping
steps also have great impact on the interconnect delay, since
the former decides where the locations of the driver and
receivers of a net are and the latter decides which nets exist
in the design. Consequently, the algorithms for layout-driven
technology mapping, timing-driven placement, and physical

Manuscript received December 4, 2009; revised April 26, 2010 and August
26, 2010; accepted September 27, 2010. Date of current version February 11,
2011. This paper was recommended by Associate Editor I. Markov.

Y. Liu is with Google Inc., Mountain View, CA 94043 USA. This work
was done when he was a graduate student at Texas A&M University, College
Station, TX 77843 USA (e-mail: ifnliu@gmail.com).

R. S. Shelar is with Intel Corporation, Hillsboro, OR 97124 USA (e-mail:
rupesh.s.shelar@intel.com).

J. Hu is with the Department of Electrical and Computer Engineer-
ing, Texas A&M University, College Station, TX 77843 USA (e-mail:
jianghu@ece.tamu.edu).

Digital Object Identifier 10.1109/TCAD.2010.2089569

synthesis have received attention from computer-aided design
researchers over the last several years.

B. Previous Work

The technology mapping problem minimizing metrics such
as total cell area for a directed acyclic graph (DAGs) is known
to be NP-hard. For relatively simple structures such as trees,
however, the problem can be solved optimally in a polynomial
time. The technology mapping algorithm to map individual
trees rooted at multi-fanout points or primary outputs in a DAG
on to a set of cells in a library was first proposed by Keutzer
[1]. The algorithm employs a dynamic programming (DP)
technique and runs in polynomial time in the size of a tree,
ensuring optimality for metrics such as total cell-area. Most of
the subsequent work employs the same technique to optimize
various cost functions involving area, delay, power, possibly
subject to constraints, as in [2]. The layout-driven technology
mapping was proposed by Pedram et al. [3], where an initial
placement of a subject graph and the assumption about the
placement of a match was employed to evaluate wire-delays
and cell-delays to derive a delay-optimized mapped netlist.
An obvious limitation of the work is that even for a tree, the
placement of the subject graph and that of the mapped netlist
can be quite different. Moreover, there are multiple placement
possibilities for a choice at each node in the tree, whereas
only one placement, that of the center of gravity based on
the locations of choices at fanins and (unmapped) fanouts,
is considered. The second limitation was partially eliminated
in the subsequent work [4], which solved the problem of
simultaneous technology mapping and linear placement of
trees in polynomial time. However, the assumption about the
placement of the cells in a tree in a single row is not practical,
since the cells are allowed to be placed in different rows in
2-D area. To overcome this limitation, the subsequent work
employed iterative technology decomposition, mapping, and
placement [5]-[7] to place the primitive gates in a given area,
perform mapping with assumptions about the placement of a
mapped cell, and then place the mapped netlist or derive the
placement of the subject graph from the same for the next
iteration.

Many industrial tools, which perform physical synthesis, are
believed to employ similar iterative mapping and placement
schemes to improve the delays locally in parts of the circuit.
The limitation of such an approach is that it neither ensures
optimality nor guarantees convergence, as a different mapping
solution leads to a new placement. Thus, the problem of

0278-0070/$26.00 (© 2011 IEEE

LIU et al.: SIMULTANEOUS TECHNOLOGY MAPPING AND PLACEMENT FOR DELAY MINIMIZATION 417

simultaneous technology mapping and 2-D placement even for
trees remains unsolved even today. Hrki¢ et al. [8] have pro-
posed a DP-based approach for timing-driven logic replication.
It is unclear whether the algorithm in their work can result in,
or be applied for, delay-optimal placement of a tree, since
pruning out placement choices during the bottom-up solution
generation may eliminate optimal placement ones. The optimal
placement choices are dependent on the location(s) of the
root(s) and do not become evident till the reverse topological
traversal to select among the generated solutions. Therefore,
any approach that prunes out placement choices during the
bottom-up solution generation may result in suboptimal delay
placement. Moreover, they do not apply the algorithm to
simultaneous technology mapping and placement. Recently,
Wang et al. [9] proposed an iterative mapping scheme em-
ploying multipliers, similar to those in a Lagrangian relaxation
(LR) technique, to optimize the area/power under fixed cell-
delay model; the wire-delays based on the placement, however,
are not considered. Another body of work on technology
mapping includes so-called DAG-mapping work [10], which
allows the mapping across the multi-fanout points but results
usually in large area penalty because of the uncontrolled logic
replication. The DAG-mapping ensures the delay-optimality
under the constant delay assumption for cells and does not
consider wire-delays based on placement. It is possible to ex-
tend the same to use in iterative mapping/placement schemes,
but with the same limitations as tree-based mapping about no
guarantee on either delay optimality or the convergence. More-
over, uncontrolled logic duplication may also lead to possibly
increased routing congestion, affecting the convergence.

Similar to technology mapping, placement for general
graphs to optimize useful objectives is a difficult problem
and has been well researched over the last few decades;
see [11] for the recent literature survey. The placement of
special structures such as trees, however, can be performed in
a polynomial time optimizing certain metrics. For example,
Fischer et al. [12] presented the O(nlogn) algorithm for the
optimal placement minimizing the sum of weighted edge-
lengths for a tree with n leaves; recent work includes a
linear time algorithm to minimize the sum of half-perimeter
wirelengths for all nets in a tree [13]. The special case of
linear placement for trees is also studied well and several exact
polynomial time algorithms exist to minimize total wirelength
or the cutwidth, for instance, Yannakakis’s algorithm [14]
employed in [4] to perform simultaneous mapping and linear
placement. However, the problem of delay-optimal placement
for trees seems to have received relatively little attention in
the published literature, despite the potential usefulness of the
solution.

C. Our Contributions

Since the technology mapping and placement have great
impact on the overall delays in the circuit, exploring these
two spaces simultaneously can result in circuits with better
delays than the conventional approach of searching those
sequentially, which results in the search in a relatively small
solution space. A fundamental contribution of this paper is an
exact polynomial time, O(nm? fy,., P2), algorithm for delay-

optimal simultaneous technology mapping and 2-D placement
of trees, where n, m, fu,., and P, are the number of
nodes in the tree, the number of candidate locations in
2-D area, maximum fanin over all the matches at any node,
and the maximum number of matches at any node in the
tree, respectively. The algorithm is based on the extension
of an exact polynomial time, O(nm? fmax), delay-optimal
placement algorithm for trees, which is another important
contribution. To optimize timing in DAGs, we propose an
iterative algorithm, based on LR technique, which employs
the simultaneous technology mapping and placement in the
inner loop. The comparison of results on IWLS’05, ITC’99,
and ISCAS’85 benchmarks, with a cell library characterized
for a 70nm technology, due to the algorithm with those
due to the conventional iterative delay-oriented mapping in
SIS [15] and timing-driven placement mPL [16] shows more
than 12% (60%) delay (slack) improvement with seven times
speed-up in runtime, on average, implying that the proposed
algorithms are practical and can be employed to optimize
timing during physical synthesis. The placement of flip-flops
can be handled by placing them in the first round of placement
and subsequently performing our methods on the rest of
combinational circuit. The technology mapping part typically
does not apply to sequentials, since the mapping is trivial, i.e.,
flip-flops/latches with/without set/reset signals are mapped on
to corresponding ones in the library directly. The placement
algorithms presented in this paper can still place flip-flops or
latches as long as those are part of a tree.

The rest of this paper is organized as follows. Section II de-
scribes the formal notation employed in this paper. Section III
presents an algorithm for delay-optimal placement of trees.
Section IV extends the algorithm to perform delay-optimal
simultaneous technology mapping and placement. Section V
describes the algorithm based on LR for simultaneous mapping
and placement for DAGs. Section VI introduces a place-
ment density constraint into the simultaneous mapping and
placement problem formulation and uses LR to solve the
updated problem. Section VII discusses the results due to
the algorithms and compares them with those due to the
competitive approach, and Section VIII concludes the paper.

II. PRELIMINARIES

Traditionally, a technology-independent Boolean network is
first decomposed into a circuit containing only primitives such
as two-input NANDs and inverters, which are then mapped on
to standard cells in a library during technology mapping to
create a mapped netlist. Subsequently, placement is carried
out on the mapped netlist to assign each cell a location in a
given area. The graph structure underlying either the Boolean
network or the technology decomposed circuit or the mapped
netlist is a DAG G(V, E), where a node v € V represents
a standard cell in case of a mapped netlist or a primitive
in case of the technology decomposed circuit. The primary
inputs and outputs of the DAG are denoted by input(G) and
output(G), respectively. Each directed edge e(v;, vj)) € E
represents a net whose driver (receiver) is the standard cell
represented by v; (v;). Each node v; € V is associated with

418 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 3, MARCH 2011

the actual (required) arrival time a; (¢;); the slack for the node
is computed as g; — a;. The delay between nodes v; and v; is
denoted by d(v;, v;), which comprises the cell-delay, deell(vy),
and the wire-delay, d“"*(e(v;, v ;). The timing constraint on
a timing arc (v;, v;) can then be expressed in nodal form as
a; > a;+d“"(v;) +d""(e(v;, v;)), where the cell-delay is not
counted in the arrival time at the cell itself, but counted into the
downstream delay. For a primary input i to the circuit, d°(i)
is simply the actual arrival time of that input. The delay of an
input-output path 7 is denoted by d(m) = 3, ,)cr d(vi, V).
The slack of the path is computed as s() = g —d(), where ¢
is the required arrival time at the output of the path. Paths with
the minimum slack are critical paths in the circuit. A rooted
tree is a tree T(Vr, Er), with one of its nodes designated as
a root. The tree may be a part of a DAG G(V, E), i.e., V; C
V, Er C E. The inputs to the tree are referred to as leaves.

III. DELAY-OPTIMAL TREE PLACEMENT

In this section, we introduce a polynomial time algorithm
for the delay-optimal placement of a tree and describe its
extension to simultaneous mapping and placement in the next.

We want to place a tree T(Vr, Er) in a layout area, which
is divided into bins or tiles, similar to those in conventional
global placement [16]. Specifically, we want to assign each
node v € Vr a bin (x, y). The leaves of the tree and the root
are assumed to have fixed locations. There are several possible
placements leading to different delays, since the wire-delays
and cell-delays are functions of the locations of the driver
and the receiver. Among these placements, we want to find
one with the minimum delay. Formally, the problem of delay
minimization during tree placement can be stated as follows.

Problem Definition 3.1: Given a tree T(Vy, E7), and a set
of candidate locations, Z;, for each node v;

Min: max d(m)
weinput—root paths
s.t. (xi, y;) € Z;, Nv; € Vp.

In a legal solution to the problem above, there should not be
any pair of cells overlapping with each other geographically.
This legalization requirement is taken care of in our method
by dealing with placement density constraint and the final
legalization step, which arranges the cells in each individual
bin.

The delay-optimal tree placement problem has optimal
substructure, i.e., the delay-optimal placement for a tree rooted
at a node v contains the delay-optimal placements for subtrees
rooted at its fanins, since, otherwise we can change the
placement for the subtrees to yield delays smaller than that
due to the delay-optimal placement for the tree, leading to a
contradiction. We exploit this optimal substructure property to
come up with a tree placement algorithm based on the DP.
The tree placement algorithm has two phases: first phase of
bottom-up solution generation that includes the construction
of placement-delay tables and the second phase of actually
choosing a placement from those solutions, given the fixed
location of the root.

Fig. 1. (a) Tree with fixed I/Os I, I>, O, and cells vy, vy, and v3, placeable
in 4 x 5 grid. (b) Placement-delay table for vy, where the entry in bin (i, j)
indicates the delay of the subtree rooted at vj, when v; is placed in (i, j).
(c) Placement-delay table for v,. (d) Placement-delay table for vz, obtained
by using the optimal locations for fanins v; and v;.

A. Construction of Placement-Delay Tables

The first phase of construction of placement-delay table
traverses the tree in a topological order and stores the delays
due to optimal placements for subtrees rooted at all nodes,
assuming that the roots are fixed in all possible candidate
locations. It can be explained employing the example in
Fig. 1(a), where a tree with fixed locations for inputs I, I,
and an output O is shown. The cells v;, vy, and v3 are to
be placed in a 4 x 5 grid so that delay on any path from
I, or I to O is minimum. For the sake of illustration, the
following assumptions are made: inputs arrive at 0, the cell-
delay for vy, vy, and v3 is 1, and the wire-delay equals the
square of Manhattan distance between nodes, which is same as
the Elmore delay model with unit resistance and capacitance
per unit wirelength. Consider a location (1, 2) for the cell
vy; the delay for the subtree rooted at v; is sum of the
arrival time at I;, d°/(I}) = 0, the wire-delay from I; to
vy, dV(e(Iy, v1)) = (] — 1|+ |4 —2[)> = 4, and the cell-
delay for vy, d°(v;) = 1. Therefore, the optimal delay of
the subtree rooted at v;, when the location of v; is fixed at
(1, 2), is 5. Similarly, when v; is fixed at (1, 3), the optimal
delay for the subtree rooted at vy is 2, since the wire-delay
dvre(e(I;, v)) = (J1 — 1|+ 14 —3])> = 1 and the cell-delay
is also 1. There are 20 possible locations for v; and for each
of those locations, the optimal delays for the subtree rooted
at v; are shown in Fig. 1(b) depicting a table, referred to
as a placement-delay table. Notice that the delay values in
bins (1, 2) and (1, 3) are 5 and 2, respectively, as explained
before; the delay values in other bins are derived similarly. The
placement-delay table for v, can be constructed in a similar
fashion and is shown in Fig. 1(c). The tables are constructed
for nodes v; and v, before generating that for vs, since these
nodes occur before v3 in the topological order. Now, consider
the construction of the placement-delay table for vs;. For each
position (x, y) for v3, we consider the optimum location of
vy and v, to compute the delay. Therefore, when v; is placed

LIU et al.: SIMULTANEOUS TECHNOLOGY MAPPING AND PLACEMENT FOR DELAY MINIMIZATION 419

in (1, 1), the location chosen for v, is also (1, 1), since that
yields the minimum delay of the path from I, to vs, which is
2 (1, optimal delay for the subtree at v, when v, is fixed at
(1, 1), +0?, wire-delay, + 1, cell-delay for v3). Similarly, two
locations (1, 2) and (1, 3) for v; result in the least path delay
of 7. Choosing either of those leads to the same delay, which
is minimum for the path from /; to v3, when vj itself is placed
at (1, 1). The overall delay for the subtree rooted at vs, when
it is placed in (1, 1) is max(2, 7) = 7; this is reflected in the
bin (1, 1) in placement-delay table for v, shown in Fig. 1(d).
Other entries in the table are derived similarly. Thus, each
entry at (x, y) location in placement-delay table for a node v
corresponds to the optimal delay of the subtree rooted at v,
when v itself is fixed at (x, y), and is computed as follows:

ay(x, y)= maxiEfanin(w{mi”wx“y;)locations of i
{aiCxi, yi) +d""(e(i,) +d“" W)} (1)

The following proposition states the optimality of the delay
values stored in placement-delay table for all nodes.

Proposition 1: The delay a,(x, y) is the optimal delay for
the placement of the subtree rooted at v, when v is fixed at
(x, y).

Proof: We use induction on the depth of the node. Basis
step: depth=1. In this case, all fanins to the node v are from
fixed leaf nodes. If v is also fixed at (x, y), then there is only
one possible delay for the subtree rooted at v and, therefore,
a,(x, y) is trivially optimal. Induction step: depth > 1. Assume
that the proposition is true for all the nodes with depth < k. We
will prove that it is true for a node with depth k. Consider such
a node v, for which a,(x, y) is given by (1). Suppose a,(x, y)
is not optimal. This implies that there exist some fanin node
i, for which a;(x;, y;) is not optimal—a contradiction, since
the depth of i is <k, because of which a;(x;, y;) is optimal.
Therefore, a,(x, y) must also be optimal. []

Note that 1 is derived assuming constant cell-delay model,
for the sake of simplicity. However, it can be extended to the
load-dependent cell-delay model. Assume that the cell-delay
is given by «C'* +§, where o and § are constants for a given
cell, and C** is the load seen by the cell. Then, the above
proof also applies for the equation as follows:

ay(x, y)= maxiefanin(v){mi”V(x,,;=i)locati0ns of i
{ai(xi, y;) + cell-delay(i) + d""(e(i, v))}}

ay(x, y)= maxiEfunin(v){mi”V(x,-,yi)locations of i
{ai(x;, yi) + o
+8; +d"" (e(i, v)}}. 2)

Cload

wire(i,v)+input(v)

The difference in 1 and the above one is that a,(x, y)
refers to the maximum arrival time at the output of the
node v in 1, whereas in 2 it means the maximum arrival
time at any of the inputs to the node v. Apart from those
differences in delay/arrival time calculations, to accommodate
the load-dependent delay, rest of the algorithms presented in
this paper stay the same; the optimalities of the algorithms
for the tree placement and simultaneous tree mapping and
placement also hold regardless of cell-delay or wire-delay
model. It is worth noting that using constant cell-delay model,

S I R NER
- 1
7 Ly : ¢ :
azy © a l: (3.3) '
1 : -
S N . S L
) (3.2 G T
-
2

Fig. 2. Delay-optimal placements vary depending on where the output is.
(a) Delay-optimal placement corresponding to the location of output O fixed
at (5,3); the corresponding delay at O is 14. (b) Delay-optimal placement
corresponding to the location of output O fixed at (2, 1); the corresponding
delay at O is 8. In either case, the placements for v3, v, and v; are chosen
from the placement-delay tables in Fig. 1, in reverse topological order.

the placement-delay tables can also be constructed for DAGs,
but the delay-optimal DAG placement still faces a difficulty
in the second step of actually choosing locations from
placement-delay tables. The reason is that in case of a DAG
multiple paths from root(s) to a node may imply different
placements for that node. This situation does not arise in case
of trees, since there is a unique path from the root to any
node. It is also worth noting that if load-dependent cell-delay
model is employed for DAG placement, it is difficult even
to construct placement-delay tables in polynomial time, since
the delays at the outputs of the multi-fanout points depend
on the placement of multiple receivers. These observations
are in line with the difficulties, due to computation of load at
multi-fanout points, faced in case of technology mapping or
sizing problems optimizing delays in DAGs.

B. Choosing Locations from Placement-Delay Tables

After the construction of placement-delay tables, the second
phase of the algorithm proceeds, traversing the tree in a reverse
topological order to choose the locations for vz, vy, and v;.
Since the root node O is fixed in the location (5, 3), as
shown in Fig. 1(a), the optimal location of v3, which results
in the minimum delay, is (3, 3). It yields the delay of 14
(10, a,, (3, 3), i.e., delay of the subtree rooted at vs, +22,
wire-delay from (3, 3) to (5, 3)). Note that, a,,(3, 3) = 10
is from the placement-delay table for vs, shown in Fig. 1(d),
created during the first step. The optimal locations of v; and
vy, which resulted in the delay of 10 for the subtree rooted at
vs are (3, 4) and (3, 1), respectively; these are found out in a
constant time by storing additional information (the locations
of fanins leading to that delay—/,,, on line 7 in Algorithm

420 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 3, MARCH 2011

Algorithm 1 PlaceTree(T)
1: for all v; in V7 in topological order do
2: for all tiles (x;, y;) in candidate locations set of v; do
3 for all fanins v; of node v; do
4: Choose (x;, y;), the location for v;, which yields
the minimum value for delay d(v;, v;) + a(v;).
5: end for
Update arrival time:
av,-(xjv YJ) = maxviefanin(u,)(d(viv Uj) +a(v;))
7: Record corresponding optimal fanin locations:
Yv; € fanin(vj), lop:(vi, vj, xj, ¥;) = (x;, ¥i)
8: end for
9: end for
10: for all v; in V7 in reverse topological order do
11: if v; !=root(T) then

12: f = fanout(v;)

13: placement(v;) = I,y (v, f, X7, yr)
14: end if

15: end for

1) along with the placement-delay table. Thus, the optimal
placement for the tree is as follows: v{(Xops, Yopr) = (3, 4),
Uz(xoptv yopl) = (3, 1), and US(xopt» yopl) = (3,3). This
placement is shown in Fig. 2(a). However, if the root node O
is placed at some other location, say, (2, 1), as in Fig. 2(b), the
placements of cells leading to minimum delay will be different.
The corresponding placement can be found out similarly by
first choosing the location of vj3, which leads to minimum
delay. Such a location is (1, 2), leading to minimum delay
of 8 (4, a,,(l, 2), the delay due to optimal placement of
subtree rooted vs, when v3 is placed at (1, 2), +22, wire-
delay from (1, 2) to (2, 1)). The corresponding locations of
vy and v, that lead to the least delay from primary input to v
are (1, 3) and (1, 1), respectively. This placement is shown in
Fig. 2(b). Observe that the minimum delays due to the optimal
placements for the cases with two different locations of root
node are different and both, along with the corresponding
placements, are found by the algorithm.

The delay-optimal placements vary depending on the loca-
tions of inputs and outputs. Since the algorithm stores delays
due to all possible optimal placements in the first phase, it
is able to select the optimum one, depending on the location
of the root, in the second stage. This is possible in case of
rooted tree structure, since there is a unique path from a node
to the root. Therefore, the placement of a node corresponding
to the minimum delays for the root can always be chosen. In
case of DAGs, however, different paths from roots to a node
may imply different placements for multi-fanout nodes (and
for subtrees rooted at those) and choosing any of those may
lead to suboptimal delays.

C. Pseudo-Code and Complexity of Delay-Optimal Tree
Placement Algorithm

The pseudo-code for the tree placement is shown in
Algorithm 1. It processes nodes in the tree in a topological
order and for each node vj, it considers all the possible
locations (x;, y;). For each of those placements, it finds out

the placement for each fanin resulting in the minimum delay.
This operation requires O(m x |fanin(v;)|) time, since for
each node, we store the arrival times, a,(x, y), indexed by
location (x, y) and these represent the optimal delays for the
placement of the subtree rooted at v, when v itself is placed
at (x, y). Considering the minimum arrival times from the
fanins, the arrival times for the delay-optimal placements of
the subtree rooted at v; are computed and stored by indexing
on the locations (x;, y;). Other auxiliary information such as
the optimal locations of fanins for each placement of v; is
also stored so that the delay-optimal placement can be created,
employing reverse topological traversal, after all the nodes
are processed. The amount of memory required to store the
optimal delay values and other auxiliary information for an
entire tree is O(nmf,,,,), for the tree containing n nodes, each
with m placement possibilities, and the maximum fanin of
fmax- The time complexity of the algorithm is O(nm? Simax)s
since it is dominated by the search for the optimal-delay
placement for each fanin of a given node.

Proposition 2: The tree placement procedure shown in
Algorithm 1 returns optimal-delay placement.

Proof: During the topological traversal, [,y v, x, y) is
populated and it stores the delay-optimal locations for fanins
i for all possible locations (x, y) of all nodes v € V.
Considering the location of the root, which is fixed, the reverse
topological traversal, assigns the optimal locations to all nodes
from those stored in /,;(i, v, x, y) based on the location of their
fanouts. |

Even though we explained the tree placement algorithm
employing constant and Elmore delay models for cell-delays
and wire-delays, respectively, the algorithm ensures delay-
optimality with other delay models as well. For instance,
asymptotic waveform evaluation can be employed to compute
wire-delays and without any changes, the algorithm still en-
sures the optimality. Similarly, the load-dependent cell-delay
models can be used, with slight changes in the computation
of delays, without affecting the optimality.

IV. DELAY-OPTIMAL SIMULTANEOUS TECHNOLOGY

MAPPING AND PLACEMENT FOR TREES
Delay-optimal tree placement algorithm presented in the

previous section can be extended to perform simultaneous
technology mapping and placement. Traditionally, technology
mapping transforms a Boolean network containing primitive
gates such as two-input NANDs and inverters into an imple-
mentation based on the set of cells in a library. It is carried
out in two steps: matching and covering. For conventional
delay-oriented technology mapping employing load-dependent
delay model [15], the matching phase processes each node in
a topological order and stores a piece-wise linear load-delay
curve corresponding to mapping solutions due to non-inferior
matches, found either by structural or Boolean techniques,
at that node. In the covering phase, the mapping solution
is generated by a reverse topological traversal, by selecting
the minimum delay matches for given loads. For trees, this
algorithm results in delay-optimal solution, ignoring the wire-
delays based on placement. To account for placement-based

LIU et al.: SIMULTANEOUS TECHNOLOGY MAPPING AND PLACEMENT FOR DELAY MINIMIZATION 421

Algorithm 2 Match PlaceTree(T)
1: for all nodes v; in topological order do
2: for all matches g; corresponding to cells in the library

do
3: for all bins (x;, y;) € Z;, set of candidate locations,
do
4: for all fanins i of pattern g; matched at node v;
do
5: Choose (g;, x;, y;) that gives the minimum value
of delay d(v;, v)) + a(v;).
6: end for
7 Update arrival time:
ay,(gj, xj, y;)) = max (d(v;, v;)+a(v;))
i€ fanin(g;)
and record corresponding solutions of all its fanins:
{(gi. xi.)i € fanin(g;))
8: end for
9: end for
10: end for

wire-delays, the approaches in the paper such as [3], [5], and
[6] either assume that the match is placed at some location
or iterate between the mapping, placement, and technology
decomposition steps. Obviously, these approaches do not claim
delay-optimality considering the wire-delays based on the
actual placement, even for trees.

To overcome the limitations of the previous approaches,
we propose a simultaneous mapping and placement algorithm,
which returns the delay-optimal mapped netlist and its place-
ment in a polynomial time for a tree. The algorithm relies
on the matching step to store both the mapping choices and
their delay-optimal placements, whereas the covering phase,
which is same as that in the traditional algorithm, generates
a mapping solution with a reverse topological traversal by
selecting the delay-optimal choices. Since all the mapping
choices and their delay-optimal placements are considered,
the final mapping and placement solution is optimal. The
algorithm makes the same assumption, as in previous section,
that the locations of the inputs and output of a tree are fixed
beforehand. The inputs to the tree are either the primary inputs
or outputs from the multi-fanout roots of other trees in the
DAG; the output is either a primary output or serves as an
input to other trees.

The pseudo-code for the matching step is shown in Al-
gorithm 2. Similar to that in conventional approaches, it
processes nodes in the tree in a topological order. For each
node vj;, it considers all possible matches corresponding to
the cells in the library. For each match g;, it considers all
possible placements (x;,y;) in Z; and for each of those, it
finds out the optimal-delay due to the mapping solution and
the placement for each fanin (line 5 in the pseudo-code).
This search for optimal delay value at each node requires
O(mP,,,) time, since for each node, v;, we store optimal
delay values a,,(g;, x;, y;) indexed by a match g; and its
placement (x;, y;) (line 7). The auxiliary information about
the matches at the fanins and their locations is also indexed

similarly and is employed during the covering phase to actually
build the mapped netlist and its placement. The amount of
memory required to store the optimal delay values and other
auxiliary information for entire tree is O(nm fyax Ppax), since
there are n nodes with P,,,, possible matches and m placement
possibilities for those matches. The time-complexity of the
matching is dominated by the search for the optimal delay
value choice and its location at the fanin of a match, placed
at all possible locations, for a node. Since there are n nodes
with P, matches at most, each of which has m placement
possibilities and have f,,,, fanins at most, the time complexity
is O(nmzfmaxP,iax).

V. HANDLING DAGS BY LAGRANGIAN RELAXATION

In reality, the topologies of most circuits are DAGs. DAG
topology poses significant more difficulty than tree topology
to circuit design, specifically for our technology mapping and
placement problem in this paper. Two well-known difficulties
caused by DAGs are the reconvergent paths and the multi-
fanout load estimation. Our solutions for these two difficulties
are presented as follows.

The difficulty with reconvergent paths in DAGs can be illus-
trated by the following example. Suppose there are multiple
paths from cell s to cell 7, two of which are s ~» u — ¢
and s ~» v — t. The DP solution for ¢ is composed of
the DP solutions for # and for v, each of which depends
on solutions for s, which may very possibly be inconsistent
for the solution at u and v; the solution at s (including the
mapping and placement of s that is best for u is not in general
the same as the one that is best for v. This inconsistency in
solutions due to reconvergent paths in DAGs cannot be solved
straightforwardly, since either historical solution recording or
judicious tradeoff between fanouts is very complex.

Our solution for the reconvergent path issue is an innovative
method, Joint relaxation and restriction, which we proposed in
[17] for gate sizing and V, assignment. Essentially, this method
relaxes the solution consistency constraint in the first stage of a
topological order solution propagation, which comes up with
a potentially inconsistent solutions best for different fanout
paths, respectively. Then, the solution consistency constraint
is enforced in the second stage by choosing the best solution
at each node in a reverse topological order. The coupled
relaxation and restriction strategy provides a good global view
of the circuit with efficient central processing unit (CPU)
runtimes. By doing this coupled relaxation and restriction
iteratively, a high-quality solution for the whole circuit can
be obtained when the iteration converges. The details of this
method can be found in [17].

The difficulty of multi-fanout load estimation is due to the
fact that different fanouts of a gate affect each other on timing,
since the load capacitance to the multi-fanout node include
the capacitance of all fanout cells. As a result, DP, which
deals with single fanout without properly incorporating the
interactive effect between different fanouts, can hardly find
the overall best solution on the fanout cone. This limits the
application of DP to delay-optimal mapping and placement on
DAGs. This issue is illustrated by a simple example in Fig. 3.

422 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 3, MARCH 2011

BT e i ;
1 T T 02
i e 3
"""""" P 7T
e — - B | ;
W G F R ‘r
" i —o—— = O3
___________ | TRV T S ee—
(a)
- 02
s

Fig. 3. (a) Two cells (v2 and v3) driven by a multi-fanout cell (v;) placed
on a 3 x 4 grid without consideration of interactive effect between multiple
fanouts. I/Os and the multi-fanout cell v; are fixed. (b) Optimal placement of
vy and v3, considering the load affected by both fanouts of v;.

Consider the placement of a NAND gate and two INV gates
drives it in a 3 x 4 grid as in Fig. 3(a). The primary input
I, two outputs O,, O3, and cell v; are fixed at the locations
shown in the figure. Here, the cell-delay is load-dependent,
i.e., the delay of a cell is linear to the load capacitance it
drives and its resistance. In this example, we use the Elmore
model for the wire-delay. For the sake of clarity, we assume
unit wirelength to cross each bin and that the wire, every cell,
and every I/O pin has unit resistance and unit capacitance.
In this case, if we still use the tree placement algorithm in
Section III to come up with the delay table for all placements
of each node in a topological order traversal, the delays at v,
and vz are considered independently from each other, which
does not completely reflect the load-dependent cell-delay.
The independent delay calculation leads to an independent
placement of v, and vz as in Fig. 3(a). Cells v; and v, are
uniformly spaced over the upper path, so are v; and v; over
the lower path. This placement is optimal for either the upper
path or the lower path, individually. However, this placement
is not optimal for all the three cells, because the load v; drives
is doubled due to multi-fanout. The best placement of v, and
v3 are shown in Fig. 3(b), in which v, and v3 are closer to v; to
compensate its larger load. One may argue that this issue can
be resolved by estimating the overall load when considering
the solution at one fanout. Unfortunately, this is not true. No
matter how much the estimated load on the upper path is, v;
still needs to be placed on the middle point between v; and
03, because of the quadratic relation between wire-delay and
wirelength on the lower linear path. The same happens to the
placement of v;.

To overcome the difficulty, we propose a method based
on LR; it applies the simultaneous tree mapping and place-
ment to minimize delays weighted by Lagrangian multipliers
iteratively. The algorithm stops, if there is no significant

improvement in the slack. The whole circuit delay is broken
into timing constraints on every timing arc in nodal form.
Then, the weighted delay is expressed in the form of timing
arc delay summation. Timing points are at the inputs of the
gates. Each timing arc, connecting two timing points, spans
from the input of a cell to an input of its fanout. For example,
there are two timing arcs covering gate v; in Fig. 3(a): one
is from the input of v; to the input of v, and another is from
the input of v; to the input of v3. The basic idea behind the
LR approach is to use weights (Lagrangian multipliers) to put
different focus on different parts of timing. We will explain
how the weights (Lagrangian multipliers) encode the mutual
effect between multiple fanouts of a cell into our problem with
more details on the LR method next.

Let PO(G) be the set of primary outputs in G, and PI(G) be
the primary inputs in G. The mapping and placement problem
in a general circuit is then formulated as follows:

Problem Definition 5.1: DAG Mapping and Placement:
Given the netlist of a decomposed circuit as a DAG G(V, E),
a set of candidate locations Z; for each gate in the circuit,
and a given cell library B, perform technology mapping and
cell placement of the circuit to maximize the circuit slack as
follows:

Min:

S.t.
qgi —a; > s, Yv; € PO(G),
aj = a;+ Dija ij € VU PO(G),Vv; € input(vj)
(xiv yl) € Zis vvi eV

vieg, Yy eV, dgekb.

Notice that the arrival time a; at v; € PI(G) and the required
arrival time g; at v; € PO(G) are constants given by the
problem.

A non-negative Lagrangian multiplier is introduced for each
constraint on arrival time, the second constraint above. The
Lagrangian function is a summation of the objective and
weighted timing constraints as follows:

Ly(s,a,v)=—s+ Z Aio(s +a; — q;)
wEPO(G)

+ Z Z kij(ai + Dij — aj). 3

v;€V—PI(G) v;€input(v;)

Then, the LR dual problem with given multiplier values is
expressed as follows:

Min: L;(s,a, V)
st. (x;,y) € Z;,Yv; €V
vieg, Vv eV, dgeb.

As shown in [18], the problem can be simplified by elimi-
nating the arrival times in the Lagrangian function according

LIU et al.: SIMULTANEOUS TECHNOLOGY MAPPING AND PLACEMENT FOR DELAY MINIMIZATION 423

to the Kuhn-Tucker conditions [19] as follows:

Liv)= > hiogi
v, € PO(G)

+ Z Z)\ijDij~ (4)

v;€V—PI(G) v;€input(v;)

In our LR framework, there are two problems to solve.
The first one is the Lagrangian subproblem solved in each
Lagrangian iteration, which is to minimize L;(v) in (4) with
specific multiplier values. The other problem is the Lagrangian
dual problem, which updates the multipliers at the end of each
Lagrangian iteration to maximize the minimum value of L, (v)
with optimal mapping and placement solutions.

The Lagrangian subproblem is solved using our combina-
torial algorithm of simultaneous mapping and placement in
Section IV. The same method is employed here, except the
cost function used to evaluate each mapping and placement
option is different; instead of minimizing the arrival time,
we choose the options to reduce the summation of weighted
delays. Specifically, line 5 in Algorithm 2 changes to use the
formula as follows:

L;.(v;) + A5 D;j ©)

where v;s mapping and placement solutions are under consid-
eration for the minimum cost function value at v;.

The Lagrangian dual problem is solved by sub-gradient [19]
method. The multipliers are updated employing sub-gradients
[19], following the static timing analysis on the mapping and
placement solution in the current iteration. Basically, timing
arcs that are more critical are updated with larger multipliers.
This way, more attention is focused on the critical parts in the
circuit to reduce the overall delay.

The rational of Lagrangian multipliers explains why they
help resolving the difficulty caused by multi-fanout in DAGs.
Consider the same example in Fig. 3. As mentioned before,
cell v; is covered by two Lagrangian multipliers—one for
(v1, v2) and another one for (vy, v3). The weight on v;s cell-
delay is the summation of the two multipliers, thus it is higher
than the weight on v, or vs. As a result, in order to minimize
the total weighted sum of delays, it is better to reduce the load
of v; at the cost of increasing load of v, or vs3. Consequently,
the DP applied on each of the two fanouts of v; would put v,
and v; closer to vy, specifically in bins (2, 3) and (2, 1). There-
fore, using LR the best overall solutions can be found in this
case.

The time complexity of our algorithm is dominated by the
number of iterations in LR and the matching phase, whose
complexity is same as that of Match PlaceTree(T) in the
previous section, since the simultaneous mapping/placement
is carried out on individual trees in the DAG.

VI. HANDLING PLACEMENT DENSITY CONSTRAINT

To this point, our algorithms ignore the possibility of over-
crowded areas during cell placement. Cell overlapping may
still happen, when re-placement is performed with carefully
selected candidate locations for each cell in the whole under-
utilized placable area. This overcrowding issue still needs to

be taken care of, because a violation of non-overlapping con-
straint may result in unexpected timing penalty in following
legalization stage, which resolves cell overlapping. Therefore,
it is better to deal with the overlapping risk early during our
cell placement by controlling the placement density in small
tiles, each of which is composed of multiple bins, and all of
which together form the whole placement area. We take this
approach and enforce the density constraint on small tiles in
our cell placement.

Suppose the whole placement area is divided into many
small tiles, the kth of which is denoted by). Let the upper
bound of the tile density be y, i.e., “"'B}flyk v < y should
hold, where |v;| and |)| represent the area of the ith cell
and the kth tile, respectively. Then, the formulation of our
simultaneous mapping and placement problem can be updated
as follows.

Problem Definition 6.1: Density-Constrained DAG Map-
ping and Placement: Given the netlist of a decomposed circuit
as a DAG G(V, E), a set of candidate locations Z; for each
gate in the circuit, a tile density constraint y, and a given cell
library B, perform technology mapping and cell placement of
the circuit to maximize the circuit slack as follows:

Min:
—s
S.t.
qi —a; =s, Yv; € PO(G)
a; > aj+Dj, Yv; € VUPO(G), Vv, € input(v;)
(xi,yi) € Z;, Vv eV
v € g, Yv; € V,3ge B
Zun M <y v,

To solve this problem with extra density constraint on
tiles, we employ LR again. Similar to how we deal with
arrival time constraints, we turn the density constraint into
a penalty term in the Lagrangian function (the cost function).
Each density constraint on a specific tile) is assigned with
a Lagrangian multiplier u;. Thus, the Lagrangian function
becomes as follows:

L= Y g
v,€POG)

+ Z Z)\ijDij

v;eV—PI(G) vicinput(v;)
2y, Vil
+Zuk< *fy'k -v). (6)
k

In each Lagrangian iteration, the subproblem of minimizing
the Lagrangian function is solved using our combinatorial
mapping and placement algorithm. The only difference in-
duced by this subproblem is the cost function value in the
characterization of each solution during the solution search.
Specifically, to perform the task here Algorithm 2 is modified
on line 5 using the formula as follows:

|vj
Lk(vz)"')"lle]"'Mklyjl (7)

424 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 3, MARCH 2011

where) is the tile where the current candidate location of v;
resides, i.e., (xj, ¥;) € k.

The Lagrangian dual problem is also solved by updating the
multipliers using sub-gradient method. Besides the multipliers
for timing constraints updated according to criticality on
different timing arcs, the multipliers for tile placement density
are updated to impose higher cost on tiles that are too crowded.
Therefore, in the succeeding subproblem-solving iteration, the
cells are pushed away from overcrowded tiles to tiles with
lower density. This can be viewed as an analog to a flow
driven by the difference of potential (multiplier) at different
spots (tiles).

VII. EXPERIMENTAL RESULTS

The algorithms described in this paper are implemented in
a C++ program on the Windows platform with a 3.0 GHz
Pentium IV processor and 4 GB memory. To evaluate the
efficacy of the algorithms, the experiments are run on the set
of ISCAS’85 benchmark circuits, and selected combinational
circuits from ITC’99 and IWLS’05 benchmarks, with a stan-
dard cell library, including 64 gates, characterized employing
70nm technology parameters [20]. Before the experiment,
each benchmark circuit is synthesized using SIS and placed
by mPL6. The initial technology mapping is performed for
area reduction with SIS. In the initial mPL6 placement, the
input pins are fixed along the boundary edges starting at (0, 0),
while the output pins are fixed along the opposite boundary
edges ending at (max,, max,). The primary inputs and outputs
of the benchmark circuits are fixed at these locations through-
out the experiment. The dimensions of the placement area used
in the experiment is obtained from the initial placement. The
clock period of a circuit is set to the largest path delay in the
circuit after the initial synthesis and placement. Elmore delay
model is used in the experiments. Typical cell utilization is
around 50% for each of the benchmarks, which is normally
the case for average synthesizable blocks in high performance
microprocessor circuits. The results due to the four iterative
approaches, whose goal is to maximize the worst case slack,
are compared as follows.

1) Conventional: in this case, each iteration performs con-
ventional delay-oriented technology mapping followed
by timing-driven placement. The technology mapping
algorithm is similar to that in [15], which is modified to
consider the wire-delays based on placements, whereas
the timing-driven placement is implemented by incorpo-
rating the timing aware net weighting technique [21] with
mPL6 [16].

2) Conventional with delay-optimal tree placement: in each
iteration, timing critical trees are optimized by conven-
tional technology mapping followed by the delay-optimal
tree placement algorithm described in Section III.

3) Simultaneous delay-optimal tree mapping and placement:
in each iteration, timing critical trees are optimized by
simultaneous mapping and placement algorithm discussed
in Section IV.

4) LR with simultaneous DAG mapping and placement: in
each iteration, timing critical cones are optimized by the

LR-based extension of simultaneous tree mapping and
placement to DAGs, presented in Section V.

The stopping criterion for all the approaches is less than
10 ps slack improvement in consecutive iterations. In our tree
and DAG optimization methods, the incremental placement
radius is set to 3 bins. That is, in each iteration a cell is
not allowed to move in any direction beyond 3 bins away
from its starting location at the beginning of the iteration.
For all our tree and DAG approaches, the final placement
is reached by legalizing the outcome of the tree placement
or the DAG placement. The average cell utilization after
legalization is 50-60% in our experiments. The results due to
all the approaches are shown in Table 1. Results for ISCAS’85,
ITC’99, and IWLS’05 are listed in three boxes in the table,
respectively. As compared to the conventional approach, LR-
based algorithm improves the average slacks and maximum
delays by 64-69% and 11-14%, respectively, with about
seven times speed-up in the runtime. Similarly, tree based
simultaneous mapping and placement leads to 59-62% and
7-13% improvements in the slacks and delays, respectively,
with approximately two orders of magnitude smaller runtimes.
The improvement in runtimes over the conventional approach
comes from the absence of timing-driven net-weighting and
the placement of whole circuit. Moreover, the conventional
approach is likely to be more susceptible for divergence than
tree placement or simultaneous tree mapping and placement.
Even in case of LR approach, after the first iteration, we
allow the placement of the cells within only certain radius,
which, although, reduces the placement search space, still
allows the complete exploration of the mapping space and
ensures placement stability. The improvements highlight the
fact that the simultaneous exploration of the mapping and
placement spaces can lead to the timing convergence not only
faster but also with better quality than exploring the mapping
and the placement spaces separately, as in the conventional
approach. One can observe that the proposed methods have
limited impact on wire length and cell area, although these
are not included in the problem formulation. The results
due to employing only tree placement to improve timing
show that it increases wire length and cell area marginally,
but still improves the slacks considerably. This shows that
employing simultaneous mapping and placement may be a
better approach than applying delay-oriented mapping and
placement separately, since the technology mapping which
considers the wire-delays based on placement is sensitive
to the placement of the subject graph and considering only
center of gravity placements for the matches, as opposed to all
possible placements in simultaneous mapping and placement
approaches, limits the optimization scope.

In order to test the effectiveness of our method coping with
the placement density constraint, we run our method on a
series of problem settings with different cell utilizations. Three
benchmark circuits from ISCAS’85, ITC’99, and IWLS’05,
respectively, are chosen in this experiment. Each of the three
circuits is tested with four cell utilization: 50%, 60%, 65%,
and 70%. Higher cell utilization indicates smaller size of the
placement area and, therefore, the cells are potentially placed

LIU et al.: SIMULTANEOUS TECHNOLOGY MAPPING AND PLACEMENT FOR DELAY MINIMIZATION

425

TABLE I
COMPARISON OF CONVENTIONAL DELAY-ORIENTED MAPPING FOLLOWED BY TIMING-DRIVEN PLACEMENT WITH PROPOSED APPROACHES
EMPLOYING ONLY TREE PLACEMENT, SIMULTANEOUS TREE MAPPING AND PLACEMENT, AND LR WITH SIMULTANEOUS MAPPING AND PLACEMENT

Conventional Conventional Mapping with Tree Placement | Simultaneous Tree Mapping and Placement | LR with Simultaneous Mapping and Placement

Circuit Delay Slack CPU | Delay Slack CPU Wire Area Delay Slack CPU Wire Area Delay Slack CPU Wire Area
C432 1091 59 148 966 184 2 1.12 1.03 932 218 2 0.83 1.03 921 229 47 099 0.98
C499 1043 57 254 | 1003 97 2 1.57 1.00 933 167 1.01 1.13 925 175 31 1.12 1.09
C880 989 11 140 826 174 1 1.51 1.00 803 197 1 0.92 1.02 788 212 29 095 1.00
C1355 1240 60 193 | 1101 199 3 0.88 1.00 1099 201 1 0.94 1.01 1029 271 35 095 1.002
C1908 1465 85 290 | 1286 264 2 0.97 1.00 1221 329 2 0.92 0.96 1203 347 39 096 0.97
C2670 1229 71 564 | 1068 232 4 1.40 1.01 1039 261 6 1.03 1.07 1020 280 42 1.01 1.00
C3540 1760 90 637 | 1705 145 15 099 1.06 1672 178 43 1.00 1.08 1593 257 395 1.07 0.98
C5315 2011 89 1101 | 1894 206 12 1.01 1.00 1820 280 12 1.03 0.99 1799 301 102 1.02 1.00
C6288 5191 159 1118 | 5250 100 25 112 1.00 5169 181 14 1.00 0.81 5148 202 69 0.99 1.007
C7552 1465 85 2555 | 1431 119 11 1.10 1.00 1416 134 12 1.08 1.04 1307 243 165 1.06 1.008
Average 1748 77 700 | 1653 172 7.7 1610 215 95 1573 251 95

Normalized 1 1 1 095 22 0011 1.10 1.04 092 2.8 0.014 1.02 0.99 090 3.26 0.136 1.01 1.003
Bl14 3790 150 2025 | 3615 325 61 1.03 1.03 3574 366 51 0.9 1.03 3533 407 259 1.01 1.03
BI5 4185 325 1302 | 4005 505 100 1.00 1.00 3792 718 268 1.01 1.02 3549 961 587 1.02 0.98
B20 4857 343 7154 | 4830 370 250 1.09 1.00 4296 904 232 1.11 1.00 4281 919 862 1.05 0.99
Average 4277 818 3493 | 4150 1200 137 3887 1988 183 3788 2287 569

Normalized 1 1 1 097 146 0.04 1.05 1.007 0.884 243 0.05 1.001 1.012 0.881 2.80 0.163 1.02 0.998
USBfunct | 8240 510 7501 | 8036 714 496 1.06 1.02 7392 1358 309 1.05 1.06 7103 1620 933 1.06 1.08
AES core 3512 282 10228 | 3493 301 536 1.02 1.01 3278 516 502 0.99 1.01 3193 601 1282 1.02 0.99
Average 5876 396 8865 | 5765 508 516 5335 937 406 5148 1110 1108

Normalized 1 1 1 098 1.28 0.058 1.03 1.01 091 237 0.046 1.01 1.03 0.88 2.80 0.125 1.04 1.02

The maximum path delay and the minimum slack are in per second, CPU time is in seconds, and total wirelength, cell area are normalized with respect to the corresponding

quantities resulting from the conventional approach.

TABLE I
COMPARISON OF CONVENTIONAL DELAY-ORIENTED MAPPING FOLLOWED BY TIMING-DRIVEN PLACEMENT TO PROPOSED APPROACH OF LR WITH
SIMULTANEOUS MAPPING AND PLACEMENT, ON DIFFERENT CELL UTILIZATION OF BENCHMARK CIRCUIT C7552, B20, AND AES CORE

Conventional LR with Simultaneous Mapping and Placement

Circuit No. of Gates Memory (MB) Cell Utilization (%) | Delay CPU Delay Norm. Delay CPU Norm. CPU
C7552 3115 108.8 50 1465 2555 1307 0.89 165 0.06
60 1326 2521 1160 0.88 171 0.07
65 1298 2510 1101 0.85 189 0.08
70 1252 2568 1076 0.86 220 0.09
B20 10590 318.6 50 4857 7154 4281 0.88 862 0.12
60 4206 7132 3659 0.87 891 0.12
65 3989 7098 3450 0.86 920 0.13
70 3796 7220 3188 0.84 1056 0.15
AES core 15692 462.5 50 3512 10228 | 3193 0.91 1282 0.13
60 3298 10189 | 2810 0.85 1297 0.13
65 3201 10172 | 2762 0.86 1418 0.14
70 3121 10312 | 2695 0.86 1506 0.15

The maximum path delay is in per second and CPU time is in seconds.

closer to each other. The primary inputs and outputs of the
circuits are proportionally placed on the boundary according
to the locations in the original placement area. The results
with different cell utilizations are summarized in Table II.
Essentially, our method maintains the advantage in circuit
delay minimization over the conventional method. Due to the
global view in our method, it may provide wider choices of
placement options, so sometime its delay minimization ad-
vantage is enhanced in higher cell utilization problem setting.
Because of the effort to meet the density constraint in our LR
framework under higher cell utilization setting, our method
takes more time to converge to a legal solution and, therefore,
the runtime increases with the cell utilization. In addition, from
columns 2 and 3 in Table II, one can see that the amount of
memory used in running our methods scales well (linearly) to
the size of the circuit.

VIII. CONCLUSION

In this paper, we proposed exact polynomial time algo-
rithms for delay-optimal placement as well as simultaneous
technology mapping and placement for trees. We extended
the simultaneous mapping and placement algorithm to DAGs
and placement density constraints using a LR technique.
Compared to the conventional iterative mapping and timing-
driven placement approach, our methods improve the slacks
by more than 60%, with at least seven times speed-up, and
have negligible impact on total wirelength and cell area.
Based on the fully simultaneous cell placement and technology
mapping approach in this paper, a potential future work is to
explore different degree of synergy between placement and
mapping, e.g., by performing incremental placement following
incremental mapping.

426

(1]

[2

—

3

—

[4

=

(51
(6]

(71

[8

[t}

[9

—

[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 3, MARCH 2011

REFERENCES

K. Keutzer, “DAGON: Technology binding and local optimization by
DAG matching,” in Proc. IEEE/ACM DAC, Jun. 1987, pp. 341-347.
K. Chaudhary and M. Pedram, “A near optimal algorithm for technology
mapping minimizing area under delay constraints,” in Proc. IEEE/ACM
DAC, Jun. 1992, pp. 492-498.

M. Pedram and N. Bhat, “Layout driven technology mapping,” in Proc.
IEEE/ACM DAC, Mar. 1991, pp. 99-105.

J. Lou, A. H. Salek, and M. Pedram, “An exact solution to simultaneous
technology mapping and linear placement problem,” in Proc. ACM/IEEE
ICCAD, Nov. 1997, pp. 671-675.

J. Y. Lin, A. Jagannathan, and J. Cong, “Placement-driven technology
mapping for LUT-based FPGAs,” in Proc. ISFPGA, 2003, pp. 121-126.
W. Gosti, S. R. Khatri, and A. L. Sangiovanni-Vincentelli, “Addressing
timing closure problem by integrating logic optimization and place-
ment,” in Proc. ACM/IEEE ICCAD, Nov. 2001, pp. 224-231.

D. Pandini, L. T. Pileggi, and A. J. Strojwas, “Global and local
congestion optimization in technology mapping,” IEEE Trans. Comput.-
Aided Des., vol. 22, no. 4, pp. 498-505, Apr. 2003.

M. Hrki¢, J. Lillis, and G. Beraudo, “An approach to placement-coupled
logic replication,” in Proc. IEEE/ACM DAC, Jun. 2004, pp. 711-716.
X. Wang and S. Burns, “Technology mapping using a fixed delay and
variable area-power model,” in Proc. IWLS, Jun. 2007.

Y. Kukimoto, R. K. Brayton, and P. Sawkar, “Delay-optimal technology
mapping by DAG covering,” in Proc. IEEE/ACM DAC, Jun. 1998,
pp. 348-351.

J. Cong, J. Shinnerl, M. Xie, T. Kong, and X. Yuan, “Large-scale circuit
placement,” ACM Trans. Des. Automat. Electron. Syst., vol. 10, no. 2,
pp. 1-42, 2005.

M. Fischer and M. Paterson, “Optimal tree layout (preliminary version),”
in Proc. STOC, 1980, pp. 177-189.

S. Chatterjee, Z. Wei, A. Mischenko, and R. Brayton, “A linear time
algorithm for optimum tree placement,” in Proc. IWLS, Jun. 2007.

M. Yannakakis, “A polynomial algorithm for the min-cut linear arrange-
ment of trees,” J. ACM, vol. 32, no. 4, pp. 950-988, 1985.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “SIS: A system for sequential circuit synthe-
sis,” Dept. Electric. Eng. Comput. Sci., College Eng., Univ. California,
Berkeley, Tech. Rep. UCB/ERL M92/41, 1992.

T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed
method for circuit placement,” in Proc. ISPD, 2005, pp. 185-192.

Y. Liu and J. Hu, “A new algorithm for simultanueous gate sizing and
threshold voltage assignment,” [EEE Trans. Comput.-Aided Des., vol.
29, no. 2, pp. 223-234, Feb. 2010.

C. Chen, C. C. N. Chu, and D. F. Wong, “Fast and exact simultaneous
gate and wire sizing by Lagrangian relaxation,” IEEE Trans. Comput.-
Aided Des., vol. 18, no. 7, pp. 1014-1025, Jul. 1999.

M. Bazaraa, H. Sherali, and C. Shetty, Nonlinear Programming: Theory
and Algorithms, 2nd ed. New York: Wiley, 2003.

Berkeley Predictive Technology Model [Online]. Available: http://www-
device.eecs.berkeley.edu/ptm/download.html

A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for
FPGAs,” in Proc. ISFPGA, 2000, pp. 203-213.

Yifang Liu (S°09) received the B.S. degree in com-
puter engineering from the University of Electronic
Science and Technology, Chengdu, China, the M.S.
degree in computer science from the University
of Maryland, College Park, and the Ph.D. degree
in electrical and computer engineering from Texas
A&M University, College Station.

He was with IBM T. J. Watson Research Center,
Yorktown Heights, NY, in 2008. Currently, he is
a Software Engineer with Google Inc., Mountain
View, CA. He is a co-author of the book GPU
Computing Gems (Elsevier, 2010). His current research interests include
algorithm design and analysis, applied optimization, and statistical modeling
and optimization in computer-aided design for very large scale integrated
circuits.

Dr. Liu is an elected member of Phi Kappa Phi honor society.

Rupesh S. Shelar (S’00-M’05) received the B.E.
degree in instrumentation engineering from the
Marathwada University, Aurangabad, India, in 1997,
the M.Tech. degree in electrical engineering with
specialization in microelectronics from the Indian
Institute of Technology, Mumbai, India, in 1999, and
the Ph.D. degree in electrical engineering from the
University of Minnesota, Minneapolis, in 2004.

He is currently a Staff Design Engineer in the low
power IA Group at Intel Corporation, Hillsboro, OR.
He has contributed to Core i5/Core i7 microproces-
sor designs in the areas of local/global clocking and interconnect impact
analysis on timing/power. He is a co-author of the book Routing Congestion
in VLSI Circuits: Estimation and Optimization (Springer, 2007).

Jiang Hu (M’01-SM’07) received the B.S. degree in
optical engineering from Zhejiang University, Zhe-
jiang, China, in 1990, the M.S. degree in physics in
1997, and the Ph.D. degree in electrical engineering
from the University of Minnesota, Minneapolis, in
2001.

He was with IBM Microelectronics, Armonk, NY,
from 2001 to 2002. Currently, he is an Associate
Professor with the Department of Electrical and
Computer Engineering, Texas A&M University, Col-
lege Station. His current research interests include
computer-aided design for very large scale integrated circuits, especially
on interconnect optimization, clock network synthesis, variation tolerance
technology, and design for manufacturability.

Dr. Hu was the recipient of a Best Paper Award at the ACM/IEEE Design
Automation Conference in 2001 and an IBM Invention Achievement Award
in 2003. He has served as a Technical Program Committee Member for
DAC, ICCAD, ISPD, ISQED, ICCD, DATE, and ISCAS. He is the Technical
Program Chair for ACM International Symposium on Physical Design 2011.
Currently, he is an Associate Editor of IEEE TRANSACTIONS ON COMPUTER
AIDED DESIGN.

