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Abstract—During the VLSI design process, a synthesized de-
sign is often required to be modified in order to accommodate dif-
ferent goals. To preserve the engineering effort already invested,
designers seek small logic structural transformations to achieve
these logic restructuring goals. This paper proposes a systematic
methodology to devise such transformations automatically. It
first presents a simulation-based formulation to approximate
SPFDs and avoid the memory/time explosion issue inherent
with the original representation. Then it uses this new data
structure to devise the required transformations dynamically
without the need of a static dictionary model. The methodology
is applied to both combinational and sequential designs with
transformations at a single or multiple locations. An extensive
suite of experiments documents the benefits of the proposed
methodology when compared to existing practices.

Index Terms—Logic restructuring, VLSI, SPFD, correction,
debug, engineering change, logic rewire, optimization

I. I NTRODUCTION

The consumer’s demand for devices with increased func-
tionality and performance continues to drive the growth of the
semiconductor industry. In part, this growth can be attributed
to the use of Computer Aided Design (CAD) tools that com-
plement the designer experience to develop computer chips
with the increasing size and complexity.

During the chip design cycle, small structural transfor-
mations in logic netlists are often required to accommodate
different goals, For example, the designer needs to rectify
designs that fail functional verification at locations identified
by a debugging program [1], [2]. In the case of engineer-
ing changes (EC) [3], a logic netlist is modified to reflect
specification changes at a higher level of abstraction. Logic
transformations are also important during rewiring-basedpost-
synthesis performance optimization [4], [5], where designs are
optimized at particular internal locations to meet specification
constraints.

Clearly, logic restructuring can be viewed as a simpler
instance of the general logic synthesis problem. Despite this
fact, there are unique reasons for the development of dedicated

Y.-S. Yang is with the Department of Electrical and ComputerEngi-
neering, University of Toronto, Toronto, ON, M5S 3G4, Canada (Email:
yangy@eecg.utoronto.ca)

A. Veneris is with the Department of Electrical and ComputerEngineering
and with the Department of Computer Science, University of Toronto, Toronto,
ON, M5S 3G4 (Email: veneris@eecg.utoronto.ca)

S. Sinha is with Synopsys, Inc. Mountain View, CA, 94043, USA(Email:
subarna@synopsys.com)

R. K. Brayton is with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA, 94708, USA
(Email: brayton@eecs.berkely.edu)

automated tools to perform this task. A full-blown synthesis
step may be a time-consuming and resource-intensive process
for a design that needs only a few of structural changes.
Furthermore, existing synthesis tools may significantly modify
the structure of the design and jeopardize the engineering
effort already invested in it [6], [7].

Most existing logic restructuring techniques modify the
netlist by using permissible transformations from adictionary
model [8]. This model contains a set of simple modifica-
tions such as single gate and wire additions/removals. It is
evident that the success of these methods directly depends
on the ability of the underlying predetermined dictionary to
accommodate the necessary netlist changes [9]. Previous work
has also shown that transformations at a single location may
not always be adequate [1], [3], [4], [10]–[12]. For instance,
when applying an engineering change, a modification in the
high-level design description can potentially be mapped into
multiple locations in the netlist. Hence, it remains important to
research automated incremental logic restructuring methodolo-
gies that can perform multiple transformations dynamically.

This work aims to develop a comprehensive methodology
to automate the process of logic restructuring in combinational
and sequential circuits [9], [13]. First, it proposes a novel
model of Boolean representation, namelyApproximate Sets
of Pairs of Functions to be Distinguished (aSPFDs). This
allows one to perform the required logic transformations algo-
rithmically and without the restriction of a static pre-defined
dictionary model. In the past, Sets of Pairs of Functions to be
Distinguished (SPFDs) have proved to provide additional de-
grees of flexibility during logic synthesis [14], [15]. However,
computing SPFDs can be computationally expensive in terms
of runtime and memory [16]. To address this problem,aSPFDs
approximate the information contained in SPFDs using the
results of test-vector simulation. Applications that utilize
aSPFDs can remain memory and runtime efficient while taking
advantage of most benefits of SPFDs. In addition, results from
this paper show that when this new representation is used
to model a sequential circuit, it circumvents the exponential
state space explosion of the original formulation [17], as the
encoding contains only a small portion of the complete state
space, that is, the one exercised during simulation.

Using aSPFDs to perform logic restructuring using a SAT
engine entails two stages. The first stage constructs the re-
spectiveaSPFDs and identifies the function required at specific
circuit line(s) such that the design complies to its specification.
Next, usingaSPFDs as a guideline, the algorithm searches
for the necessary nets to construct the required function.
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Two approaches are presented to perform this search. The
first is an algorithm using Boolean Satisfiability (SAT) to
identify the minimum number of new lines required for
the desired transformation. Although optimal, the SAT-based
approach may require excessive computation at times. The
second algorithm, a greedy approach, is later presented to
improve performance. One may think that it would sacrifice
on optimality, but experiments show that in most cases it
returns near optimal results, a favorable trade-off between
performance and resolution.

Extensive experiments confirm the theoretical results and
show that aSPFDs provide an effective alternative to
dictionary-based transformations. The proposed technique re-
turns modifications where dictionary-based restructuringfails,
increasing the impact of tools, such as debugging, rewiring,
EC, etc. Experiments also show the feasibility of using
aSPFDs to restructure sequential designs and designs with
multiple errors. For combinational circuits, the proposedap-
proach can identify five times more valid transformations than
a dictionary-based one. Nevertheless, since the method bases
its results on a small sample of the input test vector space,
verification must follow to confirm the validity of the proposed
transformations. Overall, empirical results show that in both
the combinational and sequential circuits, more than 90%
of the first transformations returned by our approach passes
formal validation.

The remainder of this paper is structured as follows. Sec-
tion II summarizes previous work and gives the motivation
for this paper. It also covers background material. SectionIII
defines approximate SPFDs and the procedures to generate
aSPFDs. Section IV presents the transformation algorithms
utilizing aSPFDs. Applying transformations at multiple loca-
tions is discussed in Section V. Experimental results are given
in Section VI, followed by conclusions in Section VII.

II. BACKGROUND AND MOTIVATION

A. Previous work

Most research done on logic restructuring deals with com-
binational designs. In [18], the authors insert circuitry before
and after the original design so that the functionality of the re-
sulting network complies with the required specifications.The
disadvantage of this approach is that the additional circuitry
can dramatically change the performance of the design.

Redundancy addition and removal (RAR) [5], [19] is a post-
synthesis logic optimization technique. It optimizes designs
through the iterative addition and removal of redundant wires.
All logic restructuring operations performed by RAR tech-
niques are limited to single wire additions and removals. There
is little success in trying to add and remove multiple wires
simultaneously due to a large search space and complicated
computation [20].

A commonly used solution to logic transformations in the
concept of design error correction is to use the predetermined
error dictionary model of Abadir et al. [8]. Most debugging
methods utilize this model to correct the localized errors [21],
[22]. This model contains a static set of error types that are

similar to the modification performed by RAR. The dictio-
nary model has been used for rectifying designs at multiple
locations as well [21].

Sequential circuits can be hard to restructure due to the
presence of memory elements. That is, the Boolean function
of a net may depend on previous states of the design. This
increases the complexity of the underlying analysis severely.
Sequential circuits are commonly modelled in theIterative
Logic Array (ILA) representation. In this formulation, the
design is unfolded over time to maintain its combinational
functionality [17], [23]. The side-effect of the ILA representa-
tion is that the input vector space of the unrolled circuit grows
exponentially in relation to the number of cycles the circuit
has unrolled. This can become computationally expensive for
some methods if the size of the underlying data structure is
correlated with the number of primary inputs [17].

In [17], Sinha et al. define sequential SPFDs, which are
later used to optimize the sequential state encoding. To avoid
the input vector space explosion mentioned above, the method
unrolls the circuit incrementally until no more useful informa-
tion can be attained. The authors conclude that the size of the
input space remains a major challenge for some circuits.

Along the lines of the work presented here for design
debugging, the authors in [10]–[12] introduce the concept
of Pairs of Bits to be Distinguished. We will discuss the
similarities and differences of this technique with our approach
in a later section.

B. Motivation

As mentioned earlier, most common approaches for logic
transformation use a dictionary model similar to the one
proposed in [8], which contains 11 predetermined types of
possible logic transformations. For example, “missing/extra
wire” adds/deletes an existing wire in/from the netlist.

A predetermined dictionary model, although effective at
times, may not be adequate when complex transformations
are required such as the addition/deletion of multiple gates
and wires. To study the effectiveness of dictionary-based
transformations, we perform the following experiment. For
circuits in the ISCAS’85 suite of benchmarks, we introduce
an error. A “simple” error involves a change of gate type for
a single gate followed by the addition or deletion of a wire
in the support of that gate. A “complex” error applies more
transformations such as the deletion and addition of many
gates and wires in the fan-in cone of a single gate.

In this study, the effectiveness of the dictionary model in [8]
is measured against that ofError equation [2] which uses
formal methods to answer with certainty whether there exists
an appropriate modification at a specified circuit location.
Error equationdoes not return the actual modification as it
merely reports whether resynthesismay or may notcorrect
that design at the particular location.

Table I contains average results from 10 single error ex-
periments per circuit. Circuits with the suffix “c” are injected
with a single complex error, while single simple errors are
introduced in the remaining circuits, which have the suffix
“s”. To identify candidate locations for modification we usea
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TABLE I
QUANTIFYING LOGIC TRANSFORMATIONS

ckt. error error dict. ckt. error error dict.

name loc. equat. model name loc. equat. model

c432 s 9.8 75% 44% c2670 s 9.2 99% 11%

c499 s 7.1 76% 40% c5135 s 6.4 100% 25%

c880 s 3.8 67% 38% c3540 c 3.0 100% 6%

c1355 s 5.3 100% 19% c5315 c 6.4 97% 16%

c1908 s 18.0 84% 23% c7552 c 20.6 64% 20%

path-trace simulation-based diagnosis method [22], [24] that
guarantees to return all such single candidate locations. The
second and sixth columns of Table I contain the average num-
ber of error locations returned by path-trace. The following
two columns show the percentage of error locations that can
be fixed according toError equation and according to an
exhaustive dictionary-based rectification method [22].

It can be seen that, on the average, the dictionary model
in [8] fails for as much as half of the cases with simple errors.
For example, in c499s, Error equation claims that some
modifications on five locations (76% of 7.1 locations) can
rectify the design, whereas the dictionary model is successful
in only two cases. As shown, the success of the dictionary
model diminishes further when more complex resynthesis is
required. This is because complex modifications perturb the
functionality of the design in ways that simple dictionary-
driven transformations may not be able to address. Such
modifications, are common in today’s intricate design environ-
ment where errors or changes in the Register-Transfer Level
(RTL) necessitate complex local changes in the netlist [3].
Automated logic transformation tools that can address those
problems effectively are desirable to increase the impact of
the underlying debugging, rewiring, EC, etc engines.

C. Sets of Pairs of Functions to be Distinguished

Sets of Pairs of Function to be Distinguished (SPFD) are
first proposed by Yamashita et al. [25]. It is a representation
that provides a powerful formalism to express the functional
flexibility of a design to allow synthesis/optimization on
it [17], [26]–[28].

Formally, an SPFD

R = {(g1a, g1b), (g2a, g2b), · · · , (gna, gnb)} (1)

denotes a set of pairs of functions that must bedistinguished,
i.e., for each pair(gia, gib) ∈ R, the mintermgia must produce
a different value from the mintermgib at the output of the node
(wire) associated withR. An SPFD can be represented as a
graphG = (V, E) [27], where

V = {mk | mk ∈ gij , 1 ≤ i ≤ n, j = {a, b}}

E = {(mi, mj) | {(mi ∈ gpa) and (mj ∈ gpb)}

or {(mi ∈ gpb) and (mj ∈ gpa)},

1 ≤ p ≤ n} (2)

Figure 1 depicts the graph representation of the SPFD,
R = {(ab, ab), (ab, ab)}. The graph contains four vertices

m00 m01

m11 m10

Fig. 1. The graphical representation of SPFDR = {(ab, ab), (ab, ab)}

that represent minterms{00, 01, 10, 11} in terms of {a, b}.
Two edges are added for(ab, ab) and(ab, ab). The edges are
referred to asSPFD edges.

The SPFD of a node/wire can be derived in a multitude
of ways depending on its application during logic synthesis.
For instance, SPFDs can be computed in a compatible fashion
(similar to the compatible don’t care computation [6]) from
the primary outputs to the primary inputs [27]. In rewiring
applications, the SPFD of a wire,(na, nb), can denote the
minimum set of edges in the SPFD ofnb that can only be
distinguished byna (but none of the remaining fanins of
nb) [27]. In all these methods, it is necessary to ensure that
the SPFD of a node is a subset of the union of the SPFDs of
its fanins. Thus,

∪m
i=1Ri ⊇ Ro, (3)

where nodeno hasm fanins {n1, · · · , nm}, Ri denotes the
SPFD of theith fanin, ni, andRo denotes the SPFD ofno .
This equation implies that each minterm pair that needs to be
distinguished by a node must be distinguished by one of its
fanins.

A function f is said to satisfy an SPFDR =
{(g1a, g1b), (g2a, g2b), · · · , (gna, gnb)}, if for each(gia, gib) ∈
R, f(gia) 6= f(gib). In graph-theoretic terms,f has to be a
valid coloring of the SPFD graph ofR, i.e., any two nodes
connected by an edge must be colored differently. In this
paper, we use the automated approach by Cong et al. [26]
to synthesize a two-levelAND-OR network for the functionf
of a node so that it satisfies the given SPFDR. In summary,
the set of minterms that belong to the onset off at the node
are derived fromR and projected onto the local fanin space
of the node. This image function gives the functionf that
satisfiesR. The minterms that are not represented inR can
be used as don’t cares to simplifyf .

III. A PPROXIMATING SPFDS

SPFDs are traditionally implemented with BDDs or with
SAT. Like all BDD-based techniques, computing BDDs of
some types of circuits (e.g., multipliers) may not be memory
efficient [16]. The SAT-based approach alleviates the memory
issue with BDDs, but it can be computationally intensive to
obtain all the minterm pairs that need to be distinguished [16].

Intuitively, the runtime and memory overhead of the afore-
mentioned approaches can be reduced if fewer minterms are
captured by the formulation. Hence, this section presents a
simulation-based approach to “approximate” SPFDs to reduce
the information that needs to be processed. The main idea
behindaSPFDs is that they only consider a subset of minterms
that are important to the problem. Hence, anaSPFD is defined
as follows:
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Definition 1 LetM consist of all primary input minterms and
M′ be a subset, whereM′ ⊆ M, the approximate SPFD
(aSPFD), R

appx
i , of a nodeni w.r.tM′ specifies the minterm

pairs inM′ ×M′ that ni has to distinguish.Rappx
i contains

no information about the minterms inM−M′.

In other words, theaSPFD of a node considers what needs
to be distinguished only for a subset of the primary input
minterms. Note that any techniques used to represent SPFDs,
for example, minterm-based representation or BDD-based rep-
resentation, can also apply toaSPFDs. It is true that, in some
cases, functions with more minterms may actually result in a
more compact BDD, or create a bigger cube. However, since
the number of minterms considered is sometimes orders of
magnitude less than the complete set (for instance, in our ex-
periments, only 2000 out of241 minterms are used for c1355),
there is a greater possibility that the representation structure
of aSPFDs is smaller. Therefore,aSPFDs are inherently less
expensive to represent, manipulate and compute.

To determine a good selection of minterms, logic restruc-
turing can be effectively viewed as a pair of “error/correction”
operations [4]. In this context, the required transformation
simply corrects an erroneous netlist to a new specification.
This is indeed the case in debugging, engineering change and
more recently, it has been shown to hold for design rewiring
as well [4]. From this point of view, it is constructive to
see that test vectors used for diagnosis are a good means of
determining minterms required to constructaSPFDs for logic
restructuring. This is because test vectors can be thought of
as the description of the erroneous behavior and minterms
explored by test vectors are more critical than others.

The next two subsections present the procedures to compute
aSPFDs using a test setV and a SAT solver for nodes in
combinational and sequential circuits, respectively.

A. ComputingaSPFDs for Combinational Circuits

Consider two circuits,C andC′, with the same number of
the primary inputs and primary outputs. LetV = {v1, · · · , vq}
be a set of vectors, where eachvi ∈ V is a single vector.
Let nerr be the node inC′ where the correction is required,
such thatC′ is functionally equivalent toC after restructuring.
Nodenerr can be identified using diagnosis [1], [2] or formal
synthesis [3] techniques, and is referred to as atransformation
nodein the remaining discussion.

Let f ′

nerr
denote the new function ofnerr. The aSPFD of

nerr should contain the pairs of primary input minterms that
f ′

nerr
needs to distinguish. To identify those pairs, the correct

values ofnerr under the test vectorsV are first identified.
Those values are whatf ′

nerr
should evaluate to underV after

restructuring is implemented. Such a set of values is referred to
as theexpected trace, denoted asET . Finally, on(n)(off (n))
denotes the set of primary input minterms wherein the function
of noden in the design evaluates to a logic value 1(0).

After the expected trace ofnerr is calculated, the procedure
uses the trace to construct theaSPFD ofnerr. In practice,V
includes vectors that detect errors (Ve), i.e., discrepancies are
observed at the primary outputs, as well as ones that do not

c

b
a

z
d

e

f

(a) Circuit

a b c d e f z zmod ET

0 0 0 0 1 1 0 0 -
0 0 1 0 0 0 1 1 1
0 1 0 1 0 1 1 1 -
0 1 1 1 1 1 1 1 -
1 0 0 0 1 1 0 0 0
1 0 1 0 0 0 1 1 1
1 1 0 0 0 1 1 0 1
1 1 1 0 1 0 1 1 1

(b) Truth table

Fig. 2. The circuit for Examples 1 and 4
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110 011
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111
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(a) aSPFD ofzmod

000

010

100

110

001

011

101

111

(b) SPFD ofzmod

Fig. 3. The SPFD andaSPFD ofzmod in Figure 2

(Vc). Both types of vectors can provide useful information
about the required transformation.

The procedure to compute theaSPFD of the transformation
node inC′ w.r.t. V is as follows:

1) SimulateC′ with the input vectorV
2) LetV c(nerr)/V e(nerr) denote the value ofnerr whenC′

is simulated withVc/Ve. Sincenerr is the only location
where transformation will be applied, the new function
at nerr has to evaluate to the complemented value of
V e(nerr) in order to eliminate the discrepancy at the POs.
Hence, the expect trace ofnerr, denoted byEnerr

T , is
{V e(nerr), V

c(nerr)} for vectors{Ve, Vc}.
3) The aSPFD of nerr states that the minterms in

on(Enerr

T ) have to be distinguished from the minterms
in off (Enerr

T ), i.e.,Rappx
err contains an edge for each pair

(a, b) ∈ {on(Enerr

T )× off (Enerr

T )}.

Example 1 Figure 2(a) depicts a sample circuit of which the
truth table is shown in Figure 2(b). Assume the wire(e, z)
(the dotted line) is removed, e.g.,zmod = NAND(d, f). The
value ofzmod is shown in the column eight of the truth table
(Figure 2(b)).

Suppose the design is simulated with test vectorsV = {001,
100, 101, 110, 111}. The discrepancy is observed when the
vector, 110, is applied. Letzmod be the transformation node.
As described in the Step 2 of the procedure,V e(zmod) =
{0} for Ve = {110}, and V c(zmod) = {1, 0, 1, 1} for
Vc = {001, 100, 101, 111}. Hence, the expected trace ofzmod

consists of the complement ofVe(zmod) and Vc(zmod) as
shown in the final column of Figure 2(b). Finally, theaSPFD of
zmod w.r.t. V is generated according toET and contains four
edges, between{100} and {001, 101, 110, 111}, as shown
in Figure 3(a). The black (white) vertices indicate thatzmod

has a logic value1 (0) under the labelled minterm. The dotted
nodes indicate that the labelled minterm is a don’t care w.r.t.
V . For comparison, the SPFD ofzmod is shown in Figure 3(b).
One can see that information included in theaSPFD ofzmod

is much less than what the SPFD representation includes.
The aSPFD of zmod only contains a subset of the complete



5

information about minterms that the function ofzmod needs
to distinguish to maintain correct design functionality. The
minterms that are not encountered during the simulation are
considered as don’t cares. For instance, since the vector 000
is not simulated, theaSPFD ofzmod does not contain an edge
between 110 and 000, which is included in the SPFD ofz.

B. ComputingaSPFDs for Sequential Circuits

Consider a sequential circuit,C′, with primary input set
X , state input setS, and primary output setO. In this work,
sequential circuits are modelled using their ILA representation.
Let symbol Ti denote theith simulated timeframe and the
superscript of a symbol refers to the cycle of the unfold circuit.
For example,X 2 represents the set of the primary inputs in the
second timeframe (T2). For sequential circuits,V represents a
set of input vector sequences withk cycles.

The procedure of generatingaSPFDs presented in Sec-
tion III-A cannot be used directly to generateaSPFDs for
sequential circuits. In these circuits, the value of nets inthe
circuit at Ti for some input vector sequences is a function of
the initial state input and the sequence of the primary input
vectors up to and including cycleTi, i.e., f(S1,X 1, · · · ,X i).
This implies that the space of minterm pairs that considered
by theaSPFD atnerr is different across timeframes. Each of
theseaSPFDs is equally important, and a valid transformation
at nerr has to satisfy all of them. To simplify the complexity
of the problem, we construct oneaSPFD that integrates in-
formation stored in each individualaSPFDs. Such theaSPFD
is generated over the input space{S ∪ X}. Note that this
approach might result in missing some sequential behavior,but
it still offers more information when compared to the one that
treats only the combinational circuitry of a sequential design.

To construct such anaSPFD, we need to determine the
values of the state elements in each timeframe for the given
set of input vectors. Then, a partially specified truth table, in
terms of the primary input and the current states, off ′

nerr

can be generated.aSPFDs over the input space{S ∪ X}
can be constructed according to the truth table. The complete
procedure is summarized below:

1) Extract the expected traceET of nerr for an input vector
sequencev. Given the expected output response (Y) under
v, a satisfiability instance,Φ =

∏k

i=0
Φi

C′(vi,Yi, ni
err),

is constructed. EachΦi
C′ represents a copy ofC′ at

Ti, where ni
err is disconnected from its fanins and

treated as a primary input. The original primary inputs
and the primary outputs ofC′i are constrained withvi

and Yi, respectively. The SAT solver assigns values to
{n0

err, · · · , n
k
err} to makeC′ comply with the expected

responses. These values are the desired values ofnerr for
v.

2) SimulateC′ with v at the primary inputs andET at
nerr to determine state values in each timeframe. Those
state values are what should be expected after the trans-
formation is applied. Subsequently, a partial specified
truth table (in terms of{X ∪ S}) of f ′

nerr
in C′ can

be constructed.

discrepancy
T2

s1/0

a1/1

b1/0

T1

s2

a2/0

b2/1

o2/0

a3/1

s3

b3/0

T3

o3/1

p1 p2 p3

o1/1→ 0

(a) Unrolled circuit

T2 T3

s1/0

a1/1

b1/0

T1

o1/0

a2/0

s2

b2/1
o2/0

s3

a3/1

b3/0 o3/1

p1 p2 p3

(b) Unrolled circuit withp’s as primary inputs

Fig. 4. The circuit for Example 2

3) The aSPFD ofnerr contains an edge for each minterm
pair in {on(nerr)×off (nerr)} according to the partially
specified truth table.

Example 2 Figure 4(a) depicts a sequential circuit unrolled
for three cycles under the simulation of a single input vector
sequence. Assume the correct response ato1 should be0 and
net p is the transformation node. To determine the expected
trace of p, p’s are made into primary inputs, as shown in
Figure 4(b). A SAT instance is constructed from the modified
circuit with the input and output constraints. Given the in-
stance to a SAT solver,110 is returned as a valid expected
trace for p. Next, simulatingC′ with the input vector and the
expected value ofp, s2 = 1 and s3 = 1 are obtained. Then,
the partially specified truth table ofp states thatp evaluates
to 1 under minterms (in terms of{a, b, s}) {100, 011} and to
0 under{101}. Therefore, theaSPFD ofp contains two edges:
(100, 101) and (011, 101).

A special case needs to be considered in Step 1. For any two
timeframes,Ti and Tj, of the same test vector, if the values
of the primary inputs and the states at these two timeframes
are the same, the value ofni

err must equal the value ofnj
err.

Hence, additional clauses are added toΦ to ensure that the
values ofnerr are consistent when such conditions occur.

Example 3 With respect to Example 2, another possible as-
signment to(p1, p2, p3) is 100. However, in this case, the
values of{a, b, s} at T1 andT3 are both100, while p1 andp3

have opposite values. Consequently, this is not a valid expected
trace. To prevent this assignment returned by the SAT solver,
the clauses

(s1 + s3 + r) · (s1 + s3 + r) · (r + p1 + p3) · (r + p1 + p3)

are added to the SAT instance. The new variable,r, equals
1, if s1 equalss3. When that happens, the last two clauses
ensure thatp1 and p3 have the same value.
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C. OptimizingaSPFDs with Don’t Cares

The procedure ofaSPFDs generation described above does
not take into account all external don’t cares in the design.
Identifying don’t cares fornerr can further reduce the size of
aSPFDs, since all SPFD edges connected to a don’t care can
be removed from theaSPFDs. Consequently, the constraints
of qualified solutions for restructuring is relaxed.

There are two types of combinational don’t cares: Satis-
fiability Don’t Cares (SDCs) and Observability Don’t Cares
(ODCs). SinceaSPFDs of nodes in designs are built over
the minterms explored by test vectors, only ODCs need to
be considered. ODCs are minterm conditions where the value
of the node has no effect on the behavior of the design.
Hence, ODCs ofnerr can only be found underVc. Minterms
encountered under the simulation ofVe cannot be ODCs,
because, otherwise, no erroneous behavior can be observed
at the primary outputs. ODCs can be easily identified by
simulating the circuit withVc and the complement of the
original simulation value atnerr. If no discrepancy is observed
at the primary outputs, the respective minterm is an ODC.

To obtain combinational don’t cares for sequential designs,
one can add the following procedures after Step 2 in Sec-
tion III-B. Following Step 2, the expected traceET and the
values of stateŝS in each timeframe are available. One can
obtain another expected traceE′

T by solving the SAT instance
Φ again with additional constraints that (1) forceŜ on all state
variables (2) blockET from the solution. If the solver returns
an answer, sayE′

T , we can compareET andE′

T to identify
the timeframeTi they have different value. Consequently, the
minterm atTi is a combinational don’t care. This procedure
can be repeated until no new expected trace can be found.

The procedure described above for obtaining ODCs in
sequential circuits identifies expected traces with the same
state transitions. To further explore equivalent states, one can
obtain a trace with different state transitions. This can be
done by adding additional constraints to blockŜ assigned to
state variables and solving the SAT instance again. However,
these additional traces may assign conflict logic values to the
transformation node for the same minterms.

Let ET1 andET2 represent two expected traces of the same
node for the same test vector sequence. Assume a conflict
occurs for mintermm (in terms of the primary input and the
current state) between the assignment toET1 at cycleTi and
the assignment toET2 at cycleTj. In this instance, one of the
two cases below is true:

• Case 1:The output responses and the next states at cycle
Ti for ET1 and Tj for ET2 are the same. This implies
that the value of the transformation node underm does
not affect the behavior of the design. Hence,m is a
combinational ODC.

• Case 2: The next states are different. This can hap-
pen when the circuit has multiple state transition paths
of which the initial transitions have the same output
responses. Since the proposed analysis is bounded by
the length of the input vector sequences, it may not
process enough cycles to differentiate these different
paths. Hence, multiple assignments at the transformation

node can be valid within the bounded cycle range and,
consequently, cause conflicts. Since the algorithm does
not have enough information to distinguish the correct
assignment, mintermm in this case is considered to be
a don’t care as well. This issue can be resolved if longer
vector sequences are used instead.

D. ValidatingaSPFDs

For combinational circuits,aSPFDs only explore the por-
tion of the input space covered by the given input vectors.
Similarly, for sequential circuits,aSPFDs only consider states
that are reachable during simulation of the given input vector
sequences. As a result, this new data structure requires less
computation and memory resources, but these benefits come
with the penalty that it has to undergo verification after
restructuring to guarantee correctness. This is because the
transformation is guaranteed to be valid only under the input
space exercised by the given set of input test vectors. In some
cases, such as rewiring, a full blown verification may not be
required but a faster proof method can be used [4], [29], [30].

Furthermore, because of approximation, the accuracy of the
transformation depends on the amount of information provided
by the input vectors. With more vectors,aSPFDs become
better representations of the original SPFDs. As the result, the
chance that the modified circuits pass verification is higher. At
the same time, the algorithm requires more resources to solve
the problem. Hence, there is a trade-off between resolution
and performance. Experiments show that this trade-off is a
favorable one as, on average, in 90% of the cases, the first
transformation returned also passes verification.

In the case where the transformation fails verification, it
implies that the critical minterms are missed in theaSPFDs.
Therefore, more input vectors need to be included. Instead
of randomly generating more vectors, the counter-example
returned by verification can be useful, as suggested in [10].
Intuitively, the counter-example excites the difference between
the modified design and the golden model.

E. Discussion

Another recent work proposed by Chang et al. [10]–[12]
presents a similar technique to the one proposed here in the
context of design debugging. This technique was developed
independently and first published at the same time with part of
the work presented in this paper. It uses a set of input vectors
and the SAT-based technique described in [1] to generate the
signature of a node. This is the bit-vector of logic values that
the function of the node should evaluate to in order to rectify
the error. Then, it identifies all pairs of 1-0 bits of the signature
and ensures that, for each pair, at least one of the fanins of
the node has a value transition as well. Such a pair is referred
to as aPair of Bits to be Distinguished (PBD). In a sense, due
to the use of bit-values by both PBDs andaSPFDs, these two
methodologies share in common in terms of implementation
and operation. However,aSPFDs are defined upon the concept
of SPFDs, a theory that represents all minterm pairs. The work
in [10]–[12] is utilizing don’t care and care sets, as they always
use signatures and these can only represent a special type
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of subset of SPFD edges, namely a clique of the bipartite
graph of the SPFD [27]. If we force ourselves to use only
signatures to process the information, we can’t generate the
more general SPFD that might be there because a minterm is
either in the care onset, the care offset, or don’t care set. Due
to this reason, a variety of techniques developed for SPFDs by
other research groups in the past decade can be inherited with
ease to operate onaSPFDs, a fact not true for PBDs. Finally,
the methodologies to manipulateaSPFDs illustrated in this
paper are unique and tailored to operate within this context.
However, in our use of the SPFD concepts in the current paper,
we also only use effectively don’t cares and not the full power
of SPFDs, so there is no inherent superior efficiency between
our methods and the one in [10]–[12].

IV. L OGIC TRANSFORMATIONS WITHaSPFDS

In this section, we show how to systematically perform
logic transformations withaSPFDs. Recall, the goal is to re-
implement the local network atnerr in a circuit C′ such that
C′ implements the same function as the golden reference,C.
The proposed restructuring procedure seeks the transformation
at nerr using one or more additional fanins usingaSPFDs.

The procedure is summarized in Algorithm 1. The basic
idea is to find a set of nets such that every minterm pair
of the aSPFD of the new transformation implemented at
nerr is distinguished by at least one of the nets, implied by
Equation 3. Hence, the procedure starts by constructing the
aSPFD (including don’t cares) ofnerr, denoted byRappx

err . To
minimize the distortion that may be caused by restructuring,
the original fanins are kept for restructuring. In other words,
it is sufficient that the function of additional fanins only need
to distinguish edges inRappx

err that cannot be distinguished by
any original fanins (line 6). Those undistinguished edges are
referred to asuncovered edges. A function is said tocover
an SPFD edge if it can distinguish the respective minterm
pair. Let TFO(nerr) denote the transitive fanout cone of
nerr. The function, SELECTCOVER, is used to select a set
of nodes (Cover) from nodes not inTFO(nerr) such that
each uncovered edge is distinguished by at least one node
in Cover (line 8). SELECTCOVER is further discussed in the
next subsections. Finally, a new two-levelAND-OR network
is constructed atnerr using the nodes inCover as additional
fanins as discussed in Section II-C.

Example 4 Returning to Example 1, the only SPFD edge of
the aSPFD ofzmod that is not covered by the fanins ofzmod,
{f, d} is (110, 100). This means that the additional fanins
required for restructuring atzmod must distinguish this edge.
One can verify that the function ofb can distinguish this
minterm pair. Hence,b is used as the additional fanin for
restructuringzmod; the new function ofzmod is NAND(b, d, f ).
With this new function, the XOR gate can be removed, which
reduces the original gate count from eight to seven gates.

Two approaches to findCover are presented in the follow-
ing subsections: an optimal SAT-based approach that finds the
minimal number of fanin wires and a greedy approach that
exchanges optimality for performance.

Algorithm 1 Transformation usingaSPFDs

1: C′ := Erroneous circuit
2: V := A set of input vectors
3: nerr := Transformation node
4: procedure (TransformationWith aSPFD)(C′, V . nerr)
5: Compute theaSPFD and don’t cares ofnerr

6: E ← (mi, mj) ∈ Rappx
err |(mi, mj) cannot be

distinguished by any fanin ofnerr

7: LetN := {nk | nk ∈ C′ andnk 6∈ {TFO(nerr)∪
nerr}

8: Cover ←SELECTCOVER(N )
9: Re-implementingnerr with the original fanins and

the nodes inCover

10: end procedure

A. SAT-based Searching Algorithm

The search problem in Algorithm 1 (line 8) is formulated as
an instance of Boolean satisfiability. Recall that the algorithm
looks for a set of nodes outsideTFO(nerr) such that those
nodes can distinguish SPFD edges ofRappx

err that cannot be
distinguished by any fanins ofnerr.

The SAT instanceΦ is formulated as follows. Each node
nk is associated with a variablewk. Nodenk is added to the
setCover if the value ofwk is 1. The instance contains two
components:Φ(W ,P) = ΦC(W) · ΦB(W ,P), whereW =
{w1, w2, · · · } for eachnk 6∈ {TFO(nerr) ∪ nerr} andP is a
set of new variables introduced.

The first component,ΦC(W), contains one clause for each
edge inE. The clause,ci, for the edge,ei, containswk if the
function of nk coversei. The clause is satisfied if one of the
included candidate nodes is selected.

The second component,ΦB(W ,P), defines the condition
where a candidate node,nk, should not be considered as a
solution. As discussed in Section II-C, minterms that can be
distinguished by a node must be able to be distinguished by
one of its fanins. It implies that the function of the node does
not cover more SPFD edges if all of its fanins are selected
already. Hence, for each candidate nodenk, a new variable
pk is introduced;pk is 1 if all of fanins of nk are selected,
and 0 otherwise. Consequently,wk is assigned with0 when
pk is 1, i.e., nk is not considered for the solution.

With respect to Example 4, the SAT instance of the search-
ing problem,Φ = ΦC · ΦB, is constructed as follows. Since
there is only one SPFD edge (110, 100) in theaSPFD of
zmod that needs to be covered,ΦC consists of one clause
only, which indicates candidate nodes of which function can
distinguish the minterm pair. In this case, the candidate nodes
of edge (110, 100) areb ande. Therefore, the formulation of
ΦC is (b + e). That is, this edge is covered if the SAT solver
assigns 1 to eitherb or e.

Next, considering nodee, of which fanins areb and c. As
discussed earlier, ifb andc are already selected as additional
fanins to the new structure,e does not provide the ability to
distinguish more minterm pairs and can be removed from the
candidate list. This idea is formulated as,ΦB = (b + c + pe) ·
(b+pe) ·(c+pe) ·(pe +e), wherepe is a new variable that has
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the value of 1 if bothb andc are selected. Whenpe equals 1,
e is forced to be 0; that is,e cannot be selected.

In order to obtain the optimal solution, in experiments,
we solve the SAT instance with a pseudo-Boolean constraint
SAT solver [31] that returns a solution with the smallest
number of nodes. The use of a pseudo-Boolean solver is not
mandatory and any DPLL-based SAT solvers [32], [33] can be
used instead. A way to achieve this is to encode the counter
circuitry from [1] to count the number of selected nodes.
Then, by enumerating valuesN = 1, 2, . . ., the constraint
enforces that no more thanN variables can be set to a logic 1
simultaneously orΦ becomes unsatisfiable. Constraining the
numberN in this manner, any DPLL-based SAT solver can
return the optimal answer.

B. Greedy Searching Algorithm

Although the SAT-based formulation can return the mini-
mum set of fanins to resynthesizenerr, experiments show that
it may require excessive runtime. To improve the performance
in runtime, the following greedy approach to search solutions
is proposed:

1) For each edgee ∈ E, let Ne be the set of nodesn 6∈
{TFO(nerr) ∪ nerr} that can distinguish the edge. Sort
e ∈ E in descending order by the cardinality ofNe.

2) Select the edge,emin, with the smallest cardinality of
Nemin

. It ensures that the edge that can be covered with
the least number of candidates is targeted first.

3) Selectnk from Nemin
such thatnk covers the largest set

of edges inE, and addnk to Cover

4) Remove edges that can be covered bynk from E. If E

is not empty, go back to Step 1 to select more nodes.

The solutions identified by the greedy approach may contain
more wires than the minimum set. However, experiments
indicate that the greedy approach can achieve similar quality
results with the SAT-based approach in a more computationally
efficient manner.

C. Methodology Analysis

In theory, the transformations returned usingaSPFDs may
not pass the verification since they are based on a small
set of test vectors. Nevertheless, experiments show that the
success rate is very high and more than 90% of the first
fix returned by the method qualifies verification. This implies
that a small amount of test vectors can provide sufficiently
enough information to generate a qualified transformation.
Here, we elaborate on the reasons why the proposedaSPFD-
based representation has such a high success rate.

Definition 2 Thelocal minterms of a noden are minterms in
terms of the immediate fanins ofn. Thelocal SPFD(cSPFD)
of a noden specifies the local minterms in the onset ofn that
have to be distinguished from the local minterms in the offset
of n.

The localaSPFD ofn, Rlocal
n = (V ′, E′), can betranslated

from Rappx
n = (V, E) through the following steps. LetMi be

a primary input minterm andmi be the corresponding local

minterm of n. First, for everyMi ∈ V , mi is added toV ′.
Then, for every edgee = (Mi, Mj), wheree ∈ E, an edge
between(mi, mj) is added toE′.

The local network represented by SPFDs (oraSPFDs) is
synthesized by identifying local minterms in the onset of the
node [26]. Hence, given an SPFD,R, and anaSPFD,Rappx,
of the same node, the transformations constructed based onR

or Rappx are the same if the same local SPFD can be derived
from R andRappx. This can be achieved if the input vector set
used to constructaSPFDs complies with the following lemma.

Lemma 1 The local aSPFD of n, Rlocal
n , translated from

Rappx
n , contains the same pairs of minterms to be distinguished

as the cSPFD of n (cSPFDn), if, for each possible local
minterm ofn that is not a don’t care, one of its corresponded
primary input minterms is included in theRappx

n .

Proof: To show thatRlocal
n andcSPFDn contain the same

pairs of minterms to be distinguished, it requires (a) that
bothRlocal

n andcSPFDn contain the same number of vertices
and (b) that every edge incSPFDn is also in Rlocal

n . The
first requirement can be derived from the assumption that
Rappx

n contains at least one primary input minterm that can
be mapped to each local minterms inRlocal

n . This leads to
the conclusion that bothRlocal

n andcSPFDn contain the same
number of nodes. For the second requirement, becauseRappx

n

contains an edge for every pair of minterms that are assigned
with opposite values, by construction,Rlocal

n also contains an
edge for every pair(mi, mj), wherefn(mi) 6= fn(mj). As a
result, edges incSPFDn must be inRlocal

n as well.�
According to Lemma 1, if the set of primary input minterms

exercised by the input vectors complies with the lemma, the
aSPFD constructed by the proposed approach contains all
of the necessary information about the required function at
the transformation node. As a result, the transformation that
is constructed based on theaSPFD can pass verification.
Furthermore, if the transformation is constrained to have at
most N fanins, one may conclude that2N test vectors are
sufficient to perform the restructuring, if the selected test
vectors comply to Lemma 1. SinceN is usually much less
than the number of the primary inputs,2N test vectors are a
small portion of the complete vector space.

V. EXTENSION TO MULTIPLE LOCATIONS

All discussion this far deals with restructuring one location
each time. However, as noted in the introduction, in practice,
there are several situations where restructuring at multiple
locations is necessary. In this section, we show how to apply
the proposed methodology to perform multiple transformations
in a combinational design. This concept can be easily extended
to sequential circuits as well.

Given two combinational designsC and C′ and, without
loss of generality, assume transformations need be appliedon
two locations,nerr1 andnerr2, in C′ simultaneously such that
C′ becomes functionally equivalent toC. Depending on the
locations ofnerr1 andnerr2, as shown in Figure 5, a different
approach can be followed.
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Fig. 5. Relation of two transform locations

The first case (Figure 5(a)) depicts the situation where the
transitive fanout cones ofnerr1 andnerr2 are exclusive to each
other. This implies that these two locations can be restructured
independently, because changes at one location do not affect
the other one. In this case, the proposed methodology dis-
cussed in Section III-A can be applied directly at each one
location at a time.

In the second case shown in Figure 5(b), there are common
POs in the transitive fanout cones of the two nodes. The
discrepancy observed at those POs may require fixes on both
nodes to be resolved. Here, an approach similar to the one
described for sequential designs in Section III-B can be used
as summarized below:

1) Extract the expected traceET1 for nerr1 and ET2 for
nerr2. This can be done by formulating a Boolean sat-
isfiability instance from the circuitC′ wherenerr1 and
nerr2 are marked as primary inputs.

2) Obtain combinational don’t cares ofnerr1 by solving
all possible expected traces onnerr1 while the value of
nerr2 is as specified inET2. Then, as in Section III-C,
if there are conflict assignments between expected traces,
the corresponding minterms are don’t cares.

3) Construct a partially specified truth table ofnerr1 from
the expected traces. The table specifies the function that
can resolve all erroneous observation at POs when it is
implemented atnerr1 andnerr2 is assigned withET2.

4) Generate theaSPFD of nerr1 from the truth table and
construct a qualified transformation.

5) Apply the transformation and repeat Step 2 – 4 fornerr2.

The procedure described above for two locations can be
easily generalized when restructuring occurs in three or more
places in a design. Overall, the procedure restructures one
targeted node in each iteration from Step 2 to Step 4. This
is necessary in order to obtain the correct combinational
don’t cares for the targeted node, since they can be different
depending on the transformations applied at other nodes.
Hence, after each transformation, the expected trace of the
next target node is re-calculated to take the effects from the
previous transformations into account.

Finally, the third case of the relation of two transformation
locations is shown in Figure 5(c), wherenerr2 is inside
TFO(nerr1). In this case, the same procedure described for
the second case can be applied. Although it may seem that
nerr1 needs to be restructured beforenerr2, it is not necessary.
This is because aSPFDs are constructed based on the expected
traces extracted in Step 1 of the above procedure. Those
values show the behavior of the transformation nodes after
restructuring. Therefore, even ifnerr2 is restructured first, the

minterm pairs that the original fanins ofnerr2 can distinguish
after restructuring can be determined without constructing
the transformation atnerr1. Consequently, it is possible to
restructure locations in any order.

VI. EXPERIMENTS

Empirical results of the proposed methodology are pre-
sented in this section. ISCAS’85 benchmarks are used for ex-
periments on combinational transformations, while ISCAS’89
benchmarks are used for sequential cases. The diagnosis algo-
rithm from [1] is used to identify the restructuring locations
and Minisat [34] is the underlying SAT solver. The restructur-
ing potential of theaSPFD-based algorithms is compared with
that of the dictionary-model of [8] and both methodologies are
contrasted against the complete results ofError equation[2].
Experiments are conducted on a Core 2 Duo 2.4GHz processor
with 2GB of memory while runtime is reported in seconds.

A. Experiment setup

In our experimental setup, three different complexities of
modifications are injected in the original benchmark. Ex-
periments involve correcting designs with those changes to
evaluate the performance of the proposed methodology. The
locations and the types of modifications are randomly selected.
Simple complexity modifications (suffix “s”) involve the ad-
dition/deletion of a single wire or a gate type replacement.
Moderate modifications (suffix “m”) on a gate include addi-
tion/deletion multiple fanins and a gate type change. The final
complexity modifications, complex (suffix “c”), inject multiple
simple complexity modifications on a gate and in the fanin
cone of the gate.

For each of the above types, five testcases are generated
from each benchmark. The proposed algorithm is set to find
10 transformations different to the original, if they exist, for
each location identified by the diagnosis algorithm. Functional
verification is carried out at the end to check the validity of
the transformations.

B. Performance of the Methodology

Table II summarizes the experimental results for a single
transformation in combinational circuits. In this experiment,
circuits are simulated with 2000 input vectors with high
stuck-at fault coverage. The first column of Table II lists
the benchmarks and the types of the modification inserted as
described in Section VI-A. Columns two and three show the
numbers of five testcases per benchmark that the dictionary
model and the proposed approach can find at least one solution
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TABLE II
COMBINATIONAL LOGIC TRANSFORMATION RESULTS FOR VARIOUS COMPLEXITIES OF MODIFICATIONS

Correctablility (Per testcase) Correctablility (Per location)
ckt.

dict. model [8] aSPFD
error error dict.

aSPFD
avg # min # avg # avg. time % verified

name loc. equat. model wires wires corr/loc. (sec) first all

c1355 s 4 5 5.3 100% 19% 81% 1.7 1.7 8.3 3.5 100% 46%
c1908 s 3 5 18.0 84% 13% 84% 1.4 1.4 8.1 18.9 90% 62%
c3540 s 3 5 7.2 100% 28% 86% 1.1 1.1 4.5 9.3 100% 66%
c7552 s 4 5 11.8 88% 19% 50% 1.7 – 3.1 25.7 88% 54%
c1355 m 2 5 2.7 100% 13% 100% 2.1 2.0 7.0 32.0 100% 52%
c1908 m 1 4 5.8 100% 3% 83% 2.5 2.5 5.6 11.0 100% 68%
c3540 m 3 5 3.2 100% 25% 100% 1.6 1.6 6.1 54.2 84% 78%
c7552 m 3 5 8.8 100% 9% 91% 1.9 – 6.9 39.2 100% 79%
c1355 c 0 3 3.7 96% 0% 73% 2.9 2.9 3.3 38.4 100% 40%
c1908 c 4 4 15.8 47% 41% 70% 1.4 1.3 7.2 19.0 100% 88%
c3540 c 1 5 3.0 100% 7% 67% 3.6 3.4 3.8 122.4 100% 33%
c7552 c 3 5 20.6 64% 20% 50% 1.9 – 3.5 23.7 91% 43%

Average 2.5 4.7 8.8 90% 16% 78% 2.0 – 5.6 33.1 96% 59%

at any location, respectively. From the result, one can see
that the proposed approach is able to restructure most cases,
while the ability of the dictionary model approach to rectify
designs drops as the complexity of the modifications increases.
This implies the advantage of the proposed approach when
deals with problems, such as engineer changes, where required
transformations are more complex than the addition/removal
of a single net.

The number of locations that the proposed approach can
restructure is compared with the result ofError equationand
the dictionary model approach as shown in columns four –
seven. The fourth column has the average number of locations
returned by the diagnosis program for the five testcases. The
percentage of those locations whereError equationclaims an
existence of a solution is shown in column five. The next two
columns show the percentage of locations (out of those in
column four) that the dictionary-approach and the proposed
aSPFD approach can successfully find a valid solution. A
valid solution is the one that the restructured circuit passes
verification. Takingc1908_s as an example, there are 18
locations returned by the diagnosis program.Error equation
claims that resynthesis can fix 15 out of those locations.
The dictionary approach successfully identifies two locations
(13% of 15) while theaSPFD approach can restructure 13
locations (84% of 15). In this case, the proposed approach has,
on average, five times improvement over the dictionary one.
Overall, the proposed methodology outperforms the dictionary
approach in all cases and achieves greater improvement when
the modification is complicated.

Columns 8 – 13 present the quality of the transformations
in terms of the wires involved as well as some algorithm
performance metrics. Note, except column nine which reports
the result of the SAT-based search approach, the remaining
columns report the result of the greedy search approach.
Column eight has the average number of additional wires
returned by the greedy algorithm and column nine has the
minimum number of wires selected by the optimal SAT-based
searching algorithm. The average is computed over all valid
transformations of all transformation nodes in five test cases.
As shown in the table, the greedy heuristic performs well
comparing to the optimal solutions. Because the SAT-based

approach may run into runtime problems as the number of new
wires increases, it times out (”-”) after1000 seconds if it does
not return with a solution. The experimental results show that
the number of additional wires overall is less than four. This
suggests that the transformations only alter the design with
small changes, which is important in logic rewiring, debugging
or when applying engineering changes. Furthermore, we also
observe that when the algorithm selects more than five wires
as additional fanins to the transformation node, there is a
higher probability that the transformations fail verification. As
discussed in Section IV-C, the transformation is guaranteed
to pass verification if each local minterm that is not a don’t
care can be mapped from one of the primary input minterms
included in theaSPFD of the transformation node (Lemma 1).
As the number of selected wires increases, the chance that
some critical location minterms are missed increases as well.
Consequently, those transformations are not valid solutions.

As mentioned earlier, for each location, the algorithm is
set to find at most 10 transformations if they exist. Column
10 shows the average number of transformations identified
for each location. One can see that for all cases, more than
one transformation can be identified. This is a desirable
characteristic since engineers can have more options to select
the best fit for the application. Column 11 contains the average
runtime to find 10 transformations using the greedy heuristics.
Note that the runtime does not include the procedure of identi-
fying transformation nodes, since any diagnosis or verification
technique can be used to identify those locations. The final
two columns show the average percentage of transformations
that pass verification. The first column only considers the first
transformation identified, while the second column has this
percentage for 10 transformations identified. One can observe
that the vast majority of first-returned transformations pass
verification, a fact that confirms the viability ofaSPFDs.

Similar experiments are conducted for sequential designs as
well. The vector set for sequential circuits contains 500 input
vector sequences with a length of 10 cycles. To verify the cor-
rectness of transformations, a bounded sequential equivalent
checking [35] is used. It verifies the resulting design against
the reference within a finite number of cycles, which is set to
10 cycles in our experiment.
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TABLE III
SEQUENTIAL LOGIC TRANSFORMATION RESULTS FOR VARIOUS COMPLEXITIES OF MODIFICATIONS

ckt. error error
aSPFD

avg # avg # avg. time % verified %
name loc. equat. wires corr/loc. (sec) first overall unique

s510 s 2.4 100% 75% 0.3 1.8 384 100% 92% 100%
s953 s 1.8 100% 33% 1.0 3.3 223 100% 37% 70%
s1238 s 1.6 100% 38% 1.1 5.0 781 100% 100% 55%
s1488 s 2.8 86% 43% 1.7 5.0 258 83% 46% 68%
s510 m 2.0 100% 90% 0.3 4.2 68 100% 38% 99%
s953 m 1.6 63% 40% 1.2 1.2 105 100% 100% 100%
s1238 m 2.6 85% 72% 2.2 4.3 218 100% 76% 47%
s1488 m 3.4 100% 0% – – 83 – – –
s510 c 1.6 100% 38% 0.5 1.5 166 100% 92% 100%
s953 c 2.2 73% 0% – – 122 – – –
s1238 c 1.2 100% 14% 0 – 328 100% – 100%
s1488 c 1.8 71% 30% 1.7 1.5 98 33% 27% 100%

Average 2.1 90% 39% 1.0 3.1 236 92% 68% 82%

The results for sequential designs are summarized in Ta-
ble III. Benchmarks used are listed in column one. Column two
presents the average number of locations for transformation re-
ported by the diagnosis program while the percentage of those
locations that are claimed to be correctable byError equation
are recorded in column three. Note thatError equationin [2] is
developed for combinational circuits. Hence, here we convert
the sequential circuits into a combinational one by treating
the states as pseudo-input/output. In this way, the number of
locations reported byError equationis the lower bound of the
locations that are correctable, since it constrains the states to
be equivalent after the restructuring as well.

The percentage of locations that the proposed methodology
finds a valid transformation is reported in column four. Overall,
our approach can restructure 39% of the locations. The reason
why the algorithm fails to correct some of the locations is
because the input vectors do not provide enough information
to generate a goodaSPFD. This occurs when the algorithm
characterizes a minterm as a don’t care when this minterm is
not exercised by the input vectors. Consequently, the resulting
transformation does not distinguish all necessary minterm
pairs that are required to correct the design.

Column 5 – 7 report the average number of additional wires
used in the transformations, the average number of trans-
formations per location, and the average runtime to find 10
transformations, respectively. Note that, for some locations, the
transformation only needs to be resynthesized with the existing
fanin nets without any additional wires. This is the reason
why cases, such ass510_s, use less than one additional
wire on average. The next two columns show the average
percentage of cases where the first transformation passes
verification and the average percentage of 10 transformations
that passe verification. Similar to the combinational circuits,
there is a high percentage of the first transformation that passes
verification if the proposed methodology can find any. This
indicates that theaSPFD is a good metric to prune out invalid
solutions. Finally, those transformations are checked whether
they can be identified by restructuring the sequential designs as
if they are pure combinational ones. This check is carried out
by performing combinational equivalence checking between
the transformed circuit and the reference. If two designs are
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Fig. 6. Performance of restructuring with various numbers of vectors for
combinational designs

not combinational equivalent, it means that the transformation
changes the state assignments as well. Overall, 82% of the
valid transformations are uniquely identified by the sequential
approach and they cannot be found by a combinational logic
restructuring method.

C. Impact of Test Vectors

In the second set of the experiments, we first investigate
the performance of the restructuring when various numbers of
test vectors are used. For combinational circuits, four sizes
are used: 250, 500, 1000, and 2000 test vectors. Results
are depicted in Figure 6. In details, Figure 6(a) shows the
percentage of the locations where the proposed algorithm can
identify a valid transformation. As shown, the success rate
is increased as the size of input vectors increases for each
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Fig. 7. Performance of restructuring with various numbers of vectors for
sequential designs

error complexity group. This is expected since more vectors
provide more information foraSPFDs. The chance that the
algorithm incorrectly characterizes a minterm as a don’t care
is also reduced.

Although using a larger vector set can improve the success
rate of the restructuring, it comes with the penalty that more
computational resources are required to tackle the problem.
The average runtime is plotted in Figure 6(b) and normalized
by comparing it to the runtime of the case with 250 vec-
tors. Each line represents one error complexity type. Taking
Complex as an example, the runtime is 12 times longer when
the vector size is increased from 250 to 2000. Note that thereis
a significant increase when the size of the vector set increases
from 1000 to 2000. If we look back Figure 6(a), one may
see that the success rate of cases when 1000 vectors are used
is close to the rate of those with 2000 vectors. This suggests
that, for those testcases, 1000 input vectors can be a good size
to have a balance between the resolution of solutions and the
runtime performance.

The same set of analysis is applied to sequential designs
as well. For sequential cases, the vector sizes are set to 100,
200, 500, and 700. All have a length of 10 cycles. The success
rate and the normalized runtime are shown in Figure 7(a)
and Figure 7(b), respectively. One can see that the behavior
observed earlier for the combinational cases is also observed
here. The success rate of the restructuring decreases as thesize
of the vector decreases. Among different error complexities,
the benchmarks with complex errors are affected most. This
is because a complex error can be excited in various ways
and requires more vectors to fully characterize the erroneous
behavior. As a result, the algorithm needs more vectors to
construct an accurate transformation.
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Lastly, the runtime plotted in Figure 7(b) also shows a
significantly reduction with the decrease of the size of vectors.
One may notice that the runtime for complex modification
cases increases slower with the number vectors, compared with
the runtime for simple modification cases. Note that, for the
same base benchmark, the locations where the modifications
are inserted for each complexity are different. Hence, it is
not necessary that the runtime growth rate of the complex
modification cases has to increase faster than the runtime
growth rate of the simple modification cases. The key point
here is that there is a great runtime increase as more test
vectors are used for restructuring.

When the number of test vectors varies, the fault coverage
of the test vectors changes as well. To study whether the
performance of the algorithm is sensitive to the fault coverage
of the given test vector set, an experiment that uses vector sets
that have different fault coverage metrics is conducted. Two
benchmarks,c1908 andc3540, are used. A set of 100 test
vectors with five different fault coverage metrics are generated
for each benchmark. The fault coverage is calculated for the
whole design because in our experiments there are several
transformation nodes randomly distributed within the design.
Forc1908, the fault coverage is 50% – 90%; forc3540, the
fault coverage is 40% – 80%. The success rate of each case
is plotted in Figure 8. We observe that, when vector sets with
low coverage are used, the algorithm may not be able to find
a valid solution for many cases. However, when the coverage
metric is increased, there is a higher success rate of findinga
valid transformation.

D. Transforming Multiple Locations

In the last set of experiments, we apply the algorithm to
perform simultaneous restructuring at multiple locations. For
the purpose of demonstration, we only perform experiments
for two and three locations with simple types of errors. In this
experiment, simulation-based verification is performed after
a transformation at each transformation node is constructed.
It uses 100 random vectors to check any discrepancies at
the primary outputs that are only in the fanout cone of the
transformation node. Another transformation is sought if ver-
ification fails; at most 10 transformations are checked before
the algorithm returns back to the previous transformation node.
The algorithm stops when a valid solution is identified or the
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TABLE IV
LOGIC TRANSFORMATION AT TWO AND THREE LOCATIONS

ckt. name
2-location 3-location

error succ. avg # avg # avg. time error succ. avg # avg # avg. time
loc. rate wires trans. fail (sec) loc. rate wires trans. fail (sec)

c880 9.2 39% 1.1 0 329 10.0 32% 1.6 0 666
c1355 10.0 66% 1.2 0 649 10.0 68% 1.2 0.06 1226
c1908 10.0 36% 1.0 0 852 10.0 16% 1.4 0 1136
c2670 8.6 37% 1.1 0 1596 9.6 32% 1.3 0 2608
c3540 7.4 70% 0.9 0.03 2626 9.2 48% 1.1 0 2757

Average 9.0 50% 1.1 0.006 1210 9.8 39% 1.3 0.01 1679

failing limit has been reached. The experimental results are
summarized in Table IV.

Columns 2–6 in Table IV summarize the results when
restructuring is applied at two locations, while columns 7–
11 contain results when three locations are restructured si-
multaneously. Columns two and seven contain the average
number of locations returned by the diagnosis program for
the five experiments. Note that because there are multiple
errors, the diagnosis program may return numerous candidate
solution tuples [21]. As such, in the experiments, we only
randomly pick at most 10 location tuples as the candidates for
restructuring.

Columns three and eight have the percentage of the selected
location tuples that our algorithm successfully identifiesa
valid transformation tuple. The average number of additional
wires required to construct the transformations are shown in
columns four and nine. For example, in the case of 2-location
restructuring forc1335, our algorithm is able to identify
corrections for 7 out of 10 tuples returned by the diagnosis
tool. The average number of additional wires used to construct
the corrections is only 1.2. Our empirical observation has been
that when the number of additional wires required increases,
there is a high chance that the transformation will not pass
verification. Columns five and ten show the average number
of transformation tuples that fail verification before a valid one
is found.

As shown in the table, in all cases valid solutions are
usually identified at the beginning of the search process.
Takingc1355 as an example, in both cases the first transfor-
mation tuple determined by the proposed technique is a valid
solution. This result is consistent with the observation inthe
single-transformation experiments described earlier. Finally,
the average runtime is recorded in columns six and eleven. As
expected, the runtime increases as the number of restructured
locations increases. In summary, it is seen that, for both
cases, our technique corrects, on average, 50% and 39% of
location tuples with only less than two additional wires for
each constructed transformation. The result confirms that the
proposed methodology has the ability to restructure multiple
locations efficiently and minimally as well.

VII. C ONCLUSION

In this work, a simulation-based procedure for a new
representation of SPFDs, namelyaSPFDs, is first presented.
TheaSPFD is an approximation of the original SPFD as it only
contains information that is explored by the simulation vectors.

As a result, this technique can alleviate the memory/runtime
issues that may encountered by formal approaches. In addition,
this work proposes anaSPFD-based logic restructuring algo-
rithm with SAT for both combinational and sequential designs.
This technique can be used for a wide range of applications,
such as logic optimization, debugging and when applying en-
gineer changes. Experiments demonstrate thataSPFDs provide
a powerful and dynamic method to restructure a logic design
to a new set of specification. It is able to restructure designs at
a location where other methods fail. Further empirical analysis
confirms that the resolution of the transformation depends on
the number of vectors used. A higher success rate can be
achieved if more input vectors are provided but, at the same
time, more memory/computation resources may be required.

The work and experiments of this paper promote further
research inaSPFDs as a means to logic restructuring. This
may include improving theaSPFD construction for sequen-
tial designs to increase the success rate of viable solutions.
Another application involves changing of timing-elementsin
sequential designs, for instance, addition/removal of sets of
states for retiming. This promises a new set of possibilities in
algorithmic restructuring for sequential designs.
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