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SafeChoice: A Novel Approach to Hypergraph
Clustering for Wirelength-Driven Placement

Jackey Z. Yan, Chris Chu and Wai-Kei Mak

Abstract—This paper presents a completely new approach
to the problem of hypergraph clustering for wirelength-driven
placement. The novel algorithm we propose is called SafeChoice
(SC). Different from all previous approaches, SC is proposed
based on a fundamental theorem, safe condition which guarantees
that clustering would not degrade the placement wirelength. To
mathematically derive such a theorem, we first introduce the
concept of safe clustering, i.e., do clustering without degrading the
placement quality. To efficiently check the safe condition for pair-
wise clustering, we propose a technique called selective enumera-
tion. SafeChoice maintains a global priority queue based on the
safeness and area of potential clusters. Using a simple heuristic,
it automatically stops clustering when generating more clusters
would degrade the placement wirelength. Moreover, we extend
SafeChoice to do clustering while considering the object physical
locations, i.e, physical clustering. Finally, we apply SafeChoice into
a two-phase placement framework and propose a high-quality
analytical placement algorithm called SCPlace. Comprehensive
experimental results show that the clusters produced by SC
consistently help the placer to achieve the best wirelength among
all other clustering algorithms, and SCPlace generates the best
Half-Perimeter Wirelength compared with all other state-of-the-
art placers.

Index Terms—Hypergraph Clustering, VLSI Placement, Phys-
ical Design

I. INTRODUCTION

For modern VLSI designs, placement is the most critical
stage in the physical synthesis flow. It has significant impacts
on timing, routing and even manufacturing. In the nanometer
scale era, a circuit typically contains millions of objects. It is
extremely challenging for a modern placer to be reasonably
fast, yet still be able to produce good solutions. Clustering
cuts down the problem size via combining highly connected
objects, so that the placers can perform more efficiently and
effectively on a smaller problem. It is an attractive solution to
cope with the ever-increasing design complexity. Therefore, as
an essential approach to improve both the runtime and quality
of result, various clustering algorithms have been adopted in
the state-of-the-art placement algorithms [1]–[8].
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A. Previous Work

Clustering is a traditional problem in VLSI CAD area. The
clustering algorithms proposed long time ago were described
in [9]. In the last several years, various new algorithms were
proposed to continue improving the clustering quality. In [10]
Karypis et al. proposed edge coarsening (EC) clustering. In
EC objects are randomly visited. Each object is clustered
with the most highly-connected unvisited neighbor object.
The connectivity between two objects is computed as the
total weight of all edges connecting them with hyperedges
represented by a clique model. FirstChoice (FC) clustering
was developed in [11] and is very similar to EC. The only
difference between them is that for each object in FC, all
of its neighbor objects are considered for clustering. FC has
been used in placers NTUplace3 [1] and Capo [2]. However,
neither EC nor FC considers the impact of cluster size on
the clustering quality. Alpert et al. [12] and Chan et al. [13]
improved EC and FC respectively, by considering the area
of clusters, i.e., clusters with smaller area are preferred to
be generated. Cong et al. [14] proposed an edge separability-
based clustering (ESC). Unlike previous methods, ESC uses
edge separability to guide the clustering process. To explore
global connectivity information, all edges are ranked via a
priority queue (PQ) based on the edge separability. Without
violating the cluster size limit, the two objects in the highest
ranking edge are clustered. Hu et al. [15] developed fine
granularity (FG) clustering. The difference between FG and
ESC is that for FG the order in the PQ is based on edge
contraction measured by a mutual contraction metric. FG has
been used in placer mFAR [3]. Nam et al. [16] proposed
BestChoice (BC) clustering which has been widely used in the
top-of-the-line placers APlace [4], mPL6 [5], FastPlace3 [6],
RQL [7] and FLOP [8]. Instead of ranking the edges, BC
maintains a PQ based on a pair of objects, i.e., each object
and its best neighbor object. A score function considering both
hyperedge weight and object area is derived to calculate the
score between two objects. For each object, the best neighbor
object is the neighbor object with the highest score. The
two objects at the top of the PQ are clustered iteratively.
But updating such a PQ is quite time-consuming. Hence, the
authors proposed a lazy-update technique to make a trade-off
between the clustering runtime and quality.

All of the above clustering algorithms either explicitly or
implicitly transform a hyperedge into a clique model, so that
they can handle pair-wise clustering, i.e., cluster two objects at
each time. Recently, Li et al. [17] presented NetCluster (NC)
that can handle hyperedges directly and cluster more than two
objects at one time. In NC, initial clusters are first generated



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, 2011 2

a b
c

Fig. 1. An example of indirect connections between objects a and b.

by FM algorithm [18]. Then a score is assigned to each net.
The objects in the net with the highest score are clustered.

For all previous clustering algorithms, none of them specifi-
cally aims at improving the placement quality. They proposed a
variety of heuristics, e.g., different score functions, to measure
the direct connectivity among the objects, so that the most
highly directly connected objects are clustered. Of course, the
benefit is a reduction of problem size. But, clustering such
objects may not help the placer to produce better solution. This
is because clustering forces some objects to stay together dur-
ing placement, which constrains the solution space exploration
of the placer. If such constraint is enforced improperly, i.e.,
clustering objects that should not be clustered, the placement
solution would be jeopardized. It has not been proved that
clustering highly directly connected objects can definitely
minimize the placement wirelength. Even though it makes
some sense intuitively to cluster such objects, we believe it
is not sufficient to just consider the direct connections. We
also need to take the indirect connections into account. For
example in Fig. 1, two objects a and b are connected by a
two-pin net. At the same time, they are indirectly connected
by two two-pin nets via object c. Such indirect connections
intend to pull a and b towards each other. But they have been
ignored in all previous work. As a result, it is very likely
that previous algorithms mislead the placers to a low-quality
solution.

In order to form the best clusters for placement, we need to
solve the fundamental problem of clustering for placement:
How to do clustering, so that it can be guaranteed that
clustering would not degrade the placement quality?

B. Our Contributions

This work presents a completely new approach to the prob-
lem of hypergraph clustering for wirelength-driven placement.
We propose a novel clustering algorithm called SafeChoice
(SC)1. SC handles hyperedges directly. Different from all
previous clustering algorithms, SC is proposed based on a
fundamental theorem, which guarantees that clustering would
not degrade the placement quality. None of previous techniques
has such guarantee. Additionally, three operation modes of
SC are presented to achieve various clustering objectives.
Essentially, we have seven main contributions:

• Concept of Safe Clustering: We introduce the concept
of safe clustering. If clustering some objects would not
degrade the wirelength in an optimal placement, it is safe
to cluster such objects.

• Safe Condition: Based on the concept of safe clustering,
we derive the fundamental theorem — safe condition for

1A preliminary version of SafeChoice was presented in [19].

pair-wise clustering. We prove that if any two objects
satisfy the safe condition, clustering them would not
degrade the wirelength.

• Selective Enumeration: To check the safe condition for
pair-wise clustering, we propose selective enumeration.
With such method, we can efficiently find out the safe
clusters in a circuit.

• SafeChoice: We present SafeChoice algorithm that glob-
ally ranks potential clusters via a PQ based on their
safeness and area. Iteratively the cluster at the top of the
PQ will be formed.

• Smart Stopping Criterion: A smart stopping criterion is
proposed based on a simple heuristic. So it can automati-
cally stop clustering once generating more clusters would
start to degrade the placement wirelength. As far as we
know, none of previous algorithms has such feature.

• Physical SafeChoice: We extend SafeChoice to do clus-
tering if the physical locations of some objects are given.
In this way, SafeChoice can make use of such location
information, e.g., an initial placement or fixed I/O object
locations, and thus produces even better clusters.

• SCPlace: To demonstrate the effectiveness of Physical
SafeChoice, we propose a simple and high-quality two-
phase placement algorithm called SCPlace. SCPlace is
simple in the sense that it has only one clustering level
and two placement phases. But, it produces significantly
better results than all other state-of-the-art placement
algorithms.

We compare SC with three state-of-the-art clustering algo-
rithms FC, BC and NC. The results show that the clusters
produced by SC consistently helps the placer to generate the
best wirelength. Compared with the state-of-the-art placement
algorithms, SCPlace is able to generate the best Half-Perimeter
Wirelength (HPWL).

The rest of this paper is organized as follows. Section II de-
scribes the safe clustering. Section III introduces the algorithm
of SafeChoice. Section IV presents the Physical SafeChoice.
Section V introduces the algorithm of SCPlace. Experimental
results are presented in Section VI. Finally, this paper ends
with a conclusion and the direction of future work.

II. SAFE CLUSTERING

In this section, we first introduce the concept of safe
clustering. Then based on this concept we derive the safe
condition for pair-wise clustering. Finally we propose selective
enumeration to practically check the safe condition for any two
objects in the circuit.

First of all, we introduce some notations used in the discus-
sion. The original netlist is modeled by a hypergraph G(V,E),
where V is the set of vertices and E is the set of hyperedges.
Given v ∈ V , Ev is the set of hyperedges incident to v, and
Ev = E − Ev . Let P be the set of all possible legalized
placements of the vertices in V . The wirelength is measured
by weighted HPWL.

A. Concept of Safe Clustering

The concept of safe clustering is defined as follows.
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Definition 1: Safe Clustering: For a set of vertices Vc ⊆ V
(|Vc| ≥ 2), if the optimal wirelength of the netlist generated
by clustering Vc is the same as the optimal wirelength of the
original netlist, then it is safe to cluster the vertices in Vc.

The placement problem is NP-hard. In practice we cannot find
the optimal wirelength for a real circuit. So we present a more
practical definition below.

Definition 2: Safe Clustering?: ∀p ∈ P , if a set of vertices
Vc ⊆ V (|Vc| ≥ 2) can be moved to the same location without
increasing the wirelength, then it is safe to cluster the vertices
in Vc.

Definition 2 is established based an assumption that the area
of every vertex in Vc is zero, so that we can move them
in a legalized placement and ignore the overlap issue. In
other words, we only consider clustering zero-area objects.
Definition 2 shows that when safe clustering is performed on
any legalized (zero-overlap) placement p, it does not increase
the total wirelength of p. But, the clustering algorithm is
not a placement algorithm and thus does not specify how
any overlap incurred by the clustering is to be removed.
Therefore, we assume that the clusters are small enough, i.e.,
zero area, compared to the total area of place-able objects in
the clustered netlist, such that any wirelength increase incurred
by any displacement needed to remove overlap incurred by the
clustering does not exceed the wirelength decrease induced
by the clustering. This assumption is reasonable, even though
there is no zero-area object in the real circuits. This is because
for a typical clustering ratio 2, the size of each cluster is always
much smaller than the total area of objects in the circuit. Note
that, however, such assumption may not be applicable when
some complex floorplan geometry is presented, e.g., when a
big cluster is placed in a narrow channel between two big
fixed objects. In this case, the displacement needed to remove
overlap incurred by the clustering may be quite big.

As you can see, Definition 2 is stronger than Definition 1.
If Vc is safe for clustering based on Definition 2, it is also
safe under Definition 1. In the rest of this paper, we employ
Definition 2 for discussion. Based on Definition 2, we derive
the definitions for horizontally and vertically safe clustering
as follows.

Definition 3: Horizontally/Vertically Safe Clustering:
∀p ∈ P , if a set of vertices Vc ⊆ V (|Vc| ≥ 2) can
be horizontally/vertically moved to the same x/y coordinate
without increasing the wirelength in x/y direction, then it is
horizontally/vertically safe to cluster the vertices in Vc.

Now we show that if vertices in Vc are both horizontally
and vertically safe for clustering, then it is safe to cluster
them under Definition 2. Given any initial placement p ∈ P ,
firstly we move those vertices horizontally to the same x
coordinate. Secondly, we move them vertically to the same
y coordinate. Consequently, the vertices in Vc are moved to
the same location. Based on Definition 3 the wirelength would
not increase during the movements. So it is safe to cluster the
vertices in Vc by Definition 2.

2The clustering ratio is defined as the ratio of the number of objects in the clustered
circuit to the number of objects in the original circuit.

In the remaining part of Section II, we consider only x
direction and horizontally safe clustering. Analogically, the
theoretical proof and mathematical derivation for y direction
and vertical safe clustering can be done in a similar way.

B. Safe Condition for Pair-Wise Clustering

From Definition 2 we derive a condition to mathematically
determine whether it is safe to cluster the vertices in Vc. Firstly,
we define two key functions for the derivation. For the sake
of simplicity, we always assume Vc contains only two vertices
a and b (i.e., Vc = {a, b}), and a is on the left of b.

Definition 4: Wirelength Gradient Function: Given a
placement p ∈ P and a hyperedge e ∈ E, we define

∆a(p, e) : Gradient function of wirelength of e
if a is moving towards b.

∆b(p, e) : Gradient function of wirelength of e
if b is moving towards a.

Let we(we ≥ 0) be the weight of e. From Definition 4 we
have

∆a(p, e) =

 we if a is the rightmost vertex of e
−we if a is the only leftmost vertex of e
0 otherwise

∆b(p, e) =

 we if b is the leftmost vertex of e
−we if b is the only rightmost vertex of e
0 otherwise

Considering a is moving towards b in p, if ∆a(p, e) > 0, it
means the wirelength of e will increase; if ∆a(p, e) < 0, then
the wirelength of e will decrease; otherwise the wirelength of
e will not change.

Definition 5: Total wirelength Gradient Function: Given
a placement p ∈ P and Vc = {a, b}, we define

Fab(p) = min(
∑
e∈Ea

∆a(p, e),
∑
e∈Eb

∆b(p, e))

In p if both a and b move towards each other, Fab(p) first
calculates the total wirelength change of all hyperedges for
moving a and b, respectively. Then it returns the one with
smaller change. For example, if Fab(p) =

∑
e∈Ea

∆a(p, e) ≤
0, it means moving a towards b would not increase the total
wirelength; if Fab(p) > 0, then moving either a or b towards
each other would increase the total wirelength. Next, we use
this function to derive the safe condition for a and b.

Theorem 1: Safe Condition for Vc = {a, b}

It is safe to cluster a and b if ∀p ∈ P,Fab(p) ≤ 0

Proof: Given an initial placement p0 ∈ P with total
wirelength l0. Because ∀p ∈ P,Fab(p) ≤ 0, we have
Fab(p0) ≤ 0. Suppose Fab(p0) =

∑
e∈Ea

∆a(p0, e) ≤ 0.
This means by moving a a small distance towards b, the total
wirelength of all hyperedges would not increase. After such
movement, we get another placement p1 with total wirelength
l1, where l0 ≥ l1. For p1 we still have Fab(p1) ≤ 0. Suppose
this time Fab(p1) =

∑
e∈Eb

∆b(p1, e) ≤ 0. This means
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moving b a small distance towards a would not increase the
total wirelength. Again, after such movement, we get another
placement p2 with total wirelength l2, where l1 ≥ l2. We keep
moving either a or b towards each other until they reach the
same location. Suppose the final total wirelength is ln. Because
after each movement we always have Fab(p) ≤ 0, which
means the total wirelength would not increase, eventually we
have l0 ≥ ln.

As a result, given any initial placement p0 we can gradually
move a and b to the same location without increasing the
wirelength. So based on Definition 2, it is safe to cluster
vertices a and b.

C. Selective Enumeration

To check whether it is safe to cluster a and b, Theorem 1
shows that we need to generate all placements in P . To
do so, we have to enumerate all possible positions for all
vertices in V . Apparently this is not a practical approach.
In this section, we show that in order to check Theorem 1,
it is sufficient to consider only a small subset of placements.
Selective enumeration technique is proposed to enumerate such
necessary placements.

Selective enumeration is motivated by the following princi-
ple: Given two placements p1, p2 ∈ P , if we know Fab(p1) ≤
Fab(p2), then p1 can be ignored in the enumeration. This
is because Theorem 1 shows that the safe condition is only
determined by the placement with the maximum Fab(p) value.
So the basic idea of selective enumeration is to find out the
relationship of Fab(p) values among different placements, so
that in the enumeration process we can ignore the placements
with smaller or equal Fab(p) values. Placements in P are
generated by different positions of different vertices. Our goal
is to identify some vertices in V , such that some or even all
of their possible positions can be ignored.

We first classify the vertices in V into two categories Vāb̄
and Vab (Vāb̄ ∪ Vab ∪ {a, b} = V ). Then we discuss the
enumeration of their positions separately. ∀v ∈ V , xv denotes
the x coordinate of v.

1) Vāb̄: vertices connecting with neither a nor b.
2) Vab: vertices connecting with at least one of a and b.
Lemma 1: Given a placement p ∈ P , by moving vertex

v ∈ Vāb̄ to any other position, another placement p′ ∈ P is
generated. We have Fab(p) = Fab(p′).

Proof: Since ∀v ∈ Vāb̄, v connects with neither a nor
b, changing the position of v would not change the leftmost
or rightmost vertex of any hyperedge connecting with a or b.
Therefore,

∀e ∈ Ea, ∆a(p, e) = ∆a(p′, e)
∀e ∈ Eb, ∆b(p, e) = ∆b(p′, e)

Thus, Fab(p) = Fab(p′).
Based on Lemma 1, in the enumeration we can simply ignore
all vertices in Vāb̄.

Lemma 2: Given a placement p ∈ P , vertex v ∈ Vab and
xv = k1. After moving v to xv = k2, another placement

p′ ∈ P is generated. We have Fab(p) = Fab(p′) if any one of
the following conditions is satisfied: (1) k1 ≤ xa and k2 ≤ xa;
(2) k1 ≥ xb and k2 ≥ xb; (3) xa < k1 < xb and xa < k2 < xb.

Proof: Suppose condition (1) holds, i.e., v is on the left
of a in both p and p′. ∀e ∈ Ev , we consider two3 possible
values of ∆a(p, e):

• ∆a(p, e) = we
This means a is the rightmost vertex of e in p. After
moving v to k2, because k2 ≤ xa, a is still the rightmost
vertex of e in p′. Thus, ∆a(p′, e) = we = ∆a(p, e).

• ∆a(p, e) = 0
This means a is neither the only leftmost nor the right-
most vertex of e in p. After moving v to k2, because
k2 ≤ xa, v is still on the left of a in p′. Thus,
∆a(p′, e) = 0 = ∆a(p, e).

So ∀e ∈ Ev , ∆a(p, e) = ∆a(p′, e). Similarly we have ∀e ∈
Ev , ∆b(p, e) = ∆b(p′, e). Therefore,

∀e ∈ Ea,∆a(p, e) = ∆a(p′, e)
∀e ∈ Eb,∆b(p, e) = ∆b(p′, e)

Thus, Fab(p) = Fab(p′). Analogically, the cases for conditions
(2) and (3) can be proved as well.

Lemma 2 shows that ∀v ∈ Vab, instead of enumerating all
possible positions, we only need to consider three possibilities:
(1) v is on the left of a (xv ≤ xa); (2) v is on the right of b
(xv ≥ xb); (3) v is between a and b (xa < xv < xb).

Based on Lemma 1 and 2, we need to enumerate 3|Vab|

different placements rather than all placements in P . Next, we
will further cut down this number from 3|Vab| to 2|Vab|, by
ignoring all positions between a and b.

Lemma 3: Given a placement p ∈ P , such that vertex v ∈
Vab is between a and b (xa < xv < xb). After moving v either
to the left of a or to the right of b, another placement p′ ∈ P
is generated. We have Fab(p) ≤ Fab(p′).

Proof: Suppose v is moved to the left of a.
For a, after the movement, a might become the rightmost
vertex of some hyperedge. So we have

∀e ∈ Ev,∆a(p, e) ≤ ∆a(p′, e) (1)

For b, after the movement, v is still on the left of b. So we
have

∀e ∈ Ev,∆b(p, e) = ∆b(p′, e) (2)

Based on Equations 1–2, we have

∀e ∈ Ea,∆a(p, e) ≤ ∆a(p′, e)
∀e ∈ Eb,∆b(p, e) = ∆b(p′, e)

Thus, Fab(p) ≤ Fab(p′). Similarly, we can prove the case for
v is moved to the right of b.

So far, we have proved that we only need to consider two
possible positions (on the left of a and on the right of b)
for each vertex in Vab, i.e., totally 2|Vab| different placements.
In a modern circuit, |Vab| may become more than 1000. So

3Because v is on the left of a, a would not be the only leftmost vertex of e. Thus,
∆a(p, e) 6= −we.
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Fig. 2. Simple examples of vertices that can be fixed.

practically 2|Vab| is still too big to enumerate. Therefore, we
intend to further cut down this number.

We notice that for some vertices in Vab, it is not always
necessary to consider both of the two possible positions. For
example in Fig. 2-(I), v is only connected with a via e. If v is
on the left of a in placement pl, then Fab(pl) = min(we, 0) =
0; if v is on the right of b in placement pr, then Fab(pr) =
min(−we, 0) = −we. We have Fab(pl) > Fab(pr). So, we
can ignore pr where v is on the right of b. To make use of
such property and further reduce the enumeration size, in the
following part we identify three subsets of vertices in Vab (V I ,
V II and V III ), and prove that under certain condition the
positions of those vertices can be fixed in the enumeration. Let
Na denote the set of vertices sharing at least one hyperedge
with vertex a, and Na = V − Na. Similarly, we can define
Nb and N b.

I. V I = Na ∩N b ( e.g., in Fig. 2-(I) vertex v ∈ V I )
II. V II = Na ∩Nb ( e.g., in Fig. 2-(II) vertex v ∈ V II )

III. V III = {v|v ∈ Vab s.t. (Ev ∩ (Ea ∪Eb)) ⊂ (Ea ∩Eb)}
( e.g., in Fig. 2-(III) vertices v, u ∈ V III )

Lemma 4: Given a placement p ∈ P , such that vertex v ∈
V I is on the left of a. After moving v to the right of b, another
placement p′ ∈ P is generated. We have Fab(p) ≥ Fab(p′).

Proof: Let Ev∩ab = Ev ∩ (Ea ∪ Eb).

• In placement p, ∀e ∈ Ev∩ab, we consider two cases:

– ∃ vertex c ∈ e(c 6= a, c 6= v), s.t. xc ≥ xb
Because xv ≤ xa and xc ≥ xb, xv ≤ xa ≤ xc. a is
neither the only leftmost nor the rightmost vertex of
e. So ∆a(p, e) = 0.

– 6 ∃ vertex c ∈ e(c 6= a, c 6= v), s.t. xc ≥ xb
Because xv ≤ xa and no other vertices in e are on
the right of b, a is the rightmost vertex of e. So
∆a(p, e) = we.

Thus, ∀e ∈ Ev∩ab,∆a(p, e) ≥ 0.
• In placement p′, ∀e ∈ Ev∩ab, we consider two cases:

– ∃ vertex c ∈ e(c 6= a, c 6= v), s.t. xc ≤ xa
Because x′v ≥ xb and xc ≤ xa, xc ≤ xa ≤ x′v . a is
neither the only leftmost nor the rightmost vertex of
e. So ∆a(p′, e) = 0.

– 6 ∃ vertex c ∈ e(c 6= a, c 6= v), s.t. xc ≤ xa
Because x′v ≥ xb and no other vertices in e are on
the left of a, a is the only leftmost vertex of e. So
∆a(p, e) = −we.

Thus, ∀e ∈ Ev∩ab,∆a(p′, e) ≤ 0.

So ∀e ∈ Ev∩ab,∆a(p, e) ≥ ∆a(p′, e). Also ∀v ∈ V I , v does
not connect with b, so ∀e ∈ Ev∩ab,∆b(p, e) = ∆b(p′, e).

Therefore,

∀e ∈ Ea,∆a(p, e) ≥ ∆a(p′, e)
∀e ∈ Eb,∆b(p, e) = ∆b(p′, e)

Thus, Fab(p) ≥ Fab(p′).
From Lemma 4, ∀v ∈ V I we can fix v on the left of a. As V II

is symmetrical with V I , similarly we can prove that ∀v ∈ V II
we can fix v on the right of b.

Lemma 5: Given a placement p ∈ P , such that vertex v ∈
V III is on the left of a, vertex u ∈ V III is on the right of b,
and Ev∩(Ea∪Eb) = Eu∩(Ea∪Eb). After moving either one
or both of them to another position, i.e., moving v to the right
of b and u to the left of a, another placement p′ is generated.
We have Fab(p) ≥ Fab(p′).

Proof: Let Ev−u = Ev ∩ (Ea ∪ Eb) = Eu ∩ (Ea ∪ Eb).
We consider all three possible movements of v and u.

• v moved to the right of b, u did not move
In placement p′, ∀e ∈ Ev−u we consider two cases:

– ∃ vertex c ∈ e(c 6= a), s.t. xc ≤ xa
In this case, a is neither the only leftmost nor the
rightmost vertex in e, and b is neither the leftmost
nor the only rightmost vertex in e. So ∆a(p′, e) = 0,
∆b(p′, e) = 0.

– 6 ∃ vertex c ∈ e(c 6= a), s.t. xc ≤ xa
In this case, a is the only leftmost vertex in e, and b
is neither the leftmost nor the only rightmost vertex
in e. So ∆a(p′, e) = −we, ∆b(p′, e) = 0.

• u moved to the left of a, v did not move
In placement p′, ∀e ∈ Ev−u we consider two cases:

– ∃ vertex c ∈ e(c 6= b), s.t. xc ≥ xb
In this case, a is neither the only leftmost nor the
rightmost vertex in e, and b is neither the leftmost
nor the only rightmost vertex in e. So ∆a(p′, e) = 0,
∆b(p′, e) = 0.

– 6 ∃ vertex c ∈ e(c 6= b), s.t. xc ≥ xb
In this case, b is the only rightmost vertex in e, and a
is neither the only leftmost nor the rightmost vertex
in e. So ∆a(p′, e) = 0, ∆b(p′, e) = −we.

• v moved to the right of b, u moved to the left of a
In this case, a is neither the only leftmost nor the
rightmost vertex in e, and b is neither the leftmost nor the
only rightmost vertex in e. So ∀e ∈ Ev−u, ∆a(p′, e) = 0,
∆b(p′, e) = 0.

For all of the above cases, ∆a(p′, e) ≤ 0 and ∆b(p′, e) ≤ 0. In
placement p, ∀e ∈ Ev−u because a is neither the only leftmost
nor the rightmost vertex in e, and b is neither the leftmost nor
the only rightmost vertex in e, we have ∆a(p, e) = ∆b(p, e) =
0. As a result, we have ∀e ∈ Ev−u, ∆a(p, e) ≥ ∆a(p′, e),
∆b(p, e) ≥ ∆b(p′, e), Therefore,

∀e ∈ Ea,∆a(p, e) ≥ ∆a(p′, e)
∀e ∈ Eb,∆b(p, e) ≥ ∆b(p′, e)

Thus, Fab(p) ≥ Fab(p′).
Lemma 5 shows that if ∃v, u ∈ V III and Ev ∩ (Ea ∪ Eb) =
Eu ∩ (Ea ∪ Eb), then we can fix v to the left of a and u to
the right of b.
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Fig. 3. The flow of selective enumeration.

In all, we have identified three subsets of vertices in Vab. If
certain condition is satisfied, those vertices can be fixed in the
enumeration. Note that those three subsets may not include all
vertices that can be fixed in Vab. We believe more complicated
subsets and conditions can be derived. But for the sake of
simplicity, SafeChoice considers only the above three subsets.

Let the total number of vertices in V I , V II and V III be
α. As a result, given two objects a and b, we only need to
enumerate L = 2|Vab|−α different placements. For each of
those enumerated placement pi (1 ≤ i ≤ L), we calculate a
score si = Fab(pi). We define

smax = max(s1, s2, ..., sL) (3)

Based on Theorem 1, if smax ≤ 0, then it is safe to cluster a
and b. The flow of selective enumeration is shown in Fig. 3.

The more placements we enumerate (i.e., the bigger L is),
the slower the algorithm runs. To limit the runtime, at most
210 placements are enumerated by default. If |Vab| − α >
10, we simply would not consider clustering a and b, and
consequently we may lose some potential safe clusters. Table I
shows the number of cases where |Vab|−α <= 10 and |Vab|−
α > 10, and also the maximum value of |Vab| − α for each
ISPD 05/06 circuit. As you can see, in practice we have |Vab|−
α ≤ 10 for most of the pairs (i.e., more than 90% of the pairs).
Even if the unconsidered pairs are all safe, we would only lose
a very small portion of safe clusters.

III. ALGORITHM OF SAFECHOICE

In the previous section, we have described a practical
method of checking the safe condition for pair-wise clustering.
As shown in Definition 3, the safe condition has to be
checked both horizontally and vertically. However, without
considering fixed vertices, e.g., I/O objects, if vertices in Vc are
horizontally safe for clustering, then they are always vertically
safe for clustering as well. This is because a vertical movement
in a placement p is the same as a horizontal movement in
another placement obtained by rotating p by 90◦. If a set of
vertices is horizontally safe for clustering, it is also vertically

TABLE I
PROFILE OF SELECTIVE ENUMERATION FOR EACH CIRCUIT.

Circuit Number of Cases Number of Cases Maximum
|Vab| − α <= 10 (%) |Vab| − α > 10 (%) |Vab| − α

adaptec1 3079149 (94%) 205937 (6%) 78
adaptec2 2834333 (92%) 252967 (8%) 110
adaptec3 5568171 (90%) 591043 (10%) 191
adaptec4 6362256 (93%) 448166 (7%) 110
bigblue1 3677691 (94%) 218500 (6%) 154
bigblue2 6941283 (95%) 351816 (5%) 1582
bigblue3 12136725 (95%) 592998 (5%) 205
bigblue4 22954456 (92%) 2104452 (8%) 1102
adaptec5 9935184 (90%) 1058753 (10%) 278
newblue1 4610210 (97%) 159220 (3%) 608
newblue2 4058091 (98%) 73838 (2%) 144
newblue3 6758853 (93%) 489111 (7%) 1016
newblue4 9215574 (95%) 530334 (5%) 331
newblue5 12046236 (94%) 744213 (6%) 372
newblue6 15996670 (91%) 1527619 (9%) 1316
newblue7 26414433 (94%) 1700947 (6%) 1151

safe for clustering, which means it is sufficient to check the
safe condition only in x direction. Therefore, in this section we
ignore the fixed objects by treating them the same as movable
ones, apply selective enumeration in a PQ-based algorithm
flow and propose SafeChoice algorithm. To satisfy various
clustering objectives, we present three operation modes for
SafeChoice.

A. Priority-Queue Based Framework

Previous work [12], [13] show that the cluster size has
significant impacts on the clustering quality. If two potential
clusters have the same connectivity information, the one with
the smaller area is preferred to be formed first. Moreover,
because the concept of safe clustering in Definition 2 is defined
based on the assumption of clustering zero-area objects, to
apply such concept on real circuits we need relax this assump-
tion and cluster small objects4. Thus, in SafeChoice to balance
the safeness and area, we use the following cost function to
calculate the cost C for clustering two objects a and b.

C(a, b) = S∗ + θ × Aa +Ab

As
(4)

where θ is the weight between the safeness and area (based
on the experiments θ = 4 by default), Aa and Ab denote the
area of a and b respectively, As is the average standard cell
area in a circuit, and S∗ is a term describing the safeness of
clustering a and b. S∗ is calculated based on different modes
of SafeChoice (see Section III-B).

In SafeChoice we maintain a global PQ similar to that
in [16]. But we rank each pair of objects based on the cost
obtained by Equation 4. If two pairs have the same cost,
we just randomly determine the priority between them. For
SafeChoice, it is time-consuming to consider all possible pairs
in V . So for each object, we only consider its neighbor
objects connected by the nets containing at most β objects
(based on the experiments β = 7 by default). Iteratively,
SafeChoice clusters the pair of objects at the top of the PQ, and
then update the PQ using lazy-update. For different operation

4After relaxing the assumption, moving the small objects may create small
overlap. But as the objects are small, the result placement can be legalized by
slightly shifting objects around and the impact to HPWL should be minimal.
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TABLE II
DIFFERENCES OF THREE MODES (SC IS THE DEFAULT MODE).

Mode Clustering Objective S∗ Stopping Criterion

SC-G safe clusters guarantee smax no more safe clusters is in PQ
SC-R target clustering ratio s target clustering ratio is reached
SC best placement wirelength s threshold cost Ct is reached

modes, SafeChoice stops clustering based on different stopping
criteria, which will be addressed in Section III-B.

B. Operation Modes of SafeChoice

Given a circuit, some algorithms (e.g., FC and BC) can
reach any clustering ratio γ, while others (e.g., FG and
NC) can only reach a certain γ. None of previous work
is able to automatically stop clustering when the best γ is
reached. By default SafeChoice automatically stops clustering
when generating more clusters would degrade the placement
wirelength. Additionally, to achieve other clustering objectives,
e.g., any target γ, SafeChoice is capable of performing under
various modes (see Table II):

• Safety Guarantee Mode [SC-G]
SC-G aims at producing the completely safe clusters.
Under this mode, S∗ = smax in Equation 4. In each
iteration, we cluster the pair of objects at the top of the
PQ only if its S∗ ≤ 0. Based on Theorem 1, we guarantee
that the formed clusters are safe. SC-G terminates when
there is no such safe clusters in the PQ.

• Clustering Ratio Mode [SC-R]
The SC-G mode may not achieve low clustering ratio in
practice, because the number of safe clusters in a circuit
is usually limited. Sometimes if clustering cannot signifi-
cantly reduce the circuit size, even though all clusters are
safe, the placer may not perform efficiently and produce
better result. So to make a trade-off between safeness
and circuit size reduction, SC-R produces some unsafe
clusters, besides the safe ones. We derive the following
function to evaluate the safeness of each cluster:

s =
∑L
i=1 si
L

(5)

Basically, for a pair of objects a and b Equation 5
calculates the average score s over the L enumerated
placements. Under SC-R mode, S∗ = s in Equation 4.
Iteratively, SC-R clusters the pair of objects at the top of
the PQ until the target γ is reached.

• Smart Mode [SC] (default mode)
Using a simple heuristic, the smart mode stops the
clustering process when a typical placer achieves the
best placement wirelength. None of previous clustering
algorithms has such feature. For different circuits, the γ
for the best placement wirelength may be different. In
SC, we set a threshold cost Ct, and use the same cost
function as in SC-R. During the clustering process, SC
would not terminate until the cost reaches Ct. Based on
the experimental results, we set Ct = 21 by default.
With this simple heuristic, SC is able to automatically
stop when generating more clusters starts to degrade the
placement wirelength.

IV. PHYSICAL SAFECHOICE

In this section, we extend SafeChoice to do clustering
while considering the object physical locations, i.e., physical
clustering.

Compared with non-physical clustering algorithms, physical
clustering is to do clustering based on both the netlist con-
nectivity information and the object physical locations. Such
physical locations can be obtained from an initial placement
or existing fixed objects. It has been shown in [3], [6], [7],
[20] that the physical clustering can significantly improve the
clustering quality. For SafeChoice, it is very natural to be
extended to physical clustering. This is because SafeChoice ap-
plies selective enumeration to enumerate different placements.
If an initial placement is given, many more placements can be
ignored in the enumeration. This simplifies the enumeration
process by pruning away the placements that would not be
possibly generated.

In the following subsections, we first introduce the safe con-
dition for Physical SafeChoice. After that, we present how to
further reduce the enumeration size based on the given physical
information. Finally, we show the corresponding changes of
cost functions in different modes of Physical SafeChoice.

A. Safe Condition for Physical SafeChoice

Because in Physical SafeChoice the fixed objects are taken
into account, horizontally safe may not always imply vertically
safe. Therefore, we need to consider the safe condition for both
x and y directions in Physical SafeChoice.

Definitions 4 and 5 are defined for x direction. But they can
be easily extended to y direction. Based on Theorem 1, we
present the safe condition for Physical SafeChoice as follows.

Theorem 2: Safe Condition for Vc = {a, b} in Physical
SafeChoice

It is safe to cluster a and b if
∀p ∈ P,Fxab(p) ≤ 0 and Fyab(p) ≤ 0

where Fxab(p) and Fyab(p) are the total wirelength gradient
functions for x and y directions, respectively. In Section II-A
we have proved that if vertices in Vc are both horizontally and
vertically safe for clustering, then it is safe to cluster them.
Therefore, Theorem 2 can be proved similarly as in Theorem 1.

B. Enumeration Size Reduction based on Physical Location

In this subsection, we use the physical location information
to cut down the placement enumeration size. In this following
discussion, we assume that such physical locations are derived
from an initial placement.

First of all, for each object we define a square-shape region
to differentiate between the “long” and “short” distances (in
one dimension) of two objects. The center of each square-
shape region is the corresponding object location in the initial
placement. The insight is that we assume in the final placement
the objects would not be placed outside of their regions.
So intuitively, the better the initial placement is, the less
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Fig. 4. Examples of three scenarios with square-shape region.

displacements of object locations between the initial and final
placements we have, and thus the smaller such regions are.
Let t denote the side length of each square-shape region.
∀v, u ∈ V , Dx

vu denotes the distance of two vertices v and
u in x direction. Therefore, based on the square-shape region,
we can derive the following three scenarios in x direction to
cut down the enumeration size (the scenarios for y direction
can be derived similarly).

1) If Dx
ab > t, then we would not consider to cluster a and

b. (see Fig. 4-(a))
2) If xc ≤ xa and Dx

cb > t, then in selective enumeration
we fix c on the left of a (see Fig. 4-(b));

3) If xc ≥ xb and Dx
ca > t, then in selective enumeration

we fix c on the right of b (see Fig. 4-(c));

Scenario 1) is used as a filter to prune away the pairs of
objects that would not be clustered due to the “long” distance
between them. Scenarios 2) and 3) are applied within selective
enumeration to identify the subsets of vertices that can be
fixed. In Scenario 2) the reason why we consider “Dx

cb > t”,
instead of “Dx

ca > t”, is that as long as c is unlikely to be
on the right of b, it will definitely be on the left of a. This
is because as shown in Lemma 3, there only two possible
locations to enumerate for c, i.e., on the left of a and on the
right of b. The same reason applies for “Dx

ca > t” in Scenario
3).

Ideally, for different objects t should be different. However,
finding such a t accurately for each object is still an open
problem. After all, we just need a simple estimation on the
displacement that is roughly determined by the quality of the
placer. Therefore, by default we set t = 15 × hrow based on
the experiments and our experience on placement, where hrow
is the placement row height.

C. Cost Function for Physical SafeChoice

In Physical SafeChoice, we employ almost the same cost
function as Equation 4. However, the S∗ term in Equation 4 is
defined based on one dimension, i.e., x direction. So we need
to extend it to two dimensions. The S∗ for the three operation
modes in Physical SafeChoice are listed in Table III, where
sxmax and sx denote the smax (Equation 3) and s (Equation 5)
for x direction respectively, similarly for symax and sy .

V. SAFECHOICE-BASED TWO-PHASE PLACEMENT

In this section, we first propose a simple two-phase place-
ment flow. Then based on this new algorithm flow, we present
SCPlace, a high-quality analytical placement algorithm.

TABLE III
S∗ FOR THE THREE MODES IN PHYSICAL SAFECHOICE.

Mode S∗

SC-G max(sx
max, s

y
max)

SC-R (sx + sy)/2
SC (sx + sy)/2

Global Placement
Clustered Netlist

Non-Physical 
Clustering

Original Netlist
Unclustering

Physical Clustering

Incremental 
Placement

Clustered Netlist

Original Netlist
Unclustering

Detailed Placement

Phase 1

Phase 2

SafeChoice

Flat-mPL6

SafeChoice

Flat-mPL6
+FastDP

FastDP

Fig. 5. The simple two-phase placement flow in SCPlace.

The state-of-the-art placement algorithms [1]–[7] all adopt
a multilevel framework to cope with the ever-increasing com-
plexities of modern VLSI placement. At each hierarchical level
of the coarsening phase, the placers first do clustering on the
netlist passed from previous level, and then do placement of
the clustered netlist. Such a multilevel clustering-placement
process does not stop, until the original circuit is reduced
to a reasonably smaller size. Subsequently, a corresponding
multilevel unclustering-placement process is applied at the
uncoarsening phase. Typically, modern placers contain at least
four levels of clustering and placement.

Different from previous work, we propose a simple two-
phase placement flow shown in Fig. 5. It is simple in the
sense that this flow contains only one level of clustering and
two phases of placement. The goal of the first phase is to
generate an initial placement, and to provide the physical
location information for the physical clustering in the next
phase. Then at the second phase, we apply physical clustering
on the original netlist rather than the clustered netlist from
previous clustering. This is the key difference between our
physical clustering scheme and the ones in [3], [6], [7],
[20]. The reason for doing this is that non-physical clustering
may produce some low-quality clusters due to the lack of
physical information. In order to correct such mistake in
non-physical clustering, in physical clustering we form the
clusters from the original netlist. The location of each such
cluster is calculated as the average location of all objects in
that cluster. As a result, after physical clustering we have
an updated location for each object in the clustered netlist.
Subsequently, we start an incremental placer based on such
physical information to do both global and detailed placement
on the clustered netlist. Finally, after unclustering we use the
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detailed placement algorithm to refine the layout.
Based on this simple two-phase placement flow, we imple-

ment a high-quality analytical placement algorithm, SCPlace
(see Fig. 5). We use SafeChoice as the clustering algorithm
inside SCPlace. As mentioned above, non-physical clustering
may produce some low-quality clusters due to the lack of
physical information, so we want SafeChoice to generate less
such clusters. Therefore, we set Ct = 16 instead of Ct = 21.
For the Physical SafeChoice in the second phase, we use the
default Ct = 21. mPL6 [5] is applied as the placement engine.
However, mPL6 is based on a multilevel framework, and uses
BC as its internal clustering algorithm. Without turning off
BC inside mPL6, we cannot demonstrate the effectiveness
of SafeChoice, because the internal clustering process will
produce some noise to the results. Therefore, we turn off
the BC clustering inside mPL6 by adding “-cluster ratio 1”
to the command line, so that mPL6 performs only one-level
placement without any clustering inside, i.e., flat-mPL65. The
detailed placer FastDP [6] is used as the additional detailed
placement algorithm in SCPlace.

VI. EXPERIMENTAL RESULTS

All experiments are run on a Linux server with Intel Xeon
2.83 GHz CPU and 32 GB memory. ISPD 05/06 placement
benchmarks [21], [22] are used as the test circuits. For the
ISPD 06 circuits, we use the density-penalty scaled HPWL
defined in [22]. Firstly, we show the comparison of various
clustering algorithms for different clustering objectives. Sec-
ondly, we compare SCPlace with the stat-of-the-art placement
algorithms.

A. Comparison of Clustering Algorithms

We compare SC with three clustering algorithms FC [13],
BC [16] and NC [17]. We implemented FC and BC by
ourselves and obtained the binary of NC from the authors [17].
For BC the lazy-update [16] is used to speed up its runtime.

In the experiments, the clustering algorithm is applied as a
pre-processing step before placement (see Fig. 6). We adopt
mPL6 [5] as the placer. Due to the same reason mentioned in
Section V, we use flat-mPL6 here. In Fig. 6 after unclustering,
we arrange the objects inside each cluster in one row. The order
among those objects are random. Subsequently the locations
of all objects are sent to flat-mPL6 for detailed placement.
Because of the random order of objects within each cluster,
flat-mPL6 detailed placer alone may not be enough to generate
a good result. So we apply the detailed placer FastDP [6] to
further refine the layout after flat-mPL6 detailed placement.

We normalize the results of flat-mPL6 with various pre-
processing clustering to the results of flat-mPL6 without any
pre-processing clustering. For fair comparison, FastDP is
applied to further refine the output layouts from the flat-mPL6
without pre-processing clustering. We conduct five sets of
experiments.

5As far as we know, mPL6 is the only placer that can turn off the internal
clustering without modifying the source code.

Unclustering

Flat-mPL6
Placement

Detailed Placement

Clustered Netlist

Clustering

Original Netlist

Fig. 6. Experimental flow for clustering algorithm.

I. Clustering Targeting at Safe Cluster: We compare SC-
G with FC and BC. FC’s and BC’s target γ is set the same as
SC-G’s. Table IV shows that SC-G’s HPWL is 2% worse than
BC’s and 1% better than FC’s. For both clustering time and
total time, SC-G is the fastest. Note that the cost C of some
unsafe (i.e., Smax > 0) clusters may be better than some safe
clusters. But unfortunately SC-G does not form any unsafe
clusters. This makes SC-G’s HPWL worse than BC’s.

II. Clustering Targeting at NetCluster’s Clustering Ra-
tio: In this set of experiments, we compare SC-R with FC,
BC and NC based on NC’s γ. Since NC terminates when no
more clusters can be formed, it cannot reach any γ as the users
desire. For each circuit the target γ of other algorithms is set
the same as NC’s. As shown in Table V, SC-R consistently
generates the best HPWL for all 16 test cases, except for one
case (bigblue3) where SC-R is 1% worse than BC. On average
SC-R generates 4%, 1% and 5% better HPWL than FC, BC
and NC, respectively. In terms of clustering time, SC-R is 2.5×
faster than BC, while 45% and 19% slower than FC and NC,
respectively. For the total time, SC-R is 1% and 7% faster than
FC and BC, while 5% slower than NC.

III. Clustering Targeting at Various Clustering Ratios:
We compare SC-R with FC and BC on five target clustering
ratios γ = 0.2, 0.3, 0.4, 0.5, 0.6. In Table VI the results are
organized based on the circuits. We have two observations:
(1) As γ goes lower, the clustering time increases but the total
time generally decreases; (2) To improve the HPWL, for some
circuits (e.g., adaptec5) it is good to cluster more objects. But
for some circuits (e.g., newblue2) low γ degrades the HPWL.
Fig. 7 shows the average normalized clustering time, HPWL
and total time over all circuits for each γ. For clustering time,
SC-R is faster than BC for all γ, except for γ = 0.2 where
SC-R is 12% slower. For all γ, SC-R consistently produces the
best HPWL compared with both FC and BC. Regarding the
total time SC-R is consistently faster than BC. Even though
SC-R is slower than FC on clustering time, SC-R’s total time
is very comparable with FC’s, which means clusters produced
by SC-R are preferred by the placer. Furthermore, considering
the significant HPWL improvements over FC and the small
percentage of clustering time over total time, we believe such
slow down is acceptable.

IV. Clustering Targeting at Best Placement Wirelength:
Table VI shows that various γ leads to various HPWL for
each circuit. Here, we show that for most of the circuits,
SC is able to automatically stop clustering, when the γ for
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TABLE IV
COMPARISON WITH FIRSTCHOICE AND BESTCHOICE BASED ON SC-G’S CLUSTERING RATIO (* COMPARISON OF SCALED HPWL).

Circuit Flat-mPL6 Clustering Clustering Time (s) Normalized HPWL to Flat-mPL6 Normalized Total Time to Flat-mPL6
HPWL (×10e6) Time (s) Ratio (γ) FC BC SC-G FC BC SC-G FC BC SC-G

adaptec1 78.91 1197 0.80 1 2 8 1.00 1.00 1.00 1.61 1.47 1.24
adaptec2 90.71 1241 0.77 2 4 10 0.99 0.99 1.00 1.73 1.63 1.43
adaptec3 210.34 3923 0.71 6 23 33 1.00 0.99 0.99 1.38 1.51 1.17
adaptec4 188.39 3463 0.62 9 24 38 1.00 0.99 0.98 1.76 1.70 1.28
bigblue1 96.73 1424 0.77 2 4 11 0.99 0.99 1.00 1.61 1.46 1.60
bigblue2 146.98 3988 0.73 142 605 101 1.00 0.99 0.99 1.57 1.54 1.52
bigblue3 419.56 9486 0.58 35 123 91 0.91 0.88 0.90 1.01 1.00 1.04
bigblue4 812.89 10543 0.64 273 1529 287 1.00 0.99 0.99 1.47 1.41 1.34

adaptec5* 731.47 7892 0.68 60 263 95 0.87 0.74 0.81 1.04 1.20 1.14
newblue1* 109.85 17305 0.78 48 294 53 0.98 0.93 1.00 1.25 1.41 1.07
newblue2* 197.44 4396 0.68 19 62 57 1.00 0.99 0.99 1.04 0.95 1.06
newblue3* 320.63 10200 0.65 337 2393 228 0.94 0.96 0.95 1.29 1.65 1.67
newblue4* 438.99 7779 0.71 30 137 48 0.92 0.88 0.95 0.89 0.85 0.90
newblue5* 836.62 10124 0.66 363 1728 112 0.99 0.83 0.91 1.46 1.44 1.10
newblue6* 520.95 7575 0.74 572 3487 204 0.99 0.98 0.98 1.78 2.14 1.42
newblue7* 1076.36 19219 0.64 124 367 181 0.98 0.97 0.97 1.20 1.23 1.15

Average Normalized 1.006 5.303 1 0.974 0.944 0.963 1.381 1.413 1.258

TABLE V
COMPARISON WITH FIRSTCHOICE, BESTCHOICE AND NETCLUSTER BASED ON NETCLUSTER’S CLUSTERING RATIO (* COMPARISON

OF SCALED HPWL).

Circuit Flat-mPL6 Clustering Clustering Time (s) Normalized HPWL to Flat-mPL6 Normalized Total Time to Flat-mPL6
HPWL (×10e6) Time (s) Ratio (γ) FC BC NC SC-R FC BC NC SC-R FC BC NC SC-R

adaptec1 78.91 1197 0.6381 1 3 69 20 1.00 1.00 1.01 0.99 0.92 0.91 1.15 1.04
adaptec2 90.71 1241 0.5764 2 6 63 30 1.01 1.00 1.00 0.99 1.22 1.11 1.11 1.28
adaptec3 210.34 3923 0.5677 7 24 62 98 1.02 0.99 0.99 0.99 1.15 1.09 1.00 1.04
adaptec4 188.39 3463 0.5382 8 26 58 86 1.01 1.00 0.98 0.98 1.19 1.13 1.07 1.15
bigblue1 96.73 1424 0.6128 2 5 66 23 0.99 0.98 0.98 0.98 1.19 1.08 1.21 1.13
bigblue2 146.98 3988 0.5977 195 814 64 181 1.02 1.00 0.99 0.99 0.98 1.11 0.89 0.86
bigblue3 419.56 9486 0.5074 36 144 53 163 0.92 0.87 0.89 0.88 0.81 0.81 0.74 0.76
bigblue4 812.89 10543 0.5617 315 1696 58 588 1.01 0.99 0.99 0.99 1.21 1.27 1.10 1.19

adaptec5* 731.47 7892 0.5569 81 335 60 284 0.87 0.73 0.79 0.69 0.98 0.98 0.90 0.92
newblue1* 109.85 17305 0.5674 90 472 62 125 0.93 0.90 1.03 0.86 0.82 0.88 0.77 0.83
newblue2* 197.44 4396 0.5886 22 65 65 92 1.02 1.00 1.10 1.00 0.74 0.81 0.69 0.77
newblue3* 320.63 10200 0.5462 427 2440 63 342 0.93 0.93 1.15 0.93 1.04 1.39 0.99 1.04
newblue4* 438.99 7779 0.6357 34 159 68 109 0.92 0.86 0.93 0.85 0.63 0.62 0.59 0.58
newblue5* 836.62 10124 0.5505 481 1860 58 214 0.92 0.81 0.84 0.79 1.08 1.07 0.95 1.13
newblue6* 520.95 7575 0.5836 868 4871 64 755 0.99 0.97 0.97 0.97 1.14 1.78 1.01 1.05
newblue7* 1076.36 19219 0.5634 142 423 60 519 0.99 0.97 0.99 0.97 0.89 0.87 0.89 0.98

Average Normalized 0.545 2.475 0.813 1 0.971 0.937 0.978 0.928 1.000 1.056 0.940 0.985
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Fig. 7. Average normalized clustering time, HPWL and total time over all circuits for target γ = 0.2, 0.3, 0.4, 0.5, 0.6.

the best HPWL is reached (see Table VII). Readers may
compare Table VI and Table VII to verify this. To see how
one-level clustering compares with multilevel clustering, we
generate the results of original multilevel mPL6 with FastDP
(“mPL6+FastDP”) in Table VII. The clustering time and final
γ inside mPL6 are listed in Table VII. We can see that mPL6
has 4 levels of clustering and placement. Comparing SC with
“mPL6+FastDP”, even though SC on average generates 3%
worse HWPL, for almost half of the circuits SC’s HPWL
is even better than “mPL6+FastDP”. For most circuits, the

HPWL generated by SC and “mPL6+FastDP” are very compa-
rable. Regarding the total time, SC is significantly faster than
“mPL6+FastDP” by 33%. Such results show that for some
circuits one-level SC clustering generates better HPWL than
multilevel BC clustering with substantial runtime speedup.
From that we see prospective improvements if SC is applied
into the multilevel placement framework.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, 2011 11

TABLE VI
COMPARISON WITH FIRSTCHOICE AND BESTCHOICE ON TARGET γ = 0.2, 0.3, 0.4, 0.5, 0.6 (* COMPARISON OF SCALED HPWL).

Circuit Flat-mPL6 Clustering Clustering Time (s) Normalized HPWL to Flat-mPL6 Normalized Total Time to Flat-mPL6
HPWL (×10e6) Time (s) Ratio (γ) FC BC SC-R FC BC SC-R FC BC SC-R

0.2 4 8 187 1.12 1.06 1.03 0.94 0.80 0.88
0.3 3 6 121 1.05 1.02 1.00 0.90 0.80 0.92

adaptec1 78.91 1197 0.4 2 5 51 1.01 1.00 0.99 0.93 0.86 1.00
0.5 2 4 35 1.00 1.00 0.99 0.95 0.92 0.91
0.6 2 3 24 1.00 0.99 0.99 1.04 1.02 1.04
0.2 8 16 238 1.08 1.02 1.00 1.03 0.82 1.01
0.3 5 12 144 1.05 0.99 0.98 1.35 1.20 1.22

adaptec2 90.71 1241 0.4 4 9 59 1.03 1.01 0.98 1.38 1.19 1.23
0.5 3 7 39 1.01 1.00 0.98 1.43 1.19 1.28
0.6 3 6 26 1.00 0.99 0.98 1.45 1.24 1.20
0.2 19 46 572 1.15 1.02 1.02 0.77 0.70 0.76
0.3 14 38 390 1.08 1.00 0.99 0.79 0.72 0.81

adaptec3 210.34 3923 0.4 11 32 162 1.04 1.00 0.99 0.94 0.74 0.73
0.5 9 26 114 1.04 1.00 0.98 1.28 1.16 1.17
0.6 7 23 80 1.01 1.00 0.98 1.35 1.21 1.23
0.2 16 49 403 1.08 0.99 0.99 0.81 0.70 0.79
0.3 13 42 276 1.04 0.98 0.98 0.82 0.74 0.77

adaptec4 188.39 3463 0.4 11 35 130 1.02 0.99 0.98 0.83 0.75 0.85
0.5 9 30 89 1.01 0.99 0.98 1.28 1.26 1.18
0.6 7 22 59 1.00 0.99 0.99 1.16 1.29 1.18
0.2 8 15 297 1.05 1.01 1.02 0.86 0.68 0.98
0.3 5 12 179 1.02 0.98 0.99 0.85 0.95 0.98

bigblue1 96.73 1424 0.4 4 9 66 1.01 0.98 0.98 0.91 0.86 0.91
0.5 3 7 39 1.00 0.97 0.98 1.01 0.85 0.89
0.6 2 6 23 1.00 0.98 0.98 1.09 1.17 1.18
0.2 395 1749 1162 1.15 1.07 1.05 0.84 1.05 0.92
0.3 344 1516 667 1.07 1.01 1.01 0.86 1.16 0.91

bigblue2 146.98 3988 0.4 302 1295 359 1.04 1.00 0.99 0.88 1.14 0.90
0.5 244 1005 226 1.03 0.99 0.99 0.95 1.18 0.92
0.6 194 796 159 1.01 1.00 0.99 1.09 1.11 0.99
0.2 69 264 800 0.92 0.82 0.85 0.52 0.49 0.57
0.3 55 221 492 0.92 0.87 0.83 0.78 0.76 0.75

bigblue3 419.56 9486 0.4 46 174 241 0.92 0.84 0.85 0.90 0.81 0.82
0.5 36 146 158 0.93 0.88 0.88 0.93 0.95 0.91
0.6 30 116 89 0.91 0.88 0.89 1.00 1.01 0.91
0.2 633 2907 3262 1.12 1.01 1.02 1.06 1.17 1.19
0.3 534 2576 2220 1.06 1.00 0.99 1.19 1.44 1.24

bigblue4 812.89 10543 0.4 451 2169 1145 1.03 0.99 0.99 1.16 1.45 1.14
0.5 368 1819 733 1.01 0.99 0.99 1.24 1.35 1.23
0.6 288 1453 434 1.01 0.99 0.99 1.27 1.38 1.22
0.2 165 569 1424 0.77 0.63 0.62 0.52 0.56 0.66
0.3 139 503 984 0.83 0.66 0.63 0.52 0.52 0.62

adaptec5* 731.47 7892 0.4 114 419 456 0.84 0.68 0.65 0.61 0.58 0.59
0.5 93 358 324 0.86 0.72 0.69 1.07 1.29 1.07
0.6 73 311 204 0.88 0.73 0.70 1.23 1.32 1.15
0.2 169 806 781 0.91 0.88 0.81 0.13 0.24 0.23
0.3 149 718 527 0.91 0.86 0.80 0.23 0.49 0.41

newblue1* 109.85 17305 0.4 127 630 226 0.91 0.87 0.81 0.30 0.57 0.39
0.5 104 538 141 0.93 0.89 0.84 0.91 1.30 0.96
0.6 84 434 93 0.94 0.90 0.86 1.05 1.31 1.04
0.2 43 200 415 2.16 1.58 1.44 0.74 0.69 0.81
0.3 37 181 278 1.29 1.11 1.11 0.86 0.88 0.76

newblue2* 197.44 4396 0.4 32 164 155 1.07 1.03 1.03 0.82 0.89 0.86
0.5 26 128 116 1.02 1.01 1.01 1.04 0.88 0.97
0.6 21 65 84 1.01 1.00 1.00 0.90 0.89 0.90
0.2 931 3789 1010 0.98 0.89 0.89 0.50 0.76 0.50
0.3 783 3480 692 0.93 0.89 0.90 0.90 1.60 1.00

newblue3* 320.63 10200 0.4 630 3041 407 0.92 0.90 0.91 0.95 1.56 1.14
0.5 487 2546 326 0.92 0.93 0.93 1.00 1.34 1.15
0.6 362 2299 256 0.94 0.95 0.95 1.05 1.41 1.23
0.2 77 334 981 0.94 0.88 0.81 0.46 0.57 0.49
0.3 66 302 643 0.91 0.88 0.80 0.50 0.64 0.60

newblue4* 438.99 7779 0.4 55 267 275 0.91 0.86 0.81 0.59 0.72 0.62
0.5 46 221 188 0.92 0.86 0.81 0.53 0.61 0.57
0.6 37 168 114 0.93 0.85 0.83 0.62 0.59 0.63
0.2 1093 3948 1483 0.94 0.70 0.78 0.64 1.02 0.62
0.3 877 2863 935 0.95 0.73 0.74 0.71 0.95 0.69

newblue5* 836.62 10124 0.4 693 2124 392 0.96 0.77 0.77 1.09 1.10 1.01
0.5 532 1903 237 0.94 0.78 0.77 1.04 1.10 0.98
0.6 399 1713 155 0.92 0.82 0.80 1.04 1.10 0.94
0.2 1941 8229 4058 1.05 0.99 0.97 1.16 1.95 1.19
0.3 1641 7415 2793 1.01 0.97 0.96 1.11 1.77 1.31

newblue6* 520.95 7575 0.4 1343 6558 1378 1.00 0.97 0.96 1.27 1.88 1.28
0.5 1082 5391 890 0.99 0.97 0.97 1.14 1.64 1.07
0.6 824 4535 639 0.99 0.98 0.97 1.17 1.66 1.16
0.2 290 948 2704 1.07 0.99 1.00 0.90 0.98 0.81
0.3 238 738 1774 1.02 0.97 0.97 0.78 0.80 0.93

newblue7* 1076.36 19219 0.4 197 605 891 1.00 0.97 0.97 0.79 0.74 0.95
0.5 159 472 596 0.99 0.97 0.97 0.76 0.72 1.00
0.6 126 380 422 0.98 0.97 0.97 0.93 1.00 1.03
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TABLE VII
COMPARISON WITH MULTILEVEL MPL6 (* COMPARISON OF SCALED HPWL).

Circuit HPWL (×10e6) Total Time (s) SC Clustering Info. BC Clustering Info. inside mPL6
Flat-mPL6 SC mPL6+FastDP Flat-mPL6 SC mPL6+FastDP Time (s) γ Time (s) Final γ # of levels

adaptec1 78.91 78.51 76.47 1197 1238 1807 76 0.33 29 0.006 4
adaptec2 90.71 88.51 89.19 1241 2064 2032 73 0.36 47 0.006 4
adaptec3 210.34 207.27 206.00 3923 3732 6187 228 0.33 87 0.006 4
adaptec4 188.39 184.33 187.51 3463 3227 5687 208 0.31 67 0.007 4
bigblue1 96.73 95.31 95.14 1424 1319 2208 109 0.32 42 0.008 4
bigblue2 146.98 146.07 146.57 3988 4183 5992 458 0.36 81 0.045 4
bigblue3 419.56 357.56 331.70 9486 10516 8842 420 0.30 131 0.005 4
bigblue4 812.89 803.43 806.83 10543 15460 19457 1622 0.33 468 0.008 4

adaptec5* 731.47 461.99 429.97 7892 5919 10796 697 0.32 149 0.005 4
newblue1* 109.85 88.10 64.72 17305 7490 2567 368 0.31 44 0.005 4
newblue2* 197.44 198.35 198.90 4396 6303 7141 91 0.58 61 0.007 4
newblue3* 320.63 287.76 283.25 10200 14986 9644 683 0.30 66 0.029 4
newblue4* 438.99 351.02 301.89 7779 6053 9481 421 0.33 93 0.010 4
newblue5* 836.62 624.26 526.98 10124 8405 16220 625 0.34 251 0.008 4
newblue6* 520.95 498.44 516.43 7575 11081 13566 2059 0.33 255 0.009 4
newblue7* 1076.36 1042.97 1070.08 19219 21049 32561 1159 0.34 278 0.014 4

Normalized 1 0.910 0.879 1 1.086 1.412

B. Comparison of Placement Algorithms

In this subsection, we compare SCPlace with the state-of-
the-art placement algorithms.

I. Firstly, we compare SCPlace with mPL6. We run both
algorithms on the same machine. The results and the clustering
information inside SCPlace are shown in Table VIII. In terms
of the HPWL, SCPlace is consistently better than mPL6,
except for one circuit (i.e., newblue1). On average, SCPlace
generates 4% better HPWL than mPL6. Regarding the total
runtime, SCPlace is 55% faster than mPL6. As mentioned in
Section V, in the first phase of SCPlace we set Ct = 16 rather
than Ct = 21 for non-physical SafeChoice, so that the non-
physical SafeChoice will stop clustering earlier to generate less
low-quality clusters.

II. Secondly, we compare SCPlace with all other placement
algorithms. Because some of the placers’ binaries are not
publicly available, instead of running every placer on the same
machine, we directly cite the results from [7]. As far as we
know, RQL [7] is the latest published placement algorithm in
academic area, and it generates the best results on average
compared with all previous placers. The experimental results
are shown in Table IX. The “Previously Best” column shows
the previously best HPWL achieved by other placers for each
circuit. The results are quite promising. Regarding the HPWL,
SCPlace is 2%, 25%, 9%, 6%, 3%, 21%, 6% and 1% better
than NTUplace3, Capo10.5, mFAR, APlace, mPL6, Dragon,
Kraftwerk and RQL, respectively. Even though SCPlace is
1% worse than the previously best approach, for 11 out of
16 circuits, SCPlace generates better results, which means
SCPlace has broken the records for 11 circuits. All of the
placers here, except for Kraftwerk, have at least four levels of
placement. Using only one level of clustering and two phases
of placement, SCPlace is able to beat all of them.

The runtime breakdown of SCPlace is presented in Table X.
It shows that the total runtime is dominated by two steps,
i.e., global placement and incremental placement. Both non-
physical and physical clustering contribute only 6% of the total
runtime.

TABLE X
THE RUNTIME BREAKDOWN OF SCPLACE.

Steps in SCPlace Runtime%
Non-Physical Clustering 6%

Global Placement 39%
Physical Clustering 6%

Incremental Placement 45%
Detailed Placement 4%

VII. CONCLUSION

In this paper, we have presented SafeChoice, a novel high-
quality clustering algorithm. We aim at solving the funda-
mental problem — How to form safe clusters for placement.
The clusters produced by SafeChoice are definitely essential
for the placer to produce a good placement. Comprehensive
experimental results show that SafeChoice is capable of pro-
ducing the best clusters for the placer. Based on SafeChoice,
we derived Physical SafeChoice, and integrated it into a high-
quality analytical placer, SCPlace. Promisingly, by a simple
two-phase of placement, SCPlace significantly outperforms all
state-of-the-art placement algorithms.

Our future work includes three directions: 1) To derive
the safe condition for more than two vertices; 2) To develop
our own placer based on SafeChoice, rather than feeding the
clustered netlist to flat-mPL6 binary; 3) To integrate Safe-
Choice into other algorithms, e.g., hypergraph partitioning.
Regarding the last point, we can simply integrate SafeChoice
into existing partitioner. Or more interestingly, we can propose
a safe condition for hypergraph partitioning, e.g., what is the
safe condition to do a partition?

Finally, the source code of SafeChoice is publicly available
at [25].
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TABLE VIII
COMPARISON WITH ORIGINAL MULTILEVEL MPL6 (* COMPARISON OF SCALED HPWL).

HPWL (×10e6) Total Time (s) Clustering Info. inside SCPlace
Circuit SafeChoice Physical SafeChoice

mPL6 SCPlace mPL6 SCPlace Time (s) γ Time (s) γ # of levels
adaptec1 78.05 76.50 1769 937 54 0.43 109 0.34 1
adaptec2 91.76 86.30 1940 1504 52 0.44 101 0.36 1
adaptec3 214.29 204.10 5949 2981 167 0.42 192 0.34 1
adaptec4 194.25 183.20 5487 2652 150 0.40 213 0.32 1
bigblue1 96.75 93.58 2158 1182 60 0.43 136 0.33 1
bigblue2 152.33 144.39 5842 3345 333 0.43 313 0.36 1
bigblue3 343.89 336.01 8382 7682 288 0.39 302 0.31 1
bigblue4 829.42 790.76 18590 12486 1219 0.42 1233 0.33 1

adaptec5* 430.42 419.72 10714 5528 459 0.41 263 0.32 1
newblue1* 73.21 77.27 2489 10798 218 0.41 55 0.36 1
newblue2* 201.63 194.66 7109 4642 54 0.70 79 0.61 1
newblue3* 284.04 281.59 9508 13736 577 0.39 337 0.33 1
newblue4* 302.04 295.98 9410 4272 288 0.43 64 0.38 1
newblue5* 536.29 522.71 16085 10149 407 0.43 201 0.37 1
newblue6* 521.28 494.10 13457 10877 1481 0.42 1113 0.34 1
newblue7* 1083.66 1035.15 32372 23356 1003 0.43 932 0.34 1

Normalized 1.036 1 1.549 1

TABLE IX
HPWL COMPARISON WITH THE STATE-OF-THE-ART PLACEMENT ALGORITHMS (* COMPARISON OF SCALED HPWL, † RESULTS ARE
TUNED FOR EACH CIRCUIT, THE RESULTS OF ALL OTHER PLACERS (EXCEPT KRAFTWERK2) ARE CITED FROM [7] AND — DENOTES

UNAVAILABLE RESULTS IN [7]).

Circuit NTUplace3 [1] Capo10.5 [2] mFAR [3] APlace [4] mPL6 [5] Dragon [23] Kraftwerk2 [24] RQL [7] Previously Best SCPlace

adaptec1 80.93 91.28 — 78.35 77.91 — 82.43 77.82 77.82 76.50
adaptec2 89.95 100.75 91.53† 87.31† 91.96 94.72† 92.85 88.51 87.31 86.30
adaptec3 214.20 228.47 — 218.52 214.05 — 227.22 210.96 210.96 204.10
adaptec4 193.74 208.35 190.84† 187.65† 194.23 200.88† 199.43 188.86 187.65 183.20
bigblue1 97.28 108.60 97.70† 94.64† 96.79 102.39† 97.67 94.98 94.64 93.58
bigblue2 152.20 162.92 168.70† 143.82† 152.33 159.71† 154.74 150.03 143.82 144.39
bigblue3 348.48 398.49 379.95† 357.89† 344.37 380.45† 343.32 323.09 323.09 336.01
bigblue4 829.16 965.30 876.28† 833.21† 829.35 903.96† 852.40 797.66 797.66 790.76

adaptec5* 448.58 494.64 476.28 520.97 431.14 500.74 449.48 443.28 431.14 419.72
newblue1* 61.08 98.48 77.54 73.31 67.02 80.77 66.19 64.43 61.08 77.27
newblue2* 203.39 309.53 212.90 198.24 200.93 260.83 206.53 199.60 198.24 194.66
newblue3* 278.89 361.25 303.91 273.64 287.05 524.58 279.57 269.33 269.33 281.59
newblue4* 301.19 362.40 324.40 384.12 299.66 341.16 309.44 308.75 299.66 295.98
newblue5* 509.54 659.57 601.27 613.86 540.67 614.23 563.15 537.49 509.54 522.71
newblue6* 521.65 668.66 535.96 522.73 518.70 572.53 537.59 515.69 515.69 494.10
newblue7* 1099.66 1518.75 1153.76 1098.88 1082.92 1410.54 1162.12 1057.79 1057.79 1035.15

Normalized 1.02 1.25 1.09 1.06 1.03 1.21 1.06 1.01 0.99 1
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