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Abstract—Vibration energy harvesting systems pose significant
modeling and design challenges due to their mixed-technology na-
ture, extremely low levels of available energy and disparate time
scales between different parts of a complete harvester. An energy
harvester is a complex system of tightly coupled components
modeled in the mechanical, magnetic as well as electrical analog
and digital domains. Currently available design tools are inade-
quate for simulating such systems due to prohibitive CPU times.
This paper proposes a new technique to accelerate simulations
of complete vibration energy harvesters by approximately two
orders of magnitude. The proposed technique is to linearize the
state equations of the system’s analog components to obtain a fast
estimate of the maximum step-size to guarantee the numerical
stability of explicit integration based on the Adams-Bashforth
formula. We show that the energy harvester’s analog electronics
can be efficiently and reliably simulated in this way with CPU
times two orders of magnitude lower than those obtained from
two state-of-the art tools, VHDL-AMS and SystemC-A. As a case
study, a practical, complex microgenerator with magnetic tuning
and two types of power processing circuits have been simulated
using the proposed technique and verified experimentally.

Index Terms—Energy harvesting, state-space technique, simu-
lation acceleration, tunable microgenerator, DC-to-DC converter.

I. INTRODUCTION AND MOTIVATION

Recently, significant research interest has been attracted to
the development of energy harvesters. The aim is to address
the energy conservation issue in the fast growing area of
mobile electronics and several emerging applications including
wireless sensor networks [1–4]. Energy harvesters capture
small amounts of energy from the environment, e.g. solar [5],
thermal [6], RF [7] or kinetic energy [8], and use it to power
miniature wireless autonomous devices. Vibration-based ki-
netic energy harvester are used in many commercial appli-
cations since mechanical vibrations are widely present [9].
There are three main transduction mechanisms in vibration-
based energy harvesting: electromagnetic, piezoelectric and
electrostatic, each of which has various implementations.
An electromagnetic microgenerator normally generates low
voltage and high current output while piezoelectric and elec-
trostatic ones normally generate high voltage and low current
output [9]. Typically, practical implementations of the above
transduction mechanisms produce output voltages unsuitable
to directly power electronic circuitry. The amplitude of the AC
voltage generated by a miniaturized electromagnetic generator
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is typically too small [8]. On the other hand, output voltages
from electrostatic and piezoelectric devices are normally too
high (over 100V in some cases) [10]. For this reason external
analog circuits are often employed to regulate (i.e boost or
step down) the output voltage [11]. A storage element, such
as a supercapacitor or a rechargeable battery, is used in such
energy harvesting systems to store the generated energy. The
load circuitry will only wake up and perform computations
when enough energy has been accumulated [12]. Most of
the reported electromagnetic microgenerator designs are based
on a spring-mass-damper system with a characteristic reso-
nant frequency. These devices normally have a high Q-factor
and generate maximum power when their resonant frequency
matches the dominant frequency of the input ambient vibra-
tion [13]. Consequently, the output power generated by the
microgenerator drops dramatically when there is a difference
between the dominant ambient frequency and the microgen-
erator’s resonant frequency. Tunable microgenerators, which
can adjust their own resonant frequency through mechanical or
electrical methods to match the input frequency, have become
an emerging area and are attracting great research interest [14].
The key components of a tunable energy harvester system are
shown in Fig. 1).
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Fig. 1. Components of a tunable energy harvesting system [15].

Although research into new energy harvesting devices is fast
developing, there has been little reported work on modeling
and simulation methodologies for such mixed-technology sys-
tems. Most of the existing energy harvester models describe
the mechanical, magnetic and and electrical parts separately
and separate software tools are used to produce optimal
designs of the individual parts [16, 17]. But as recently demon-
strated [18], the combination of optimal component blocks
may not lead to an optimal integrated system. In Fig. 1, the
microgenerator and the tuning actuator are mainly mechanical
components and the rest of the system consists of analog and
digital electrical circuits. The most common approach seen
in literature is to use Finite Element Modeling (FEM) tools
to simulate the mechanical part [19–21]. Zhu et al. have de-



veloped an electromagnetic microgenerator which is tuned by
magnetic force [19] and used ANSYS (http://www.ansys.com)
to determine the resonant frequency of the microgenerator
cantilever beam and to simulate the magnetic field between
the two tuning magnets. Hohlfeld et al. have presented the
design of an electrostatic microgenerator which is tuned by
electrostatic force [20]. The simulation of the electrostatic field
was carried out by CoventorWare (http://www.coventor.com).
However, FEM tools cannot be used directly to simulate and
optimize complete energy harvesting systems because they
cannot incorporate the system’s electrical components. As for
the electrical part, SPICE simulators are widely used for circuit
simulation [22] and Cadence/SYNOPSYS tools are popular
in IC design [23]. A hardware description language (HDL)
can model both the mechanical and electrical parts of an
energy harvester accurately [18]. The limitation of the HDL
simulation based approach is that available HDL tools are
inadequate for simulating complete, tunable energy harvester
systems due to prohibitive CPU times. A single simulation of a
supercapacitor charging may take more than 10 hours to finish
[15]. There are two reasons for the long simulation times.
Firstly with reference to Fig. 1, vibration energy harvesters
typically have an input frequency of tens or hundreds of hertz
in line with the typical environment vibrations encountered,
requiring a fine simulation time-step of less than a millisecond.
If a switching mode DC-DC converter is employed as the
power processing circuit, the simulation time-step needs to
be further reduced due to the fast switching behavior [24].
In contrast, large supercapacitors used in energy harvesting
systems require many hours to fully charge, given the low
levels of power generated by typical vibration microgenerators.
Secondly, all of the existing HDL simulators use implicit
differentiation techniques based on Newton-Raphson iterations
to solve the underlying differential-algebraic equations (DAEs)
that model the energy harvester’s analog part. Implicit dif-
ferentiation and Newton-Raphson iterations are reliable and
numerically stable [25] but, when applied to a complex mixed-
technology energy harvester system, they lead to long CPU
times. Therefore new techniques to accelerate the simulation of
energy harvesters are needed, which is the main purpose of the
research presented in this paper. We take advantage of the in-
herent passivity of the energy harvester analog electronics and
propose to use a linearized state-space equation formulation.
The proposed technique is fast and the linearization enables
efficient control of numerical stability in explicit integration.
Simulations of the complete energy harvester to calculate the
power transfer efficiency have been carried out in several
scenarios. Results in Section IV show a good match with
experimental measurements and the proposed technique has
been found to reduce simulation times by about two orders
of magnitude (from 8 hours to less than 4 minutes in one of
tuning scenarios) with no loss of accuracy.

II. PROPOSED LINEARIZED STATE-SPACE TECHNIQUE

Consider the following state equation of a non-linear, pas-
sive dynamic system:

ẋ(t) = f(x(t), t); x(0) = x0 (1)

where x ∈ RN is the vector of N state variables, t ∈ [0,∞),
x0 is the initial condition and f : RN × R.

The linearized system at time point tk, k = 0, 1, . . . is:

ẋ(t) = Jk(x(t)− xk) + f(xk, t) +O((t− tk)2) (2)

where xk ≡ x(tk) and Jk is the Jacobian of f at tk. Since
the system is passive, the eigenvalues of Jk have negative real
parts [25]. The local linearization error (LLEk) introduced at
time point tk is:

LLEk = ‖x∗(tk)− xk‖ (3)

where x∗(tk) are the accurate values and x(tk) are the
approximate values of x(t) obtained due to linearization at tk.
The LLE is caused by the rejection of the Taylor expansion
terms of order higher than the first. Hence, the LLE is
proportional to (t− tk)2 as illustrated in equation (2).

A. Fast step-size estimate for stability control

The linearized state equation (2) can be solved in a fast,
explicit march-in-time integration process without Newton-
Raphson iterations. State-of-the-art circuit simulators use im-
plicit, rather than explicit integration, to assure numerical
stability. The implicit approach has proved reliable in circuit
analysis where differential equations are commonly ‘stiff’
[25], i.e. contain multiple time scales, with both rapid tran-
sients and slow dynamics. As systems exhibiting stiff behavior
can have eigenvalues with large negative real parts as well
as eigenvalues with small negative real parts, in an explicit
integration process the step-size must be limited not just to
control accuracy of the solution but primarily to ensure stabil-
ity [25]. Stability control is difficult as it requires estimates of
the maximum eigenvalue λk of the Jacobian Jk at each step
size which is typically a time consuming process [25]. In our
proposed technique for energy harvester simulations we take
advantage of the system’s passivity and use a fast method of
estimating the maximum allowed step size directly from the
Jacobian entries.

Theorem: (Fast stability control for diagonally dominant
Jacobians) The Adams-Bashforth integration formula of order
p applied to the following set of ODEs:

ẋ(t) = Ax(t) (4)

where A is negative definite and diagonally dominant, is
numerically stable if the integration step size h:

h ≤ 1

max
r=1,...,N

(βmax|ar,r|)
(5)

where ar,r represents the diagonal element in row r of A and
βmax = max(|β0|, . . . , |βp|) is the modulus of the maximum
coefficient of the p− th order Adams-Bashforth formula.

Proof: The Adams-Bashforth integration scheme for
equation (4) is:

xk+1 = (I + hβ0A)xk + hA

p∑
i=1

βixk−i; k = 1, . . . , (6)

where βi, i = 0, . . . p are Adams-Bashforth coeffi-
cients [26]. Errors are damped if ||I + hβ0A| | ≤ 1 and



||hβiA| | ≤ 1, i = 1, . . . , p. As the Gerschgorin disks of a
negative definite and diagonally dominant matrix lie in the left-
hand complex plane [27], stability of the integration scheme
in equation (6) is achieved when |1 − hβmax|ar,r| ≤ 1; r =
1, . . . , N , i.e. when the step-size is limited by the condition
in equation (5).

The proposed technique is conservative in the sense that
step sizes obtained from equation (5) are expected to be
smaller than the maximum allowed step sizes calculated from
the exact values of the Jacobian’s eigenvalues. However, the
advantage of our technique is speed as expensive eigenvalue
calculations are avoided. Many passive electrical circuits, such
as the power conditioning system and the supercapacitor in
the case study presented below, have negative definite and
diagonally dominant Jacobians. The mechanical part of the
microgenerator is a classical mass-spring-damper system:

d2z(t)

dt2
+ 2ζω0

dz(t)

dt
+ ω2

0z(t) = 0 (7)

where ζ is the damping factor and ω0 - the resonant frequency.
In a high-Q vibrating system ζ � 1 and the corresponding
rows in the Jacobian matrix are not diagonally dominant.
However, estimation of the maximum allowed step size to
guarantee stability in this case is simple. The state equations
of a homogeneous mass-spring-damper system equation (7)
can be presented as a set of two first order ODEs:[

dy(t)
dt
dz(t)
dt

]
=

[
−2ζω0 −ω2

0

1 0

] [
y(t)
z(t)

]
(8)

Stability of Adams-Bashforth integration with step size h
can be determined from the eigenvalues of the matrix in
equation (8) which are λ1,2 = −ζω0 ± 2ω0

√
ζ2 − 1. Hence

Adams-Bashforth integration is stable provided the points
hλ1,2 lie within the stability region of the Adams-Bashforth
formula used [28]. Specifically, if ζ � 1, then |λ1,2| ≈ |2ω0|
and if the 3rd order Adams-Bashforth formula is used, hλ1,2

lie within the 3rd order formula stability region as long as
[28]:

2hω0 < 0.723 (9)

This is normally always the case provided the numerical
solution covers each vibration period with at least four time
points. In the case study of the tunable energy harvester
discussed in Section III, the linearized state space formulation
proposed above was applied to the harvester’s mechanical and
electrical analog parts:[

ẋ(t)
0

]
=

[
fx(x(t),y(t))
fy(x(t),y(t))

]
+

[
ex(t)
0

]
(10)

where x : R −→ RN is the vector of N state variable wave-
forms, y : R −→ RM are M non-state variable waveforms,
the non-linear functions fx : RN × RM −→ RN and
fy : RN × RM −→ RM represent the relationships between
the variables of the model and ex : R −→ RN is the
vector of excitations. The state variables x(t) are mixed-
physical-domain quantities related with energy storage in the
model. Examples of state variables are the displacement of

the vibrating magnet, its velocity, magnetic flux as well as
electrical voltages and currents of the capacitive and inductive
components correspondingly. The non-state variables typically
represent terminal voltages and currents which connect indi-
vidual modules of the system as illustrated in Fig. 2.

Fig. 2. Energy harvester analog blocks showing state equations and terminal
variables.

B. Energy-based stability control
The passivity property of equation (2) can be used to

verify aposteriori, i.e. on completion of each step, whether
stability is maintained. Namely, the passivity implies that
the homogeneous part of equation (2), i.e. with the external
excitations removed:

ẋ′(t) = Jkx
′(t) (11)

must dissipate energy, i.e. the second norm of the solution of
equation (11) must decay in time: ||x′(tk+1)||2 < ||x′(tk)||2
for all tk = 0, 1, . . .. The energies accumulated in the in-
dividual components of a kinetic energy harvester comprise:
electrical energy stored in capacitors 1

2Cv
2(t), magnetic en-

ergy stored in inductors 1
2Li

2(t), mechanical kinetic energy

of the microgenerator’s moving mass m: 1
2m

dz(t)
dt

2
and the

mechanical potential energy of the cantilever beam 1
2ksz

2(t),
where ks is the cantilever spring effective stiffness and z(t)
is the relative displacement between the vibrating mass and
the base. As the state vector consists of the physical quantities
associated with the corresponding energy storage elements, i.e.
the capacitor voltages, inductor currents, moving mass velocity
and displacement, the second norm of the homogeneous solu-

tion ||x′(tk+1)||2 =
√
x′21(tk+1) + . . .+ x′2N (tk+1)) at each

step is proportional to the total energy stored in the system.

C. Elimination of terminal variables
The linearized state-space technique outlined above has an

additional advantage of enabling automatic elimination of non-
state variables. The linearized equation (10) at each time-point
tk, k = 0, 1, . . . is:[

ẋ(tk)

0

]
=

[
Jxx,k Jxy,k
Jyx,k Jyy,k

] [
x(tk)
y(tk)

]
+

[
ex(tk)

0

]
(12)

where the Jacobian matrices of the linearized model at the
time point tk are: Jxx,n = ∂fx(tk)

∂x , Jxy,k = ∂fx(tk)
∂y , Jyx,k =

∂fy(tk)

∂x and Jyy,k =
∂fy(tk)

∂y .
At each time point tk the non-state variables y(tk) are

eliminated by solving the following linear algebraic equation,
i.e the algebraic part of the linearized equation (12):

Jyy,ky(tk) = −Jyx,kx(tk) (13)

Once the variables y(tk) are calculated at tk, the state
variables x(t) can be obtained at the next time point tk+1 by
applying the technique explained above based on an explicit
Adams-Bashforth differentiation formula.



III. ENERGY HARVESTER COMPONENT MODELS FOR
LINEARIZED STATE-SPACE FORMULATION

In the following subsections, we present the model equa-
tions of each component block of the tunable energy harvester
(Fig. 1) and show how they can be formulated as linearized
state equations. The complete VHDL-AMS and SystemC-A
code for the case study models and simulations is available at
http://www.holistic.ecs.soton.ac.uk/resources.php.

A. Tunable microgenerator
Fig. 3(a) shows a diagram of the electromagnetic microgen-

erator together with its tuning mechanism. The microgenerator
is based on a cantilever structure. The coil is fixed to the base,
and four magnets (which are located on both sides of the coil)
form the proof mass. The tuning mechanism uses magnetic
force to change the effective stiffness of the cantilever which
leads to a change of resonant frequency. One tuning magnet is
attached to the end of the cantilever beam and the other tuning
magnet is connected to a linear actuator. The linear actuator
moves the magnet to desired position so that the resonant
frequency of the microgenerator matches the frequency of
the ambient vibration. The control algorithm is modeled as a
SystemC digital process described in Section III-D. Fig. 3(b)
shows a photo of the microgenerator which is used to validate
the proposed technique [29].
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Fig. 3. Tunable electromagnetic microgenerator [29].

The dynamic model of the microgenerator is [19]:

m
d2z(t)

dt2
+ cp

dz(t)

dt
+ ksz(t) + Fem + Ft z = Fa (14)

where m is the proof mass, z(t) is the relative displacement
between the mass and the base, cp is the parasitic damping
factor, ks is the effective spring stiffness, Fem is the electro-
magnetic force, Ft z is the z component of tuning force Ft
and Fa is the input acceleration force. The resonant frequency
ω0 and damping coefficient ζ are:

ω0 =

√
ks
m

and ζ =
cp

2
√
mks

(15)

The electromagnetic voltage generated in the coil is:

Vem = −Φ
dz(t)

dt
(16)

where Φ = NBl is the transformation factor and N is the
number of coil turns, B is the magnetic flux density and l is
the effective length. The output voltage is:

Vm(t) = Vem −Rcic(t)− Lc
diL(t)

dt
(17)

where Rc and Lc are the resistance and inductance of the
coil respectively and ic(t) is the current through the coil. The
electromagnetic force is calculated as:

Fem = Φic(t) (18)

The resonant frequency of the tuned microgenerator (f ′r) is:

f ′r = fr

√
1 +

Ft
Fb

(19)

where fr is the un-tuned resonant frequency, Ft is the tuning
force between two magnets and Fb is the buckling load
of a cantilever. The numerical values of the microgenerator
parameters are listed in Table I.

TABLE I
NUMERICAL VALUES OF MICROGENERATOR PARAMETERS

Symbol Value Unit Symbol Value Unit
m 2.0e-3 kg Rc 850 Ω
cp 1.3e-3 Nm−1s−1 Lc 0.58 H
ks 172.87 Nm−1 Fb 0.5 N
Φ 1.33 NA−1

The resonant frequency of the microgenerator can be cal-
culated from Table I and equation (15) can be calculated as
ω0 = 93.87 rad

sec . Hence, from inequality (9), the step size
limit for stable integration of the microgenerator equations
with the 3rd order AB formula is 7.7 msec.

Equations (14), (17) and (18) can be rearranged and written
in the state-space form as follows:

d

dt

dz(t)
dt
z(t)
ic(t)

 =

−cpm −ks
m

−Φ
m

1 0 0
−Φ
Lc

0 −Rc

Lc

dz(t)
dt
z(t)
ic(t)


+

 0 0
0 0
−1
Lc

0

[Vm
Im

]
+

 0
Fa−Ft z

m
0

 (20)

Model equations are implemented using the BuildM and
BuildRhs functions according to the SystemC-A equation
building rules [30].



B. Power processing

Two power processing circuits have been modeled and
compared for power transfer efficiency, a 5-stage Dickson
voltage multiplier (Fig. 4) [31] and a switching mode boost
converter (Fig. 5) [32]. Both systems contain non-linear com-
ponents, so it is necessary to linearize the model to produce
linearized state-space equations. The linearized diode equation
is produced by differentiating the Boltzmann equation: Id =
Is(e

Vd/Vt−1) wrt the diode voltage Vd. Id is the diode current,
Is - the saturation current and Vt is the thermal voltage. The
linearized form is: Id = GVd + J where G = dId(Vd)

dVd
and

J = Id(Vd) are the values of the equivalent conductance and
ideal current source at the current time point. As an additional
measure to save CPU time, G and J can be precalculated as
piece-wise linear functions of Vd and stored in look-up tables
for different values of Vd. The model is linear at each time
point although G and J change. Due to the forward march-in-
time nature of explicit integration, the required Jacobian values
can be retrieved from the look-up tables fast, without the need
to evaluate the original, physical equations. To maintain high
modeling accuracy the granularity of the piece-wise linear
models can be arbitrarily fine since the size of the look-up
tables does not affect the simulation speed.

D1 D2 D3 D4 D5

C1 C3 C5

C4C2

Vm Vs

Im Is

V1 V3 V5

V2 V4

Fig. 4. 5-stage Dickson voltage multiplier as power processing circuit.

The state variables of the power processing circuit model
are the voltages across each capacitor (V1 to V5). Ci, Gi and
Ji (i =1 to 5) are the corresponding capacitance, conductance
and current values of the linearized model. C1 to C5 are 100µF
and the diodes used in this section are all Schottky barrier
diodes BAT85. The terminal variables are Vm, Im, Vs and Is.
The state equations are:

d

dt


V1

V2

V3

V4

V5

 =


−G1−G2

C1

−G2

C1
0 0 0

−G2

C2

−G2−G3

C2

−G3

C2
0 0

0 −G3

C3

−G3−G4

C3

−G4

C3
0

0 0 −G4

C4

−G4−G5

C4

−G5

C4

0 0 0 −G5

C5

−G5

C5



V1

V2

V3

V4

V5



+


G1+G2

C1
0 0 0

G2+G3

C2
0 0 0

G3+G4

C3
0 0 0

G4+G5

C4
0 0 0

G5

C5
0 0 −1

C5



Vm
Im
Vs
Is

+


J1−J2

C1
J3−J2

C2
J3−J4

C3
J5−J4

C4
J5

C5

 (21)

As an alternative to the Dickson voltage multiplier, a
switching-mode boost converter shown in Fig. 5 was inves-
tigated. The boost converter consists of a full-wave rectifier,
an inductor, a diode, an output capacitor and a switch which
is modeled as a variable resistor RSW :

RSW =

{
10.09 Ω when the switch is off
4 Ω when the switch is on (22)

D1Vm Vs

Im IsC1

D2

C2 C3

L RL

RSW

D3iL

Fig. 5. Boost converter as power processing circuit.

The state variables here are the inductor current iL and
voltages across each capacitor (V1 to V3). Ci, Gi and Ji (i =1
to 3) are the capacitor, conductor and current values of the
linearized model. The terminal variables are Vm, Im, Vs and
Is. The linearized state equations are:

d

dt


V1

V2

V3

iL

 =


0 0 0 0
−G2

C2

−G2

C2
0 −1

C2

0 0 −G3

C3X
G3RSW

C3X

0 1
L

−G3RSW

LX
−RLX−RSW

LX



V1

V2

V3

iL



+


0 1

C1
0 0

G2

C2
0 0 0

0 0 0 −1
C3

0 0 0 0



Vm
Im
Vs
Is

+


0
J2

C2
J3(X+G3RSW )

C3X
J3RSW

LX

 (23)

where X = 1 + G3RSW . The numerical values of the boost
converter parameters are: L=22µH, RL=0.65Ω and Ci=100µF
(i =1 to 3).

Direct application of explicit integration to solve equa-
tion (23) would lead to extremely small step sizes due to
the low time constant of the inductor L and the small ON
resistance of the switch RSW . Two techniques of avoiding
small step sizes have been investigated and are discussed be-
low. The first is the traditional state-space averaging technique
developed by Middlebrook et. al [33]. In the second approach
we propose to solve the inductor current analytically to avoid
small step sizes.

a) State-space averaging: Since the proposed technique
uses a state-space equation formulation, the classic state-space
averaging method [33] is suitable to be adapted. The state
equation of the inductor current is:

diL(t)ON
dt

=
V2 − iLRL

L
(24)

diL(t)OFF
dt

=
V2 − iLRL − V3

L
(25)

for the switch ON and OFF states correspondingly. With the
PWM (pulse width modulation) duty cycle of D and D′ =
1−D, the averaging state equation is:

diL(t)

dt
= D

diL(t)ON
dt

+D′
diL(t)OFF

dt
(26)

Equation 26 replaces the last line in the matrix of equa-
tion (23) and the state-space averaging technique generates the
“averaged” system behavior. There are several disadvantages
of the state-space averaging technique. Because the switching
behavior of the system is “averaged-out”, it can only predict
the system’s long time behavior but not short time behavior
such as the output ripple. Furthermore, the inductor size still
limits the simulation time step and therefore the simulation
speed.



b) Symbolic solution of the inductor current: In this
section, we consider the possibility of maintaining the high
accuracy of the short time behavior by solving the inductor
current symbolically to avoid excessive reductions of the
simulation time step. The differential equation of the inductor
current is:

diL(t)

dt
+
iL(t)

τ
= I0 (27)

where I0 and τ are both constants. It is a first-order linear
equation and its general solution is:

iL(t) = I0τ + Ce−t/τ (28)

The initial condition is at t = 0, iL(0) = in, where in is the
present time-point value and hence C = in − I0τ . Therefore
the solution of next time-point value (in+1) is:

in+1 = in + (I0τ − in)(1− e−h/τ ) (29)

where h is the simulation time step. In the above boost
converter case:

I0 =
(V2 − V3)X + J3RSW + V3

LX
(30)

τ =
LX

RLX +RSW
(31)

C. Energy storage and load

The supercapacitor equivalent circuit (Fig. 6) is comprised
of a network of four RC circuits which model the charge
redistribution process within the supercapacitor [34]. This
model reflects the non-linear as well as multi-time-constant
nature of the supercapacitor and reflects both fast and slow
charge and discharge behavior.

Ri Rd Rl

ClCdCi1Ci0

Vi
Vd Vl

Vs Req

Is

Rq

Cq

Vq

Fig. 6. Supercapacitor and equivalent load resistor model

The state variables of the supercapacitor model are the
capacitor voltages Vi, Vd, Vl and Vq . The terminal variables
are Vs and Is. The state equations are:

d

dt


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+
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1
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1
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0

1
RlCl

0
1
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0


[
Vs
Is

]
(32)

The supercapacitor used here is a GS206 0.55F from CAP-
XX (http://www.cap-xx.com/ ). The numerical values of the
supercapacitor parameters are listed in Table II. Req (Fig. 6)
is the equivalent load resistor representing the power con-
sumption of the linear actuator (Haydon 21000 Series Size 8

stepper motor, http://www.haydonkerk.com)and the microcon-
troller (PIC16F884). The Req values for different operation
modes were calculated from the components’ datasheets:

Req=

1.0e9Ωwhen microcontroller is in sleep mode
33Ω when microcontroller wakes up
16.7Ω when actuator performs tuning

(33)

TABLE II
NUMERICAL VALUES OF SUPERCAPACITOR PARAMETERS

Symbol Value Unit Symbol Value Unit
Ci0 0.3962 F Ri 0.742 Ω
Ci1 0.0956 F
Cd 0.1392 F Rd 305.4 Ω
Cl 0.0654 F Rl 15910 Ω
Cq 0.0167 F Rq 34375 Ω

D. Energy harvester digital control

In order for a tunable energy harvester (Fig. 1) to work
autonomously, both the actuator and the controller need to
be powered by the stored energy. The time required for the
harvester to generate enough energy to perform one frequency
tuning process determines the harvester’s duty cycle. The
pseudo code of the tuning process is shown in Algorithm 1.
Standard SystemC modules were used to model the digital
control process and in the experimental verification the control
algorithm was implemented in a PIC16F884 microcontroller.
As can be seen in Algorithm 1, a watchdog timer wakes
the microcontroller periodically and the microcontroller first
detects if there is enough energy stored in the supercapacitor.
If there is not enough energy, the microcontroller goes back
to sleep and waits for the watchdog timer again. If there is
enough energy, the microcontroller will then read the ambient
vibration frequency from the accelerometer to see if it matches
the microgenerator’s resonant frequency. When a difference
is detected between the vibration frequency and the resonant
frequency, the microcontroller will start a tuning process by
controlling the actuator to move the tuning magnet to the
desired position (Fig. 3(a)). The accelerometer used in the
experimental verification of this work was the MEMS inertial
sensor type LIS3L06AL from STMicroelectronics.

Algorithm 1 Harvester control algorithm
1: repeat
2: Energy generation for 320 seconds
3: if Enough energy stored in the supercapacitor then
4: Read accelerometer (8-bit ADC)
5: Find optimum position (8-bit) of tuning magnet
6: if Tuning magnet at optimum position then
7: Goto 2
8: else
9: repeat

10: Send optimum position to actuator
11: Actuator moving tuning magnet
12: Compare current and optimum position
13: until Current and optimum position match
14: end if
15: end if
16: until Forever



E. Model of tunable energy harvester system

When combining the three component blocks (microgener-
ator, power processing and supercapacitor) together, the termi-
nal variables of each component block will be represented by
state variables and eliminated. This enables the whole energy
harvester model to be described by state equations and these
state equations can be solved using explicit integration method,
such as Adams-Bashforth. The complete set of linearized
state equations of the system’s analog part are generated by
combining the equations of the three passive analog blocks.
The combination is carried out by applying equation (13) to
equations (20), (21) and (32). The complete equation set is:

d

dt
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(34)

where J is the Jacobian of the combined equations (8), (20),
(21) and (32).

IV. SIMULATION RESULTS AND EXPERIMENTAL
VERIFICATION

Two sets of simulations have been carried out. The first
set of simulations aims to compare the two types of power
processing circuits presented in Section III-B to see which
one has a higher power transfer efficiency while working with
the same microgenerator. The second set of simulations inves-
tigates two frequency tuning scenarios of the complete tunable
energy harvesting system as outlined below. Simulation results
are validated with experimental measurements.

A. Comparison of power processing circuits

Two SystemC-A models of the same microgenerator and
different power processing circuits (one voltage multiplier and
one boost converter) have been developed using the proposed
linearized state-space technique and simulated. In both models,
the frequency and amplitude of the input mechanical vibrations
are fixed, i.e. no frequency tuning needed, and the supercapac-
itors are the same. The power transfer efficiency is defined as
the output power divided by the input power. The input power
is the product of input current and input voltage, both RMS
values. The output power is calculated from the output DC
voltage, i.e Pout = VsC∆V/∆t, where C is the supercapacitor
value and ∆V is the voltage increase during time ∆t. This is
mainly due to practical constrains of the experimental setup
(the input current to a supercapacitor is difficult to measure),
and the simulation results are calculated from the same way
for fair comparison. Fig. 7(a) shows the simulation results and
Fig. 7(b) shows the experimental measurements.
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Fig. 7. Simulations and experimental measurements of power transfer
efficiency and supercapacitor voltage.

In both Fig. 7(a) and 7(b), the efficiency of the boost
converter starts higher but drops quickly while the super-
capacitor is being charged leading to a much lower overall
efficiency than the voltage multiplier. The voltage multiplier
charges the supercapacitor faster than the boost converter for
voltages above 1V. The tuning actuator needs a supply voltage
of 2.6V and this is why the voltage multiplier is chosen
as the power processing circuit in the next case study. We
have observed that the main cause of the differences between
the experimental measurements and simulation results is the
inaccuracy of the supercapacitor model. By using the presented
four-branch RC model of the supercapacitor, the maximum
relative error is below 15%. The higher the number of RC
branches, the better the accuracy of the model, especially over
long periods of charging and discharging. However, higher
number of RC branches also means longer simulation CPU
time. With a three-branch RC model, the maximum relative
error is greater (about 30%) and simulation CPU times are
about 10% less compared with those shown in Tables III and
IV. We have chosen four-branch model due to its good balance
between accuracy and simulation CPU time. Simulation of the
boost converter models described in Section III-B were also
carried out and results are shown in Table III. The step size
in standard SystemC-A was 0.1µs and the resulting Newton-
Raphson iteration count was 2.78 per step on average. The



standard Newton-Raphson-based SystemC-A engine exhibits
unstable behavior when the step-size is increased above 0.1µs.
With the symbolic solution for the inductor current outlined
in Section III-B b), it was possible to increase the step-size
up to 10µs using the proposed state-space technique, except
during the short switching intervals where the step-size was
0.1µs. Note that the proposed linearized state-space technique
is an explicit march-in-time process hence no iterations are
involved at a time step.

TABLE III
CPU TIMES OF BOOST CONVERTER SIMULATIONS USING EXISTING AND

PROPOSED SIMULATION TECHNIQUES IMPLEMENTED IN SYSTEMC-A

Circuit model Standard State-space Inductor current
in Fig. 5 circuit averaging symbolic solution

Integration SystemC-A Proposed state-space
method standard engine technique

Step size 0.1µs 5µs 0.1-10µs
Average no.
of iterations 2.78 1 1

per step
CPU time 16 days 135 mins 100 mins

(estimated)

B. Frequency tuning

To investigate the efficiency of the simulation acceleration
method presented in Section II, experimental verification has
been carried out using a recently reported practical vibration
energy harvester [29] (Fig. 1). We have chosen this har-
vester for our case study because it is a complete and the
most recent autonomous tunable energy harvester presented
in the literature [14]. The proposed linearized state-space
technique and the mixed-technology model of the tunable
energy harvester presented in the previous section have been
implemented in SystemC-A. For comparison, simulations of
the same tunable energy harvester using implicit, Newton-
Raphson based integration in VHDL-AMS and SystemC-
A have also been carried out. Two scenarios have been
tested. Scenario 1 is based on a narrow tuning range, varying
the frequency by 1Hz, and Scenario 2 is based on a wide
tuning range where the frequency varies by 14Hz which is
the maximum tuning range of the design [29]. Because the
VHDL-AMS and SystemC-A models are based on the same
equations and their simulation results are almost identical, only
simulation waveforms generated by the SystemC-A model are
compared with experimental measurements of the practical
tunable energy harvester.

Fig. 8(a) shows the power output from the microgenerator
during the 1Hz tuning process. The waveform shows that
when the ambient frequency shifts from 70 to 71Hz, as
expected the output power drops down and goes up before and
after tuning. The simulated RMS power is 118µW when the
microgenerator is tuned at 70Hz and 117µW when it is tuned
at 71Hz. These values match well with the reported practical
test value of 116µW as presented in [19]. Fig. 8(b) shows
the comparison between simulated and experimental measured
voltage waveforms across the supercapacitor of the energy
harvester. As can be seen, the simulation waveform correlates
well with the experimental measurement. In Scenario 2, we
increase the frequency variation to 14Hz which presents a
more challenging simulation case due to the wider frequency

range. Yet there is close correlation between simulation and
experimental waveforms as can be seen in Fig. 9. This pro-
vides evidence that our technique is accurate even for energy
harvester with a wide frequency tuning range. Whilst Fig.
8(b) and 9 show close agreements between the simulation and
experimental results, there are some differences between the
waveforms. This is because the HDL model of the energy
harvester cannot incorporate every aspect of a practical system,
such as leakage and parasitic loss.
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Table IV shows CPU times of both the proposed state-space
simulation and the Newton-Raphson simulation for the energy
harvester in Scenario 1 and 2. It can be seen that the state-
space technique can accelerate the simulation by two orders
of magnitude compared to that of the existing simulator.

TABLE IV
CPU TIMES OF EXISTING AND PROPOSED SIMULATION TECHNIQUES

Existing technique Proposed technique
Integration Implicit Newton- Explicit linearized

method Raphson based Adams-Bashforth
HDL VHDL-AMS SystemC-A

Scenario 1 2448 sec 3155 sec 23.3 sec
Scenario 2 31250 sec 35390 sec 247 sec

(8.7 hours) (9.8 hours)

V. CONCLUSION

This work is the first investigation into accelerating the
simulation time of energy harvesting systems, an important
type of systems employed in emerging applications. The main
motivation for the research into fast simulation of energy har-
vesters is future development of an automated design approach
by which the best topology and optimal parameters of energy
harvester are obtained iteratively using multiple simulations.
The proposed linearized state-space technique provides a vital
step towards achieving this goal. Our experimental and ana-
lytical results presented here show that explicit integration of
the linearized state-space equations can significantly decrease
the simulation time of such systems whilst maintaining high
simulation accuracy as demonstrated by excellent correlation
between experimental and simulation results.
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