
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2014 265

Cardio: CMP Adaptation for Reliability through
Dynamic Introspective Operation

Andrea Pellegrini, Member, IEEE, and Valeria Bertacco, Senior Member, IEEE

Abstract—A modern digital system includes in a single chip
many components: processing cores, large caches, memory con-
trollers, and hardware accelerators. Looking forward, future
semiconductor technologies will enable even higher device inte-
gration, overall increasing system performance while reducing
energy consumption. Unfortunately, prominent experts agree
that such technologies will be prone to both permanent and
transient faults within their lifetime. With the goal of ad-
dressing this issue, we propose Cardio: a low-cost architecture
for reliable chip multiprocessors. Our solution is based on a
novel hardware/software co-design where silicon failures are
detected in hardware and system reconfiguration is managed in
software. Comparing Cardio with a state-of-the-art hardware-
based resiliency solution, Immunet, we found that our design can
achieve a comparable fault response time while requiring a much
lower area overhead. The proposed solution relies on a distributed
resource manager to collect information about a CMP compo-
nent’s health, and leverages a synchronized distributed control
mechanism to recover from permanent failures. Such architecture
can operate as long as at least one general-purpose processor is
still functional. Our experimental evaluation indicates that the
overall performance impact of Cardio is as low as 4.5%, and its
dynamic reconfiguration time upon fault detection is comprised
between 20 and 50 thousand cycles.

Index Terms—Hardware reliability; modeling techniques; mul-
tiprocessor systems; reliability, availability, and serviceability;
reliability, testing, and fault-tolerance.

I. Introduction

CURRENT digital systems are extremely sophisticated:
today’s technology allows the integration of billions of

transistors in a single chip. It is now possible to develop chip
multiprocessors (CMPs) composed of numerous processors,
large memories, and dedicated accelerators [1]–[4]. Typically,
these components are connected via high-bandwidth intercon-
nect networks. The benefits of these systems are so widespread
that CMPs have successfully conquered various markets, from
high-end servers to low-power mobile devices. Looking for-
ward, transistor density is expected to grow even further as
silicon fabrication process improves. Digital designs can take

Manuscript received September 26, 2012; revised May 10, 2013 and August
22, 2013; accepted August 30, 2013. Date of current version January 16, 2014.
This work was supported in part by the NSF Grant 0746425 and in part
by STARnet, a Semiconductor Research Corporation program sponsored by
MARCO and DARPA. A portion of this work was published in the IEEE
International High Level Design Validation and Test Workshop (HLDVT
2010). This paper was recommended by Associate Editor Y. Xie.

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
apellegrini@umich.edu; valeria@umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2284008

advantage of future technology advancements to deliver even
better performance at lower cost and power consumption.

Unfortunately, prominent experts agree that further shrinks
in transistor’s size will severely degrade overall system reli-
ability. Transistor devices will be increasingly more suscep-
tible to both transient and permanent failures and this will
lead to higher rates of manufacturing defects and runtime
failures [5], [6]. Runtime transistor failures can be caused by
a plethora of physical phenomena, such as: electromigration,
gate oxide breakdown, negative-bias temperature instability
(NBTI), and hot carrier injection. As transistor’s size keeps
shrinking, the negative effects of these physical phenomena
worsen. It has been experimentally demonstrated that runtime
permanent hardware defects can be extremely dangerous.
Indeed, fault injections on detailed gate-level models reported
that undetected faults—especially in functional units such as
multipliers, floating point units, and dividers—are very likely
to silently corrupt program output [7]–[10].

Thankfully, the extreme device integration that leads to
higher fault rates also provides solutions to improve system
robustness. Indeed, modern CMP architectures can isolate
faulty processors without compromising the rest of the sys-
tem [11], [12]. This characteristic has been leveraged to boost
manufacturing yield; still, as of today, most computer chips
do not tolerate runtime failures. Hence, modern CMPs cannot
overcome the two most critical consequences of hardware
failures: service disruption and silent data corruption.

Our proposed solution, called Cardio, is a low cost, dis-
tributed, hardware/software technique to manage CMP avail-
ability at runtime. Cardio relies on distributed and low-cost
hardware detectors to run periodic tests on a CMP’s compo-
nents, while it delegates system’s reconfiguration (in case of
a fault occurrence) to software routines. Despite Cardio’s ex-
tremely low cost, we show that it is effective and responsive in
providing system-level fault detection and reconfiguration. In
Cardio, each component (cores and interconnect) periodically
tests its own circuitry and then broadcasts the test outcome to
the entire system. A software resource manager collects these
diagnostic notifications. If any component reports a problem,
the resource manager dynamically recovers and reconfigures
the system to work around the faulty hardware. Compared
against Immunet [13], a solution based solely on hardware
mechanisms, our hybrid approach is more versatile, more
scalable, requires less area, and provides comparable response
time to runtime failures. On one hand, hardware-only resilient
techniques, such as Immunet, can achieve short response time
at near-zero performance overhead. On the other hand, these
solutions typically incur high area overhead and have limited
scalability and flexibility. Cardio overcomes these limitations

0278-0070 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



266 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2014

by executing in software the two most demanding tasks
required in a resilient design: system-level monitoring and
hardware reconfiguration.

Our solution relies on a recovery mechanism based on
full system checkpointing that intervenes shortly after a fault
detection, so as to minimize system down-time and storage
requirements. Additionally, both hardware detectors and re-
configuration mechanisms are completely distributed, so that
a Cardio-enhanced CMP does not present a single point of
failure. Finally, our solution is independent from the inter-
connect topology and can enable reliable performance on any
multiprocessor system. These characteristics empower Cardio
to dynamically overcome hardware failures, hence extending
a system’s lifespan while reducing its overall operating costs.

In summary, this paper makes the following contributions
to the area of online fault recovery and reconfiguration.

1) We introduce a novel distributed resource manager to
overcome runtime faults in a CMP’s cores and spe-
cialized hardware units. Hardware units periodically ex-
change diagnostic messages reporting their fault-free or
faulty state. Distributed software routines execute on the
general-purpose cores, collecting diagnostic messages
and updating the system’s availability map accordingly.
We develop a complete resource discovery process to
accomplish this goal, thus not requiring any a-priori
knowledge of the system.

2) We propose a novel reliable routing solution for
networks-on-chip. In contrast with other fault-adaptive
routing solutions, Cardio relies on hardware fault de-
tectors and on software algorithms for computing pack-
ets’ routes. Upon fault detection, diagnostic messages
are used to discover the new network topology and a
distributed, software-based resource manager computes
the new communication routes.

3) We provide a formal basis for Cardio’s reconfiguration
algorithm, showing that it is both livelock and deadlock
free. We also compare Cardio against a complete hard-
ware solution and find that our hybrid approach not only
has a lower hardware footprint, but also provides much
better scalability. Furthermore, as the number of cores
in CMPs increases, Cardio’s response time is constant
with only a polynomial increase in its communication
overhead.

4) Finally, we demonstrate that Cardio can greatly extend
the lifetime of CMP systems, allowing defective chips to
still deliver competitive performance. As the number of
permanent failures in a silicon chip increases, we found
that the performance of a Cardio-augmented system de-
creases gracefully. We also experimentally show that our
approach is deployable on a variety of CMP topologies.
Finally, we evaluate the overall cost of our new design
on a complete and reliable CMP system.

II. Related Work

In this section we provide an overview of previous hard-
ware and software solutions that aim at improving runtime
reliability in CMPs, processors, and interconnect subsystems.

CMP reliability—Zajac et al. [14] propose a solution for
CMPs comprising hundreds of tiles, each one composed of
a single core and an interconnect router. Software tasks are

mapped to tiles by special hardware units, called input/output
ports (IOPs). IOPs are in charge of monitoring and scheduling
jobs on functional tiles. While this approach allows dynamic
hardware resource discovery, it also incurs in two major
drawbacks. First, IOPs are dedicated hardware components
that introduce a single-point-of-failure in the system. Second,
reconfigurable components in this solution are tiles com-
posed of both computational and communication elements
and a partially faulty tile must be completely deactivated. In
contrast, Cardio’s discovery procedures discriminate between
processors and interconnect components, hence maximizing
hardware utilization.

Fault-tolerant microprocessors—Mission critical and high-
availability computers rely on coarse grain component redun-
dancy to improve reliability. Systems such as the HP NonStop
and the IBM zSeries [15], [16] implement dual and triple
modular redundancy, thus always incurring extremely high
area, power and performance overheads.

Recently, several research projects have proposed low-
cost reliable processor designs. The Bulletproof CPU targets
specifically VLIW processors [17]. Cardio and Bulletproof
share the approach of testing hardware components in the
background, while concurrently computing speculative results
within each computational epoch. Other works on reliable
CPUs target components with natural redundancy such as the
reorder buffer, the branch history table, caches, and other
arrays of regular structures [17]–[19]. StageNet and Viper
are more radical approaches to hardware reliability that de-
velop reconfigurable interconnect fabrics connecting multiple
hardware modules within a multicore system [20], [21]. In
these two designs, hardware components (pipeline stages in
StageNet and functional units in Viper) can be swapped to
maintain performance even in the face of defective hardware.
Cardio is orthogonal to and compatible with all these designs,
since it focuses on overall system availability to overcome the
challenges posed by runtime failures in CMPs. When deployed
with the solutions aforementioned, Cardio would only inter-
vene once they have exhausted their ability to overcome faults
within individual processor cores.

Reliability in NoCs—Several solutions target reliable in-
terconnects, including NoC routers capable of tackling run-
time failures [22], [23]. However, they usually require high
hardware overhead. Adaptive routing algorithms for NoCs are
typically applicable only to simple topologies (such as meshes
and tori) and cannot be extended to irregular ones. Cardio, on
the other hand, is a low cost solution agnostic to both topology
and routing algorithm.

An example of a distributed routing algorithm for reliable
NoCs is Immunet [13], a hardware-based solution that can
quickly recover from hardware faults (roughly ten thousand
cycles for an 8x8 mesh). Upon fault detection, Immunet floods
the network with diagnostic messages, and the number of
messages exchanged grows exponentially with the number
of nodes in the network. Since each router in the system
updates its routing tables based on the messages received, the
reactivity of these hardware solutions decreases exponentially
as the system’s size increases. In contrast, Cardio is somewhat
slower in reacting to an interconnect failure, requiring between
20 and 50 thousand cycles for a full recovery, but its routers
need limited hardware additions, and the number of diagnostic
messages exchanged grows polynomially with the core count.



PELLEGRINI AND BERTACCO: CARDIO: CMP ADAPTATION FOR RELIABILITY THROUGH DYNAMIC INTROSPECTIVE OPERATION 267

Moreover, since Cardio manages network reconfiguration in
software, it enables the use of sophisticated routing schemes
without increasing NoC components’ complexity. The differ-
ence between Cardio and other static routing mechanisms
is that our solution can periodically adapt messages’ paths
to the dynamic characteristics of the system. Furthermore, it
provides a system-level knowledge of the CMP, hence enabling
application-aware packet route tuning. Neither of these capa-
bilities is achievable by current hardware-only solutions.

Finally, we should mention stochastic routing and smart-
flooding: very low cost solutions for reliable on-chip commu-
nication, which unfortunately are only viable for lightly loaded
networks [24], [25].

Reliability via middleware—Bressoud et al. [26] first in-
vestigated the adoption of a middleware layer to support
hardware reliability. Their work provides a high cost reliability
solution by replicating software execution. More recently,
middleware-based reliability solutions were also proposed to
tackle intermittent faults [27]. In contrast, Cardio’s hybrid
hardware-software mechanism utilizes hardware detectors to
quickly identify permanent failures and relies upon software
routines to reconfigure the system around them.

III. Cardio Architecture

Cardio follows a notification-reaction paradigm suited to
improve the reliability of future CMPs. This section first
reviews the fault models targeted by our work and then
overviews the principles driving our design choices.

A. Hardware Failures Addressed

This paper targets permanent failures manifesting during the
lifetime of a CMP and located in processor cores, interconnect
routers and links in the intrachip communication subsystem.
Hardware failures of such nature are caused, for instance, by
the wear-out of a chip’s physical components.

A first solution to handle hardware failures at runtime is to
deploy an on-line failure prediction system [28], [29]. Such
mechanism uses special circuitry within the chip to monitor
system parameters degradation over time. The information
collected from these monitors is then used to estimate the
probability of failures in the near future. Unfortunately, this
solution typically requires a large silicon real estate and long
computations to extrapolate an accurate prediction.

A second technique proposed to tackle runtime failures
consists of detecting hardware failures shortly after they mani-
fest. Here, hardware components are tested at regular intervals
in order to detect faults such as stuck-at, bridge or path-
delay [30]–[32]. In these systems, execution is partitioned into
computational epochs, and workload execution is periodically
suspended to test the underlying hardware components. Since
hardware failures may corrupt some computations, program
state is backed up before executing a new epoch through a
checkpointing mechanism. If the online tests succeed, proces-
sor logic is deemed as fault-free, the results from the previous
epoch are committed, and a new checkpoint is created from the
current program state. Otherwise, the system is reconfigured
to isolate the faulty component, and system state is restored
to the previous safe checkpoint.

Cardio adopts this second execution paradigm for reliable
computing, since it has been shown to be both very

Fig. 1. Cardio architecture overview. Cardio hardware and software addi-
tions are highlighted in the figure. Communication endpoints are augmented
with acknowledgment buffers and counters to determine transmission failures.
Routers are enhanced with logic to diagnose link-connectivity and to recon-
figure routing tables. Each general-purpose core in the system executes an
instance of the distributed manager.

economical, as low as 1% hardware overhead [32], and
effective in achieving high fault coverage [30]. Hence, this
paper targets runtime hardware failures that can be detected
by such periodic checks. Our failure model assumes that a
hardware component deemed faulty—for instance, because
of a stuck-at fault in a microprocessor or in a router—can be
disabled and will no longer provide any information about its
state to the rest of the system.

This type of fault-tolerant designs must face the issue that
hardware failures may also occur in their self-test logic. Since
Cardio’s self-testing logic is local to each component, we
assume that faults in this circuitry cause the corresponding
component to be non-testable and therefore detected as faulty.
Because the self-test circuitry is activated much less frequently
than the logic in the rest of the system, its vulnerability to
wear-out is significantly lower [23]. However, Cardio relies
heavily on these detection mechanisms to check hardware
integrity, hence, it may be worth protecting the self-testing
logic with traditional reliability mechanisms such as dual-
modular redundancy.

Finally, because Cardio’s hardware self-discovery opera-
tions might sometimes interrupt intrachip communications, our
solution addresses temporary communication glitches through
end-to-end message retransmission. Thanks to this mechanism,
Cardio can overcome communication problems due to tran-
sient or intermittent faults. Lastly, corrupted messages that
need to be retransmitted can be promptly recognized through
low-cost error detection codes [33].

B. Design Philosophy

In order to ensure correct operations on a CMP subjected
to permanent hardware failures, we need to address two
problems. First, all hardware components must be diagnosed
as either functional or unavailable. Second, connectivity and
possible communication paths among functional components
must be determined. Current solutions for runtime on-chip
reliability typically rely solely on expensive hardware mech-
anisms to achieve both these goals. Furthermore, no pre-
vious research provides a complete solution for distribut-
ing and managing components’ diagnostic information in
CMPs.

In Cardio, each hardware component is equipped with a
self-test feature that periodically broadcasts diagnostic test
outcome to the entire system. Differently from prior works,
a distributed resource manager executing on each of the
general-purpose cores dynamically maintains and organizes



268 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2014

information about the CMP’s hardware units. Fig. 1 shows
a high level schematic of the hardware and software additions
necessary to equip a baseline CMP system with the proposed
Cardio features.

In order to maintain a low area overhead, hardware addi-
tions are limited to the intrachip communication subsystem
and consist of enhancements to both network interfaces and
routers. Network interfaces are augmented with: 1) a buffer to
store transmitted packets waiting for acknowledgment, and 2)
a set of counters to trigger automatic retransmission in case
of time-out. Routers are enhanced with: 1) a link monitor to
collect information about the components directly connected
to the router, and 2) a configurable routing table to direct
NoC packets to their destination. Cardio software additions are
more significant, and consist of: 1) a data structure to contain
information about the CMP’s state (list of cores available);
2) a graph of the connectivity among the functional on-chip
components; and 3) the software routines necessary to handle
diagnostic messages and reconfigure the hardware system.

Lastly, cores are augmented with hardware structures that
enable program checkpointing. While local data caches can use
low-cost solutions, such as versioning, to store data belonging
to different checkpoints, each processor must include a shadow
register file to store the values computed in the previous
epoch [34], [35].

IV. Cardio Runtime Operation

In a Cardio-equipped system, execution time is partitioned
into epochs. The system cannot guarantee the correctness of
its computed results until the underlying hardware has been
tested. Therefore, all results are considered speculative until
hardware tests assess that no fault occurred during the previous
epoch. Furthermore, in order to overcome glitches that might
affect intrachip data transmissions, messages are temporarily
buffered to allow end-to-end packet retransmission.

Because resource manager instances execute independently
on the CMP’s cores, they must organize so they can share
an identical estimate of hardware components and, if needed,
can enforce a sound system reconfiguration. The problem of
reaching a common decision among several components is
a simpler instance of the Byzantine Generals’ Problem [36],
called the consensus problem [37]. Solving this problem in
our case consists of providing a common knowledge of the
available resources to all non-faulty cores in the CMP (this
is also known as the consensus vector). Cardio relies on
the periodic broadcast of diagnostic messages to provide an
efficient solution to this problem. The remainder of this section
details the mechanisms leveraged to achieve this goal.

While an application is speculatively executing an epoch,
processors and NoC routers periodically and independently
suspend their tasks to test the integrity of the underlying
hardware. These local tests are not globally synchronized, and
the only constraint imposed by Cardio is that all hardware
units must complete their self-tests by the end of the current
epoch—so that the previous one can be safely committed.

After each self-test completes, its outcome is broadcast
to the rest of the system. With the goal of minimizing
performance impact, each unit shares only the necessary di-
agnostic information with the rest of the system. For instance,
interconnect connectivity is tested every few thousands cycles:

if each router were to broadcast test outcomes so frequently,
these messages would severely burden the entire communica-
tion infrastructure. Therefore, routers broadcast system-wide
updates only upon the discovery of a new hardware failure. In
our design, more frequent diagnostic tests lead to more prompt
reactions to failures, but also entail higher performance im-
pacts and diagnostic message proliferation. Indeed, diagnostic
frequency is a design trade-off that we analyze in Section V.
Since Cardio’s objective is to dynamically react to detected
permanent hardware faults, we rely on previously proposed
techniques to diagnose faulty hardware components, such as
those presented in [22], [32], and [38].

Diagnostic messages are collected by the various instances
of the distributed software manager. Each of them, indepen-
dently, updates two local data structures: the list of available
hardware resources and the graph of the functional intercon-
nect links (shown in the right side of Fig. 1). The first structure
lists all hardware resources still available in the CMP, while
the second is used to compute the routes of NoC packets.
When a resource manager detects a new hardware failure, all
speculative computations since the end of the last committed
epoch are discarded. The system is then reconfigured to work
around the fault. Otherwise, if no hardware fault is detected, all
resource managers commit the results produced in the previous
speculative epoch and restart program execution. Note that,
after a hardware failure, the state of each active component in
the CMP must be recovered to restart software execution. For
this purpose, Cardio can rely on either software or hardware
checkpoint techniques [34], [35].

As we demonstrate in this paper, a CMP can rely on
inexpensive diagnostic message broadcasts to promptly react
to system alterations without significantly hindering its perfor-
mance. Hence, the design principles developed in Cardio are
extensible to a variety of digital systems, as long as at least one
general-purpose core is available to execute an instance of the
resource manager. Furthermore, Cardio can also be deployed
to enable hardware to adapt its functioning to network traffic,
components usage, and temperature. For instance, each router
could provide information about the usage of its links. Routers
experiencing high utilization can then broadcast this infor-
mation to the distributed resource manager, so it can reroute
packets to mitigate traffic congestion.

Since our hardware availability assessment and reconfigu-
ration procedures differ for processor cores and NoC compo-
nents, the next two sections discuss them separately.

A. Cores

Handling runtime failures on processors requires several
steps. As soon as the self-tests detect a hardware problem
in a processor, the system must suspend its execution and
reconfigure to prevent faulty hardware from corrupting soft-
ware output. In order to gather and distribute system-level
information about CMP’s cores integrity, all processors in
a Cardio-enabled design follow the sequence of operations
illustrated in Fig. 2.

Cores in modern CMPs rely on independent clock signals,
which cannot be easily synchronized to provide a global
signal to all components in the system. Therefore, each core
asynchronously and periodically suspends its normal execution
to perform self-tests (step 2 in Fig. 2). These intervals are
typically several tens of million cycles long—computational



PELLEGRINI AND BERTACCO: CARDIO: CMP ADAPTATION FOR RELIABILITY THROUGH DYNAMIC INTROSPECTIVE OPERATION 269

Fig. 2. Core monitoring and recovery in Cardio. To maintain an up-to-date state of the available cores in the system, Cardio relies on the following five
step sequence. 1) The cores perform their normal functions. 2) Core 0, independently from the other cores, executes a self-test procedure to detect potential
permanent failures. 3) If the test completes successfully, a local checkpoint of the current core state is taken. 4) A diagnostic message is broadcasted to all
other cores to signal that core 0 is functional. 5) Before core 0 can commit its computation, it must receive successful fault-free acknowledgments from all
cores that were functional in the just completed epoch. In the meantime, it can speculatively continue its execution. 6) Finally core 0 receives the last positive
fault-free acknowledgment from core 3 and commits its results up to the last checkpoint.

epoch lengths adopted in previous works are 10M, 20M,
100M, and 1 000M cycles. Techniques ranging from structural
to functional testing have been proposed to perform online
checks of digital designs [30], [32]. Periodic testing may
decrease overall core performance by 1% to 30%, depending
on the workload, testing technique, and epoch length [30],
[32], [39]. Furthermore, briefly pausing cores might cause
jitters in the execution of an application. Thankfully, both
these disadvantages can be significantly mitigated through
modifications to the operating system scheduler [40].

If a processor successfully passes all self-tests, its archi-
tectural state and memory state are checkpointed (step 3 in
Fig. 2). Test results are then wrapped in a diagnostic message
marked with the unique identifier of the tested core, and
broadcasted to the entire system (step 4 in Fig. 2). Depending
on the granularity of the test, more detailed information about
the impact of the faults affecting a core can be provided.
For instance, it may be possible to report a core with a non-
functional floating point unit as available, but only capable of
executing integer instructions [32].

Since all resource managers must agree on the available
hardware resources, Cardio imposes a barrier to allow all
cores to synchronize their information about the state of the
system. While waiting to receive diagnostic messages from all
other processors, a core may speculatively start executing the
subsequent epoch. For instance, step 5 of Fig. 2 shows core
0 starting a new computational epoch while still waiting for
a diagnostic message from core 3. Only when all diagnostic
messages from the functional cores are received, a local
checkpoint is safely committed (step 6 of Fig. 2). If n is the
number of healthy cores in the CMP, a core may receive at
most n − 1 unique diagnostic messages from other cores for
each epoch.

Speculative output and program state computed in an epoch
and stored in a checkpoint are committed when all active
processors in the CMP agree that no failure occurred during
that epoch. To manage speculative memory state, we opted
for a solution inspired by ReVive [34], where each node
only logs the content of the cache lines that are modified
during an epoch. Cardio mechanisms provide a system-level
synchronization primitive that enables the deployment of a
low-cost global checkpointing system.

When a hardware failure is detected, all computations
performed since the previous checkpoint cannot be trusted,

since such fault might have corrupted software execution.
Therefore, all speculative results are discarded and the faulty
hardware is identified and disabled.

A resource manager detecting a new hardware failure sends
a special message to all cores to rollback to the previously
synchronized checkpoint, so as to prevent the commitment of
potentially corrupted speculative results. A faulty core is not
required to report it faulty state to the rest of the system:
other instances of the resource manager will detect a missing
diagnostic message at the end of their speculative epoch by
mean of a local timeout. Then, the defective component is
disabled, and a reliability-aware operating system migrates the
active applications to use only the available resources. Lastly,
if part of the system becomes isolated due to a failure in
the interconnect, the memory content of the isolated nodes or
in failed memory controller can be retrieved through ad-hoc
mechanisms, such as DRAIN [41].

In order to prevent potential livelocks and guarantee that all
cores in a same connected region have a consistent view of
the functional hardware, resource managers exchange check-
sums of the reconstructed hardware configuration. In case
of checksum mismatch, for instance because of delays in
the communication infrastructure, Cardio forces all cores to
suspend their activity to drain all in-flight communications
from the system. All cores then restart their diagnostic protocol
and exchange a second set of checksums that summarize the
state of the system. This second time both the diagnostic
messages and the checksums are guaranteed to arrive in time,
since the system is not burdened with any other traffic.

Cardio’s diagnostic protocol is inspired by the one exten-
sively discussed in [37], which is proven to be deadlock and
livelock free if the four following conditions are met.

1) The communication system is reliable and only cores
can be subject to failure.

2) Each core can determine the sender of any received
message.

3) Any core’s failure to send messages is detectable.
4) Any non-faulty core can broadcast information to all

non-faulty cores.

Our system meets condition 1 because: 1) temporary com-
munication failures are tackled through an end-to-end network-
level retransmission protocol, and 2) permanent communica-
tion errors cause disconnected cores to be detected as faulty.



270 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2014

Condition 2 is fulfilled since each core marks all generated
messages with its unique ID. Timeout counters enable the
detection of lost packets and make Cardio meet condition 3.
Finally, condition 4 holds true because Cardio only applies to
interconnects supporting message broadcasting. Our protocol
works as follows. At the beginning of a computational epoch:

1) each j of the r cores available is tested, and its diagnostic
vj message is broadcasted to the system (for instance, we
can use a single bit flag set to “1” if a core is available
and to “0” if faulty);

2) each instance of the resource manager:
a) if it receives a value vj from all cores, 1..r,

then it takes v as its system’s availability image;
broadcasts v (or its checksum) to the system; waits
until the end of the computational epoch;

b) otherwise, if it does not receive a message from
at least one of the cores expected to be available
(a timeout occurs), then it broadcasts such infor-
mation to the system.

At the end of the epoch, each resource manager:
1) if it received a matching value v from all other cores

during the epoch just completed, then it confirms v as
the consensus vector and commits the results generated
in the previous speculative epoch;

2) otherwise, a new fault has been detected; program state
is rolled back to the previous safe checkpoint, and the
system is reconfigured to disable the faulty core.

While the correct execution of this protocol has been
proven to be both deadlock and livelock free [37], it is worth
discussing the case of two byzantine faults that may disrupt the
behavior of this procedure. First, faults may silently corrupt
the data carried by a message used in Cardio’s protocol. We
protect our design from this event by augmenting all messages
with error correcting codes [33]. The second case is due to
faults in the self-test logic, which may cause a broken core
to incorrectly advertise it status as available. This eventuality
can be avoided by protecting the self-test logic with traditional
reliability mechanisms such as dual-modular redundancy.

In order to maintain knowledge about the available hard-
ware, each resource manager builds a list of available cores
from the received diagnostic messages. Diagnostic messages
need to be synchronized to enforce that all cores will receive
them before the end of the next epoch. Since each core
generates diagnostic message independently, Cardio relies on
real-time counters to trigger the broadcast of diagnostic mes-
sages. Cardio’s introspective operations rely heavily on such
timers, and their hardware should be tested thoroughly and
frequently or even duplicated to ensure their functionality. We
send at least two copies of these messages within one epoch to
guarantee their timely arrival: in fact, even if communication
errors cause the loss of one message, the other is very likely
to arrive on time. Note that it is still possible, although
improbable, that both messages may get lost due to transient
failures. This case is not critical since it only forces Cardio to
flush all in-flight operations and initiate a new test routine.

B. Interconnect

Interconnect correctness and performance are fundamental
for any CMP. On-chip routers deliver messages between
cores, and a single router can connect multiple processors.

Fig. 3. Router periodic test procedure. First, the online testing algorithm on
the router tests the router’s hardware. Then the state of the direct links between
the router and its neighbors is checked. Directly connected neighbors that do
not respond within a certain time threshold are considered not available. Note
that only changes to the local link table are broadcast to the system.

Cardio can be successfully adopted in any NoC topology,
since interconnect state and routing information are handled in
software by the distributed resource manager. Previous work
characterized NoC malfunctions as either: 1) corruptions in the
payload/data, or 2) errors in the delivery system [42]. The first
kind of errors can be easily addressed with error-correcting
codes and retransmission. The latter can cause packet loss
or network deadlock, and both behaviors can be directly
mapped to malfunctions in a router’s links. Here, we introduce
a routing algorithm that dynamically discovers link failures
in an arbitrary network and updates communication routes
accordingly. In general, two families of routing algorithms
are available for this purpose: link-state and distance-vector
[43]. On one hand, self-configuring NoCs typically adopt
some flavor of the distance-vector protocol, because its limited
complexity well suits hardware implementations. On the other
hand, algorithms based on the link-state protocol introduce
lower communication overhead, therefore converge faster and
scale better than those based on distance vector.

In typical link-state protocols, for instance the ones devel-
oped for computer networks, every node constructs a graph
of its local network connections and broadcasts it to the
others. Then, each node, independently, computes the best
path from itself to every possible destination in the network.
Hence, network nodes only exchange information about their
local connectivity, but must perform complex computations to
generate network routes. Cardio overcomes this drawback by
delegating route generations to the software resource manager.

Fig. 3 shows the steps performed by each router when
the online testing procedure is activated. First, each router
independently suspends its activity to perform a self-check
on its own hardware structures, for instance testing its input
and output buffers and its crossbar (step 2 in Fig. 4). Any
of the several techniques proposed in the literature can be
adopted for this purpose [22], [23]. The outcome of this test
determines whether the router is operational. Once this first
check phase is completed, the router under test probes its
links to discover all directly connected neighbors. Each node
in the NoC performs local link discovery independently. To
maintain an accurate state of the local connections, each router
periodically generates a discovery “heart beat” that is sent to
all adjacent nodes, as illustrated in step 3 of Fig. 4. A router
receiving a heart beat discovery responds including its node
ID (step 4 in the figure). Each link monitor then populates a



PELLEGRINI AND BERTACCO: CARDIO: CMP ADAPTATION FOR RELIABILITY THROUGH DYNAMIC INTROSPECTIVE OPERATION 271

Fig. 4. Dynamic interconnect management in Cardio. Self-discovery and reconfiguration in the interconnect are organized in five steps. To reduce the amount
of extra traffic in the CMP, only topology changes are advertised. In the figure: 1) the NoC performs its normal functions; 2) router 0 suspends its execution
to perform a self-test routine; 3) since its hardware is found to be functional, discovery messages are sent to all output links; 4) router 2 replies to the request
with its ID; 5) since no response is received from router 1 within the deadline imposed by the timeout, the failed link is detected; and 6) because of the new
fault, router 0 broadcasts a diagnostic update requesting to reconfigure the network.

table where every functional local link is associated with the
ID of the node connected to it (step 5 in the figure). Routers
also store the unique identifiers of all directly connected cores.

Routers may trigger the detailed hardware tests performed in
the first step rather infrequently, since accurately testing NoC
hardware components often requires a considerable amount
of time. Indeed, other directly connected routers can discover
critical failures that jeopardize a router functionality, and
failures causing packet corruption can be detected by error-
checking codes.

After these two phases, each router is able to detect failures
that prevent communication with its directly connected nodes,
perhaps because a failure interrupts a communication path.
Once a router discovers a new link malfunction, it discards all
packets directed toward the broken link. The updated local
link table is then broadcasted to the system to notify the
resource managers about the change in network topology (step
6 in Fig. 4). Due to storage and performance constraints, the
period between two subsequent link tests is limited to a few
thousand cycles, as discussed in Section V-C. All links, even
those previously considered faulty, are periodically tested. This
allows routers to recover parts of the network that are only
temporarily unavailable, for example due to intermittent faults
or high traffic congestion. When a failure is detected, the
system starts the following hardware reconfiguration routine.

1) The router that discovered the failure broadcasts this
event to the entire system.

2) Resource managers receive this notification, pause the
cores, and discard all speculative computations.

3) Software routines are triggered to compute new routes
and the hardware is reconfigured accordingly.

4) The system rolls back to a previous checkpoint to restore
software state and restart execution.

Since our dynamic network testing routine might discard in-
flight packets, we deploy a retransmission mechanism to avoid
communication loss. Cardio addresses sporadic transmission
glitches through an end-to-end acknowledgment protocol:
every time a message successfully reaches its destination,
the receiver notifies the sender. All interconnect endpoints
therefore are enhanced to maintain hardware counters and
store pending messages waiting for acknowledgment. These
counters are incremented every cycle, and any message that

does not receive an acknowledgment within a certain time
threshold triggers a timeout. In case of timeout, the network
interface retransmits the timed out message; if the second
attempt is also unsuccessful, the network interface affected
by this problems notifies its directly connected cores of a
potentially more severe reliability threat by raising a hardware
exception. Acknowledgments may be sent through specialized
packets or may be piggybacked to regular data packets.
Acknowledgment buffer size is a storage and performance
trade-off, which is evaluated in Section V.

C. Cardio Distributed Resource Manager

Cardio’s distributed resource manager is responsible for
monitoring and managing the system’s reconfigurable hard-
ware. This light-weight software layer leverages the informa-
tion collected from the local tests to assess hardware availabil-
ity and connectivity. When necessary, Cardio suspends user
applications running on a core to execute resource manager’s
maintenance routines. User applications are also interrupted
every time a hardware component raises an exception or when
a diagnostic message is received.

Resource managers use the information about local con-
nections broadcasted by the routers to generate a connectivity
map of the on-chip network. All cores in a connected region
reconstruct the same topology. If the interconnect is partitioned
into multiple disconnected regions, each core running an
instance of Cardio’s resource manager only reconstructs the
region to which it belongs. Once the interconnect graph is
built, one local resource manager (for instance the one running
on the core with the lowest identifier number) computes
and distributes all routing tables, thus configuring the system
to permit communication among all available components.
From the diagnostic messages broadcasted to the system each
resource manager also populates the list of the available
hardware components and the interconnect graph. As previ-
ously discussed, a checksum of these two data structures is
transmitted to all cores in the CMP to verify that all resource
manager instances agree on the current state of the system. If
a checksum mismatch is detected, resource managers initiate
a renegotiation among themselves, eventually pruning routes
not accessible by one or more cores.



272 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2014

V. Experimental Evaluation

Cardio proposes a distributed mechanism to manage and
organize on-chip resources at runtime. Therefore, it adds extra
on-chip traffic due to the diagnostic messages exchanged by
the self-checking hardware components. Thus, our experi-
ments first evaluate Cardio’s impact on the system’s intercon-
nect, considering a variety of topologies and workloads.

We initially study the optimal size of the acknowledgment
buffers at the NoC endpoints and measure packet latency sensi-
tivity to interconnect discovery. We then evaluate the behavior
of Cardio on a system affected by hardware failures. We first
analyze the effect of hardware failures on the performance of a
system in steady state, where faults are injected before starting
our simulations. We then evaluate our design when subjected
to runtime hardware failures. We also report the impact of our
solution on interconnect performance and energy. Finally, we
conclude our study evaluating the performance and area impact
of all mechanisms required to deploy a fault-tolerant CMP:
software state checkpointing, core self-testing, and Cardio.

A. Experimental Setup
We used two different simulators for our experiments. The

first one is a fault-aware system-level C++-based simulator.
We adopted this infrastructure to evaluate Cardio’s effects
on interconnect performance and measure its response time
to hardware failures. Since our target is to explore the ef-
fectiveness of Cardio’s protocols, we developed a simulator
that allows quick turn-around for a range of architectures
and HW/SW co-design. To this end, our simulation includes
models at different levels of abstraction: cores’ behavior is
implemented at the transaction-level through clock counters,
while the interconnect model is cycle-accurate at the packet
granularity (we do not consider flit-level structures nor virtual
channels). We validated our in-house simulator by comparing
the average packet latency of comparable fault-free systems
in steady-state mode with results produced by other available
NoC simulators [38], [44]. The second simulator, gem5, was
also used to estimate the impact on performance of a complete
reliable system deploying Cardio [45].

In order to measure Cardio’s response to hardware failures,
our simulator models faults in the interconnect links. Our fault
models target the two following faulty behaviors: 1) packets
dropped before reaching their destination, and 2) packets
stuck at some network node [42]. In the first behavior all
packets attempting to traverse a broken link are dropped (drop-
packets), while in the second behavior a communication path
is blocked at a faulty link (hold-packets). These two types of
faults represent the worst-case scenarios observed in previous
evaluations with RTL models [23].

The CMP simulated with the first simulator is composed
of 16 cores, each connected to a dedicated network interface.
We consider four different interconnect topologies: ring, mesh,
torus and crossbar. The system frequency is set at 2.4GHz,
with five-stage routers transferring packets of up to 32 bytes
in size. Packets are buffered at every router; routers can store
up to two packets at the time. In our experimental evaluation
we adopted source routing, embedding routing information in
the packet itself. Routing tables are stored in the network inter-
faces and communication paths are computed by the resource
manager using the up*/down* routing algorithm [46]. Cardio
does not impose limitations on the routing algorithm adopted:

Fig. 5. Packet latency versus injection rate for different acknowledgment
buffer sizes. Each curve represents a different acknowledgment buffer size as
indicated in the legend. The x-axes represent each node probability (in %)
of attempting to inject a new packet in the network. Buffers storing up to
ten packets provide the best trade-off between storage and communication
latency.

these design choices were driven by the goal of simplifying
troubleshooting. In order to measure Cardio’s impact on inter-
connect performance, we considered uniform random traffic
as well as traces from the SPECMPI benchmark suite [47].
On one hand, random traffic ensures uniform link utilization
so that packet latency and fault impacts are not biased by
traffic patterns imposed by a benchmark’s characteristics. On
the other hand, traffic patterns from the SPECMPI benchmarks
heavily stress intercore communication and thus provide a
worst-case scenario for estimating Cardio’s performance and
traffic overhead. For the uniform random traffic injections we
report packet injection rates as the probability that a core
attempts to inject a new packet in the network (in %).

We then rely on the data collected through this first set
of simulations to perform a full-system analysis of Cardio’s
impact on a complete, reliable CMP system. In this second set
of experiments we measure the performance overhead of all
the mechanisms needed to protect a hardware system against
runtime failures: the checkpoint system, hardware self-test
routines, and Cardio. In these experiments we also vary the
size of the design under test to evaluate Cardio’s scalability,
and studied 16 different CMP configurations, ranging from
designs containing 2 to 32 cores. Cores in these designs
communicate through a network-on-chip organized in a mesh
topology. We used the gem5 simulator in full-system mode
to measure the performance impact of these designs [45].
For this second evaluation we assume a fault-free system and
measure the impact of all necessary reliability mechanisms
on the MEVBench benchmark suite [48]. Three main reasons
led us to choose this set of benchmarks. First, its applica-
tions present a balanced amount of local computation and
intercore communication. Second, it allows high degree of
scalability. Third, this benchmark suite is representative of
high-performance multithreaded workloads.

B. Acknowledgment Buffer Sizing

In order to handle communication failures, Cardio con-
siders any point-to-point data transmission incomplete until
the sender receives an acknowledgment from the receiver.



PELLEGRINI AND BERTACCO: CARDIO: CMP ADAPTATION FOR RELIABILITY THROUGH DYNAMIC INTROSPECTIVE OPERATION 273

Fig. 6. Packet latency versus discovery period. Packet latency sensitivity to
the discovery period differs for the analyzed topologies: mesh and ring are
more sensitive to variations due to a smaller network bisection.

Thus, every non-broadcasted packet is temporarily stored in
an acknowledgment buffer at the source until a confirmation
message is received. The goal of our first experiment is to
study the trade-off between storage and average traffic latency
on network interfaces augmented by packet acknowledgment
buffers. We evaluated several buffer sizes, ranging from 1
data packet (that is, the network interface must receive the
acknowledgment for a previous packet before transmitting the
following one), up to 100 outstanding packets. No faults are
injected for this experiment. Fig. 5 shows the relation between
the number of outstanding messages and the average packet
latency. Traffic injection rate is measured as the probability
of each network interface to attempt the injection of a new
message in the interconnect at any given clock cycle, while
packet latency is measured as the number of cycles between
when a data packet is generated to when it is received by
its destination. For the considered topologies we found that
an acknowledgment buffer of ten packets is a reasonable
compromise between storage requirements and packet latency.
Indeed, acknowledgment buffers containing less than ten data
packets lead to significantly worse average packet latency,
while even doubling their size provides minimal benefits.
Thus, network interfaces in all subsequent experiments include
acknowledgment buffers capable of containing up to ten out-
standing packets. Note that, the latency curves we observed
level off as the traffic injection rate increases. Indeed, when the
acknowledged buffers fill up, the cores are forced to suspend
execution, creating de facto a self-throttling effect.

C. Dynamic Discovery Period

We then analyzed the effects on interconnect latency due
to the extra traffic caused by the discovery packets. With this
goal, we studied the sensitivity of average packet latency to the
interconnect discovery period. This experiment was run with
a traffic injection rate of 5% and a fault-free interconnect.
From the data gathered in our analyses we observed that
resource contention in the network starts to impact packet
latency at injection rates higher than 5%. As the period
between interconnect discoveries increases, average packet
latency decreases due to bandwidth limitations. As shown in
Fig. 6, this trend is steeper for topologies such as mesh and
ring, for which links are subjected to a higher contention.
Given the results obtained in this experiment, the network
discovery frequency for our subsequent analyses is based on
three different discovery periods, from a very frequent periodic
test of 5 000 cycles to a much slower discovery period of
20 000 cycles.

D. Steady-State Faulty Behavior

Our third set of experiments evaluates how a faulty Cardio-
enabled CMP performs in steady-state. For this experiments
we rely on random traffic patterns. Faults are injected ran-
domly in network links before starting each simulation. We
perform these studies in order to show Cardio applicability to
improve manufacturing yield and measure its performance in
various faulty topologies.

Fig. 7 reports the packet average latency as a function of
the number of faulty links in the system (x-axis) and the traffic
injection rate (z-axis). As with the previous experiments, traffic
injection rate is measured in probability (%) of packet injection
per core. Interestingly, packet latency for the crossbar, ring,
and mesh reduces as the number of faulty links increases. For
the crossbar, this phenomenon is caused by the fact that a
single faulty link is sufficient to disconnect a processor from
the system. Therefore, as the number of faults increase, the
number of active cores connected to the crossbar—and thus
the traffic injected into the system—decreases. In the ring,
hardware failures partition the topology in smaller, partially
connected sub-networks. However, our graphs show that just
a dozen faults suffice to disconnect most cores from the
system, causing the average packet latency to plummet to
zero. Fig. 7 also shows that both the mesh and the torus
can tolerate a high number of hardware failures, maintaining
performance up to and beyond 20 faulty links. This is due to
the high connectivity of both these topologies, a characteristic
that allows them to better work around hardware failures.
Nevertheless, an increase in the number of faults in the
mesh leads to a lower average packet latency. We found that
interconnect failures partition the system into smaller sub-
networks, which experience less average traffic congestion
and thus lower packet latency. Other researchers have also
reported this phenomenon [23]. In contrast, the torus does not
manifest this behavior. In fact, the higher number of links
available in this topology allows it to maintain connectivity
among most nodes in the system, even when affected by more
than ten faults. Nevertheless, faulty links do affect packets’
possible routes, hence increasing the average communication
latency. The observations above are confirmed empirically by
our analysis of CMP connectivity as a function of the number
of faulty links, whose results are shown in Fig. 8.

E. Runtime Faulty Behavior

In this section we studied the dynamic behavior of Cardio on
a mesh at the time of occurrence of a permanent fault, evaluat-
ing its reactivity in detecting and overcoming a link failure. For
this experiment, we simulated a fault-free system for 150 000
cycles to reach a steady state, when a randomly selected link
is modeled as faulty. The two fault models aforementioned
were considered for this paper: drop-packets and hold-packets.
In order to provide insights on Cardio dynamic behavior, we
analyzed the system at windows of 500 cycles and report,
on the y-axis, the average latency incurred by all packets
generated during each analyzed window. In this experiment
we considered discovery periods of 5 000, 10 000, and 20 000
cycles. To stress the interconnect with a moderate amount of
traffic, we set the packet injection rate at 5%. Through native
execution profiling, we measured that the time required for the
distributed resource manager to recompute the routing tables



274 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2014

Fig. 7. Average packet latency for faulty topologies. These graphs report the packet average latency (y-axis) as a function of the number of faulty links in
the system (x-axis) and the traffic injection rate in % (Zz-axis). When subject to faulty links, different topologies respond differently. Mesh and torus have
higher connectivity and can maintain reasonable packet latency even when subjected to a significant number of faults.

Fig. 8. Number of nodes connected versus faulty links. Our solution uses
up*/down* routing to achieve maximum connectivity. The curve that charac-
terizes the number of connected nodes depends on both the topology and on
the number of available links.

is approximately constant at 10 000 cycles. We also estimated
that each routing table requires 450 cycles to update, represent-
ing a serial write process for 15 routes of 15 hops each, writing

2 bits per hop [49]. In these experiments the network discovery
period starts when the fault is injected to demonstrate the
worst-case performance of our solution. In this first evaluation,
we disregarded the extra traffic introduced by core diagnostic
messages, since their transmission frequency is three orders of
magnitude lower than for the interconnect components [22].

Results from the drop-packet fault model are reported in
Fig. 9(a), where we distinguish a minimum of two and a
maximum of three latency peaks, depending on the discovery
period. The first peak is caused by the occurrence of the
fault, and affects all packets that need to be retransmitted due
to the faulty link. After a certain amount of time, directly
related to the network discovery period, a first router detects
the problem locally and consequently broadcasts the updated
system state. The first interconnect reconfiguration process
causes the network to temporarily stall, resulting in the second
peak observable in the graph. The third peak shown in the
graph is due to a second system reconfiguration and it is
triggered by a later detection of the fault by a second router.

The impact of the hold-packets fault model is more dra-
matic: a fault’s effect is not limited to packets in transit
between two nodes, but rapidly propagates to a vast portion of
the CMP, as demonstrated by the much higher average packet
latency reported. Indeed, this second fault model congests mul-
tiple links: input and output buffers at the routers connected



PELLEGRINI AND BERTACCO: CARDIO: CMP ADAPTATION FOR RELIABILITY THROUGH DYNAMIC INTROSPECTIVE OPERATION 275

Fig. 9. Effect of a dynamic fault on a link. These graphs plot the average time necessary for a packet to reach its destination; packet latency is averaged
between all packets generated in a window of 500 cycles. In this scenario, the link is broken at cycle 150 000 and two fault models are considered. (a) Drop-
packet. (b) Hold-packet.

TABLE I

Comparison of Performance and Overhead of Cardio Against a

Fully Hardware Approach, Immunet

through the broken link fill up and cause a domino effect to
their neighbors and then to the rest of the network. As reported
in Fig. 9(b), the longer the period between hardware tests the
more dramatic are the fault’s effects on the overall system.

To put these results in context, we compare the dynamic
behavior of Cardio with Immunet, a hardware solution for
reliable interconnects [13]. Dynamic reconfiguration time in
Immunet is an exponential function of the number of nodes in
the system, and for a CMP system of comparable dimensions,
can be estimated to be less than 8 000 cycles. This result,
however, comes at a very high cost, since each node must
include and dynamically update three different routing tables.
Because Cardio relies on software routines to reconfigure the
hardware, it is slower (up to 50 000 cycles) in responding
to failures. But, since fault events are very infrequent, this
slowdown has a negligible impact on performance.

F. Performance and Traffic Impact

In this section we study the impact of our solution on fault-
free interconnect performance and communication overhead.
For this last study we report the extra execution time experi-
enced when running SPECMPI benchmarks and the percent-
age of extra packets that must be transmitted for diagnostic
purposes. We show in Fig. 10(a) that, for most benchmarks,
the performance impact is lower than 3% and almost uniform
over all topologies. An interesting exception is the 104.milc
benchmark evaluated in the mesh topology, which suffers of a
significant performance loss. This is because each core in that
benchmark relies on very frequent and long data transfers to
one process mapped to the core on the top left corner of the
mesh. This core therefore has a much more limited bandwidth,

Fig. 10. Performance impact and extra traffic (measured in message*hop)
due to interconnect discovery on SPECMPI benchmarks. (a) Performance
impact for the considered applications is limited for most benchmarks (3%)
and almost uniform over the four topologies. (b) For most applications and
topologies the extra communication introduced by Cardio is limited (5% on
average).

and thus the performance impact measured in this scenario is
particularly pessimistic.

Fig. 10(b) plots the extra traffic introduced by our system.
This can also be used as a estimate of the energy overhead due
to Cardio. Our design typically introduces less than 10% of
extra traffic, and this figure varies greatly with the benchmark
considered: its overhead is higher for applications with little
intercore communication (e.g., 128.GAPgeofem).

Other solutions for reliable interconnect, such as Immunet
and Vicis, have no performance impact during fault-free
operations, but impose much larger area overheads. Immunet
requires three different routing tables per node [13], while the
overhead for Vicis is more than 40% of the design’s baseline
area [23]. Furthermore, Cardio provides global knowledge of
hardware state to a middleware layer, thus enabling system-
level tuning of hardware reconfiguration policies.



276 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2014

Fig. 11. Analysis of the overhead of the reliability techniques for different CMP configurations. (a) Performance overhead of 16 CMP configuration, including
between 2 and 32 cores. We considered three different core testing technique: structural testing [30], functional testing [32], and built-in-self-test [50].
(b) and (c) Distinct performance overhead contributions for configurations containing 16 and 32 cores, respectively.

As the number of nodes in CMPs is expected to increase,
it is important to evaluate the scalability of our solution.
Assuming a CMP with n cores, the maximum number of
messages periodically that must be exchanged in Cardio is
2n3 and 2n2(n − 1) for a torus and a mesh, respectively. In
order to overcome a network failure, the number of messages
exchanged in a torus is 8 + 4n3 and is 8 + 4n2(n − 1) for
the mesh. To provide some perspective, a newly discovered
fault in a 8x8 torus triggers 1 032 messages in Cardio and
12 240 in Immunet [13]. As the number of processors in CMPs
grows, the gap between the numbers of messages exchanged
increases even further. For instance, overcoming a failure in a
16x16 torus requires 4 104 and 244 908 messages for Cardio
and Immunet, respectively. Finally, reconfiguration time in
Immunet increases with the size of the system, while Cardio
reacts always within the same time window. This is because
Immunet needs to propagate new routing tables from one node
to all others, while Cardio detects failures locally and handles
hardware reconfigurations in software. Table I compares per-
formance and cost of our hybrid hardware/software solution
against a fully hardware approach, Immunet.

G. Full System Performance Analysis

In this section we evaluate Cardio’s performance impact
on a complete reliable system, which also includes processor
checkpointing and testing procedures for all hardware com-
ponents. A number of previous works developed mechanisms
that can be adopted for these purposes, and we rely on them
to estimate the cost of deploying a holistic reliable solution.

We use gem5 to evaluate 16 different fault-free CMP con-
figurations executing the MEVBench benchmark suite [48].
In this analysis we consider computational epochs 20 million
cycles long, a common choice for such systems. With the goal
of analyzing our results in detail, we divide the performance
overhead of the system in three different categories: check-
pointing, core testing, and Cardio.

Checkpointing—In order to measure the performance im-
pact of a checkpoint system, we assumed that our system
deploys ReVive, a complete low-cost checkpointing solu-
tion [34]. The goal of this system is to recover the memory
state of a shared-memory machine in less than one second.
This recovery time is reasonable, since we do not expect
hardware failures to manifest frequently enough to impact
overall system performance. Hardware checkpoints are taken
every 20ms, and consist of logging recently modified data
from each node’s cache and values stored in the register

file. In order to model this system, our experiments account
that the average error-free overhead introduced by ReVive
is 6.3%, a value extrapolated from previous evaluations of
this paer [34]. This figure is rather conservative, since it
assumes that the system takes a full checkpoint every 10ms.
In our experiments, we account performance penalty due to
checkpoint synchronization as overhead for Cardio.

Core testing—Each core independently pauses its execution
at the end of an epoch to perform a complete hardware self-
test. A number of approaches have been proposed to perform
these checks, which vary greatly in fault coverage and cost.
In order to measure Cardio’s impact with a wide range of
hardware self-test solutions, we considered three different
techniques: structural testing [30], functional testing [32], and
built-in-self-test [50]. Structural and functional test techniques
have little impact on the silicon area (up to 6%). . They can
achieve high fault coverage, 99.5% and 95%, respectively, for
a relatively high performance cost, 3.4 and 5.4 million cycles,
respectively. Built-in-self-test techniques achieve a faster test
time, only 3 300 cycles, for a higher silicon area cost (up
to 15%) and can reach 95% fault coverage. It is worth
noting that these evaluations do not consider a reliability-aware
operating system, whose scheduling policy can significantly
reduce periodic hardware self-test overhead [40].

Cardio—The arrival of any diagnostic message triggers the
execution of a simple procedure of the distributed resource
manager in each core, which collects information about hard-
ware state and populates its software structures. The end of
an epoch is determined individually by each core through a
cycle counter, which interrupts all current operations to test
processor hardware, checkpoint program state, and broadcast
diagnostic information about its hardware. These routines also
analyze the graph of the components available in the system,
and, if needed, trigger system reconfiguration and notify the
OS of possible hardware alterations.

The hardware of the routers in the system is checked
as frequently as the cores using tests that require 150 000
cycles [51]. Router’s lists of local connections is kept updated
much more frequently, every 10 000 cycles, to ensure correct
communication between directly connected nodes.

Fig. 11(a) shows the results we obtained for the range of
CMP evaluated and the core testing technique considered.
These curves show that the total performance overhead slightly
worsens as the number of cores increases. This increase
in overhead is due to the additional diagnostic messages
exchanged by the cores and averages to a performance



PELLEGRINI AND BERTACCO: CARDIO: CMP ADAPTATION FOR RELIABILITY THROUGH DYNAMIC INTROSPECTIVE OPERATION 277

degradation of roughly 0.05% per additional core. Fig. 11
also reports the single contribution to the total overhead of
the three mechanisms we require to ensure reliable computing:
checkpointing, hardware testing, and Cardio. Fig. 11(b) and (c)
reports these results for a configuration containing 16 cores
and 32 cores, respectively. On one hand, systems adopting
structural and functional testing suffer a very significant slow-
down, which is dominated by the core testing procedures. On
the other hand, the configurations employing built-in-self-tests
have more balanced performance overheads.

Compared against the baseline system, Cardio alone in-
troduces an overall performance overhead between 4.5% and
7.8%. The minimum performance overhead is reported for the
2-core system deploying built-in-self-test. On the other side of
the spectrum, the maximum performance overhead for Cardio
is for the 32-core configuration adopting structural testing.
Two factors drive the relatively high overhead experienced
by this configuration. The first one is the higher number of
diagnostic messages that must be handled by Cardio’s resource
manager due to the higher core count. The second factor is
due to the compounded performance penalty of all reliability
techniques adopted in this configuration: since performance
is hindered by the long self-test routines, Cardio interrupts
workload execution more frequently.

H. Area Overhead

We used Cacti 5.3 to estimate the area overhead of our
solution [52]. For this paper we assume to deploy Cardio on
a system composed of 2-wide out-of-order cores built in 32-
nm process technology. Each network interface is enhanced
with ten buffers (Section V-B) of 32 bytes each (the size of
one packet). In addition, we require ten counters associated
with the buffers to track timeouts, and each counter should
be 20 bits wide to allow for a wide range of timeout values.
Thus, the total additional storage required by each network
interface is 345 bytes, which adds to a total of 0.036 mm2 for
a system composed of 16 nodes. Note that this overhead is
common to all solutions that require the ability to recover in-
flight messages. Each router must store the IDs of the nodes
connected to its links and a reconfigurable routing tables, for
a total of six bytes. As a comparison, each router in Immunet
demands 28 bytes of additional storage. Storage requirements
grow linearly with system size, and thus Cardio benefits
are even more marked for larger CMPs. When we consider
both reconfigurable routing tables and router self-test logic,
interconnect area increases by approximately 11.4% [51].

Finally, we estimated that the hardware structures needed
for full-system checkpoint add a total of 1.3236 mm2 to each
core, increasing its area by 8.5%. More silicon real-estate may
be required for the core self-test mechanism—between 0% and
15%, depending on the deployed technique [30], [32], [50].

VI. Limitations and Future Work

Cardio is a novel solution for dynamically managing unre-
liable CMP components. In this paper we showed that it can
quickly reconfigure systems composed of tens of components
to work around hardware failures. Although effective, we
recognize that our design is affected by two limitations. First,
the periodic broadcast of diagnostic messages introduces a

non-negligible performance overhead, as also reported in our
experimental evaluation in Section V-F. Second, Cardio relies
on the presence of at least one operational general purpose
processor to run its resource manager.

In the future, we would like to explore other hardware
and software solutions that could lower performance overhead
at the cost of, for instance, higher silicon area. We would
like to study the possibility of embedding microcontrollers
dedicated to executing Cardio’s resource manager. Modern
microprocessors, such as the Intel Nehalem microprocessor,
embed full-fledged microcontrollers with the sole purpose of
tuning cores’ voltage and frequency. Using similar microcon-
trollers to manage resource availability and to reconfigure
hardware components may help containing the cost of our
solution, while also enabling its adoption on heterogeneous
SoC designs. We also believe that Cardio could benefit from
and ease the development of a reliability- and fault-aware OS.

VII. Conclusion

In this paper we presented Cardio, a novel hardware/
software architecture to manage reliability in CMPs. Cardio
is a system-level solution based on the periodic exchange of
diagnostic messages among hardware components to maintain
coherent knowledge of resource availability. We evaluated
Cardio on a custom, fault-aware simulator for chip multi-
processors and studied the dynamic capability of Cardio to
overcome permanent faults, finding that its reconfiguration
time upon fault detection is comprised between 20 and 50
thousand cycles. Finally, we showed that Cardio has a very
low impact on overall performance (4.5%) and introduces min-
imal additional traffic (5%) during normal system operation.
Furthermore, this solution is fully distributed and scales well
with as the number of cores on a CMP increases.

References

[1] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, B. Liewei, J. Brown, M. Mattina, C.-C. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan,
F. Montenegro, J. Stickney, and J. Zook,“TILE64 processor: A 64-core
SoC with mesh interconnect,” in Proc. Solid-State Circuits Conf., 2008,
pp. 88–598.

[2] S. Borkar, “Thousand core chips: A technology perspective,” in Proc.
Des. Autom. Conf., 2007, pp. 746–749.

[3] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,
T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van der Wijngaart, and
T. Mattson, “A 48-core IA-32 message-passing processor with DVFS in
45nm CMOS,” in Proc. Solid-State Circuits Conf., 2010, pp. 108–109.

[4] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: A many-core x86 architecture for
visual computing,” in Proc. ACM SIGGRAPH, 2008, pp. 18:1–18:15.

[5] S. Borkar, “Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation,” in IEEE Micro., vol.
25, no. 6, pp. 10–16, 2005.

[6] A. Strong, E. Wu, R.-P. Vollertsen, J. Sune, G. L. Rosa, T. Sullivan,
and R. Stewart, Reliability Wearout Mechanisms in Advanced CMOS
Technologies. New York, NY, USA: Wiley, 2009.

[7] M.-L. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and Y. Zhou,
“Understanding the propagation of hard errors to software and impli-
cations for resilient system design,” in Proc. Conf. Architec. Support
Program. Lang. Oper. Syst., Mar. 2008, pp. 265–276.



278 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2014

[8] S. Nomura, M. D. Sinclair, C.-H. Ho, V. Govindaraju, M. de Kruijf,
and K. Sankaralingam, “Sampling + DMR: Practical and low-overhead
permanent fault detection,” in Proc. Symp. Comput. Architect., 2011, pp.
201–212.

[9] A. Pellegrini, V. Bertacco, and T. Austin, “Fault-based attack of RSA
authentication,” in Proc. DATE Conf., 2010, pp. 855–860.

[10] A. Pellegrini et. al, “CrashTest’ing SWAT: Accurate, gate-level evalua-
tion of symptom-based resiliency solutions,” in Proc. DATE Conf., 2012,
pp. 1106–1109.

[11] E. Musoll, “Mesh-based many-core performance under process varia-
tions: A core yield perspective,” ACM SIGARCH Comput. Architect.
News, vol. 37, no. 4, pp. 27–34, 2010.

[12] S. Shamshiri and K.-T. T. Cheng, “Modeling yield, cost, and quality of
a spare-enhanced multicore chip,” IEEE Trans. Comput., vol. 60, no. 9,
pp. 1246–1259, Sep. 2011.

[13] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide, “Immunet: A cheap
and robust fault-tolerant packet routing mechanism,” in Proc. Symp.
Comput. Architect., 2004, pp. 198–209.

[14] P. Zajac, J. Collet, and A. Napieralski, “Self-configuration and reacha-
bility metrics in massively defective multiport chips,” in Proc. On-Line
Test. Symp., 2008, pp. 219–224.

[15] W. Bartlett and L. Spainhower, “Commercial fault tolerance: A tale of
two systems,” IEEE Trans. Dependable Secure Comput., vol. 1, no. 1,
pp. 87–96, Jan.–Mar. 2004.

[16] D. Bernick et. al, “NonStop advanced architecture,” in Proc. Conf.
Dependable Syst. Netw., 2005, pp. 12–21.

[17] K. Constantinides, S. Shyam, S. Phadke, V. Bertacco, and T. Austin,
“Ultra low-cost defect protection for microprocessor pipelines,” in Proc.
Conf. Architect. Support Programm. Lang. Oper. Syst., 2006, pp. 73–82.

[18] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin, “Tolerating hard
faults in microprocessor array structures,” in Proc. Conf. Dependable
Syst. Netw., 2004, pp. 51–60.

[19] P. Shivakumar, S. W. Keckler, C. R. Moore, and D. Burger, “Exploiting
microarchitectural redundancy for defect tolerance,” in Proc. Conf.
Comput. Design, 2003, pp. 481–488.

[20] S. Gupta, S. Feng, A. Ansari, B. Jason, and S. Mahlke, “The StageNet
fabric for constructing resilient multicore systems,” in Proc. Symp.
Microarchitect., 2008, pp. 141–151.

[21] A. Pellegrini, J. Greathouse, and V. Bertacco, “Viper: Virtual pipelines
for enhanced reliability,” in Proc. Symp. Comput. Architect., 2012, pp.
344–355.

[22] K. Constantinides et. al, “BulletProof: A defect-tolerant CMP switch
architecture,” in Proc. Symp. High-Performance Comput. Architect.,
2006, pp. 5–16.

[23] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester,
“Vicis: A reliable network for unreliable silicon,” in Proc. Design
Automat. Conf., 2009, pp. 812–817.

[24] T. Dumitras and R. Marculescu, “On-chip stochastic communication,”
in Proc. DATE Conf., 2003, pp. 10790–10795.

[25] A. Sanusi and M. Bayoumi, “Smart-flooding: A novel scheme for fault-
tolerant NoCs,” in Proc. SOC Conf., 2008, pp. 259–262.

[26] T. Bressoud and F. Schneider, “Hypervisor-based fault tolerance,” in
Proc. Symp. Oper. Syst. Principles, 1995, pp. 1–11.

[27] P. M. Wells, K. Chakraborty, and G. S. Sohi, “Adapting to intermittent
faults in multicore systems,” in Proc. Conf. Architect. Support Program.
Lang. Oper. Syst., 2008, pp. 255–264.

[28] J. Blome, S. Feng, S. Gupta, and S. Mahlke, “Self-calibrating online
wearout detection,” in Proc. Symp. Microarchitect., 2007, pp. 109–122.

[29] P. Singh, C. Zhuo, E. Karl, D. Blaauw, and D. Sylvester, “Sensor-
driven reliability and wearout management,” IEEE Design Test Comput.,
vol. 26, no. 6, pp. 40–49, Nov.–Dec. 2009.

[30] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco, “Software-
based defect tolerance for chip-multiprocessors,” in Proc. Symp. Mi-
croarchitect., 2007, pp. 97–108.

[31] S. Gupta, A. Ansari, S. Feng, and S. Mahlke, “Adaptive online testing
for efficient hard fault detection,” in Proc. Conf. Comput. Design, 2009,
pp. 343–349.

[32] A. Pellegrini and V. Bertacco, “Application-aware diagnosis of runtime
hardware faults,” in Proc. Conf. Computer-Aided Design, 2010, pp. 487–
492.

[33] S. Murali, T. Theocharides, N. Vijaykrishnan, M. Irwin, L. Benini, and
G. De Micheli, “Analysis of error recovery schemes for networks on
chips,” IEEE Design Test Comput., vol. 22, no. 5, pp. 434–442, Sep.-
Oct. 2005.

[34] M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cost-effective archi-
tectural support for rollback recovery in shared-memory multiproces-
sors,” in Proc. Symp. Comput. Architect., 2002, pp. 111–122.

[35] D. Sorin, M. Martin, M. Hill, and D. Wood, “SafetyNet: Im-
proving the availability of shared memory multiprocessors with
global checkpoint/recovery,” in Proc. Symp. Comput. Architect., 2002,
pp. 123–134.

[36] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
Problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–
401, 1982.

[37] M. J. Fischer, “The consensus problem in unreliable distributed systems
(a brief survey),” in Proc. Conf. Fundamentals Comput. Theory, 1983,
pp. 127–140.

[38] D. Fick, A. DeOrio, V. Bertacco, D. Sylvester, and D. Blaauw, “A highly
resilient routing algorithm for fault-tolerant NoCs,” in Proc. DATE Conf.,
2009, pp. 21–26.

[39] Y. Li, M. Samy, and S. Mitra, “CASP: Concurrent autonomous chip self-
test using stored test patterns,” in Proc. DATE Conf., 2008, pp. 885–890.

[40] Y. Li, O. Mutlu, and S. Mitra, “Operating system scheduling for efficient
online self-test in robust systems,” in Proc. Conf. Computer-Aided
Design, Nov. 2009, pp. 201–208.

[41] A. DeOrio, K. Aisopos, V. Bertacco, and L.-S. Peh, “DRAIN: Dis-
tributed recovery architecture for inaccessible nodes in multi-core chips,”
in Proc. Design Autom. Conf., 2011, pp. 912–917.

[42] A. Alaghi, N. Karimi, M. Sedghi, and Z. Navabi, “Online NoC switch
fault detection and diagnosis using a high level fault model,” in Proc.
IEEE Int. Symp. Defect Fault-Tolerance VLSI Syst., 2007, pp. 21–29.

[43] J. F. Kurose and K. W. Ross, Computer Networking: A Top-down
Approach. Reading, MA, USA: Addison-Wesley, 2009.

[44] D. Bertozzi and L. Benini, “Xpipes: A network-on-chip architecture for
gigascale systems-on-chip,” IEEE Circuits Syst. Mag., vol. 4, no. 2, pp.
18–31, Sep. 2004.

[45] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
et. al, “The gem5 simulator,” SIGARCH Comput. Architect. News,
vol. 39, no. 2, pp. 1–7, 2011.

[46] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Needham, T. Rode-
heffer, et. al, “Autonet: A high-speed, self-configuring local area network
using point-to-point links,” IEEE J. Sele. Areas Commun., vol. 9, no. 8,
pp. 1318–1335, Oct. 1991.

[47] M. S. Muller, K. Kalyanasundaram, G. Gaertner, W. Jones, R. Eigen-
mann, R. Lieberman, et. al, “SPEC HPG benchmarks for high-
performance systems,” J. High Perform. Comput. Netw., vol. 1, pp.
162–170, 2004.

[48] J. Clemons, H. Zhu, S. Savarese, and T. Austin, “MEVBench: A
mobile computer vision benchmarking suite,” in Proc. Symp. Workload
Characteriz., 2011, pp. 91–102.

[49] I. Loi, F. Angiolini, and L. Benini, “Synthesis of low-overhead con-
figurable source routing tables for network interfaces,” in Proc. DATE
Conf., 2009, pp. 262–267.

[50] M. Mehrara, M. Attarian, S. Shyam, K. Constantinides, V. Bertacco, and
T. Austin, “Low-cost protection against SER upsets and silicon defects,”
in Proc. DATE Conf., 2007, pp. 1–6.

[51] A. DeOrio, D. Fick, V. Bertacco, D. Sylvester, D. Blaauw, J. Hu, and
G. K. Chen, “A reliable routing architecture and algorithm for NoCs,”
IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 31, no. 5,
pp. 726–739, May 2012.

[52] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “CACTI
5.1,” Hewlett-Packard Laboratories, Palo Alto, CA, USA, Tech. Rep.
HPL-2008-20, 2008.

Andrea Pellegrini (S’03–M’13) received the Laurea
Magistrale (with honors) in computer engineering
from the University of Bologna, Bologna, Italy, in
2007. He is currently pursuing the Ph.D. degree
at the Department of Electrical Engineering and
Computer Science at the University of Michigan,
Ann Arbor, MI, USA.

His current research interests include micro-
architecture, secure computer systems, fault model-
ing, and fault tolerant designs.

Valeria Bertacco (S’95–M’03–SM’10) received the
Laurea degree in computer engineering from the
University of Padova, Padua, Italy, and the M.S.
and Ph.D. degrees in electrical engineering from
Stanford University, Stanford, CA, USA, in 2003.

She is currently an Associate Professor of Electri-
cal Engineering and Computer Science at the Uni-
versity of Michigan, Ann Arbor, MI, USA. She was
previously associated with Synopsys for four years.
Her current research interests include the areas of
complete design validation, digital system reliability,

and hardware-security assurance.
Dr. Bertacco is the recipient of the IEEE CEDA Early Career Award and

has served on the program committees of DAC, DATE, and MICRO.


